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Abstract. The three parameters Mittag–Leffler function (often re-
ferred as the Prabhakar function) has important applications, mainly in
physics of dielectrics, in describing anomalous relaxation of non–Debye
type. This paper concerns with the investigation of the conditions, on
the characteristic parameters, under which the function is locally inte-
grable and completely monotonic; these properties are essential for the
physical feasibility of the corresponding models. In particular the classi-
cal Havriliak–Negami model is extended to a wider range of the param-
eters. The problem of the numerical evaluation of the three parameters
Mittag–Leffler function is also addressed and three different approaches
are discussed and compared. Numerical simulations are hence used to
validate the theoretical findings and present some graphs of the function
under investigation.

1. Introduction

Recently Capelas de Oliveira, Mainardi and Vaz [1] have investigated the
complete monotonicity of the function of the Mittag-Leffler type

(1.1) eγα,β(t) = tβ−1Eγα,β(−tα), t ≥ 0,

where

(1.2) Eγα,β(z) =

∞∑
k=0

(γ)kz
k

k!Γ(αk + β)
, (γ)k =

Γ(γ + k)

Γ(γ)
, z ∈ C,

denotes the Prabhakar function [21] with three positive order-parameters
{α, β, γ}. For more details on this function see e.g. [17, 13, 9]. It is also
interesting to note that the Prabhakar function (1.2) is a special case of
the more general Fox–Wright function 1Ψ1 which was first investigated by
Wright in 1935 [29].

For some particular values of the parameters this function and its Laplace
transform (LT)

(1.3) Eγα,β(s) :=

∫ ∞
0

e−st eγα,β(t) dt =
sβ

(1 + s−α)γ
=

sαγ−β

(sα + 1)γ
,
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2 F.MAINARDI, R. GARRAPPA

with <(s) > 0, |sα| > 1, provide the response function and the complex
susceptibility (s = −iω) respectively, found in the most common models for
non–Debye (or anomalous) relaxation in dielectrics. In fact, the classical
dielectric models, referred to as Cole–Cole [2, 3], Davidson–Cole [4] and
Havriliak–Negami [14, 15], are derived according to the scheme

(1.4) αγ = β with

 0 < α < 1 , γ = 1 C-C {α} ,
α = 1 , 0 < γ < 1 D-C {γ} ,
0 < α < 1 , 0 < γ < 1 H-N {α, γ} .

Moreover, the application of fractional operators based on the Prabhakar
function have been recently investigated [6] for describing the unsaturated
behavior of the free electron laser and the derivation of a renewal point pro-
cess generalizing the classical homogeneous and the time–fractional Poisson
processes.

In [1] the authors have proved that the function eγα,β(t) is locally integrable

and completely monotone (LICM)1 under the conditions

(1.5) 0 < α ≤ 1, 0 < αγ ≤ β ≤ 1.

As discussed by several authors (e.g., see [12]) the CM is an essential
property for the physical acceptability and realizability of the models since
it ensures, for instance, that in isolated systems the energy decays mono-
tonically as expected from physical considerations. Studying the conditions
under which the response function of a system is CM is therefore of funda-
mental importance.

The purpose of this note is to complement the analysis in [1] by providing
a more direct proof of the complete monotonicity through an explicit formula
for the corresponding spectral density (see Section 2). Moreover, we discuss
the problem of the numerical evaluation of the Prabhakar function and we
present some new numerical tests, based on a novel Matlab routine, for
validating the results on the CM and better presenting the behavior of the
Prabhakar function (see Section 3). The present analysis allows us to point
out that the Havriliak–Negami model described in (1.4) may be extended to
γ > 1 provided γ < 1/α so that the corresponding response function keeps
its LICM character with a non-negative spectrum density. Finally, section
4 is devoted to conclusions and final remarks.

1Let us recall that a real function u(t) defined for t ∈ R+ is said to be completely mono-

tonic (CM) if it possesses derivatives u(n)(t) for all n = 0, 1, 2, 3, .. and if (−1)nu(n)(t) ≥ 0

for all t > 0. The limit u(n)(0+) = lim
t→0+

u(n)(t) finite or infinite exists. It is known from

the Bernstein theorem that a necessary and sufficient condition that u(t) be CM is that

u(t) =

∫ ∞
0

e−rt dµ(r) ,

where µ(t) is non-decreasing and the integral converges for 0 < t < ∞. In other words
u(t) is required to be the real LT of a non negative measure, in particular

u(t) =

∫ ∞
0

e−rtK(r) dr , K(r) ≥ 0 ,

where K(r) is a standard or generalized function known as spectral distribution. For more
mathematical details, consult e.g. the survey by Miller and Samko [18].
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2. The spectral distribution of the Prabhakar function:
analytical aspects

We first note that for 0 < α < 1 the LT in Eq. (1.3) exhibits a branch cut on
the negative real semi-axis but no poles. Therefore, the inversion of the LT
through the Bromwich integral reduces to the evaluation of the integral on
an equivalent Hankel path which starts from −∞ along the lower negative
real axis, encircles the small circle |s| = ε in the positive (counterclockwise)
sense and returns to −∞ along the upper negative real axis.

As shown in [1], when ε→ 0 it is

(2.1) eγα,β(t) =

∫ ∞
0

e−rtKγ
α,β(r) dr ,

where

(2.2) Kγ
α,β(r) = ∓ 1

π
Im
[
Eγα,β(s)

∣∣∣
s=re±iπ

]
denotes the spectral distribution of eγα,β(t). In other words, since Eγα,β(s) is

required to be the iterated LT of Kγ
α,β(r), we recognize that it is the Stielt-

jes transform of the spectral distribution. As a consequence, the spectral
distribution can be determined as the inverse Stieltjes transform of Eα,β(s)
via the so-called Titchmarsh inversion formula (see e.g. [25, 28]) as pointed
out in the above equation.

By virtue of the Bernstein theorem, to ensure the complete monotonicity
of eγα,β(t) the spectral distribution Kγ

α,β(r) is required to be non-negative for

all r ≥ 0.
In [1] the authors have provided the conditions of complete monotonicity

based on the requirements stated in the treatise by Gripenberg et al. [11], see
Theorem 2.6, pp. 144-145, which provide necessary and sufficient conditions
to ensure the CM of a locally integrable function from its LT. Here we do
not take advantage of that theorem but we prefer to compute explicitly the
spectral distribution from the Titchmarsh formula and derive the conditions
of non-negativity.

It is indeed possible to observe that

(2.3)

Kγ
α,β(r) =

r−β

π
Im

{
eiβπ

(
rα + e−iαπ

rα + 2 cos(απ) + r−α

)γ}
= −r

αγ−β

π
Im

{
ei(αγ−β)π

(rαeiαπ + 1)γ

}
from which, after standard manipulations in complex analysis, we get

(2.4) Kγ
α,β(r) =

rαγ−β

π

sin [γ θα(r) + (β − αγ)π]

(r2α + 2rα cos(απ) + 1)γ/2
,

where

(2.5) θα(r) := arctan

[
rα sin(πα)

rα cos(πα) + 1

]
∈ [0, π] .

For details we refer to the Appendix where a warning on the correct branch
of the function arctan is also outlined.
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Figure 1. The function θα(r) for α = 0.25, α = 0.50 and
α = 0.75.

We easily recognize that θα(r) is a non-negative and increasing function
of r limited by απ ≤ π, as shown in the Figure 1, where the dotted lines
indicate the limit values απ. In fact for r � 1 it is direct to check its
asymptotic behavior

(2.6)
rα sin(πα)

rα cos(πα) + 1
=

sin(πα)

cos(πα) + 1/rα
≤ sin(πα)

cos(πα)
= tan(πα) .

Then we recognize that in order the spectral distribution to be non-
negative the argument of the sin function in the numerator must be included
in the closed interval [0, π] and henceforth we find the conditions stated in
[1], that we repeat for convenience:

(2.7) 0 < α ≤ 1, 0 < αγ ≤ β ≤ 1.

In Figures 2, 3, 4 and 5 we report the spectral distributions for the
H-N model, obtained from Eq. (2.7) assuming β = αγ, keeping fixed
α ∈ {0.5, 0.75} and varying γ. We explicitly note the non-negativity of
the spectral distributions (ensuring the complete monotonicity of the corre-
sponding response function) not only when γ ≤ 1 but more generally when
αγ < 1, so γ can overcome the value 1 and generalize the H-N model.

3. Numerical computation and validation of theoretical
results

The aim of this section is to validate the theoretical results on the CM of
the Prabhakar function by means of some numerical experiments.

We will first discuss some methods for evaluating the function and we
will validate their results by comparison with some asymptotic expansions;
hence we will provide some graphical evidences in order to confirm the cor-
rectness of the condition stated in (2.7) for the CM of the function under
investigation.
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Figure 2. The spectral distribution for the Havriliak-
Negami model KH-N(r) for α = 0.5 and 0 < γ < 1.
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Figure 3. The spectral distribution for the Havriliak-
Negami model KH-N(r), for α = 0.5, and 1 ≤ γ < 2 = 1/α.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

r

K
H
−
N
(r
)

γ = 0.25
γ = 0.50

γ = 0.75
γ = 0.90

α = 0.75 0 < γ < 1 β = αγ

Figure 4. The spectral distribution for the Havriliak-
Negami model, KH-N(r), for α = 0.75 and 0 < γ < 1.
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Figure 5. The spectral distribution for the Havriliak-
Negami model KH-N(r), for α = 0.75 and 1 ≤ γ < 4/3 =
1/α.

3.1. Numerical computation of the Prabhakar function. To the best
of our knowledge, very few mathematical packages provide built-in facilities
for the computation of the ML function. One of the most used codes, the
Matlab mlf.m function devised by Podlubny and Kacenak [20] and imple-
menting algorithms similar to those investigated in [10], allows to compute
the two parameters function with high accuracy but does not apply to the
more general three parameters case. This is also the case of the compu-
tational software Mathematica in which, starting from the recent version
9, the ML function has been introduced but only for 1 and 2 parameters.
Other algorithms for the computation of the 2 parameters ML function were
developed in [23, 16, 24].

For the computation of the Prabhakar function it is therefore necessary to
device specific algorithms and we consider here three different approaches:

(1) truncation of the series expansion in (1.2);
(2) evaluation of the LT (2.1) of the spectral distribution (2.4);
(3) numerical inversion of the LT (1.3).

In the first approach some terms of the series expansion in the original
definition (1.2) are evaluated and summed up until their difference in ab-
solute value is below a given threshold. This is the most straightforward
and easy to implement approach but, unfortunately, it is the less reliable. It
indeed works in an acceptable way only for small values of t since otherwise
the slow convergence imposes the computation of a huge number of terms;
in this case, not only the computation requires a large amount of time but it
can also be impossible due to overflow errors in computing k! and Γ(αk+β)
and numerical cancellation in summing terms with very different magnitude.

With the second approach, the ML function (1.2) is evaluated as the LT
of its spectral distribution (2.4) by applying some numerical quadrature rule
(for instance, we use the adaptive Gauss–Kronrod quadrature implemented
by the Matlab quadgk function supporting infinite intervals and functions
with endpoints singularities). We must however observe that this kind of
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quadrature is usually very time–consuming and moreover, as we will ex-
perimentally observe, it works only with singularities of moderate type, i.e.
when β is not much larger than αγ.

The third approach is performed into two main steps: the Bromwich line
in the formula for the inversion of the LT is first deformed into an equivalent
path beginning and ending in the left half of the complex plane (in this way
the exponential factor est rapidly decays without strong oscillations which
are source of numerical instability); hence a numerical quadrature (for in-
stance, the simple compound trapezoidal rule) is applied along this path. An
algorithm based on contours of parabolic type has been extensively studied
in [27, 26] and successfully applied to the two parameters ML function in
[8]; it is appreciated since any preassigned accuracy can be achieved with
a modest computational effort; moreover, since it is mainly based on the
analysis of the singularities of the LT of the ML function, it can be easily
adapted to evaluate the three parameters extension too [7].

While the first two approaches apply to a very restricted range of param-
eters and arguments, the last one appears as the most robust and reliable
for general use. We thus intend to evaluate the ML function by inverting its
LT and use the other two methods just for validating the obtained results.

As we can see from Figures 6 and 7, where we have plotted the difference,
in absolute values, between the outcomes resulting from the application of
the three above described approaches (labeled respectively as E1,E2 and
E3), the method based on the truncation of the series expansion of the ML
function is reliable only when t is not too far from the origin, otherwise large
errors are expected. The evaluation by the LT of the spectral distribution
and the numerical inversion of the LT of the ML function provide very
similar results, with a difference very close to the machine precision, thus
confirming the high accuracy which they are able to provide.
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Figure 6. Comparison of different approaches for evaluat-
ing the three parameters ML function.

We must however observe that the numerical evaluation of the LT (2.1) is
a quite complicated task when β > αγ because of the endpoint singularity in
the spectral distribution (2.4). The Matlab quadrature code quadgk used for
approximating the integral in (2.1) has been able to provide accurate results
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Figure 7. Comparison of different approaches for evaluat-
ing the three parameters ML function.

when α = 0.5, β = 0.9 and γ = 1.6 (see Figure 6), i.e. for a singularity with
a strength αγ − β = 0.1 but not when β = 0.97, i.e. when the strength of
the singularity is 0.17. At the same time it is has been possible to correctly
evaluate the integral for α = 0.7, β = 0.9 and γ = 1.1 as shown in Figure 7
but not when β = 0.95.

We think however that this approach deserves a more in-depth investiga-
tion (which is beyond the scope of this paper) since more suitable quadrature
rules could be applied to efficiently evaluate (2.1).

3.2. Asymptotic expansion. To further validate the numerical computa-
tion of the Prabhakar function, especially for large values of the argument
t, it is useful to derive some asymptotic expansions for t→∞.

The first expansions in the whole complex plane were provided by Wright
in 1935 and 1940 in two distinct papers [29, 30] devoted to the analysis of
more general hypergeometric functions. More recently, Paris [19] improved
the analysis of Wright by considering also exponentially small expansions.

Although the results in the papers or Wright and Paris are very rigorous,
their practical use is quite complicate since it demands for the computation
of some residues of non elementary functions; thus, for our aims it is more
convenient to derive specific expansions by inverting the LT (1.3) as s→ 0.

It is simple to observe that the full series expansion in positive powers of
s of (sα + 1)−γ is

(3.1) (sα + 1)−γ = 1 +
∞∑
k=1

(−γ
k

)
sαk

where the binomial coefficients can be computed by recurrence and are re-
lated to Gamma functions as follows

(3.2)

(−γ
k

)
=

Γ(−γ + 1)

Γ(−γ − k + 1) k!
= (−1)k

Γ(γ + k)

Γ(γ) k!
.
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By term by term inversion, and recalling the generalized LT pair (see, for
instance, the classical book of Doetsch [5])

(3.3) sν ÷ t−ν−1

Γ(−ν)

which holds for non integer ν > 0, we get as t→∞ the following asymptotic
series for αγ − β 6= 0

(3.4) Eγα,β(s) =
sαγ−β

(sα + 1)γ
÷ eγα,β(t) = tβ−αγ−1

∞∑
k=0

(−γ
k

)
t−αk

Γ(β − αγ − αk)
,

whilst, by neglecting in (3.1) the spurious singular term 1÷ δ(t), in the case
αγ − β = 0 we have

(3.5) Eγα,β(s) =
1

(sα + 1)γ
÷ eγα,β(t) =

∞∑
k=1

(−γ
k

)
t−αk−1

Γ(−αk)

(similar results are obtained, by using the Mellin–Barnes integral represen-
tation of the Prabhakar function, in [22] where however, perhaps due to a
misprint, it seems that a term (−1)k is missing). As a consequence, the
dominant term for t→∞ (asymptotic representation) is given by

(3.6) eγα,β(t) ∼


tβ−αγ−1

Γ(β − αγ)
, if 0 < αγ < β ≤ 1 ,

−γ t
−α−1

Γ(−α)
, if 0 < αγ = β ≤ 1 .

The plot in Figure 8 presents the difference, in absolute value, between
the ML function (1.1) evaluated by numerically inverting the LT and the
truncation (after the first 3 terms) of the asymptotic expansions (3.4-3.5);
since the expansion are derived for t→∞, the first part of the positive real
axis is omitted in the plot.
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Figure 8. Difference between the 3–parameters ML func-
tion evaluated by numerical inversion of the LT and the as-
ymptotic expansions (3.4-3.5).
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As we can see, for the three selections of the order parameters {α, β, γ}
(which cover the three main different cases αγ < β, αγ = β and αγ > β) the
numerical evaluation of the ML function (1.1) agrees in a reasonable way
with the expansions (3.4-3.5) and their difference is very small (in some cases
it rapidly achieves values below the machine precision of the floating–point
arithmetic used for the computation).

The rate at which the asymptotic expansions (3.4-3.5) converge to the ML
function (1.1) obviously depends on β − αγ − 1 (or −α− 1, when αγ = β),
i.e. the power of the leading term in the expansion of eγα,β(t) as t→∞.

3.3. Verifying the conditions for CM. On the basis of the observations
in the previous subsections, the method exploiting the numerical inversion
of the LT tuns out to be reliable and efficient for the computation of the
Prabhakar function and therefore it will be used in this work for validating
the theoretical findings on CM properties.

In Figure 9 we show, for α = 0.70 and γ = 1.30 the behavior of the
function as the second parameter, namely β, varies in a neighborhood of the
threshold αγ = 0.91 for which CM is expected.
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β = 0.90
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β = 0.92

β = 0.93

t

eγ α
,β
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)

α = 0.70 γ = 1.30 αγ = 0.91

Figure 9. Graph of the ML function for α = 0.70, γ = 1.30
and β varying.

As we can clearly see, when β < 0.91 negative values are obtained; the
non monotonic character, which can be hardly observed for β = 0.90, is
more manifest for β = 0.89.

An additional test can be performed on the derivatives of eγα,β(t); after

direct differentiation of each term in the series defining the ML function
(1.1), it is indeed easy to verify that

(3.7)
dk

dtk
eγα,β(t) = eγα,β−k(t), t > 0.

From Figure 10, where the first few derivatives (with alternating signs)

(−1)k d
k

dtk
eγα,β(t), k = 0, . . . , 5, are plotted by means of (3.7), we can clearly

observe that, as expected from theoretical predictions, non negative values
are obtained.
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Figure 10. First derivatives of the ML function for α =
0.70, β = 0.91 and γ = 1.30.

It is interesting to note that for values of β below but very close to the
threshold values αγ for which CM is no longer assured, the CM can be only
apparent. As we can see in Figure 11 indeed it could seem that the function
is non negative and monotonic but a closer inspection, and on a wider range
for t, shows that negative values and a non monotonic behavior are achieved
(see the box inside the same Figure 11).
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Figure 11. Apparent non-negativity and monotonicity for
α = 0.700, β = 0.905 and γ = 1.300.

We conclude this Section by presenting the plots of the Prebhakar function
(1.1) for other instances of the parameters α and β. In particular in Figure
12 it is presented the case α = 0.80 and γ = 1.20 for which CM is expected
for β > 0.96.

In Figure 13 we present the case α = 0.6 and γ = 1.5 for which the CM
is instead expected when β > 0.9; we show only the interval for t in which
the most interesting phenomena are present.
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Figure 12. Graphs (as β varies) of the ML function for
α = 0.80 and γ = 1.20.
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Figure 13. Graphs (as β varies) of the ML function for
α = 0.60 and γ = 1.5.

All the plots presented in this Section seem to validate, in a quite clear
way, the theoretical findings.

4. Concluding remarks

Some properties of the three parameters Mittag-Leffler function have been
investigated. In particular, we have established the conditions on the pa-
rameters α, β and γ for which the function turns out locally integrable and
completely monotonic.

These conditions are essential in order to suitably model relaxation phe-
nomena of non-Debye type, such as anomalous polarization processes in
dielectrics. We think that these results can be of some help especially for
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parameter identification, a task which is usually performed in an experi-
mental way. In particular we have been able to extend the validity of the
classical Havriliak-Negami model.

Moreover, some numerical methods have been discussed and compared
with the aim of identifying suitable techniques for the accurate and efficient
numerical computation of the three parameters Mittag-Leffler function. An
approach based on the inversion of the LT, which appears as the most re-
liable, has been used for validating the theoretical findings and providing
some graphical representations of the function under investigation.
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Appendix: The spectral distribution of the Prabahakar
function

For ease of presentation we have collected in this Appendix some details
regarding the derivation of the spectral distribution Kγ

α,β(r).

After applying the Titchmarsh inversion formula, from (2.2) we have

(A.1)

Kγ
α,β(r) =

r−β

π
Im

{
eiβπ

(
rα + e−iαπ

rα + 2 cos(απ) + r−α

)γ}
= −r

αγ−β

π
Im

{
ei(αγ−β)π

(rαeiαπ + 1)γ

}

= −r
αγ−β

π
Im

{
ei(αγ−β)π

(rαeiαπ + 1)γ
(rαe−iαπ + 1)γ

(rαe−iαπ + 1)γ

}
It is now easy to check that the denominator is real and non-negative, so

we set

(A.2) ξ := (rαeiαπ + 1)(rαe−iαπ + 1) = r2α + 2rα cos(απ) + 1 ,

with ξ ≥ (rα − 1)2 ≥ 0 and consequently ξγ/2 ≥ 0. For the numerator we
set

(A.3) z := (rαe−iαπ + 1) = [rα cos(απ) + 1]− i rα sin(απ) = ρ e−iθ ,

where 0 ≤ θ ≤ π (being 0 < α ≤ 1). Then

(A.4) ρ = |z| =
√

[Re(z)]2 + [Im(z)]2 = ξ
1
2

and

(A.5) tan θ = − Im(z)

Re(z)
=

rα sin(πα)

rα cos(πα) + 1
.
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Using the de Moivre’s formula (cosψ + i sinψ)n = cos(nψ) + i sin(nψ) we
get:
(A.6)

Kγ
α,β(r) =−r

αγ−β

π

Im {[cos(αγ − β)π + i sin(αγ − β)π] [cos(γθ)− i sin(γθ)]}
ξγ/2

=−r
αγ−β

π

[− cos(αγ − β)π sin(γθ) + sin(αγ − β)π cos(γθ)]

ξγ/2

=−r
αγ−β

π

sin [(αγ − β)π − γθ]
ξγ/2

=
rαγ−β

π

sin [γθ + (β − αγ)π]

ξγ/2
,

where

(A.7) θ = θα(r) := arctan

[
rα sin(πα)

rα cos(πα) + 1

]
∈ [0, π].

As noted by Zorn for the Havriliak-Negami model [31], see our analysis for
αγ − β = 0, we need to chose the arctangent’s value in the interval [0, π],
which is possible if one considers arctan(x) to be a multivalued function. In
this sense our proposed formula is always valid if only correctly interpreted.
Staying with the usual definition of arctan(x) as a function into [−π/2, π/2],
one has to add π to avoid the negative values instead of the changing of sign.
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