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Abstract

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 

7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires 

the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent 

cells and does not increase the complexity or change the compactness of the RKDG method. 

Numerical computations for solving one-dimensional and two-dimensional scalar and systems of 

nonlinear hyperbolic conservation laws are performed with approximate solutions represented by 

piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] 

is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both 

numerical experiments and the analytic estimate of the CFL number of the newly formulated 

method, we find that: 1) this new formulation improves the CFL number over the original RKDG 

formulation by at least three times or more and thus reduces the overall computational cost; and 2) 

the new formulation essentially does not compromise the resolution of the numerical solutions of 

shock wave problems compared with ones computed by the RKDG method.

1 Introduction

In this paper, we introduce a simple and effective technique to improve the Courant-

Friedrichs-Lewy (CFL) condition of the Runge-Kutta discontinuous Galerkin (RKDG) 

method for solving nonlinear conservation laws while essentially keeping the complexity 

and other nice features of RKDG unchanged. The discontinuous Galerkin (DG) method was 

firstly introduced by Reed and Hill [24] as a technique to solve neutron transport problems. 

In a series of papers by Cockburn, Shu et al. [9, 8, 7, 6], the RKDG method has been 
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developed for solving nonlinear hyperbolic conservation laws and related equations. In their 

formulation, DG is used for spatial discretization with flux values at cell edges computed by 

either Riemann solvers or monotone flux functions, the total variation bounded (TVB) 

limiter [27, 9] is employed to eliminate spurious oscillations and the total variation 

diminishing (TVD) Runge-Kutta (RK) method [29] is used for the temporal discretization to 

ensure the stability of the numerical approach while simplifying the implementation. The 

RKDG method is compact and can be formulated on arbitrary meshes. It has enjoyed great 

success in solving the Euler equations for gas dynamics, compressible Navier-Stokes 

equations, viscous MHD equations and many other equations, and motivated many related 

new numerical techniques [1, 22].

In [9], the RKDG method is shown to be linearly stable when the CFL factor is bounded by 

 for the second-order and the third-order schemes in the one-dimensional (1D) space, 

where q is the degree of the polynomial approximating the solution. In [32], the RKDG 

solution is projected to the staggered covolume mesh to obtain distributional derivatives and 

then is projected back on each Runge-Kutta step which is analytically shown in 1D to 

significantly increase the CFL number. It is found in [19] that the central DG scheme on 

overlapping cells with Runge-Kutta time-stepping can use a CFL number larger than the one 

that RKDG method can take on non-overlapping cells when the order of accuracy of these 

schemes is above the first order. Using integral deferred correction for time discretization 

with improved CFL condition can be found in [5]. In [35], a technique is introduced which 

incorporates neighboring cell averages as additional constraints into the RKDG method. 

This technique improves the CFL condition. However, due to the use of multiple Lagrangian 

multipliers, the computational cost also increases during each time step. It would be 

desirable if there is a simple technique to increase CFL number of the RKDG method 

without introducing too much computational overhead while still being compact and 

maintaining its other nice properties. In this paper, we further develop the strategy in [35] 

which mixes the RKDG method with some of the finite volume reconstruction features [3] 

to achieve this goal.

We impose additional conservation constraint on the numerical solution computed by the 

RKDG method in the sense that in addition to letting an approximate polynomial solution 

supported on a cell conserve the cell average of this cell, this polynomial matches the 

prescribed cell averages supported on adjacent neighbors of this cell in a least-square sense. 

This is achieved by introducing a penalty term to the energy functional associated with the 

RKDG formulation. The resulting linear system contains the same number of equations to 

be solved as in RKDG, and is referred to as the constrained RKDG method in the sections 

that follow. We illustrate the effectiveness of our technique by analytically estimating the 

CFL factor and using the 1D and two-dimensional (2D) third- and fourth-order accurate 

schemes to compute both smooth and discontinuous solutions test problems, respectively. 

The 2D test cases are solved on triangular meshes. In this study, we find that the constrained 

RKDG method increases the CFL number over the original RKDG method by three times or 

more, and essentially does not destroy the resolution of the discontinuous numerical 

solutions limited by hierarchical reconstruction (HR) [17]. However, there is also one 

limitation of the proposed method in terms of the cost efficiency when solving problems 
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with smooth solutions. From numerical tests reported in this paper, we observe that RKDG 

method can achieve better accuracy using less CPU time for solving the smooth solution 

problem. The constrained RKDG method needs two times more CPU time than that of the 

RKDG method to reach the same magnitude of the error.

We also point out that the computer memory requirement for the constrained RKDG method 

is the same as that for the RKDG method. The computer memory utilized by both methods 

is mainly for storing the degrees of freedom for each cell. Thus we do not perform a study 

on this aspect.

Using finite volume limiting techniques on solutions computed by the RKDG method for 

conservation laws has been explored by many researchers. In [23, 38, 39], the WENO finite 

volume reconstruction procedures are used as the limiter on cells where the solutions 

supported on these cells become oscillatory. In [21], Luo et al. developed a Hermite WENO-

based limiter for the second order RKDG method on unstructured meshes following [23]. It 

would be convenient to use a compact limiting technique since the RKDG method is a 

compact method. The first of such limiters is the TVB projection limiter by Cockburn and 

Shu, which uses the lowest and (limited) first Legendre moments locally where non-

smoothness is detected. Other compact limiting techniques which are supposed to remove 

spurious oscillations using information only from adjacent cells for any orders include the 

moment limiter [4] and the recently developed HR [17]. In [33], HR on 2D triangular 

meshes has been studied for the piecewise quadratic DG method; a partial neighboring cell 

technique has been developed and a component-wise WENO-type linear reconstruction is 

used on each hierarchical level. This new technique has good resolution and accuracy on 

unstructured meshes and is easy to implement since the weights on each hierarchical level 

are trivial to compute and essentially independent of the mesh. An up to fourth-order 

accurate point-wise HR for unstructured triangular meshes has been developed in [35]. 

Besides the techniques mentioned above, there are also many research works of limiters for 

high order schemes for solving various problems. One goal of the paper is to verify if our 

technique for improving the CFL number of RKDG works well with HR. We also present a 

local iteration technique and characteristic decomposition for HR which improves the 

resolution of the solutions computed by fourth-order accurate schemes in the vicinity of 

discontinuities.

The paper is organized as follows. Section 2 describes the conservation constrained RKDG 

formulation, analytical estimate of the CFL number and the HR limiting procedure. Results 

of numerical tests are presented in Section 3. Concluding remarks and a plan for the future 

work are included in Section 4.

2 Formulation of the Method

2.1 Outline of the approach

Here we summarize the conservation constrained Runge-Kutta discontinuous Galerkin finite 

element method for solving time dependent hyperbolic conservation laws (2.1)
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(2.1)

where Ω ⊂ Rd, d is the spatial dimension, d = 1 or 2 in this paper. u = (u1, …, up)T is the 

solution vector and the column vectors F,j(u) = (F1,j(u), …, Fp,j(u))T are the flux vectors. 

We use the following notation x = (x1) ≡ (x) in 1D, and x = (x1, x2) ≡ (x, y) in 2D for spatial 

variables in the rest of the paper, respectively.

The method of lines approach is used to evolve the solution in time. Specifically, the third-or 

fourth-order accurate TVD RK time-stepping method is used, based on the accuracy of 

spatial discretization. At each RK stage, the constrained DG method is used. In the vicinities 

of discontinuities of the solution, the computed piecewise polynomial solution is limited by 

HR to remove spurious oscillations.

2.2 Conservation constrained discontinuous Galerkin method

In this section, we develop the conservation constrained DG method for solving Eq. (2.1) 

with d = 1, or 2 and p = 1 or p > 1. We use these 1D and 2D implementations as examples to 

present the essential ingredients of the method, while keeping in mind that this formulation 

can be naturally extended to d = 3.

2.2.1 1D Conservation constrained discontinuous Galerkin method—For the 

sake of presenting the main idea of the conservation constrained DG method, we concentrate 

on developing this method for solving the 1D scalar problem (2.2) in this subsection, and 

then extend it to the multi-D system case in the next subsection.

(2.2)

In 1D, let  be a partition of domain [a, b] ⊂ R. The 1D 

cells, cell centers and cell sizes are defined by

(2.3)

respectively. Like the DG method, the approximate solution uh is taken in the finite element 

space Vh = {P(x) : P|ℐi is a polynomial of degree ≤ q, i = 1, …, }.

In this work, the local basis function set  of the the finite 

element space Vh on ℐi is chosen to be Legendre polynomials, r = q. For example,

(2.4)

On each cell ℐi, the approximate solution uh(t, x) to Eq. (2.2) is expressed as
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(2.5)

To derive the semi-discrete DG formulation for solving Eq. (2.2), υh ∈ Span {ℬi} is 

multiplied to Eq. (2.2), integration over ℐi and integration by parts lead to

(2.6)

Since the approximate solution uh is discontinuous across cell edges, the interfacial fluxes 

are not uniquely determined. The interfacial flux function f(uh) can be replaced by the Lax-

Friedrich flux function (see e.g. [28]) defined as

where α is the largest characteristic speed,  and  are the right- and left-hand 

limits of uh respectively at xi−1/2.

Equation (2.6) then leads to the semi-discrete DG scheme

(2.7)

for which each coefficient  of uh must satisfy. Here Δ+ denotes the forward difference 

operator Δ+ ai = ai+1 − ai.

The resulting system of ordinary differential equations can be solved by a TVD Runge-Kutta 

method [29] which builds on convex combinations of several forward Euler schemes of 

(2.7).

Our additional conservation constraint is performed within each of the component forward 

Euler scheme. To be specific, a forward Euler scheme for solving Eq. (2.7) can be written as

(2.8)

where the superscript n denotes the time level tn, and Δtn ≡ tn+1 − tn. In particular, by 

solving Eq. (2.8) with m = 0, we obtain the cell average of  over cell ℐi, denoted by 

, just as with a finite volume scheme.

Now suppose the cell averages  have been computed on all cells. We do not 

compute the rest of the degrees of freedom of  on cell ℐi by using Eq. (2.8). Instead, we 
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let  on cell ℐi minimize an energy functional (variational to (2.8)) subject to that it 

conserves additional given cell averages not only in cell ℐi but also in some of its neighbors.

In order to do so, let’s rewrite (2.8) in cell ℐi as

(2.9)

for any υh ∈ Span {ℬi}. Here ℒℐi(υh) represents the right-hand-side of (2.8) with  being 

replaced by υh so that

(2.10)

It is easy to see that ℒℐi(υh) a linear bounded functional defined on the finite element space 

on ℐi. The variational form of (2.9) is to find  in the finite element space on ℐi such that 

it minimizes the energy functional

(2.11)

In Sec. 2.1.1 of [35], the conservation constrained RKDG formulation on cell ℐi was 

described as replacing each component forward Euler scheme by finding  in the finite 

element space on ℐi, such that

(2.12)

Here we typically choose the set {ℐJ : J = i − 1, i, i + 1} consists of cell ℐi and its adjacent 

cells.

This constrained minimization problem (2.12) can be solved by the method of Lagrangian 

multiplier as follows

(2.13)

where  are Lagrangian multipliers. The coefficients  of  (see Eq. (2.5)) 

are determined by solving the linear system (2.13). Note that the left-hand-side of the first 

equation of (2.13) is in the same form as equation (2.9) or (2.8).

Even though this technique increases the CFL number, the use of Lagrangian multipliers 

also increases the dimensions of the linear system to be solved. In order to overcome this 

problem, we introduce a new minimization problem without any constraint as follows:
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Find  such that

(2.14)

where

(2.15)

and μ ≥ 0 is a constant. Note that when μ = 0 the formulation returns to the standard DG with 

forward Euler time-stepping.

The variational formulation of problem (2.14) is to find  such that

(2.16)

In order to preserve the cell average  defined on ℐi, we obtain  by 

modifying  as follows

(2.17)

Specifically, let the solution  to Eq. (2.16) take the form

 is obtained by modifying the 0th degree coefficient  of 

(2.18)

and letting

(2.19)

To sum up, solving Eq. (2.16) and subsequently enforcing conservation of the solution by 

Eq. (2.17) complete the new conservation constrained DG method.

Remark 1. It’s easy to verify that energy functional E2 defined in Eq. (2.15) is invariant 

(subject to a scalar multiplication) under any affine change of coordinates.
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Remark 2. Note that the linear system (2.16) consists of the same number of equations as in 

a RKDG step (2.8). Therefore the complexity of the new method is close to that of the 

standard RKDG (without using orthogonal basis functions).

The linear system (2.16) has a unique solution. In fact, consider the associate homogeneous 

system with ℒℐi (υh) = 0 and  for all J = i − 1, i, i + 1,

(2.20)

for any υh ∈ Span{ℬi}. Let . We conclude that , which implies 

.

Remark 3. A compromised formulation with only one Lagrangian multiplier can be written 

as follows:

Find  such that

(2.21)

This method has similar complexity and CFL numbers to that of the formulation (2.14), 

(2.15) and (2.17).

2.2.2 2D Conservation constrained discontinuous Galerkin method—In this 

subsection, we discuss how to develop the constrained DG method for solving 2D 

hyperbolic systems represented by Eq. (2.1). The physical domain Ω ⊂ R2 is partitioned into 

a collection of  non-overlapping cells h = { i : i = 1, …, } so that . Here 

i represents a triangular cell and for simplicity, it is assumed that there are no hanging 

nodes in h. In this work, each component of the approximate solution uh is taken in the 

finite element space

We note that the same notation ℬi is also used to denote the basis function set which spans 

the finite element space on 2D cell i to avoid introducing too many notations. Specifically, 

for the 2D case we define

(2.22)

where xi ≡ (xi, yi) is the centroid of i, r+1 = (q+1)(q+2)/2, and | i| is the area of cell i. 

Here ℬi is a 2D polynomial basis function set of degree at most q in cell i, which consists 
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of the monomials of 2D Taylor expansions about the cell centroid, (xi, yi), and scaled by the 

area of the cell raised to proper powers.

Without loss of generality, on each cell i, the approximate solution uh,k(t, x) of the kth 

equation of (2.1) is expressed as

(2.23)

The semi-discrete DG formulation for solving the kth equation of (2.1) can be expressed as

(2.24)

for which the coeffients  of uh,k must satisfy, where Fk = (Fk,0(u), …, Fk,1(u)).

In this 2D case, we also choose the numerical flux function hk of Eq. (2.24) to be the Lax-

Friedrich flux function, defined as

where α is the largest characteristic speed, and

(2.25)

(2.26)

Here  stands for the interior of cell i and  is the closure of i.

Similar to the implementation for solving the 1D scalar equation described in subsection 

2.2.1, a forward Euler scheme for solving Eq. (2.24) can be written as

(2.27)

By solving Eq. (2.27) with m = 0, we obtain the cell average of  over cell i, denoted 

by , just as with a finite volume scheme.

Now suppose the cell averages  have been computed on all cells. We compute the 

remaining degrees of freedom of  on cell i by using the constrained DG method.

In order to do so, let’s rewrite (2.27) in cell i as
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(2.28)

for any υh ∈ Span {ℬi}. Here ℒ i(υh) represents the right-hand-side of (2.27) with 

being replaced by υh, and is a linear bounded functional defined on the finite element space 

on i.

Let’s redefine the energy functionals for this 2D case

(2.29)

and

(2.30)

N( C,i) consists of indices of cells in the set C,i defined by Eq. (2.32), and μ ≥ 0 is a 

constant.

Following the idea explained in subsection 2.2.1, we introduce the following minimization 

problem (2.31) for the 2D case for finding  in the finite element space on i without 

any constraint:

Find  such that

(2.31)

where E2(υh) is defined by Eq. (2.30) for the 2D case. Note again that when μ = 0 the 

formulation returns to the standard DG with forward Euler time-stepping as in the 1D case.

Here we define the set C,i as

(2.32)

In 2D, this set includes i and some of its neighbors, which are cells sharing same edges or 

vertices with i. See also Sec. 2.3.1 for specific implementations of C,i.

The solution  to the problem (2.31) is obtained by solving the following 

variational problem

(2.33)

Let the solution  to Eq. (2.33) be expressed as .
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The constrained DG solution  defined on i, which preserves the cell 

average , is obtained by modifying  by

(2.34)

Specifically,

(2.35)

and

(2.36)

Remark 4. It’s again easy to verify that energy functional E2 defined in Eq. (2.30) is 

invariant (subject to a scalar multiplication) under any affine change of coordinates.

Remark 5. Note that the linear system (2.33) consists of the same number of equations as in 

a RKDG step (2.27). Therefore the complexity of the 2D constrained DG method is close to 

that of the 2D RKDG (without using orthogonal basis functions).

The linear system (2.33) has a unique solution. In fact, consider the associate homogeneous 

system with ℒ i (υh) = 0 and  for all j ∈ N ( C,i),

(2.37)

for any υh ∈ Span{ℬi}. Let . We conclude that , which implies 

.

Remark 6. A compromised formulation with only one Lagrangian multiplier can be written 

as follows:

Find  such that

(2.38)

This method has similar complexity and CFL numbers to that of the formulation (2.31) and 

2.34.
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2.3 Implementation

To summarize the steps taken to implement the constrained DG method for solving multi-D 

system of conservation laws, assume we employ a s-stage TVD Runge-Kutta method [28] to 

solve Eq. (2.24), which can be written in the form (neglecting subscript k of uh,k for 

convenience and when there is no confusion):

(2.39)

with

(2.40)

Here αjl and βjl are coefficients of the Runge-Kutta method at the jth stage, and

In particular,  is determined by

This is a forward Euler scheme as in (2.27) with the time step size Δtnβjl, and will firstly be 

solved with υh = 1 to obtain cell averages and subsequently be solved by being replaced 

similarly by the modification as in Eqs. (2.31) and (2.34).

This technique can also be applied to the classical 4th order Rung-Kutta method with the 

DG spatial discretization. The 4 stages are written as follows
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(2.41)

where  denotes the numerical flux evaluated with  from the previous stage 

and

similarly for  and other fluxes. The modification (2.31) and (2.34) that has 

been applied to ℒ in equation (2.28) can be applied to ℒ1, ℒ2, ℒ3 and ℒ4 to modify the 

values of  and  respectively. Similar modification can be 

applied to each of the s stages in (2.39) (rather than to its forward Euler schemes) to reduce 

the number of changes.

2.3.1 Choices of cells being used as constraints—Here we present several choices 

of the set C,i defined in Eq. (2.32) of cells that are used as constraints. In general, any of 

adjacent cells can be used as constraint cells. A bigger CFL number can be obtained with 

respect to using more constraint cells; while the numerical error in the solution also 

increases slightly with more constraint cells. See also Sec. 3 for numerical test results 

showing this trend.

For the 1D third- and fourth-order accurate constrained RKDG schemes, the set of constraint 

cells for solving for the solution supported on ℐi cell is {ℐi−1, ℐi, ℐi+1}. The resulting 1D 

third- and fourth-order accurate constrained RKDG schemes are denoted as “1D Constrained 

RKDG3-3Cell” and “1D Constrained RKDG4-3Cell” in the following sections, respectively.
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For the 2D third-order accurate constrained RKDG scheme, if we want to solve for the 

solution supported on cell 0 in Fig. 1, we choose either C,0 = { 0, 1, 2, 3} or 

C,0 = { 0, 1, 2, 3, 6, 9, 12}. The resulting schemes are termed as “2D 

Constrained RKDG3-4Cell” and “2D Constrained RKDG3-7Cell”, respectively.

For the solution supported on cell 0 in Fig. 1 and computed by the fourth-order accurate 

constrained DG scheme, we select C,0 = { 0, 1, 2, 3, 6, 9, 12}, C,0 = { 0, 

1, 2, 3, 4, 5, 7, 8, 10, 11}, or C,0 = { 0, 1, …, 12}. The resulting 

schemes are denoted as “2D Constrained RKDG4-7Cell”, “2D Constrained RKDG4-10Cell” 

and ‘2D Constrained RKDG4-13Cell”, respectively.

We note there are many other possible ways to select constraint cells. In the present work, 

we only test these aforementioned sets of constraint cells. We also note that when one side 

of a cell overlaps with the physical boundary of the domain and this cell does not have 

neighboring cells on this side, we simply include available edge and vertex adjacent cells 

which are inside the physical domain to construct C,i. When this is the case, the collection 

of the constraint cells is not symmetric around the cell. In practice, the CFL number has to 

be reduced as well because of this.

Finally, we abbreviate the third- and fourth-order accurate RKDG schemes by “RKDG3” 

and “RKDG4” for the sake of convenience, respectively.

2.4 Analytical estimate of the CFL numbers

We use Fourier transform to analyze CFL numbers of the new constrained DG method for 

solving the 1D linear advection equation ut + ux = 0.

Consider a uniform partition {xi+1/2} on {−∞, +∞} with the mesh size Δx = xi+1/2 − xi−1/2, 

and cell centroid xi = (xi−1/2 + xi+1/2)/2, i = 0, ±1, ±2, …. Following [36, 19], we express a 

polynomial  of degree r on cell i = (xi−1/2, xi+1/2) as a linear combination of 

Lagrangian basis functions {lj(x−xi) : j = 0, 1, …, r} corresponding to an evenly distributed 

set of r + 1 nodes of Lagrangian interpolation {yi,j : j = 0, 1, …, r}, symmetric about xi in 

cell i, with yi,j ∈ (xi−1/2, xi+1/2),

(2.42)

where  is the coefficient in front of the j-th Lagrangian basis function, . 

Now we are able to express a fully discrete conservation constrained RKDG method as

(2.43)

where , Aj is a (r + 1) × (r + 1) matrix, j = −s, …, s, and s is a 

positive integer. Applying a (discrete) Fourier transform yields the following form
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(2.44)

where B is a (r +1) × (r +1) matrix (the Fourier symbol). The CFL number of the scheme 

can be estimated from the spectral radius of matrix B. Mathematica is used for symbolic and 

numerical computation of the above procedure. In Tables 1–5, in which ”p-w” stands for 

piecewise, we estimate the CFL numbers for μ = 0, 0.01, 0.5, 100 and 500 (see Eqs. (2.31) 

and (2.30)), recalling that μ = 0 represents the standard RKDG method. The TVD Runge- 

Kutta methods are used for the second- and third-order accurate time discretization, and the 

classical fourth-order accurate Runge-Kutta method is used for the fourth-order accurate 

time discretization. We observe about three times or more greater CFL numbers compared 

to those of the standard RKDG methods (μ = 0), and that parameter μ is not sensitive for the 

new method as long as it is larger than a number, e.g., 0.5. In Tables 6 and 7, we remove the 

constraint from the right (upwind-type) and left neighboring cell respectively. Both have 

better CFL numbers compared to the case of μ = 0. However, the upwind-type constraint 

doesn’t seem to work significantly better than the downwind-type. Using constraints from 

both left and right neighboring cells seems to perform the best.

For the case of piecewise linear spatial space (r = 1) and forward Euler temporal 

discretization, we write down formula (2.43) explicitly with μ = 1 as follows to compare 

with those of the standard RKDG method (μ = 0).

(2.45)

where λ = Δt/Δx.

As a comparison, the corresponding standard DG method (μ = 0) yields the following 

formula.

(2.46)

The Fourier symbol of (2.45) is (ρij)2 × 2 where

(2.47)
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η = ξΔx and ξ is the Fourier dual variable. On the other hand, the Fourier symbol of (2.46) 

looks like

(2.48)

Remark 7. Even though the new constrained DG method seems to have larger domain of 

dependence compared to the standard DG method, each of its explicit component steps is a 

compact method when neighboring cell averages are used for the constraint. A finite volume 

scheme based on reconstruction from cell averages generally has a larger CFL number than 

the standard RKDG method with corresponding order. This motivates us to incorporate the 

constraint from neighboring cell averages into the DG method without losing its 

compactness in implementation. For linear stability of the RKDG method, we refer readers 

to [10, 11] and references therein for more details.

2.5 Limiting by hierarchical reconstruction

To prevent non-physical oscillations in the vicinity of discontinuities, we apply HR with 

partial neighboring cells [33] to the solution computed at each of the Runge-Kutta stages. 

Since shock waves or contact discontinuities are all local phenomena, we apply the HR 

limiting procedure to a small region covering discontinuities. Specifically, we employ a 

detector introduced in [6] to identify cells which may contain oscillatory solutions. HR with 

partial neighboring cells is then applied to solutions supported on these cells. We first sketch 

the 2D HR with partial neighboring cells limiting procedure here. More details can be found 

in [33]. We then describe an extension of the HR limiting by using characteristic 

decomposition and local iteration.

HR initially introduced in [17, 18] decomposes the job of limiting a high-order polynomial 

supported on a cell, which may be spuriously oscillatory into a series of smaller jobs, each 

of which only involves the non-oscillatory reconstruction of a linear polynomial. This linear 

polynomial reconstruction can be easily achieved through classical processes such as the 

MUSCL reconstruction [13, 14, 15] used in [17], or a WENO-type combination used in 

[33]. Since the reconstruction of a linear polynomial can only use information from adjacent 

cells, HR can be formulated in multi-dimensions on a compact stencil. Using the basis 

function set (2.22), the approximate solution uh(x − xi) on cell i is represented as

(2.49)

Here m is an 2-tuple, and .

uh(x − xi) may contain spurious oscillations. The HR procedure is to recompute the 

coefficients of polynomial uh(x − xi) by using polynomials in cells (or partial neighboring 

cells [33]) adjacent to i. These adjacent cells (or partial cells) are collected as the set { j} 
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(which also contains cell i) and the polynomials (of degree q) supported on them are 

denoted as {uh,j(x − xj)} respectively. HR recomputes a set of new coefficients

to replace the original coefficients cm of uh(x−xi) iteratively from the highest to the lowest 

degree terms without losing the order of accuracy if the piecewise polynomial solution is 

locally smooth, and eliminates spurious oscillations of uh(x − xi) otherwise.

To obtain , we first compute candidates of cm, and then let the value of  be

where F is a convex limiter of its arguments (e.g., the center biased minmod function used in 

[18], or the WENO-type combination in [33], where , for some 

θi ≥ 0 and ).

In order to find these candidates of cm, |m| = m, with 1 ≤ m ≤ q, we take a (m − 1)th order 

partial derivative of uh(x−xi) (and also polynomials in adjacent cells or partial cells), and 

express

where Lh is the linear part (containing the zeroth and first degree terms) and Rh is the 

remainder. Clearly, every coefficient in the first degree terms of Lh is in the set {cm : |m| = 

m}.

In general, for every m subject to |m| = m, 1 ≤ m ≤ q, one can always take some (m−1)th 

order partial derivatives of uh(x−xi) so that cm is a coefficient in a first degree term of Lh. 

Thus, a “candidate” for a coefficient in a first degree term of Lh to be reconstructed is also 

the candidate for the corresponding cm.

In order to find a set of candidates for all coefficients in the first degree terms of Lh(x−xi), 

we need to know the new approximate cell averages of Lh(x−xi) on d+1 distinct mesh cells 

adjacent to cell i, which is a key step. Assume j0, j1, ⋯, jd ∈ { j} are these cells or 

partial cells and L̅
j0, L̅

j1, ⋯, L̅
jd are the corresponding new approximate cell averages. For 

example, in order to obtain L̅
j1, we first compute

then

Xu et al. Page 17

J Comput Phys. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where  is the Rh(x − xi) with its coefficients replaced by previously computed 

new values. We can set L̅
j1 = Āj1 − D̅

j1. Finally, a non-oscillatory reconstruction procedure 

[33] is applied to L̅
j0, L̅

j1, ⋯, L̅
jd to obtain candidates of cm in the first degree terms of Lh(x 

− xi).

When m = 0, the modified 0th degree coefficient  is chosen such that the cell average of 

the reconstructed polynomial is the same as cell average of the original uh(x − xi).

More details of the HR implementations and related techniques can be found in [17, 18, 20, 

33, 34, 35].

2.5.1 Hierarchical reconstruction using characteristic decomposition and 
local iteration—For all third-order schemes considered in the paper, we use component by 

component HR limiting with partial neighboring cells technique [33]. However, we noticed 

that resolutions of solutions to some Euler equations’ test problems computed by fourth-

order schemes were compromised when component by component HR limiting with partial 

neighboring cells was used. We introduce a HR using characteristic decomposition and local 

iteration to improve the resolution of the numerical solution computed by fourth-order 

schemes.

Let the approximate solution uh(x − xi) to system (2.1) be supported on cell i. Let the 

outward unit normal on one side of i be (nx,0, ny,0); and the edge-adjacent cell of i on 

this side be k0. We compute the average Jacobian A0 by using the cell average values of 

i and k0,

(2.50)

where f = (F1,1(u), F2,1(u), ⋯, Fp,1(u))T and g = (F1,2(u), F2,2(u), ⋯, Fp,2(u))T, with F 

being defined in Eq. (2.1). The Roe’s mean matrix is used for Euler equations [25]. Let RA0 
be the matrix of right eigenvectors and LA0 be the matrix of left eigenvectors of A0, 

respectively. We project uh(x − xi) and {uh,j(x − xj)} supported on adjacent partial cells of 

i to obtain characteristic fields

and
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respectively. Then the HR limiting with partial neighboring cells technique is applied to 

each of the characteristic fields to reconstruct a new v̂h,0(x − xi). We next define

We repeat this procedure on each side of the i to obtain three reconstructed polynomials, 

and denote them by ûh,0(x−xi), ûh,1(x−xi) and ûh,2(x−xi), respectively. Finally, each of the 

components of ûh,0, ûh,1 and ûh,2 are combined with weights introduced in [26] to obtain a 

new reconstructed uh(x − xi).

Next we introduce a local iteration technique to further reduce the small over/undershoots. 

For simplicity, we develop the local iteration technique for the case of scalar solution uh(x
−xi) (application of local iteration to system solution uh(x−xi) is similar). Assume we need 

to reconstruct the approximate scalar solution uh(x − xi) supported on cell i by HR. When 

all new values of the coefficients of uh(x − xi) have been computed, we will update uh(x − 

xi) while keeping the solution on its neighboring cells unchanged. This leads to

(2.51)

We apply HR again to reconstruct (2.51). In other words, we apply HR twice (or more times 

if necessary) to update uh(x − xi) with the solutions on its neighboring cells being temporally 

fixed. Oscillations in solution are partially due to large coefficient values associated with 

high degree terms of the polynomial representation of the solution. By using local iteration, 

magnitudes of coefficients of high degree terms can be even more lowered. Thus the local 

iteration technique can further reduce the possible remaining over/under-shoot without 

spreading out the diffusion.

Remark 8. We note that the HR limiting itself does not guarantee the positivity. When 

negative pressure is detected at a quadrature point of a cell after limiting, a simple scaling 

technique introduced in [33] is used to remove the negative pressure.

3 Numerical Examples

3.1 Accuracy test using 1D linear advection equation

We first test the capability of the constrained RKDG method to achieve the desired order of 

accuracy with a large CFL number, using the 1D linear advection equation

(3.1)

with periodic boundary conditions and the initial condition

(3.2)

The uniform mesh is used to solve this test problem. The solution is computed up to time T 

= 2.0. The cell size, denoted by Δx, is listed in tables shown in this sub-section. Table 8 
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shows that the third-order accurate constrained RKDG scheme (1D Constrained 

RKDG3-3Cell) is stable with that the CFL number is equal to 1.6; while Table 10 shows that 

the fourth-order accurate constrained RKDG scheme (1D Constrained RKDG4-3Cell) is 

stable with that the CFL number equals 0.6. These results are in agreement with results by 

analytic estimate. We tested the maximum values of the CFL number that the third- and 

fourth-order accurate RKDG schemes can use numerically. We observed that these 

maximum values are around 0.2 and 0.1, respectively, which are also consistent with the 

analytic result shown in Table 1. Tables 8 and 10 show these numerical test results as well.

We studied how CFL number affects the errors in the constrained DG solution. Table 9 

shows the L1 and L∞ errors of the solution computed by 1D Constrained RKDG3-3Cell 

method using CFL = 0.2; while Table 11 lists the L1 and L∞ errors of the solution computed 

by 1D Constrained RKDG4-3Cell method using CFL = 0.1. We notice that reducing the 

CFL number used by the 1D constrained DG methods can reduce magnitudes of L1 and L∞ 

errors by about 3 times. We also report that for the 2D test problems with smooth solutions 

presented in this paper, we do not observe that reducing the CFL number also significantly 

lowers the magnitude of errors in solutions computed by the 2D constrained DG methods.

We also studied the how the conservation penalty weight μ affects the CFL numbers that can 

be used numerically. Tables 12 and 13 list the accuracy test results with μ = 0.5, 5, 500 for 

the third- and fourth-order accurate constrained RKDG schemes, respectively. It is clear that 

the allowed maximum CFL numbers for these two schemes are not affected by the choice of 

μ values. Additionally, the L1 and L∞ errors do not seem to be affected by the μ values as 

well.

3.2 Accuracy test using using 1D Burgers’ equation with a smooth solution

Here we test the maximum CFL number that the 1D constrained RKDG method can achieve 

by using the 1D Burgers’ equation

(3.3)

with a periodic boundary condition and the initial condition

(3.4)

The uniform mesh is used to solve this test problem. The solution is computed up to time T 

= 0.5/π, when it is still smooth. Δx listed in tables shown in this sub-section is the cell size.

Table 14 shows that the third-order accurate 1D Constrained RKDG3-3Cell scheme can use 

a CFL number being equal to 1.6; while Table 15 shows that the fourth-order accurate 1D 

Constrained RKDG4-3Cell scheme is stable with a CFL number equaling 0.6 for this 1D 

nonlinear problem test case.

Similar to the 1D linear advection equation test case demonstrated in Sec. 3.1, the numerical 

study of the choice of μ values using 1D Burgers’ equation test case shows that the allowed 
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maximum CFL numbers and L1 and L∞ errors of numerical solutions are not sensitive to μ 

values as well. These results are summarized in Tables 16 and 17, respectively.

3.3 Accuracy test using 2D linear advection equation

To assess the maximum CFL number that the constrained RKDG methods can use on 2D 

triangular meshes, we start with solving the following initial-boundary-value problem of the 

2D linear advection equation

(3.5)

The domain Ω is the square [−1, 1] × [−1, 1]. The periodic boundary condition is used in 

both directions. For the convenience of implementing the periodic boundary condition, the 

triangular mesh is obtained by perturbing a uniform triangulation. See Fig. 2 for a typical 

mesh used for the accuracy test. We adopt the following definition of the CFL number for 

this test case:

(3.6)

where  is the diameter of the inscribed circle of a triangle.

We computed the solution up to time T = 2.0. The typical triangle edge length, denoted by h, 

is listed in tables shown in this section. The errors presented are for u.

Table 18 shows that the 2D third-order accurate constrained RKDG scheme using 7 cells as 

constraints (2D Constrained RKDG3-7Cell) is stable when CFL number is equal to 0.8; and 

the third-order accurate RKDG scheme is stable when CFL number is around 0.22.

Table 19 shows that the 2D fourth-order accurate constrained RKDG scheme using 10 cells 

as constraints (2D Constrained RKDG4-10Cell) is stable when CFL number is equal to 0.9; 

while the numerical test shows that the fourth-order accurate RKDG scheme is stable when 

CFL number is around 0.2.

We studied how penalty constant μ affects magnitudes of errors for this 2D linear equation 

test case. Tables 20 and 21 show that the L1 and L∞ errors computed by the 2D Constrained 

RKDG3-7Cell and RKDG4-10Cell schemes respectively increase only slightly when μ 

varies between 0.5 and 500. Thus both 2D schemes are not sensitive for the choice of μ 

value.

We tested how choices of constraint cells affect the CFL number used by 2D fourth-order 

accurate constrained DG schemes. When 7 cells are used as constraints, the maximum CFL 

number the 2D Constrained RKDG4-7Cell scheme can take is around 0.35. When 13 cells 

are used as constraints, the maximum CFL number that can be reached by the 2D 

Constrained RKDG4-13Cell scheme is about 1.3. However, the differences between 

magnitudes of L1 and L∞ errors computed by these 2D fourth-order accurate constrained 
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RKDG schemes (with 7, 10 and 13 cells used as constraints respectively) are small. See 

Tables 22 and 19 for this conclusion.

3.4 Accuracy test using 2D Burgers’ equation with a smooth solution

To assess the limit of the permissible CFL number used by the constrained RKDG method 

for solving 2D nonlinear scalar conservation laws, we solve the following initial-boundary-

value problem of the 2D Burgers’ equation

(3.7)

where Ω = [−1, 1] × [−1, 1]. The periodic boundary condition is used in both directions. The 

solution is computed up to T = 0.5/π, when it is still smooth. The triangular meshes utilized 

for the 2D linear advection equation test are also used for this convergence test.

We use the following definition of the CFL number for this test case:

(3.8)

where  is the diameter of the inscribed circle of a triangle. |u| is evaluated by the local cell 

average value. The errors presented in tables shown in this sub-section are for u. h listed in 

these tables is the edge length of the triangle.

Table 23 shows the L1 and L∞ errors and numerical orders of accuracy for using the 2D 

third-order accurate constrained RKDG scheme with 7 constraint cells (2D Constrained 

RKDG3-7Cell) for solving Eq. (3.7). With μ = 0.5, we are able to use a CFL number = 0.8 

for computing the solution while achieving the desired order of accuracy. In this table, we 

also show that the maximum CFL number that the 2D third-order accurate RKDG scheme 

can use is about 0.22 by our numerical test. Table 24 shows that the 2D Constrained 

RKDG3-7Cell scheme is not sensitive to the choice of μ values.

Table 25 shows that when 4 cells are used as constraints, the 2D third-order accurate 

constrained RKDG scheme (2D Constrained RKDG3-4Cell) is permitted to use a CFL 

number = 0.3 for the nonlinear equation test case. In addition, the L1 and L∞ errors of the 

numerical solutions to Eq. (3.7) computed by the 2D Constrained RKDG3-4Cell scheme is 

about 3 ~ 4 times smaller than the ones of the solutions computed by the 2D Constrained 

RKDG3-7Cell scheme.

In Table 26, we demonstrate the L1 and L∞ errors and numerical orders of accuracy for 

using the 2D fourth-order accurate constrained RKDG scheme with 10 constraint cells (2D 

Constrained RKDG4-10Cell) and standard fourth-order accurate RKDG scheme to solve Eq. 

(3.7), respectively. With μ = 0.5, the 2D Constrained RKDG4-10Cell scheme is capable of 

using a CFL number = 0.9 for achieving the fourth-order accuracy; while the maximum CFL 

number that the 2D fourth-order accurate RKDG scheme can use is about 0.25 by our 

numerical test. Table 27 shows that the 2D Constrained RKDG4-10Cell scheme is not 

sensitive to the choice of μ values.
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We also tested performance of the fourth-order accurate constrained RKDG scheme using 

different choices of constraint cells for μ = 0.5. Table 28 shows that when 7 cells are used as 

constraints, the 2D Constrained RKDG4-7Cell scheme is allowed to use a CFL number = 

0.35; while the 2D Constrained RKDG4-13Cell scheme which uses 13 constraint cells can 

use a CFL number as big as 1.4 for this nonlinear equation test case.

From Tables 26–28, we notice that the L1 and L∞ errors of the numerical solutions to Eq. 

(3.7) computed by the 2D Constrained RKDG4-7Cell scheme is about 2 ~ 4 times smaller 

than the ones computed by the 2D Constrained RKDG4-13Cell method. And the L1 and L∞ 

errors of 2D Constrained RKDG4-10Cell scheme and 2D Constrained RKDG4-13Cell 

scheme are comparable.

In Fig. 3, the CPU times and L1 errors are presented for solving Eq. (3.7) up to time T = 

0.5/π. We can clearly see that RKDG method obtains better accuracy using less CPU time 

for solving the smooth solution problem. To achieve the same magnitude of the error, 27 the 

constrained RKDG method takes about two times more CPU time than that of the RKDG 

method. In Fig. 4, we plot the CPU times and L1 errors of these schemes for solving Eq. 

(3.7) up to time T = 0.45, when the shock wave has formed. The 3rd- and 4th-order HR 

limiters described in Sec. 2.5 are applied in the vicinity of the shock to limit the 3rd- and 

4th-order solutions, respectively. When a shock wave forms, the total error is dominated by 

the one generated in the vicinity of the discontinuity. We compute the errors in the region 

[−1, − 0.45] × [−1, −0.45], which is close to the location of the shock. We can see that the 

magnitudes of the L1 errors computed by the RKDG and constrained RKDG schemes are 

comparable and the constrained RKDG scheme uses less CPU time.

To summarize, we found that the 2D constrained RKDG schemes can use a CFL number 3 ~ 

4 times or more greater than the one that 2D RKDG schemes can take. And this increase is 

not sensitive to the μ value.

3.5 Test cases using 1D Euler equations with discontinuous solutions

We now assess the resolution and the non-oscillatory property of 1D numerical solutions 

computed by the constrained RKDG method and limited by HR. In this sub-section, we 

compute solutions of various shock tube problems modeled by the 1D Euler equations

with  and γ = 1.4.

μ = 0.5 is used by the constrained RKDG method for all 1D test problems.

3.5.1 1D Woodward-Colella blast wave problem—The 1D Woodward-Colella blast 

wave problem [31] is the Euler equations with an initial data
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We computed the numerical solutions using 400 equal size cells. Density profiles of the 

solutions are plotted at the time 0.038 and are shown in Fig. 5. We use CFL number 0.1 for 

the RKDG schemes, 0.5 for third-order constrained DG and 0.8 for fourth-order constrained 

RKDG schemes, respectively. We can clearly see that the constrained RKDG solution and 

the RKDG solution have almost identical resolution for both third- and fourth-order accurate 

cases for the 1D Woodward-Colella blast wave problem.

3.5.2 1D Lax problem—The 1D Lax problem [12] is the Euler equations with the Lax’s 

initial data

We computed the numerical solutions using 200 equal size cells. The density profiles of the 

solutions are plotted at the time 0.26 and are shown in Fig. 6. We use CFL number 0.1 for 

the RKDG schemes, 0.5 for third-order constrained DG and 0.8 for fourth-order constrained 

RKDG schemes, respectively.

From these 1D compressible gas flow test problems, we notice that HR works well with the 

constrained RKDG method. And we conclude that the 1D constraint RKDG method 

combined with HR limiter, achieves good quality results for problems containing strong 

shock waves in the solutions.

3.6 Test case using 2D Euler equations with discontinuous solutions

In this sub-section, we test 2D gas dynamics problems with discontinuities in solutions to 

assess the non-oscillatory property of numerical solutions computed by the 2D constrained 

RKDG method together with HR limiter. μ = 0.5 is used by the constrained RKDG method 

for all 2D test problems.

3.6.1 Flow past a forward facing step—This flow problem is again taken from [31]. 

The setup of the problem is the following: a right-going Mach 3 uniform flow enters a wind 

tunnel of 1 unit wide and 3 units long. The step is 0.2 units high and is located 0.6 units from 

the left side of the tunnel. The problem is initialized by a uniform, right-going Mach 3 flow, 

which has density 1.4, pressure 1.0, and velocity 3.0. The initial state of the gas is also used 

as the in-flow boundary condition at the left side boundary. At the right side boundary, the 

out-flow boundary condition is applied there. Reflective boundary condition is applied along 

the walls of the tunnel.

The corner of the step is a singularity. Unlike in [31] and in other studies, we do not modify 

our schemes near the corner, which is known to lead to an erroneous entropy layer at the 

downstream bottom wall, as well as a spurious Mach stem at the bottom wall. Instead, we 
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use the approach introduced in [6], which is to locally refine the mesh near the corner, to 

decrease these artifacts. The edge length of the triangle away from the corner is roughly 

equal to . Near the corner, the edge length of the triangle is roughly equal to .

We use this test case to compare results computed by constrained RKDG schemes with 

different CFL numbers and the RKDG schemes, respectively. Figs. 7 and 8 plot the contours 

of the numerical solutions. We can see that the resolutions of the solutions computed by the 

constrained RKDG schemes are comparable with the ones of the solutions computed by the 

RKDG schemes. Additionally, the constrained RKDG schemes are able to take the CFL 

number 0.5; while the DG schemes use 0.1. We clearly see that the bigger CFL numbers 

used by the constrained RKDG schemes do not compromise the resolution of the solutions 

to this test problem.

3.6.2 2D Shu-Osher problem—The Shu-Osher problem [30] is a benchmark for testing 

the resolution that high-order accurate methods can provide. Here we set up this test 

problem using a 2D triangular mesh to assess the performance of the 2D constrained RKDG 

method.

Solutions to this test problem are computed in a rectangular domain of [−5, 5] × [0, 0.1] with 

a uniform triangulation of 301 vertices in the x-direction and 4 vertices in the y-direction. 

The initial value of the velocity component in the y-direction is zero. The reflecting 

boundary condition is used in the y-direction. The initial data is as follows

Density profiles of the solutions along a line parallel to x-axis are plotted in Fig. 9 at time T 

= 1.8, against a fine grid solution, which is treated as the ”exact” solution. We can see that 

the all third- and fourth-order numerical schemes capture the solution profile of the Shu-

Osher problem nicely.

3.6.3 Double Mach reflection—The Double Mach reflection problem is taken from [31]. 

We solve the Euler equations in a rectangular computational domain of [0, 4] × [0, 1]. A 

reflecting wall lies at the bottom of the domain starting from . Initially a right-moving 

Mach 10 shock is located at , y = 0, making a 60° angle with the x axis and extends to 

the top of the computational domain at y = 1. The reflective boundary condition is used at 

the wall.

We test our method on unstructured meshes with the triangle edge length roughly equal to 

. The density contour of the flow in the [0, 3] × [0, 1] region at the time T = 0.2 is shown 

with 30 equally spaced contour lines. Figs. 10 and 11 are the contour plots of the numerical 

solutions computed by the third- and fourth-order RKDG and constrained RKDG schemes 
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respectively. Figs. 12 and 13 show the “blown-up” portion around the double Mach region. 

We can see that both the RKDG and constrained RKDG schemes successfully reproduce the 

vortex sheet roll-up, and the constrained RKDG method does not compromise the resolution 

of the solution compared with the RKDG method.

4 Concluding Remarks

In this work, we have developed a conservation constrained RKDG method for solving 

conservation Laws. The new formulation requires the computed RKDG solution defined on 

a cell to satisfy additional conservation constraints in adjacent cells (in the least-square 

sense) and does not increase the complexity or change the compactness of the original 

RKDG method. This conservation constrained RKDG method improves the CFL number 

over the RKDG method by 3 times or more. Moreover, for the test problems with 

discontinuous solutions limited by HR, the constrained RKDG method also produces results 

similar to ones computed the RKDG method.

We also note that the HR limiter with partial neighboring cell technique is extended by 

introducing characteristic decomposition and local iteration. Even though this extension 

increases the computational cost slightly during the limiting process, HR limiting is applied 

locally so it essentially won’t hurt the overall complexity. In the future, we will explore the 

constrained DG formulation with TVD multi-step time-marching method and develop better 

HR limiting technique so that we will be able to solve shock wave problems numerically 

with better resolutions and less computational cost.
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Figure 1. 
Triangular cells that can be used as constraints for computing the solution supported on cell 

0.
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Figure 2. 
Representative mesh for 2D accuracy tests.
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Figure 3. 
L1 errors versus CPU time for solving Eq. (3.7) up to time T = 0.5/π. (a) Comparison of the 

third-order RKDG and RKDG3-7Cell schemes. The CFL numbers are 0.22 and 0.8 

respectively. (b) Comparison of the fourth-order RKDG and RKDG4-10Cell schemes. The 

CFL numbers are 0.25 and 0.9 respectively.
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Figure 4. 
L1 errors versus CPU time for solving Eq. (3.7) up to time T = 0.45. The errors are 

computed in region [−1,−0.45] × [−1,−0.45]. (a) Comparison of the third-order RKDG and 

RKDG3-7Cell schemes. The CFL numbers are 0.22 and 0.8 respectively. (b) Comparison of 

the fourth-order RKDG and RKDG4-10Cell schemes. The CFL numbers are 0.25 and 0.9 

respectively.
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Figure 5. 
Solutions of the 1D blast wave problem computed on 400 cells. (a) The 1D fourthorder 

accurate constrained RKDG4-3Cell solution compared with the “exact” solution, CFL = 0.5; 

(b) the 1D fourth-order accurate RKDG solution compared with the “exact” solution, CFL = 

0.1; (c) the 1D third-order accurate constrained RKDG3-3Cell solution compared with the 

“exact” solution, CFL = 0.8; (d) the 1D third-order accurate RKDG solution compared with 

the “exact” solution, CFL = 0.1.
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Figure 6. 
Solutions of the 1D Lax shock tube problem computed on 200 cells. (a) The fourth-order 

accurate constrained RKDG4-3Cell solution compared with the “exact” solution, CFL = 0.5; 

(b) the fourth-order accurate RKDG solution compared with the “exact” solution, CFL = 

0.1; (c) the third-order accurate constrained RKDG3-3Cell solution compared with the 

“exact” solution, CFL = 0.8; (b) the third-order accurate RKDG solution compared with the 

“exact” solution, CFL = 0.1.
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Figure 7. 
Solutions to the forward-facing step problem by third-order accurate schemes. (a) The third-

order accurate RKDG solution with CFL = 0.1; (b) The third-order accurate constrained 

RKDG3-7Cell solution with CFL = 0.1; (c) The third-order accurate constrained 

RKDG3-7Cell solution with CFL = 0.5.
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Figure 8. 
Solutions to the forward-facing step problem computed by fourth-order accurate schemes. 

(a) The fourth-order accurate RKDG solution with CFL = 0.1; (b) The fourth-order accurate 

constrained RKDG4-10Cell solution with CFL = 0.1; (c) The fourth-order accurate 

constrained RKDG4-10Cell solution with CFL = 0.5.
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Figure 9. 
Cross section plots of solutions of the 2D Shu-Osher problem computed on a rectangular 

domain of [−5, 5] × [0, 0.1]. (a) The 2D fourth-order accurate constrained RKDG4- 10Cell 

solution compared with the “exact” solution, CFL = 0.5; (b) the 2D fourth-order accurate 

RKDG solution compared with the “exact” solution, CFL = 0.1; (c) the 2D thirdorder 

accurate constrained RKDG3-7Cell solution compared with the “exact” solution, CFL = 0.5; 

(d) the 2D third-order accurate RKDG solution compared with the “exact” solution, CFL = 

0.1.
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Figure 10. 
Solutions to the double Mach reflection problem computed by third-order accurate schemes. 

T = 2.0. (a) The third-order accurate RKDG solution, CFL = 0.02; (b) The third-order 

accurate constrained RKDG3-7Cell solution, CFL = 0.1.
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Figure 11. 
Solutions to the double Mach reflection problem by fourth-order accurate schemes. T = 2.0. 

(a) The fourth-order accurate RKDG solution, CFL = 0.02; (b) The fourth-order accurate 

constrained RKDG4-10Cell solution, CFL = 0.1.
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Figure 12. 
Solutions to the double Mach reflection problem computed by third-order schemes. Blown-

up region around the double Mach stems. (a) The third-order accurate RKDG solution; (b) 

The third-order accurate constrained RKDG3-7Cell solution.
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Figure 13. 
Solutions to the double Mach reflection problem computed by fourth-order schemes. Blown-

up region around the double Mach stems. (a) The fourth-order accurate RKDG solution; (b) 

The fourth-order accurate constrained RKDG4-10Cell solution.
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Xu et al. Page 42

Table 1

CFL numbers with μ = 0 (no constraint).

Temporal order p-w linear p-w quadratic p-w cubic

2nd 0.33 0.11 0.05

3rd 0.40 0.20 0.13

4th – – 0.14
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Xu et al. Page 43

Table 2

CFL numbers with μ = 0.01.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 0.41 0.47 0.17

3rd 0.53 0.70 0.60

4th – – 0.47
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Xu et al. Page 44

Table 3

CFL numbers with μ = 0.5.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 0.95 0.83 0.18

3rd 1.2 1.6 0.49

4th – – 0.57
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Table 4

CFL numbers with μ = 100.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 1.0 0.88 0.18

3rd 1.1 1.6 0.49

4th – – 0.56
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Table 5

CFL numbers with μ = 500.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 1.0 0.88 0.18

3rd 1.1 1.6 0.49

4th – – 0.56
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Xu et al. Page 47

Table 6

CFL numbers with μ = 0.5, without right constraint.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 0.70 0.36 0.10

3rd 0.78 0.43 0.21
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Xu et al. Page 48

Table 7

CFL numbers with μ = 0.5, without left constraint.

Temporal order p-w linear p-w quadratic p-w cubic

2nd 0.45 0.36 0.088

3rd 1.43 0.45 0.22
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Table 11

Accuracy test results of solving 1D linear advection equation (3.1) by using 1D Constrained RKDG4-3Cell 

scheme. L1 and L∞ errors. T = 2.0. CFL = 0.1.

Δx
1D Constrained RKDG4-3Cell, μ = 0.5

L1 error L1 order L∞ error L∞ order

7.50E-8 – 1.99E-7 –

4.67E-9 4.00 1.26E-8 3.99

2.92E-10 4.00 7.95E-10 3.99

1.86E-11 3.97 5.01E-11 3.99

1.15E-12 4.03 3.07E-12 4.03
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