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Abstract

We apply the piecewise constant, discontinuous Galerkin method to discretize
a fractional diffusion equation with respect to time. Using Laplace transform
techniques, we show that the method is first order accurate at the nth time
level tn, but the error bound includes a factor t−1n if we assume no smoothness
of the initial data. We also show that for smoother initial data the growth in
the error bound as tn decreases is milder, and in some cases absent altogether.
Our error bounds generalize known results for the classical heat equation and
are illustrated for a model problem.
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1. Introduction

Consider an initial-value problem for an abstract, time-fractional diffusion
equation [7, p. 84]

∂tu+ ∂1−νt Au = 0 for t > 0, with u(0) = u0 and 0 < ν < 1. (1)

Here, we think of the solution u as a function from [0,∞) to a Hilbert space H,
with ∂tu = u′(t) the usual derivative with respect to t, and with

∂1−νt u(t) =
∂

∂t

∫ t

0

(t− s)ν−1

Γ(ν)
u(s) ds
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the Riemann–Liouville fractional derviative of order 1−ν. The linear operator A
is assumed to be self-adjoint, positive-semidefinite and densely defined in H,
with a complete orthonormal eigensystem φ1, φ2, φ3, . . . . We further assume
that the eigenvalues of A tend to infinity. Thus,

Aφm = λmφm, 〈φm, φn〉 = δmn, 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ,

where 〈u, v〉 is the inner product in H; the corresponding norm in H is denoted
by ‖u‖ =

√
〈u, u〉. In particular, we may take Au = −∇2u and H = L2(Ω)

for a bounded spatial domain Ω, with u subject to homogeneous Dirichlet or
Neumann boundary conditions on ∂Ω. Our problem (1) then reduces to the
classical heat equation when ν → 1.

Many authors have studied techniques for the time discretization of (1), but
obtaining sharp error bounds has proved challenging. In studies of explicit and
implicit finite difference schemes [1, 3, 8, 14, 17, 20] the error analyses typically
assume that the solution u(t) is sufficiently smooth, including at t = 0, which
amounts to imposing compatibility conditions on the initial data and source
term. In our earlier work on discontinuous Galerkin (DG) time-stepping [11,
15, 16], we permitted more realistic behaviour, allowing the derivatives of u(t)
to be unbounded as t→ 0, but were seeking error bounds that are uniform in t
using variable time steps. In the present work, we again consider a piecewise-
constant DG scheme but with a completely different method of analysis that
leads to sharp error bounds even for non-smooth initial data, at the cost of
requiring a constant time step ∆t. Our previous analysis [11, Theorem 5] of
the scheme (5), in conjunction with relevant estimates [10] of the derivatives
of u, shows, in the special case of uniform time steps, only the sub-optimal error
bound

‖Un − u(tn)‖ ≤ C∆trν‖Aru0‖ for 0 ≤ r < 1/ν. (2)

In our main result, we substantially improve on (2) by showing that

‖Un − u(tn)‖ ≤ Ctrν−1n ∆t‖Aru0‖ for 0 ≤ r ≤ min(2, 1/ν). (3)

Thus, for a general u0 ∈ H the error is of order t−1n ∆t at t = tn, so the method
is first-order accurate but the error bound includes a factor t−1n that grows if tn
approaches zero, until at t = t1 the bound is of order t−11 ∆t = 1. However,
if 1/2 ≤ ν < 1 and u0 is smooth enough to belong to D(A1/ν), the domain
of A1/ν , then the error is of order ∆t, uniformly in tn. For 0 < ν ≤ 1/2, no
matter how smooth u0 a factor t2r−1n is present. To the best of our knowledge,
only Cuesta et al. [2] and McLean and Thomée [12, Theorem 3.1] have hitherto
investigated the time discretization of (1) for the interesting case when the
initial data might not be regular, the former using a finite difference-convolution
quadrature scheme and the latter a method based on numerical inversion of the
Laplace transform.

In the present work, we do not discuss the spatial discretization of (1). By
contrast, Jin, Lazarov and Zhou [6] applied a piecewise linear finite element
method using a quasi-uniform partition of Ω into elements with maximum di-
ameter h, but with no time discretization. They worked with an equivalent
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formulation of the fractional diffusion problem,

∂νt,Cu−∇2u = 0 for x ∈ Ω and 0 < t ≤ T , (4)

where ∂t,C denotes the Caputo fractional derivative, and proved [6, Theorems
3.5 and 3.7] that, for an appropriate choice of uh(0),

‖uh(t)− u(t)‖+ h‖∇(uh − u)‖ ≤ Ctν(r−1) ×

{
h2`h‖Aru0‖, r ∈ {0, 1/2},
h2‖Aru0‖, r = 1,

where `h = max(1, log h−1). These estimates for the spatial error complement
our bounds for the error in a time discretization.

For a fixed step size ∆t > 0, we put tn = n∆t and define a piecewise-constant
approximation U(t) ≈ u(t) by applying the DG method [11, 13],

Un − Un−1 +

∫ tn

tn−1

∂1−νt AU(t) dt = 0 for n ≥ 1, with U0 = u0, (5)

where Un = U(t−n ) = limt→t−n U(t) denotes the one-sided limit from below at
the nth time level. Thus, U(t) = Un for tn−1 < t ≤ tn. Since we do not consider
any spatial discretization, U is a semidiscrete solution with values in H. A short
calculation reveals that∫ tn

tn−1

∂1−νt AU(t) dt = ∆tν
n∑
j=1

βn−jAU
j ,

with

β0 = ∆t−ν
∫ tn

tn−1

(tn − t)ν−1

Γ(ν)
dt =

1

Γ(1 + ν)

and, for j ≥ 1,

βj = ∆t−ν
∫ tn−j

tn−j−1

(tn − t)ν−1 − (tn−1 − t)ν−1

Γ(ν)
dt =

(j + 1)ν − 2jν + (j − 1)ν

Γ(1 + ν)
.

Thus, by solving the recurrence relation

(I + β0∆tνA)Un = Un−1 −∆tν
n−1∑
j=1

βn−jAU
j (6)

for n = 1, 2, 3, . . . we may compute U1, U2, U3, . . . .
In the classical limit as ν → 1, the fractional-order equation (1) reduces to

an abstract heat equation,

∂tu+Au = 0 for t > 0, with u(0) = u0, (7)

and the time-stepping DG method (5) reduces to the implicit Euler scheme

Un − Un−1

∆t
+AUn = 0, (8)
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for which the following error bound holds [18, Theorems 7.1 and 7.2]:

‖Un − u(tn)‖ ≤ Ctr−1n ∆t‖Aru0‖ for n = 1, 2, 3, . . . and 0 ≤ r ≤ 1. (9)

This result is just the limiting case as ν → 1 of our error estimate (3) for the
fractional diffusion equation.

For any real r ≥ 0, we can characterize D(Ar) in terms of the generalized
Fourier coefficients in an eigenfunction expansion,

v =

∞∑
m=1

vmφm, vm = 〈v, φm〉.

Indeed, v ∈ H belongs to D(Ar) if and only if

‖Arv‖2 =

∞∑
m=1

λ2rmv
2
m <∞, (10)

in which case the series Arv =
∑∞
m=1 λ

r
mvmφm converges in H. Thus (recalling

our assumption that λm → ∞) the larger the value of r such that v ∈ D(Ar),
the faster the Fourier coefficients vm decay as m → ∞ and the “smoother” v
is. When H = L2(Ω) the functions in D(Ar) may have to satisfy compatibility
conditions on ∂Ω; see Thomée [18, Lemma 3.1] or [10, Section 3]. In particular,
an infinitely differentiable function will be somewhat “non-smooth” if it fails to
satisfy the boundary conditions of our problem.

We note that, for a given u0, the exact solution u is less smooth than is the
case for the classical heat equation. To see why, consider the Fourier expansion

u(t) =

∞∑
m=1

um(t)φm, um(t) = 〈u(t), φm〉, (11)

and put u0m = 〈u0, φm〉. The Fourier coefficients um(t) satisfy the initial-value
problem

u′m + λm∂
1−ν
t um = 0, for t > 0, with um(0) = u0m, (12)

so that, as is well known [10], um(t) = Eν(−λmtν)u0m where Eν denotes the
Mittag–Leffler function. Since Eν(−s) = O(s−1) decays slowly as s → ∞
for 0 < ν < 1, in comparison to E1(−s) = e−s, the high frequency modes of the
solution are not damped as rapidly as in the classical case ν = 1.

Section 2 uses Laplace transform techniques to derive integral representa-
tions for the Fourier coefficients Unm = 〈Un, φm〉 and um(tn) = 〈u(tn), φm〉. We
show that Unm − um(tn) = δn(µ)u0m, where δn(µ) is given by an explicit but
complicated integral; thus, the error has a Fourier expansion of the form

Un − u(tn) =

∞∑
m=1

δn(λm∆tν)u0mφm, u0m = 〈u0, φm〉. (13)

Theorem 4 states a key estimate for δn(µ), but to avoid a lengthy digression the
proof is relegated to Section 4.
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The main result (3) of the paper is established in Section 3, where we first
prove in Theorem 5 that if u0 ∈ H then the error is of order t−1n ∆t, coinciding
with the error estimate (9) for the classical heat equation when r = 0. Next we
prove the special case r = min(2, 1/ν) of (3) and then, in Theorem 7, deduce
the general case by interpolation. The paper concludes with Section 5, which
presents the results of some computational experiments for a model 1D prob-
lem, as well as numerical evidence that the constant C in (3) can be chosen
independent of ν.

2. Integral representations

Our error analysis relies on the Laplace transform

û(z) = L{u(t)} =

∫ ∞
0

e−ztu(t) dt.

A standard energy argument [11, 13] shows that ‖u(t)‖ ≤ ‖u0‖ so û(z) exists
and is analytic in the right half-plane <z > 0, and since L{∂1−νt u} = z1−ν û(z)
and L{∂tu} = zû− u0, it follows from (12) that zûm + λmz

1−ν ûm = u0m, so

ûm(z) =
u0m

z + λmz1−ν
.

Thus, the Laplace inversion formula gives, for n ≥ 1 and any a > 0,

um(tn) =
1

2πi

∫ a+i∞

a−i∞
eztn ûm(z) dz =

u0m
2πi

∫ a+i∞

a−i∞

eztn

1 + λmz−ν
dz

z
,

which, following a substitution, we may write as

um(tn) =
u0m
2πi

∫ a+i∞

a−i∞

enz

1 + µz−ν
dz

z
, where µ = λm∆tν . (14)

It follows using Jordan’s lemma that

um(tn) =
u0m
2πi

∫ 0+

−∞

enz

1 + µz−ν
dz

z
for n ≥ 1, (15)

where the notation
∫ 0+

−∞ indicates that the path of integration is a Hankel con-
tour enclosing the negative real axis and oriented counterclockwise.

Now consider the recurrence relation (6) used to compute the numerical
solution. The Fourier coefficients Unm = 〈Un, φm〉 satisfy

(1 + β0∆tνλm)Unm = Un−1m − λm∆tν
n−1∑
j=1

βn−jU
j
m, (16)
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and to obtain an integral representation of Unm analogous to (15) we introduce
the discrete-time Laplace transform

Ũ(z) =

∞∑
n=0

Une−nz. (17)

Again, a standard energy argument shows that ‖Un‖ ≤ ‖u0‖ so this series
converges in the right half-plane <z > 0. Multiplying (16) by e−nz, summing
over n and using the fact that the sum in (16) is a discrete convolution, we find
that [

1− e−z + µβ̃(z)
]
Ũm(z) =

[
1 + µβ̃(z)

]
u0m,

again with µ = λm∆tν . So, letting ψ(z) = β̃(z)/(1− e−z),

Ũm(z) = u0m
1 + µβ̃(z)

1− e−z + µβ̃(z)
= u0m

(1− e−z)−1 + µψ(z)

1 + µψ(z)
. (18)

For our subsequent analysis we now establish key properties of the function ψ(z).
Following appropriate shifts of the summation index, one finds that

β̃(z) =

∞∑
n=0

βne
−nz = (ez − 1)(1− e−z) Li−ν(e−z)

Γ(1 + ν)
, (19)

where the polylogarithm [9, 19] is defined by Lip(z) =
∑∞
n=1 z

n/np for |z| < 1
and p ∈ C; thus,

ψ(z) = (ez − 1)
Li−ν(e−z)

Γ(1 + ν)
=

1

Γ(1 + ν)

(
1 +

∞∑
n=1

[
(n+ 1)ν − nν

]
e−nz

)
. (20)

From the identity

1

np
=

Γ(1− p)
2πi

∫ 0+

−∞
enwwp−1 dw,

we find, after interchanging the sum and integral, that

Lip(e
−z) =

Γ(1− p)
2πi

∫ 0+

−∞

wp−1 dw

ez−w − 1
(21)

for <z sufficiently large. Thus, Lip(e
−z) possesses an analytic continuation to

the strip −2π < =z < 2π with a cut along the negative real axis (−∞, 0]. It
follows that ψ(z) is analytic for z in the same cut strip, and moreover

ψ(z) = ψ(z̄) and ψ(z + 2πi) = ψ(z). (22)

Lemma 1. If |=z| ≤ π and z /∈ (−∞, 0], then

ψ(z) =
sinπν

π

∫ ∞
0

s−ν

1− e−z−s
1− e−s

s
ds (23)

and 1 + µψ(z) 6= 0 for 0 < µ <∞.
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Proof. Given z /∈ (−∞, 0], we can choose a Hankel contour that does not en-
close z, and the formulae (20) and (21) then imply that

ψ(z) =
ez − 1

2πi

∫ 0+

−∞

w−ν−1 dw

ez−w − 1
.

Since
ez − 1

ez−w − 1
= 1 +

ew − 1

1− ew−z
and

∫ 0+

−∞
w−ν−1 dw = 0,

we have

ψ(z) =
1

2πi

∫ 0+

−∞

w−ν

1− ew−z
ew − 1

w
dw.

Define contours along either side of the cut,

C± = { se±iπ : for 0 < s <∞}, (24)

so that arg(w) = ±π if w ∈ C±. Noting that the integrand is O(w−ν) as w → 0,
we may collapse the Hankel contour into C+ − C− to obtain (23).

The second part of the lemma amounts to showing that ψ(z) /∈ (−∞, 0]. If
x ≥ 0 and αn = e−xn

[
(n+ 1)ν − nν

]
, then

ψ(x+ iy) =
1

Γ(1 + ν)

(
1 +

∞∑
n=1

αn cosny − i
∞∑
n=1

αn sinny

)
. (25)

The sequence αn is convex and tends to zero, so [21, pp. 183 and 228]

<ψ(x+ iy) ≥ 1

2Γ(1 + ν)
and =ψ(x+ iy) < 0 for x ≥ 0 and 0 < y < π,

and using (22) we find that =ψ(x±iπ) = 0 for−∞ < x <∞. The polylogarithm
satisfies [19, Equation (3.1)]

=Lip(e
−z) = ∓πs

p−1

Γ(p)
if z = se±iπ for 0 < s <∞,

so, using the identity Γ(1 + ν)Γ(1− ν) = πν/ sinπν,

=ψ(se±iπ) = ∓(1− e−s)s−ν−1 sinπν, (26)

and in particular =ψ(x + i0) < 0 but =ψ(x − i0) > 0 for −∞ < x < 0,
whereas =ψ(x) = 0 for 0 < x <∞. Applying the strong maximum principle for
harmonic functions, we conclude that =ψ(x + iy) 6= 0 if 0 < |y| < π. We saw
above that <ψ(x+ iy) > 0 if x ≥ 0, and by (23),

ψ(x± iπ) =
sinπν

π

∫ ∞
0

s−ν

1 + e−x−s
1− e−s

s
ds > 0

for all real x, which completes the proof.
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Since
1

2πi

∫ a+iπ

a−iπ
e(n−j)z dz = δnj =

{
1, if n = j,

0, if n 6= j,

we see from the definition (17) of Ũm, after interchanging the sum and integral,
that for any a > 0,

Unm =
1

2πi

∫ a+iπ

a−iπ
enzŨm(z) dz. (27)

Moreover, since

(1− e−z)−1 + µψ(z)

1 + µψ(z)
= 1 +

(1− e−z)−1 − 1

1 + µψ(z)
= 1− 1/(1− ez)

1 + µψ(z)
,

the formula (18) for Ũm(z) implies that

Unm =
u0m
2πi

∫ a+iπ

a−iπ

enz

1 + µψ(z)

dz

ez − 1
for n ≥ 1. (28)

The next lemma describes the asymptotic behaviour of ψ, and shows in par-
ticular that the integrands of (14) and (28) are close for z near 0. In (29), ζ
denotes the Riemann zeta function.

Lemma 2. The function (20) satisfies

ψ(z) = z−ν + 1
2z

1−ν +
ζ(−ν)

Γ(1 + ν)
z +O(z2−ν) as z → 0, (29)

and

ψ(z) =
sinπν

πν
(iπ−z)−ν +O(z−ν−1) as <(z)→ −∞, with 0 < =z < π. (30)

Proof. Flajolet [4, Theorem 1] shows that

Lip(e
−z) ∼ Γ(1− p)zp−1 +

∞∑
k=0

(−1)kζ(p− k)
zk

k!
as z → 0, (31)

and (29) follows because ez − 1 = z + 1
2z

2 + O(z3) as z → 0. The results of
Ford [5, Equation (17), p. 226] imply that

Lip(e
−z) = − (iπ − z)p

Γ(1 + p)
+O(zp−1) as <z → −∞, (32)

(see also Wood [19, Equation (11.2)]) which, in combination with the identity
Γ(1 + ν)Γ(1− ν) = πν/ sinπν, implies (30).

The formula for Unm in the next theorem matches (15) for um(tn).
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Figure 1: The integration contour C(a,M).

Theorem 3. The solution of (16) admits the integral representation

Unm =
u0m
2πi

∫ 0+

−∞

enz

1 + µψ(z)

dz

ez − 1
for n ≥ 1, (33)

where the Hankel contour remains inside the strip −π < =z < π.

Proof. By Lemma 1, the integrand from (28) is analytic for z inside the con-
tour C(a,M) shown in Figure 1. The contributions along =z = ±π cancel in
view of the second part of (22). Using (30), if <z → −∞ then

1/(ez − 1)

1 + µψ(z)
∼ −

(
1 + µ

sinπν

πν
(iπ − z)−ν

)−1
∼ −1 + µ

sinπν

πν
(iπ − z)−ν ,

so the contributions along <z = −M are O(e−nM ) as M → ∞, implying the
desired formula for Unm.

Together, (15) and (33) imply that the error formula (13) holds, with

δn(µ) =
1

2πi

∫ 0+

−∞
enz
(

1

1 + µψ(z)

z

ez − 1
− 1

1 + µz−ν

)
dz

z
(34)

for 0 < µ <∞, and with δn(0) = 0 because if λm = 0 then um(tn) = u0m = Unm
for all n. The following estimate for δn(µ) is the key to proving our error
estimates, but the lengthy proof is deferred until Section 4.

Theorem 4. Let 0 < ν < 1. The sequence (34) satisfies

|δn(µ)| ≤ Cn−1 min
(
(µnν)2, (µnν)−1

)
for n = 1, 2, 3, . . . and 0 < µ <∞.

Proof. Follows from Theorems 12 and 16.
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We remark that in the limiting case ν → 1, when our method reduces to the
classical implicit Euler scheme (8) for the heat equation (7), it is readily seen
that the error representation (13) holds with δn(µ) = (1 + µ)−n − e−nµ, and
that 0 ≤ δn(µ) ≤ Cn−1 min

(
(µn)2, (µn)−1

)
, consistent with Theorem 4.

3. Error estimates

We begin this section with the basic error bound that applies even when no
smoothness is assumed for the initial data.

Theorem 5. For any u0 ∈ H, the solutions of (1) and (5) satisfy

‖Un − u(tn)‖ ≤ Ct−1n ∆t‖u0‖ for n = 1, 2, 3, . . . .

Proof. Theorem 4 implies that |δn(µ)| ≤ Cn−1 uniformly for 0 < µ < ∞, and
since the φm are orthonormal, we see from (13) that

‖Un − u(tn)‖2 =

∞∑
m=1

[
δn(λm∆tν)u0m

]2 ≤ (Cn−1)2
∞∑
m=1

u20m =
(
Cn−1‖u0‖

)2
.

(35)
The estimate follows after recalling that tn = n∆t so n−1 = t−1n ∆t.

For smoother initial data, the error bound exhibits a less severe deterioration
as tn approaches zero.

Lemma 6. Consider the solutions of (1) and (5).

1. If 0 < ν ≤ 1/2 and A2u0 ∈ H, then

‖Un − u(tn)‖ ≤ Ct2ν−1n ∆t‖A2u0‖ ≤ C∆t2ν‖A2u0‖.

2. If 1/2 ≤ ν < 1 and A1/νu0 ∈ H, then

‖Un − u(tn)‖ ≤ C∆t‖A1/νu0‖.

Proof. In the first case, since λm∆tνnν = λmt
ν
n,

|δn(λm∆tν)| ≤ Ct−1n ∆t min
(
(λmt

ν
n)2, (λmt

ν
n)−1

)
= Ct2ν−1n ∆t λ2m min

(
1, (λmt

ν
n)−3

)
≤ Ct2ν−1n ∆t λ2m,

so by (10) and (35),

‖Un − u(tn)‖2 ≤
∞∑
m=1

(
Ct2ν−1n ∆t λ2mu0m

)2
=
(
Ct2ν−1n ∆t ‖A2u0‖

)2
,

with t2ν−1n ∆t = n2ν−1∆t2ν ≤ ∆t2ν . The second case follows in a similar fashion,

because n−1 = ∆t λ
1/ν
m (λmt

ν
n)−1/ν implies that

|δn(λm∆tν)| ≤ C∆t λ1/νm min
(
(λmt

ν
n)2−1/ν , (λmt

ν
n)−1−1/ν

)
≤ C∆t λ1/νm .
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We are now ready to prove our main result.

Theorem 7. The solutions of (1) and (5) satisfy

‖Un − u(tn)‖ ≤ Ctrν−1n ∆t‖Aru0‖ for 0 ≤ r ≤ min(2, 1/ν).

Proof. If 0 < ν ≤ 1/2 and 0 < θ < 1, then by interpolation

‖Un − u(tn)‖ ≤ C
(
t−1n ∆t

)1−θ(
t2ν−1n ∆t

)θ‖A2θu0‖ = Ct2νθ−1n ∆t‖A2θu0‖,

and the estimate follows by putting r = 2θ. Similarly, if 1/2 ≤ ν < 1, then

‖Un − u(tn)‖ ≤ C
(
t−1n ∆t

)1−θ
∆tθ‖Aθ/νu0‖ = Ctθ−1n ∆t‖Aθ/νu0‖,

and the estimate follows by putting r = θ/ν.

4. Technical proofs

It remains to prove Theorem 4. In this section only, C always denotes
an absolute constant and we use subscripts in cases where the constant might
depend on some parameters; for instance Cν may depend on the fractional
diffusion exponent ν.

Since the integrand of (34) is O(zν−1) as z → 0, we may collapse the Hankel
contour onto C+ − C−, for C± given by (24). In this way, defining

ψ±(s) = ψ(se±iπ) for 0 < s <∞,

we find that∫
C±
enz
(

1

1 + µψ(z)

z

ez − 1
− 1

1 + µz−ν

)
dz

z

=

∫ ∞
0

e−ns
(

1

1 + µψ±(s)

s

1− e−s
− 1

1 + µs−νe∓iπν

)
ds

s
.

By (22) and (26),

ψ−(s) = ψ+(s) and =ψ±(s) = ∓(1− e−s)s−ν−1 sinπν, (36)

so

1

1 + µψ+(s)
− 1

1 + µψ−(s)
=

2iµ=ψ−(s)

|1 + µψ±(s)|2
=

2iµs−ν sinπν

|1 + µψ±(s)|2
1− e−s

s
,

and similarly,

1

1 + µs−νe−iπν
− 1

1 + µs−νeiπν
=

2iµs−ν sinπν

|1 + µs−νe∓iπν |2
.

Thus, the representation (34) implies

δn(µ) =
sinπν

π

∫ ∞
0

e−nsµs−ν
(

1

|1 + µψ+(s)|2
− 1

|1 + µs−νe−iπν |2

)
ds

s
. (37)

We will estimate this integral with the help of the following sequence of lemmas.
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Lemma 8. If X ≥ 0 then |1 +Xe±iπν |−2 ≤ (1− ν)−2(1 +X2)−1.

Proof. Since 0 ≤ 2X/(1 +X2) ≤ 1,

|1 +Xe±iπν |2

1 +X2
=
|e∓iπν +X|2

1 +X2
= 1 +

2X

1 +X2
cosπν ≥ min(1, 1 + cosπν),

and the result follows because 1 + cosπν = 2 cos2(πν/2) ≥ 2(1− ν)2.

Lemma 9. If µ ≥ 0 and s > 0, then |1 + µψ±(s)|−2 ≤ Cν(1 + µ2s−2ν)−1.

Proof. Lemma 2 implies that

ψ±(s) = e∓iπν(s−ν − 1
2s

1−ν)− ζ(−ν)

Γ(1 + ν)
s+O(s2−ν) as s→ 0 (38)

and

ψ±(s) =
sinπν

πν
s−ν +O(s−ν−1) as s→∞. (39)

Thus, if we define φ(s) = sνψ+(s) for 0 < s <∞, with

φ(0) = e−iπν and φ(∞) =
sinπν

πν
, (40)

then φ is continuous on the one-point compactification [0,∞] of the closed half-
line [0,∞). Put X = µs−ν and define

f(s,X) =
|1 + µψ+(s)|2

1 +X2
=
|1 +Xφ(s)|2

1 +X2

for 0 ≤ s ≤ ∞ and 0 ≤ X <∞, with f(s,∞) = |φ(s)|2, so that f is continuous
on the compact topological space [0,∞] × [0,∞]. It therefore suffices to prove
that f is strictly positive everywhere. By (36),

=φ(s) = −1− e−s

s
sinπν < 0 for 0 < s <∞, (41)

and =φ(0) = − sinπν < 0 by (40), so |1 + Xφ(s)|2 ≥ [X=φ(s)]2 > 0 for
0 ≤ s <∞ and 0 < X <∞. Moreover, |1 +Xφ(∞)|2 ≥ 1 because φ(∞) is real
and positive, and f(s, 0) = 1 for 0 ≤ s ≤ ∞. Finally, (40) and (41) imply that
f(s,∞) = |φ(s)|2 > 0 for 0 ≤ s ≤ ∞.

Lemma 10. For µ ≥ 0 and s > 0,

|1 + µs−νe∓iπν |2 − |1 + µψ±(s)|2

= µB+(s)
(
1 + µs−νeiπν

)
+ µB−(s)

(
1 + µψ+(s)

)
= µB1(s) + µ2B2(s),

where B±(s) = s−νe∓iπν − ψ±(s) and

B1(s) = B+(s) +B−(s) = 2
(
s−ν cosπν −<ψ±(s)

)
,

B2(s) = B+(s)s−νeiπν +B−(s)ψ+(s) = s−2ν − ψ+(s)ψ−(s).

12



Proof. Put a = µs−νe∓iπν and b = µψ± in the identities

|1 + a|2 − |1 + b|2 = (a− b)(1 + ā) + (ā− b̄)(1 + b)

= (a− b) + (ā− b̄) + (aā− bb̄).

Notice that B1 and B2 are real, whereas B−(s) = B+(s).

Lemma 11. As s→ 0,

B±(s) = O(s1−ν), B1(s) = s1−ν cosπν +O(s), B2(s) = s1−2ν +O(s1−ν),

and as s→∞,

B±(s) = O(s−ν), B1(s) = O(s−ν), B2(s) = O(s−2ν).

Proof. Follows using (38) and (39).

We are now ready to prove the easier half of Theorem 4.

Theorem 12. For 0 < µ <∞ and n = 1, 2, 3, . . . , the sequence (34) satisfies

|δn(µ)| ≤ Cνn−1ρ−1 if ρ = µnν .

Proof. From (37) and Lemma 10, we see that δn(µ) equals

sinπν

π

∫ ∞
0

e−nsµs−ν
µB+(s)

(
1 + µs−νeiπν

)
+ µB−(s)

(
1 + µψ+(s)

)
|1 + µs−νeiπν |2|1 + µψ+(s)|2

ds

s
,

and thus, by Lemmas 8 and 9,

|δn(µ)| ≤ Cν
∫ ∞
0

e−nsµs−ν
µ|B±(s)|

(1 + µ2s−2ν)3/2
ds

s
.

Lemma 11 implies that |B±(s)| ≤ Cν min
(
s1−ν , s−ν

)
= Cνs

−ν min(s, 1), so

|δn(µ)| ≤ Cν
∫ ∞
0

gn(s, µ) ds where gn(s, µ) = e−nsµ2 s
−2ν−1 min(s, 1)

(1 + µ2s−2ν)3/2
.

The estimate for δn(µ) follows because∫ 1

0

gn(s, µ) ds ≤
∫ 1

0

e−ns
sν

µ
ds =

n−1−ν

µ

∫ n

0

e−ssν ds ≤ Γ(1 + ν)

nρ

and ∫ ∞
1

gn(s, µ) ds ≤
∫ ∞
1

e−ns
sν−1

µ
ds ≤

∫ ∞
1

e−ns

µ
ds =

nν

ρ

e−n

n
≤ C

nρ
.

13



Figure 2: The contour C(ε, R) used in the proof of Lemma 15.

Establishing the behaviour of δn(µ) when ρ = µnν is small turns out to be
more delicate, and relies on three additional lemmas.

Lemma 13. If 0 ≤ ν ≤ 1/2 then xν
∫ 1

x
s−3ν ds ≤ 3 for 0 < x ≤ 1.

Proof. Let f(x) = xν
∫ 1

x
s−3ν ds. If 0 < ν < 1/3 then

f ′(x) > 0 for 0 < x < x∗ and f ′(x) < 0 for x∗ < x < 1, (42)

where x∗ = [ν/(1− 2ν)]1/(1−3ν) < 1. Since f ′(x) = νx−1f(x)− x−2ν ,

f(x) ≤ f(x∗) =
(x∗)1−2ν

ν
=

(x∗)ν

1− 2ν
≤ 3.

If ν = 1/3, then f(x) = x1/3 log x−1 and (42) holds with x∗ = e−3, implying
that f(x) ≤ f(x∗) = 3e−1 ≤ 3. If 1/3 < ν < 1/2, then (42) holds with x∗ =
[(1 − 2ν)/ν]1/(3ν−1) < 1 and again f(x) ≤ f(x∗) = (x∗)1−2ν/ν ≤ 3. Finally, if
ν = 0 then f(x) = 1− x ≤ 1, and if ν = 1/2 then f(x) = 2(1− x1/2) ≤ 2.

Lemma 14. If 1/2 ≤ ν ≤ 1 then xν−1
∫ x
1
s1−3ν ds ≤ 3 for 1 ≤ x <∞.

Proof. Make the substitutions x′ = x−1, s′ = s−1, ν′ = 1− ν in Lemma 13.

Lemma 15. If 1/2 < ν < 1 then∫ ∞
0

s−2ν cosπν + s−3ν

|1 + s−νeiπν |4
ds =

∫ ∞
0

sν + s2ν cosπν

|sν + eiπν |4
ds = 0.

14



Proof. Let p = − cosπν so that 0 < p < 1. Making the substitution x = sν , we
see that the integral equals ν−1I, where

I =

∫ ∞
0

f(x) dx and f(x) =
1− px

(x2 − 2px+ 1)2
x1/ν .

We consider the analytic continuation of f to the cut plane C \ [0,∞), and
note that z2 − 2pz + 1 = (z − α+)(z − α−) where α± = p ± iq = eiπ(1∓ν)

and q =
√

1− p2 = sinπν. Thus, f has double poles at z = α+ and at α−.
Moreover, since 1 < 1/ν < 2 we see that f(z) = o(|z|−1) as |z| → ∞, and that
f(z) = O(|z|) as |z| → 0. After integrating around the contour C(ε, R) shown
in Figure 2 and sending ε→ 0+ and R→∞, we conclude that

1− ei2π/ν

2πi
I = res

z=α+

f(z) + res
z=α−

f(z).

Since (z − α±)2f(z) = (1− pz)z1/ν/(z − α∓)2 and α
1/ν
+ = −eiπ/ν = α

1/ν
− ,

res
z=α±

f(z) = lim
z→α±

d

dz
(z − α±)2f(z) =

d

dz

(1− pz)z1/ν

(z − α∓)2

∣∣∣∣
z=α±

= ∓i 1− ν
ν

eiπ/ν

4q
,

showing that the residues cancel, and therefore I = 0 because ei2π/ν 6= 1.

Our final result for this section completes the proof of Theorem 4, and hence
of the error estimates of Section 3.

Theorem 16. For 0 < µ <∞ and n = 1, 2, 3, . . . , the sequence (34) satisfies

|δn(µ)| ≤ Cνn−1ρ2 if ρ = µnν ≤ 1.

Proof. By Lemma 11,

µB1(s) + µ2B2(s) = s
(
µs−ν cosπν + (µs−ν)2 +O(µ+ µ2s−ν)

)
as s→ 0+,

and µB1(s) + µ2B2(s) = O(µs−ν + µ2s−2ν) as s→∞, so (37) implies that

|δn(µ)| =
∣∣∣∣ sinπνπ

∫ ∞
0

e−nsµs−ν
µB1(s) + µ2B2(s)

|1 + µs−νeiπν |2|1 + µψ+(s)|2
ds

s

∣∣∣∣
≤ sinπν

π

(
|I1|+ CνI2 + CνI3

)
,

where, using Lemmas 8 and 9,

I1 =

∫ 1

0

e−nsµs−ν
µs−ν cosπν + (µs−ν)2

|1 + µs−νeiπν |2|1 + µψ+(s)|2
ds,

I2 =

∫ 1

0

e−nsµs−ν
µ+ µ2s−ν

(1 + µ2s−2ν)2
ds, I3 =

∫ ∞
1

e−nsµs−ν
µs−ν + µ2s−2ν

(1 + µ2s−2ν)2
ds

s
.

15



Put f(x) = (x+ x2)/(1 + x2)2 so that

I2 = µ

∫ 1

0

e−nsf(µs−ν) ds = n−1−νρ

∫ n

0

e−sf(ρs−ν) ds.

Since f(x) ≤ min(2x, x−2) we have f(ρs−ν) ≤ C min(ρ−2s2ν , ρs−ν) and thus

n1+νρ−1I2 ≤ Cρ−2
∫ ρ1/ν

0

e−ss2ν ds+ Cρ

∫ n

ρ1/ν
e−ss−ν ds

≤ C
∫ ρ1/ν

0

e−s ds+ Cρ

∫ 1

ρ1/ν
s−ν ds+ Cρ

∫ ∞
1

e−s ds

≤ Cρ1/ν + C(1− ν)−1ρ+ Cρ ≤ C(1− ν)−1ρ+ Cρ1/ν ≤ Cνρ,

implying I2 ≤ Cνn−1−νρ2 ≤ Cνn−1ρ2. Noting that µ = ρn−ν ≤ 1, we have

I3 ≤
∫ ∞
1

e−nsµ2s−2ν−1 ds ≤ µ2

∫ ∞
1

e−ns ds = µ2 e
−n

n
≤ n−1µ2 = n−1−2νρ2,

and therefore I3 ≤ n−1ρ2.
It remains to estimate I1. First consider the case 0 < ν < 1/2, in which

cosπν > 0. Put g(x) = (x2 cosπν + x3)/(1 + x2)2, so that

I1 ≤ Cν
∫ 1

0

e−nsg(µs−ν) ds = Cνn
−1
∫ n

0

e−sg(ρs−ν) ds.

Since g(x) ≤ min(2x2, x−2 cosπν + x−1) we have

g(ρs−ν) ≤ C min
(
ρ−1sν , ρ2s−2ν cosπν + ρ3s−3ν

)
and hence

∫ n
0
e−sg(ρs−ν) ds is bounded by

Cρ−1
∫ ρ1/ν

0

sν ds+ Cρ2 cosπν

∫ n

ρ1/ν
e−ss−2ν ds+ Cρ3

∫ n

ρ1/ν
e−ss−3ν ds

≤ Cρ1/ν + Cρ2
∫ 1

ρ1/ν
(1− 2ν)s−2ν ds+ Cρ3

∫ 1

ρ1/ν
s−3ν ds+ Cρ2

∫ ∞
1

e−s ds.

Applying Lemma 13 with x = ρ1/ν and noting that 1/ν > 2, it follows that∫ n
0
e−sg(ρs−ν) ds ≤ C

(
ρ1/ν + ρ2

)
and hence I1 ≤ Cνn−1ρ2.

If ν = 1/2, then cosπν = 0 and the argument above again shows that
I1 ≤ Cνn−1ρ2. Thus, assume now that 1/2 < ν < 1 and note cosπν < 0. Since

e−ns

|1 + µs−νeiπν |2|1 + µψ+(s)|2
=

1

|1 + µs−νeiπν |4

− 1− e−ns

|1 + µs−νeiπν |2|1 + µψ+(s)|2
+
|1 + µs−νeiπν |2 − |1 + µψ+(s)|2

|1 + µs−νeiπν |4|1 + µψ+(s)|2
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and, by Lemma 15,∫ 1

0

(µs−ν)2 cosπν + (µs−ν)3

|1 + µs−µeiπν |4
ds = µ1/ν

∫ µ−1/ν

0

s−2ν cosπν + s−3ν

|1 + s−νeiπν |4
ds

= −µ1/ν

∫ ∞
µ−1/ν

s−2ν cosπν + s−3ν

|1 + s−νeiπν |4
ds,

we have
|I1| ≤ Cν

(
J1 + J2 + J3

)
, (43)

where

J1 = µ1/ν

∫ ∞
µ−1/ν

s−2ν cosπν + s−3ν

(1 + µ2s−ν)2
ds,

J2 =

∫ 1

0

(1− e−ns) (µs−ν)2| cosπν|+ (µs−ν)3

(1 + µ2s−2ν)2
ds,

J3 =

∫ 1

0

(
|1 + µs−νeiπν |2 − |1 + µψ+(s)|2

) (µs−ν)2| cosπν|+ (µs−ν)3

(1 + µ2s−2ν)3
ds.

First, because µ1/ν = n−1ρ1/ν and | cosπν| = sinπ(ν − 1
2 ) ≤ π(ν − 1

2 ),

J1 ≤ Cn−1ρ1/ν
∫ ∞
nρ−1/ν

(
(2ν − 1)s−2ν + s−3ν

)
ds

≤ Cn−1ρ1/ν
[
(nρ−1/ν)1−2ν + (nρ−1/ν)1−3ν

]
= Cn−2νρ2 + Cn−3νρ3 ≤ Cn−1ρ2.

Second, since 1−e−x ≤ x and µ−1/ν = nρ−1/ν ≥ 1, we see that nρ−1/νJ2 equals∫ nρ−1/ν

0

(1− e−ρ
1/νs)

s−2ν | cosπν|+ s−3ν

(1 + s−2ν)2
ds ≤ C

∫ 1

0

(1− e−ρ1/νs)s−3ν

(1 + s−2ν)2
ds

+ C

∫ nρ−1/ν

1

(1− e−ρ
1/νs)

(
s−2ν(ν − 1

2 ) + s−3ν
)
ds

≤ Cρ1/ν
∫ 1

0

sν+1 ds+ C

∫ n

ρ1/ν
(1− e−s)

(
ρ3s−3ν + (ν − 1

2 )ρ2s−2ν
)
ds.

Since ρ3s−3ν ≤ ρ2s−2ν for s ≥ ρ1/ν , the last integral is bounded by∫ 1

ρ1/ν
2ρ2s1−2ν ds+ C

∫ n

1

(2ν − 1)
(
ρ3s−3ν + ρ2s−2ν

)
ds

≤ C
∫ 1

ρ1/ν
ρ2s−1 ds+ Cρ3 + Cρ2 ≤ Cρ3−1/ν + Cρ2 log ρ−1/ν ,

and thus

J2 ≤ Cn−1ρ1/ν
(
ρ1/ν + Cρ3−1/ν + ν−1ρ2 log ρ−1

)
≤ Cνn−1ρ2.
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Third, by Lemmas 10 and 11,

J3 ≤
∫ 1

0

(
µs1−ν + µ2s1−2µ

) (µs−ν)2 + (µs−ν)3

(1 + µs−ν)3
ds

= µ1+1/ν

∫ µ−1/ν

0

s(s−ν + s−2ν)(s−2ν + s−3ν)

(1 + s−2ν)3
ds

≤ (ρn−ν)1+1/ν

(∫ 1

0

s1+ν ds+

∫ nρ−1/ν

1

s1−3ν ds

)
,

and applying Lemma 14 with x = nρ−1/ν gives
∫ nρ−1/ν

1
s1−3ν ds ≤ 3(nρ−1/ν)1−ν

so J3 ≤ Cn−ν−1ρ1+1/ν(1+n1−νρ1−1/ν) ≤ C(n−ν−1ρ1+1/ν+n−2νρ2) ≤ Cn−1ρ2.
Inserting the foregoing estimates for J1, J2 and J3 into (43) gives the desired
estimate |I1| ≤ Cn−1ρ2, which completes the proof.

5. Numerical example

We consider a 1D example in which u = u(x, t) satisfies (1) with Au =
−(κux)x for x ∈ Ω = (−1, 1), subject to homogeneous Dirichlet boundary con-
ditions u(±1, t) = 0 for 0 < t ≤ 1. We choose κ = 4/π2 so the orthonormal
eigenfunctions and corresponding eigenvalues of A are

φm(x) = sin
mπ

2
(x+ 1) and λm = m2 for m = 1, 2, 3, . . . .

For our initial data we choose simply the constant function u0(x) = π/4, which
has the Fourier sine coefficients

u0m = 〈u0, φm〉 =

{
m−1, m = 1, 3, 5, . . . ,

0, m = 2, 4, 6, . . . .

Although infinitely differentiable, the function u0 is “non-smooth” because it
fails to satisfy the boundary conditions, and as a result the solution u(x, t) is
discontinuous at x = ±1 when t = 0. In fact, if r < 1/4 then

‖Aru0‖2 =

∞∑
m=1

(
λrmu0m

)2
=

∞∑
j=1

(2j − 1)4r−1 ≤ C

1− 4r
,

but if r ≥ 1/4 then u0 /∈ D(Ar).
Using a closed form expression for û(x, z), we construct a reference solution

by applying a spectrally accurate numerical method [12] for inversion of the
Laplace transform. To compute the discrete-time solution Un we discretize also
in space using piecewise linear finite elements on a fixed nonuniform mesh with
M subintervals. In view of the discontinuity in the solution when t = 0, we
concentrate the spatial grid points near x = ±1, but always use a constant
timestep ∆t = 1/N .
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Figure 3: Reference solution (left) and error (right).

N α = 0.6 α = 0.7 α = 13/16

80 2.14e-03 1.48e-03 1.16e-03

160 1.24e-03 0.788 7.94e-04 0.894 5.91e-04 0.978

320 7.20e-04 0.787 4.29e-04 0.888 2.98e-04 0.988

640 4.17e-04 0.787 2.32e-04 0.887 1.50e-04 0.992

1280 2.42e-04 0.787 1.25e-04 0.887 7.53e-05 0.993

Table 1: Weighted errors and observed convergence rates from (44).

Figure 3 shows the reference solution and the error in the case ν = 0.75
using N = 20 time steps and M = 80 spatial subintervals. As expected, the
error is largest at the first time level t1 and then decays as t increases. We put
r = 1

4 − ε where ε−1 = max(4, log t−1n ), so that t−εn ≤ C and, by Theorem 7,

‖Un − u(tn)‖ ≤ Ctν/4−1n ∆t

√
max(1, log t−1n ) for 0 < tn ≤ 1.

Thus, ignoring the logarithm and putting ν = 3/4, we expect to observe errors

of order t
−13/16
n ∆t.

Figure 4 shows how the error varies with tn for a sequence of solutions
obtained by successively doubling N (and hence halving ∆t), using a log scale.
(The same spatial mesh with M = 1000 subintervals was used in all cases.)
Table 1 provides an alternative view of this data, listing the weighted error and
its associated convergence rate,

EN = max
1≤tn≤1/2

tαn‖Un − u(tn)‖ and ρN = log2(EN/EN/2), (44)

so that if EN decays like N−ρ = ∆tρ then ρ ≈ ρN . As expected, ρN ≈ 1 when
α = 13/16 = 0.8125, but the rate deteriorates for smaller values of α.
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Figure 4: The error ‖Un − u(tn)‖ as a function of tn.

Figure 5: The functions Φ1 and Φ2 from (45).

20



Our analysis in Section 4 does not reveal how the constant in Theorem 4
depends on the fractional diffusion exponent ν, because the proof of Lemma 9
is not constructive. The factor (1 − ν)−2 in the estimate of Lemma 8 raises
the question of whether the DG error becomes large if ν is very close to 1. We
therefore investigated numerically the values of

Φ1(ν) = sup
0<µ<∞

max
nν≤µ−1

n1−2νµ−2δn(µ),

Φ2(ν) = sup
0<µ<∞

sup
nν≥µ−1

n1+νµδn(µ),
(45)

since C = max
(
Φ1(ν),Φ2(ν)

)
is the best possible constant in Theorem 4. Fig-

ure 5 shows approximations of the graphs of Φ1 and Φ2, obtained by restrict-
ing µ to the discrete values 2j for −18 ≤ j ≤ 20, and resticting n to the
range 1 ≤ n ≤ 200. We solved (12) and (16) with u0m = 1 = U0

m and
λm = µ/∆tν to compute δn(µ) = Unm − um(tn). The evaluation of Φ1(ν) is
problematic for ν near zero because our values for um(tn) are not sufficiently
accurate, but it seems reasonable to conjecture that C ≤ 1 for all ν.

Acknowledgement. We thank Peter Brown for help with the proof of Lemma 15.
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