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A new difference scheme for the time fractional diffusion
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Abstract

In this paper we construct a new difference analog of the Caputo fractional
derivative (called the L2-1σ formula). The basic properties of this difference
operator are investigated and on its basis some difference schemes generating
approximations of the second and fourth order in space and the second order
in time for the time fractional diffusion equation with variable coefficients are
considered. Stability of the suggested schemes and also their convergence in
the grid L2 - norm with the rate equal to the order of the approximation error
are proved. The obtained results are supported by the numerical calculations
carried out for some test problems.

Keywords: fractional diffusion equation, finite difference method, stability,
convergence

1. Introduction

Recently a noticeable growth of the attention of researches to the frac-
tional differential equations has been observed. It is caused by numerous
effective applications of fractional calculation to various areas of science and
engineering [1, 2, 3, 4, 5, 6]. For example, mathematical language of frac-
tional derivatives is irreplaceable for the description of the physical process
of statistical transfer and, as it is known, leads to diffusion equations of
fractional orders [7, 8].

Consider the time fractional diffusion equation with variable coefficients

∂α0tu(x, t) = Lu(x, t) + f(x, t), 0 < x < l, 0 < t ≤ T, (1)
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u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T, u(x, 0) = u0(x), 0 ≤ x ≤ l, (2)

where

∂α0tu(x, t) =
1

Γ(1− α)

t
∫

0

∂u(x, η)

∂η
(t− η)−αdη, 0 < α < 1 (3)

is the Caputo derivative of the order α,

Lu(x, t) = ∂

∂x

(

k(x, t)
∂u

∂x

)

− q(x, t)u,

k(x, t) ≥ c1 > 0, q(x, t) ≥ 0 and f(x, t) are sufficiently smooth functions.
The time fractional diffusion equation represents a linear integro - differ-

ential equation. Its solution not always can be found analytically; therefore
it is necessary to use numerical methods. However, unlike the classical case,
we require information about all the previous time layers, when numerically
approximating a time fractional diffusion equation on a certain time layer.
For that reason algorithms for solving the time fractional diffusion equations
are rather time-consuming even in one - dimensional case. Upon transition
to two - dimensional and three - dimensional problems their complexity con-
siderably increases. In this regard constructing stable differential schemes of
higher order approximation is a very important task.

A widespread difference approximation of fractional derivative (3) is the
so-called L1 method [2, 9] which is defined as follows

∂α0tj+1
u(x, t) =

1

Γ(1− α)

j
∑

s=0

u(x, ts+1)− u(x, ts)

ts+1 − ts

ts+1
∫

ts

dη

(tj+1 − η)α
+ rj+1, (4)

where 0 = t0 < t1 < . . . < tj+1, and rj+1 is the local truncation error. In
the case of the uniform mesh, τ = ts+1 − ts, for all s = 0, 1, . . . , j + 1, it was
proved that rj+1 = O(τ 2−α) [10, 11, 12]. The L1 method has been widely
used for solving the fractional differential equations with Caputo derivatives
[10, 11, 12, 13, 14, 15, 16].

Difference schemes of the increased order of approximation such as the
compact difference scheme [14, 17, 18, 19] and spectral method [11, 20, 21]
were applied to improve the spatial accuracy of fractional diffusion equations.
However, it is rather difficult to get a high-order time approximation due to
the singularity of fractional derivatives.
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A good approximation of the L1 method is observed in case of a nonuni-
form mesh, when it is refined in a neighborhood of the point tj+1 [9]. Though
the nonuniform mesh turns out to be more effective in comparison with the
uniform one, it will not generate the second order of approximation in all
points of the mesh.

In [22] a new difference analog of the Caputo fractional derivative with
the order of approximation O(τ 3−α), called L1 − 2 formula, is constructed.
On the basis of this formula calculations of difference schemes for the time-
fractional sub-diffusion equations in bounded and unbounded spatial domains
and the fractional ODEs are carried out. If the stability and convergence of
difference schemes from [22] will be strictly proved, then this will undoubtedly
be a significant progress in computing the time-fractional partial differential
equations.

Using the energy inequality method, a priori estimates for the solution
of the Dirichlet and Robin boundary value problems for the diffusion-wave
equation with Caputo fractional derivative have been obtained in [15, 23].

In this paper a new difference analog of the fractional Caputo derivative
with the order of approximation O(τ 3−α) for each α ∈ (0, 1) is constructed.
Properties of the obtained difference operator are studied. Difference schemes
of the second and fourth order of approximation in space and the second or-
der in time for the time fractional diffusion equation with variable coefficients
are constructed. Using the method of energy inequalities, the stability and
convergence of these schemes in the mesh L2 - norm are proved. Numeri-
cal calculations of some test problems confirming reliability of the obtained
results are carried out.

2. Family of difference schemes. Stability and convergence

In this section, families of difference schemes in a general form set on
a non-uniform time mesh are investigated. A criterion of the stability of
the difference schemes in the mesh L2 - norm is obtained. The convergence
of solutions of the difference schemes to the solution of the corresponding
differential problem with the rate equal to the order of the approximation
error is proved.

2.1. Family of difference schemes

In the rectangle QT = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T} we introduce
the mesh ωhτ = ωh × ωτ , where ωh = {xi = ih, i = 0, 1, . . . , N ; hN = l},

3



ωτ = {tj : 0 = t0 < t1 < t2 < . . . < tM−1 < tM = T}.
Basically the family of difference schemes, approximating problem (1)–(2)

on the mesh ωhτ , has the form

g∆
α
0tj+1

yi = Λy
(σj+1)
i +ϕj+1

i , i = 1, 2, . . . , N − 1, j = 0, 1, . . . ,M − 1, (5)

y(0, t) = 0, y(l, t) = 0, t ∈ ωτ , y(x, 0) = u0(x), x ∈ ωh, (6)

where

g∆
α
0tj+1

yi =

j
∑

s=0

(

ys+1
i − ysi

)

gj+1
s , gj+1

s > 0, (7)

is a difference analog of the Caputo derivative of the order α (0 < α < 1),
Λ is a difference operator approximating the continuous operator L, such
that the operator −Λ preserves its positive definiteness ((−Λy, y) ≥ κ‖y‖2,
κ > 0), for example

(Λy)i = ((ayx̄)x − dy)i =
ai+1yi+1 − (ai+1 + ai)yi + aiyi−1

h2
− diyi, (8)

a, d and ϕ are the mesh functions approximating k, q and f , respectively,
y(σj+1) = σj+1y

j+1 + (1 − σj+1)y
j, 0 ≤ σj+1 ≤ 1, at j = 0, 1, . . . ,M − 1,

yx̄,i = (yi − yi−1)/h, yx,i = (yi+1 − yi)/h.

2.2. Stability and convergence

Lemma 1. If gj+1
j > gj+1

j−1 > . . . > gj+1
0 > 0, j = 0, 1, . . . ,M − 1 then for

any function v(t) defined on the mesh ωτ one has the inequalities

vj+1 (g∆
α
0tv) ≥

1

2
g∆

α
0t(v

2) +
1

2gj+1
j

(g∆
α
0tv)

2 , (9)

vjg∆
α
0tv ≥

1

2
g∆

α
0t(v

2)− 1

2
(

gj+1
j − gj+1

j−1

) (g∆
α
0tv)

2 , (10)

where g1−1 = 0.
Proof. Let us consider the difference

vj+1
g∆

α
0tv −

1

2
g∆

α
0t(v

2)
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= vj+1

j
∑

s=0

gj+1
s (vs+1 − vs)−

j
∑

s=0

gj+1
s (vs+1 − vs)

(

vs+1 + vs

2

)

=

j
∑

s=0

gj+1
s (vs+1 − vs)

(

vj+1 − vs+1 + vs

2

)

=

j
∑

s=0

gj+1
s (vs+1 − vs)

(

1

2
(vs+1 − vs) +

j
∑

k=s+1

(vk+1 − vk)

)

=
1

2

j
∑

s=0

gj+1
s (vs+1 − vs)2 +

j
∑

k=1

(vk+1 − vk)

k−1
∑

s=0

gj+1
s (vs+1 − vs). (11)

Here we consider the sums to be equal to zero if the upper summation index
is less than the lower one.

Let us introduce the following notation:
∑k

s=0 g
j+1
s (vs+1 − vs) = wk+1,

then v1− v0 =
(

gj+1
0

)−1
w1, vk+1− vk =

(

gj+1
k

)−1
(wk+1−wk), k = 1, 2, . . . , j

and rewrite the equality (11) as

1

2

(

gj+1
0

)−1
(w1)2+

1

2

j
∑

k=1

(

gj+1
k

)−1
(wk+1−wk)2+

j
∑

k=1

(

gj+1
k

)−1
(wk+1−wk)wk

=
1

2

(

gj+1
0

)−1
(w1)2 +

1

2

j
∑

k=1

(

gj+1
k

)−1 (
(wk+1)2 − (wk)2

)

=
1

2

(

gj+1
j

)−1
(wj+1)2 +

1

2

j−1
∑

k=0

gj+1
k+1 − gj+1

k

gj+1
k+1g

j+1
k

(wk+1)2 ≥ 1

2

(

gj+1
j

)−1
(wj+1)2,

which is valid since gj+1
k+1 − gj+1

k > 0, k = 0, 1, . . . , j − 1.
Let us prove now the inequality (10). Since vj = vj+1 − (vj+1 − vj), one

obtains

vj∆α
0tv −

1

2
∆α

0t(v
2) +

1

2
(

gj+1
j − gj+1

j−1

)(∆α
0tv)

2

= vj+1∆α
0tv −

1

2
∆α

0t(v
2) +

1

2
(

gj+1
j − gj+1

j−1

)(∆α
0tv)

2 − (vj+1 − vj)∆α
0tv

=
1

2

(

gj+1
j

)−1
(wj+1)2 +

1

2

j−1
∑

k=0

gj+1
k+1 − gj+1

k

gj+1
k+1g

j+1
k

(wk+1)2
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+
1

2
(

gj+1
j − gj+1

j−1

)(wj+1)2 −
(

gj+1
j

)−1
(wj+1 − wj)wj+1

=
gj+1
j−1

2gj+1
j

(

gj+1
j − gj+1

j−1

)

(

wj+1 +
gj+1
j − gj+1

j−1

gj+1
j−1

wj

)2

+
1

2

j−2
∑

k=0

gj+1
k+1 − gj+1

k

gj+1
k+1g

j+1
k

(wk+1)2 ≥ 0.

The proof of the Lemma 1 is completed.

Corollary 1. If gj+1
j > gj+1

j−1 > . . . > gj+1
0 > 0 and

gj+1
j

2gj+1
j −gj+1

j−1

≤ σj+1 ≤ 1,

where j = 0, 1, . . . ,M − 1, g1−1 = 0, then for any function v(t) defined on the
mesh ωτ one has the inequality

(σj+1v
j+1 + (1− σj+1)v

j)g∆
α
0tv ≥

1

2
g∆

α
0t(v

2). (12)

Theorem 1. If

gj+1
j > gj+1

j−1 > . . . > gj+1
0 ≥ c2 > 0,

gj+1
j

2gj+1
j − gj+1

j−1

≤ σj+1 ≤ 1,

where j = 0, 1, . . . ,M − 1, g1−1 = 0, then the difference scheme (5)–(6) is
unconditionally stable and its solution satisfies the following a priori estimate:

‖yj+1‖20 ≤ ‖y0‖20 +
1

2κc2
max

0≤j≤M
‖ϕj‖20, (13)

where (y, v) =
∑N−1

i=1 yivih, ‖y‖20 = (y, y).
Proof. Taking the inner product of the equation (5) with y(σj+1), we have

(

y(σj+1), g∆
α
0ty
)

−
(

y(σj+1),Λy(σj+1)
)

=
(

y(σj+1), ϕj+1
)

. (14)

Using inequality (12) and the positive definiteness of operator A = −Λ
from identity (14) one obtains

1

2
g∆

α
0t‖y‖20 + κ‖y(σj+1)‖20 ≤ ε‖y(σj+1)‖20 +

1

4ε
‖ϕj+1‖20, ε > 0. (15)

From (15), at ε = κ we get

g∆
α
0t‖y‖20 ≤

1

2κ
‖ϕj+1‖20. (16)
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Let us rewrite inequality (16) in the form

gj+1
j ‖yj+1‖20 ≤

j
∑

s=1

(

gj+1
s − gj+1

s−1

)

‖ys‖20 + gj+1
0 ‖y0‖20 +

1

2κ
‖ϕj+1‖20. (17)

Noticing that gj+1
0 ≥ c2 > 0, we get

gj+1
j ‖yj+1‖20 ≤

j
∑

s=1

(

gj+1
s − gj+1

s−1

)

‖ys‖20+gj+1
0

(

‖y0‖20 +
1

2κc2
‖ϕj+1‖20

)

. (18)

Denote

E = ‖y0‖20 +
1

2κc2
max

0≤j≤M
‖ϕj‖20.

The inequality (18) is reduced to

gj+1
j ‖yj+1‖20 ≤

j
∑

s=1

(

gj+1
s − gj+1

s−1

)

‖ys‖20 + gj+1
0 E. (19)

It is obvious that at j = 0 the a priori estimate (13) follows from (19). Let
us prove that (13) holds for j = 1, 2, . . . by using the mathematical induction
method. For this purpose, let us assume that the a priori estimate (13) takes
place for all j = 0, 1, . . . , k − 1:

‖yj+1‖20 ≤ E, j = 0, 1, . . . , k − 1.

From (19) at j = k one has

gk+1
k ‖yk+1‖20 ≤

k
∑

s=1

(

gk+1
s − gk+1

s−1

)

‖ys‖20 + gk+1
0 E

≤
k
∑

s=1

(

gk+1
s − gk+1

s−1

)

E + gk+1
0 E = gk+1

k E. (20)

The proof of Theorem 1 is completed.
A priori estimate (13) implies the stability of difference scheme (5)–(6).
Theorem 2. If the conditions of Theorem 1 are satisfied and difference

scheme (5)–(6) has the approximation order O(N−r1+M−r2), where r1 and r2
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are some known positive numbers, then the solution of difference scheme (5)–
(6) converges to the solution of differential problem (1)–(2) in the mesh L2 -
norm with the rate equal to the order of the approximation error O(N−r1 +
M−r2).

Proof. Let us introduce the error z = y−u and substitute it into (5)–(6).
Then we obtain the problem for the error

g∆
α
0tzi = Λz

(σj+1)
i + ψj+1

i , i = 1, . . . , N − 1, j = 0, 1, . . . ,M − 1, (21)

z(0, t) = 0, z(l, t) = 0, t ∈ ωτ , z(x, 0) = 0, x ∈ ωh, (22)

where ψj+1
i = Λu

(σj+1)
i − g∆

α
0tui + ϕj+1

i , ψj+1
i = O(N−r1 +M−r2).

Since the conditions of Theorem 1 are fulfilled, then a priori estimate (13)
holds true for the solution of problem (21)–(22) and, therefore, the following
inequality takes place

‖z‖0 ≤
1√
2κc2

max
0≤j≤M

‖ψj‖0 = O(N−r1 +M−r2),

which implies the convergence in the mesh L2 - norm with the rate O(N−r1+
M−r2).

3. A new L2 − 1σ fractional numerical differentiation formula

In this section a difference analog of the Caputo fractional derivative with
the approximation order O(τ 3−α) is constructed and its basic properties are
investigated.

Let us consider the uniform mesh ω̄τ = {tj = jτ, j = 0, 1, . . . ,M ; T =
τM}. Let σ = 1 − α

2
, then for the Caputo fractional derivative of the order

α, 0 < α < 1, of the function u(t) ∈ C3[0, T ] at the fixed point tj+σ, j ∈
{0, 1, . . . ,M − 1} the following equalities hold

∂α0tj+σ
u(η) =

1

Γ(1− α)

tj+σ
∫

0

u′(η)dη

(tj+σ − η)α

=
1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

u′(η)dη

(tj+σ − η)α
+

1

Γ(1− α)

tj+σ
∫

tj

u′(η)dη

(tj+σ − η)α
. (23)
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As in [22], on each interval [ts−1, ts] (1 ≤ s ≤ j), denoting the quadratic
interpolation Π2,su(t) of u(t) using three points (ts−1, u(ts−1)), (ts, u(ts)) and
(ts+1, u(ts+1)), we get

Π2,su(t) = u(ts−1)
(t− ts)(t− ts+1)

2τ 2

−u(ts)
(t− ts−1)(t− ts+1)

τ 2
+ u(ts+1)

(t− ts−1)(t− ts)

2τ 2
,

(Π2,su(t))
′ = ut,s + ut̄t,s(t− ts+1/2) = ut,s−1 + ut̄t,s(t− ts−1/2), (24)

and

u(t)−Π2,su(t) =
u′′′(ξ̄s)

6
(t− ts−1)(t− ts)(t− ts+1), (25)

where t ∈ [ts−1, ts+1], ξ̄s ∈ (ts−1, ts+1), ut,s = (u(ts+1) − u(ts))/τ , ut̄,s =
(u(ts)− u(ts−1))/τ .

In (23), we use Π2,su(t) to approximate u(t) on the interval [ts−1, ts] (1 ≤
s ≤ j). Taking into account the equality

ts
∫

ts−1

(η − ts−1/2)(tj+σ − η)−αdη =
τ 2−α

1− α
b
(α,σ)
j−s+1, 1 ≤ s ≤ j (26)

with

b
(α,σ)
l =

1

2− α

[

(l + σ)2−α − (l − 1 + σ)2−α
]

−1

2

[

(l + σ)1−α + (l − 1 + σ)1−α
]

,

l ≥ 1, from (23) and (24) we obtain the difference analog of the Caputo
fractional derivative of the order α (0 < α < 1) for the function u(t) in the
following form:

∂α0tj+σ
u(η) =

1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

u′(η)dη

(tj+σ − η)α
+

1

Γ(1− α)

tj+σ
∫

tj

u′(η)dη

(tj+σ − η)α

≈ 1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(Π2,su(η))
′ dη

(tj+σ − η)α
+

ut,j
Γ(1− α)

tj+σ
∫

tj

dη

(tj+σ − η)α

9



=
1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

ut,s−1 + ut̄t,s(η − ts−1/2)dη

(tj+σ − η)α
+

ut,j
Γ(1− α)

tj+σ
∫

tj

dη

(tj+σ − η)α

=
τ 1−α

Γ(2− α)

(

j
∑

s=1

(

a
(α,σ)
j−s+1ut,s−1 + b

(α,σ)
j−s+1ut̄t,sτ

)

+ a
(α,σ)
0 ut,j

)

=
τ 1−α

Γ(2− α)

(

j
∑

s=1

(

a
(α,σ)
j−s+1ut,s−1 + b

(α,σ)
j−s+1(ut,s − ut,s−1)

)

+ a
(α,σ)
0 ut,j

)

=
τ 1−α

Γ(2− α)

j
∑

s=0

c
(α,σ)
j−s ut,s = ∆α

0tj+σ
u, (27)

where

a
(α,σ)
0 = σ1−α, a

(α,σ)
l = (l + σ)1−α − (l − 1 + σ)1−α, l ≥ 1;

c
(α,σ)
0 = a

(α,σ)
0 , for j = 0; and for j ≥ 1,

c(α,σ)s =











a
(α,σ)
0 + b

(α,σ)
1 , s = 0,

a
(α,σ)
s + b

(α,σ)
s+1 − b

(α,σ)
s , 1 ≤ s ≤ j − 1,

a
(α,σ)
j − b

(α,σ)
j , s = j.

(28)

We call the fractional numerical differentiation formula (27) for the Ca-
puto fractional derivative of order α (0 < α < 1) the L2-1σ formula.

Lemma 2. For any α ∈ (0, 1) and u(t) ∈ C3[0, tj+1]

|∂α0tj+σ
u−∆α

0tj+σ
u| = O(τ 3−α). (29)

Proof. Let ∂α0tj+σ
u−∆α

0tj+σ
u = Rj

1 +Rj+σ
j , where

Rj
1 =

1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

u′(η)dη

(tj+σ − η)α
− 1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(Π2,su(η))
′ dη

(tj+σ − η)α

=
1

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(u(η)− Π2,su(η))
′ (tj+σ − η)−αdη
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= − α

Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(u(η)− Π2,su(η)) (tj+σ − η)−α−1dη

= − α

6Γ(1− α)

j
∑

s=1

ts
∫

ts−1

u′′′(ξ̄s)(η − ts−1)(η − ts)(η − ts+1)(tj+σ − η)−α−1dη,

Rj+σ
j =

1

Γ(1− α)

tj+σ
∫

tj

u′(η)dη

(tj+σ − η)α
− ut,j

Γ(1− α)

tj+σ
∫

tj

dη

(tj+σ − η)α

=
1

Γ(1− α)

tj+σ
∫

tj

(u′(η)− ut,j)dη

(tj+σ − η)α
=

1

Γ(1− α)

tj+σ
∫

tj

(u′(tj+1/2)− ut,j)dη

(tj+σ − η)α
+

+
u′′(tj+1/2)

Γ(1− α)

tj+σ
∫

tj

(η − tj+1/2)dη

(tj+σ − η)α
+O(τ 3−α)

=
u′′(tj+1/2)

Γ(1− α)

tj+σ
∫

tj

(η − tj+1/2)dη

(tj+σ − η)α
+O(τ 3−α).

We estimate the error Rj
1 similarly to [22]:

|Rj
1| ≤

α|u′′′(ξ)|
6Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(η − ts−1)(ts − η)(ts+1 − η)(tj+σ − η)−α−1dη

≤ α|u′′′(ξ)|τ 3
3Γ(1− α)

j
∑

s=1

ts
∫

ts−1

(tj+σ − η)−α−1dη =
α|u′′′(ξ)|τ 3
3Γ(1− α)

tj
∫

0

(tj+σ − η)−α−1dη

=
|u′′′(ξ)|τ 3
3Γ(1− α)

(

1

σατα
− 1

(j + σ)ατα

)

≤ |u′′′(ξ)|
3σαΓ(1− α)

τ 3−α, ξ ∈ (0, tj).

Since
tj+σ
∫

tj

(η − tj+1/2)dη

(tj+σ − η)α
=
τt1−α

σ (2σ + α− 2)

2(1− α)(2− α)
= 0

the error |Rj+σ
j | = O(τ 3−α). Lemma 2 is proved.
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3.1. Basic properties of the new L2−1σ fractional numerical differentiation

formula.

Lemma 3. For all s = 1, 2, . . . and 0 < α < 1 the following inequalities
hold

1

2
< κs <

1

2− α
,

where

κs =
(s+ σ)2−α − (s− 1 + σ)2−α − (2− α)(s− 1 + σ)1−α

(2− α)((s+ σ)1−α − (s− 1 + σ)1−α)
.

Proof. Let us consider two functions

fα(x) =
(x+ 1)2−α − x2−α − (2− α)x1−α

(2− α)((x+ 1)1−α − x1−α)
=

∫ 1

0

(z + x)1−α − x1−α

(1 + x)1−α − x1−α
dz, x > 0

and

gα(z, x) =
(z + x)1−α − x1−α

(1 + x)1−α − x1−α
=

z
1
∫

0

dξ
(x+zξ)α

1
∫

0

dξ
(x+ξ)α

, 0 < z < 1, x > 0.

For all x > 0 and 0 < z < 1 the following inequalities hold

1
∫

0

dξ

(x+ ξ)α
<

1
∫

0

dξ

(x+ zξ)α
<

1
∫

0

dξ

(zx+ zξ)α
= z−α

1
∫

0

dξ

(x+ ξ)α
.

Therefore, for the function gα(z, x) for all x > 0 and 0 < z < 1 the inequalities

z < gα(z, x) < z1−α (30)

are valid.
Integrating (30) with respect to z from 0 to 1, we get the inequalities

1

2
< fα(x) <

1

2− α
,

which hold for all x > 0. Lemma 3 is proved.
Corollary 2. For any α (0 < α < 1), it holds b

(α,σ)
s > 0, s ≥ 1.

12



The latter follows from the equality

b(α,σ)s =
[

(s+ σ)1−α − (s− 1 + σ)1−α
]

(

κs −
1

2

)

.

Lemma 4. For any α (0 < α < 1) and c
(α,σ)
s (0 ≤ s ≤ j, j ≥ 1) defined

in (28), it holds

c
(α,σ)
j >

1− α

2
(j + σ)−α, (31)

c
(α,σ)
0 > c

(α,σ)
1 > c

(α,σ)
2 > . . . > c

(α,σ)
j−1 > c

(α,σ)
j , (32)

(2σ − 1)c
(α,σ)
0 − σc

(α,σ)
1 > 0, (33)

where σ = 1− α/2.
Proof. For j ≥ 1 we get

c
(α,σ)
j = a

(α,σ)
j − b

(α,σ)
j =

(

(j + σ)1−α − (j − 1 + σ)1−α
)

(

3

2
− κj

)

>
(

(j + σ)1−α − (j − 1 + σ)1−α
)

(

3

2
− 1

2− α

)

>
1− α

2

1
∫

0

dη

(j + σ − η)α
>

1− α

2
(j + σ)−α.

Inequality (31) is proved. Let us prove inequality (32).
For 1 ≤ s ≤ j − 2 (j ≥ 3) we have

c(α,σ)s − c
(α,σ)
s+1 = a(α,σ)s − a

(α,σ)
s+1 + 2b

(α,σ)
s+1 − b(α,σ)s − b

(α,σ)
s+2

=
1

2

(

(s+ 2 + σ)1−α − 3(s+ 1 + σ)1−α + 3(s+ σ)1−α − (s− 1 + σ)1−α
)

+
1

2− α

(

−(s + 2 + σ)2−α + 3(s+ 1 + σ)2−α − 3(s+ σ)2−α + (s− 1 + σ)2−α
)

=
α(1− α)(1 + α)

2

1
∫

0

dz1

1
∫

0

dz2

1
∫

0

dz3
(s− 1 + σ + z1 + z2 + z3)α+2

+α(1− α)

1
∫

0

dz1

1
∫

0

dz2

1
∫

0

dz3
(s− 1 + σ + z1 + z2 + z3)α+1

13



>
α(1− α)(1 + α)

2
(s+ 2 + σ)−α−2 + α(1− α)(s+ 2 + σ)−α−1 > 0.

For s = j − 1 (j ≥ 2) we get

c(α,σ)s − c
(α,σ)
s+1 = c

(α,σ)
j−1 − c

(α,σ)
j = a

(α,σ)
j−1 − a

(α,σ)
j + 2b

(α,σ)
j − b

(α,σ)
j−1

> a
(α,σ)
j−1 − a

(α,σ)
j + 2b

(α,σ)
j − b

(α,σ)
j−1 − b

(α,σ)
j+1

>
α(1− α)(1 + α)

2
(j + 1 + σ)−α−2 + α(1− α)(j + 1 + σ)−α−1 > 0.

For inequality (32) it remains to prove the case s = 0, that is c
(α,σ)
0 > c

(α,σ)
1

which obviously follows from (33). It is enough to prove inequality (33).
For j = 1 we get

(2σ − 1)c
(α,σ)
0 − σc

(α,σ)
1 = (2σ − 1)(a

(α,σ)
0 + b

(α,σ)
1 )− σ(a

(α,σ)
1 − b

(α,σ)
1 )

=

(

2σ − 1

2σ
− 2σ − 1

2

)

(1 + σ)1−α =
(2σ − 1)(1− σ)

2σ
(1 + σ)1−α > 0.

For j ≥ 2 we get

(2σ − 1)c
(α,σ)
0 − σc

(α,σ)
1 = (2σ − 1)(a

(α,σ)
0 + b

(α,σ)
1 )− σ(a

(α,σ)
1 + b

(α,σ)
2 − b

(α,σ)
1 )

=
4σ − 1

2σ
(1+ σ)1−α− (2+ σ)1−α = (1+ σ)1−α

(

4σ − 1

2σ
−
(

1 +
1

1 + σ

)1−α
)

> (1 + σ)1−α

(

4σ − 1

2σ
− 1− 1− α

1 + σ

)

=
(2σ − 1)(1− σ)

2σ(1 + σ)α
> 0.

Here we used the inequality (1 + t)γ < 1 + γt which is valid for all t > 0 and
0 < γ < 1. Lemma 4 is proved.

3.2. Test example

In this subsection, the validity and numerical accuracy of the new pre-
sented L2-1σ formula (27) are demonstrated by a test example.

Let us take a positive integer M , let τ = 1/(M − 1 + σ) and denote

EM
L2−1σ(τ) = |∂α0tM−1+σ

f(t)−∆α
0tM−1+σ

f(t)|.

Example. Let f(t) = t4+α, 0 < α < 1. Compute the α-order Caputo
fractional derivative of f(t) at t = tM−1+σ = 1 numerically.

14



The exact solution is given by

∂α0tt
4+α
∣

∣

t=1
=

Γ(5 + α)

24
.

Taking different temporal stepsizes M = 10, 20, 40, 80, 160,
320, 640, 1280, 2560, 5120, we compute the example using L2 − 1σ
formula (27) and compare the results with those obtained with the help of the
L1− 2 formula in [22]. Table 1 lists the computational errors and numerical
convergence order (CO) at tM−1+σ = 1 with different parameters α = 0.9,
0.5, 0.1.
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Table 1.

Computational errors and convergence order with different
temporal stepsizes
α M EM

L1−2(τ)[22] COEM
L1−2

EM
L2−1σ(τ) COEM

L2−1σ

0.9 10 1.070471e− 1 1.922978e− 2
20 2.699702e− 2 1.99 4.368964e− 3 2.07
40 6.545547e− 3 2.04 1.009364e− 3 2.08
80 1.556707e− 3 2.07 2.347614e− 4 2.09
160 3.666902e− 4 2.09 5.473732e− 5 2.09
320 8.595963e− 5 2.09 1.277246e− 5 2.10
640 2.010152e− 5 2.10 2.980723e− 6 2.10
1280 4.694884e− 6 2.10 6.955612e− 7 2.10
2560 1.095840e− 6 2.10 1.622925e− 7 2.10
5120 2.556990e− 7 2.10 3.786340e− 8 2.10

0.5 10 1.350657e− 2 3.756950e− 3
20 2.612085e− 3 2.37 7.231988e− 4 2.33
40 4.861786e− 4 2.43 1.367574e− 4 2.38
80 8.864502e− 5 2.46 2.544814e− 5 2.42
160 1.597499e− 5 2.47 4.673501e− 6 2.44
320 2.859085e− 6 2.48 8.495470e− 7 2.46
640 5.095342e− 7 2.49 1.532461e− 7 2.47
1280 9.056389e− 8 2.49 2.748687e− 8 2.48
2560 1.606869e− 8 2.49 4.909831e− 9 2.48
5120 2.847764e− 9 2.50 8.743961e− 10 2.49

0.1 10 6.238229e− 4 2.686107e− 4
20 9.663202e− 5 2.69 4.492624e− 5 2.57
40 1.444281e− 5 2.74 7.204745e− 6 2.64
80 2.111896e− 6 2.77 1.119177e− 6 2.68
160 3.043133e− 7 2.79 1.696376e− 7 2.72
320 4.338827e− 8 2.81 2.522442e− 8 2.75
640 6.136347e− 9 2.82 3.694254e− 9 2.77
1280 8.622698e− 10 2.83 5.344856e− 10 2.79
2560 1.205229e− 10 2.84 7.656497e− 11 2.80
5120 1.676992e− 11 2.85 1.087796e− 11 2.82
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4. A second order difference scheme for the time fractional diffu-

sion equation

In this section for problem (1)–(2) a difference scheme with the approx-
imation order O(h2 + τ 2) is constructed. The stability of the constructed
difference scheme as well as its convergence in the mesh L2 - norm with the
rate equal to the order of the approximation error is proved. The obtained
results are supported with numerical calculations carried out for a test ex-
ample.

4.1. Derivation of the difference scheme

Lemma 5. For any functions k1(x) ∈ C3
x and v(x) ∈ C4

x the following
equality is valid:

d

dx

(

k1(x)
d

dx
v(x)

)
∣

∣

∣

∣

x=xi

=
k1(xi+1/2)v(xi+1)− (k1(xi+1/2) + k1(xi−1/2))v(xi) + k1(xi−1/2)v(xi−1)

h2
+O(h2).

(34)
Let u(x, t) ∈ C4,3

x,t be a solution of the problem (1)–(2). Let us consider

equation (1) for (x, t) = (xi, tj+σ) ∈ QT , i = 1, 2, . . . , N−1, j = 0, 1, . . . ,M−
1, σ = 1− α/2:

∂α0tj+σ
u =

∂

∂x

(

k(x, t)
∂u

∂x

)
∣

∣

∣

∣

(xi,tj+σ)

− q(xi, tj+σ)u(xi, tj+σ)+ f(xi, tj+σ). (35)

Since

∂

∂x

(

k(x, t)
∂u

∂x

)
∣

∣

∣

∣

(xi,tj+σ)

= k(xi, tj+σ)
∂2u

∂x2
(xi, tj+σ)+

∂k

∂x
(xi, tj+σ)

∂u

∂x
(xi, tj+σ)

= k(xi, tj+σ)

(

σ
∂2u

∂x2
(xi, tj+1) + (1− σ)

∂2u

∂x2
(xi, tj)

)

+
∂k

∂x
(xi, tj+σ)

(

σ
∂u

∂x
(xi, tj+1) + (1− σ)

∂u

∂x
(xi, tj)

)

+O(τ 2)

= σ

(

k(xi, tj+σ)
∂2u

∂x2
(xi, tj+1) +

∂k

∂x
(xi, tj+σ)

∂u

∂x
(xi, tj+1)

)

+(1− σ)

(

k(xi, tj+σ)
∂2u

∂x2
(xi, tj) +

∂k

∂x
(xi, tj+σ)

∂u

∂x
(xi, tj)

)

+O(τ 2)
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= σ
∂

∂x

(

k(x, tj+σ)
∂

∂x
u(x, tj+1)

)
∣

∣

∣

∣

x=xi

+(1− σ)
∂

∂x

(

k(x, tj+σ)
∂

∂x
u(x, tj)

)
∣

∣

∣

∣

x=xi

+O(τ 2),

q(xi, tj+σ)u(xi, tj+σ) = q(xi, tj+σ) (σu(xi, tj+1) + (1− σ)u(xi, tj)) +O(τ 2),

by virtue of Lemma 5 we have

Lu(x, t)|(xi,tj+σ)
= σΛu(xi, tj+1) + (1− σ)Λu(xi, tj) +O(h2 + τ 2),

where the difference operator Λ is defined by formula (8) with the coefficients
aj+1
i = k(xi−1/2, tj+σ), d

j+1
i = q(xi, tj+σ). Let ϕj+1

i = f(xi, tj+σ), then with
regard to Lemma 2 we get the difference scheme with the approximation
order O(h2 + τ 2):

∆α
0tj+σ

yi = Λy
(σ)
i + ϕj+1

i , i = 1, 2, . . . , N − 1, j = 0, 1, . . . ,M − 1, (36)

y(0, t) = 0, y(l, t) = 0, t ∈ ωτ , y(x, 0) = u0(x), x ∈ ωh, (37)

It is interesting to note that for α → 1 we obtain the Crank–Nicolson
difference scheme.

4.2. Stability and convergence

Theorem 3. The difference scheme (36)–(37) is unconditionally stable
and its solution satisfies the following a priori estimate:

‖yj+1‖20 ≤ ‖y0‖20 +
l2T αΓ(1− α)

4c1
max

0≤j≤M
‖ϕj‖20. (38)

Proof. For the difference operator Λ using Green’s first difference formula
and the embedding theorem [24] for the functions vanishing at x = 0 and
x = l, we get (−Λy, y) ≥ 4c1

l2
‖y‖20, that is for this operator it is possible to

take κ = 4c1
l2
.

Since difference scheme (36)–(37) has the form (5)–(6), where gj+1
s =

c
(α,β)
j−s

ταΓ(2−α)
, then lemma 4 implies validity of the following inequalities:

gj+1
0 =

c
(α,β)
j

ταΓ(2− α)
>

1

2tαj+σΓ(1− α)
>

1

2T αΓ(1− α)
,
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gj+1
j > gj+1

j−1 > ... > gj+1
0 ,

gj+1
j

2gj+1
j − gj+1

j−1

< σ < 1.

Therefore, validity of theorem 3 follows from theorem 1. Theorem 3 is proved.
From theorem 2 it follows that if the solution and input data of problem

(1)–(2) are sufficiently smooth, the solution of difference scheme (36)–(37)
converges to the solution of the differential problem with the rate equal to
the order of the approximation error O(h2 + τ 2).

4.3. Numerical results

Numerical calculations are performed for a test problem when the func-
tion

u(x, t) = sin(πx)
(

t3 + 3t2 + 1
)

is the exact solution of the problem (1)–(2) with the coefficients k(x, t) =
2− sin(xt), q(x, t) = 1− cos(xt) and l = 1, T = 1.

The errors (z = y − u) and convergence order (CO) in the norms ‖ · ‖0
and ‖ · ‖C(ω̄hτ ), where ‖y‖C(ω̄hτ ) = max

(xi,tj)∈ω̄hτ

|y|, are given in Table 2.

Table 2 shows that as the number of the spatial subintervals and time
steps is increased keeping h = τ , a reduction in the maximum error takes
place, as expected and the convergence order of the approximate scheme
is O(h2) = O(τ 2), where the convergence order is given by the formula:

CO= log h1
h2

‖z1‖
‖z2‖

(zi is the error corresponding to hi).

Table 3 shows that if h = 1/1000, then as the number of time steps
of our approximate scheme is increased, a reduction in the maximum error
takes place, as expected and the convergence order of time is O(τ 2), where

the convergence order is given by the following formula: CO= log τ1
τ2

‖z1‖
‖z2‖

.
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Table 2.

L2 - norm and maximum norm error behavior versus grid size reduction
when τ = h.
α h max

0≤n≤M
‖zn‖0 CO in ‖ · ‖0 ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ )

0.10 1/160 1.0224e− 4 1.4518e− 4
1/320 2.5558e− 5 2.0001 3.6294e− 5 2.0000
1/640 6.3894e− 6 2.0000 9.0733e− 6 2.0000

0.50 1/160 7.8417e− 5 1.1153e− 4
1/320 1.9604e− 5 2.0000 2.7882e− 5 2.0000
1/640 4.9009e− 6 2.0000 6.9705e− 6 2.0000

0.90 1/160 6.6666e− 5 9.4949e− 5
1/320 1.6669e− 5 1.9998 2.3740e− 5 1.9999
1/640 4.1678e− 6 1.9998 5.9360e− 6 1.9998

0.99 1/160 6.5660e− 5 9.3532e− 5
1/320 1.6415e− 5 2.0000 2.3384e− 5 1.9999
1/640 4.1039e− 6 1.9999 5.8460e− 6 2.0000
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Table 3.

L2 - norm and maximum norm error behavior versus τ -grid size reduction
when h = 1/1000.
α τ max

0≤n≤M
‖zn‖0 CO in ‖ · ‖0 ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ )

0.10 1/10 1.9062e− 3 2.6962e− 3
1/20 4.7789e− 4 1.9959 6.7593e− 4 1.9960
1/40 1.1779e− 4 2.0205 1.6659e− 4 2.0206

0.50 1/10 7.6326e− 3 1.0795e− 2
1/20 1.9130e− 3 1.9963 2.7058e− 3 1.9962
1/40 4.7697e− 4 2.0039 6.7461e− 4 2.0039

0.90 1/10 1.0286e− 2 1.4547e− 2
1/20 2.5706e− 3 2.0005 3.6357e− 3 2.0004
1/40 6.4066e− 4 2.0045 9.0608e− 4 2.0045

0.99 1/10 1.0449e− 2 1.4777e− 2
1/20 2.6102e− 3 2.0011 3.6915e− 3 2.0011
1/40 6.5050e− 4 2.0045 9.1998e− 4 2.0045

5. A higher order difference scheme for the time fractional diffusion

equation

In this section for problem (1)–(2), we construct a difference scheme with
the approximation order O(h4 + τ 2) in the case when k = k(t) and q = q(t).
The stability and convergence of the constructed difference scheme in the
mesh L2 - norm with the rate equal to the order of the approximation error
are proved. The obtained results are supported by the numerical calculations
carried out for a test example.

5.1. Derivation of the difference scheme

Let us assign a difference scheme to differential problem (1)–(2) in the
case when k = k(t) and q = q(t):

∆α
0tj+σ

Hhyi = aj+1y
(σ)
x̄x,i−dj+1Hhy

(σ)
i +Hhϕ

j+1
i , i = 1, . . . , N−1, j = 0, 1, . . . ,M−1,

(39)
y(0, t) = 0, y(l, t) = 0, t ∈ ωτ , y(x, 0) = u0(x), x ∈ ωh, (40)
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whereHhvi = vi+h
2vx̄x,i/12, i = 1, . . . , N−1, aj+1 = k(tj+σ), d

j+1 = q(tj+σ),
ϕj+1
i = f(xi, tj+σ), σ = 1− α/2.
From [9] and Lemma 2 it follows that if u ∈ C6,3

x,t , then the difference
scheme has the approximation order O(τ 2 + h4).

5.2. Stability and convergence

The difference scheme (39)–(40) differs from (5)–(6) due to the presence
of the operator Hh. However, deriving an a priori estimate for the solu-
tion of difference scheme (39)–(40) does not differ significantly from proving
Theorem 1.

Theorem 4. The difference scheme (39)–(40) is unconditionally stable
and its solution satisfies the following a priori estimate:

‖Hhy
j+1‖20 ≤ ‖Hhy

0‖20 +
l2T αΓ(1− α)

c1
max

0≤j≤M
‖Hhϕ

j‖20, (41)

Proof. Taking the inner product of the equation (39) with Hhy
(σ) =

(Hhy)
(σ), we have

(Hhy
(σ),∆α

0tj+σ
Hhy)− aj+1(Hhy

(σ), y
(σ)
x̄x )

+ dj+1(Hhy
(σ),Hhy

(σ)) = (Hhy
(σ),Hhϕ

j+1), (42)

Let us transform the terms in identity (42) as

(Hhy
(σ),∆α

0tj+σ
Hhy) ≥

1

2
∆α

0tj+σ
‖Hhy‖20,

−(Hhy
(σ), y

(σ)
x̄x ) = −(y(σ), y

(σ)
x̄x )−

h2

12
‖y(σ)x̄x ‖20 = ‖y(σ)x̄ ]|20−

1

12

N−1
∑

i=1

(y
(σ)
x̄,i+1−y

(σ)
x̄,i )

2h

≥ ‖y(σ)x̄ ]|20 −
1

3
‖y(σ)x̄ ]|20 =

2

3
‖y(σ)x̄ ]|20 ≥

8

3l2
‖y(σ)‖20, where ‖y]|20 =

N
∑

i=1

y2i h,

(Hhy
(σ),Hhϕ

j+1) ≤ ε‖Hhy
(σ)‖20 +

1

4ε
‖Hhϕ

j+1‖20

= ε

N−1
∑

i=1

(

y
(σ)
i−1 + 10y

(σ)
i + y

(σ)
i+1

12

)2

h+
1

4ε
‖Hhϕ

j+1‖20 ≤ ε‖y(σ)‖20+
1

4ε
‖Hhϕ

j+1‖20.
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Taking into account the above-performed transformations, from identity (42)
at ε = 8c1

3l2
one arrives at the inequality

∆α
0tj+σ

‖Hhy‖20 ≤
l2

8c1
‖Hhϕ

j+1‖20.

The following process is similar to the proof of theorem 1, and it is omitted.
The norm ‖Hhy‖0 is equivalent to the norm ‖y‖0, which follows from the

inequalities
5

12
‖y‖20 ≤ ‖Hhy‖20 ≤ ‖y‖20.

Similarly to theorem 2, we obtain the convergence result.
Theorem 5. Assume that u(x, t) ∈ C6,3

x,t is the solution of the problem

(1)–(2) in the case k = k(t), q = q(t), and let {yji | 0 ≤ i ≤ N, 1 ≤ j ≤ M}
be the solution of the difference scheme (39)–(40). Then it holds that

‖u(·, tj)− yj‖0 ≤ CR

(

τ 2 + h4
)

, 1 ≤ j ≤ M,

where CR is a positive constant independent of τ and h.

5.3. Numerical results

In this subsection we present a test example for a numerical investigation
of difference scheme (39)–(40).

Consider the following problem:

∂α0tu(x, t) = k(t)
∂2u

∂x2
(x, t)− q(t)u(x, t)+ f(x, t), 0 < x < 1, 0 < t ≤ 1, (43)

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1, u(x, 0) = 0, 0 ≤ x ≤ 1, (44)

where k(t) = et, q(t) = 1− sin (2t),

f(x) =

[

π2t2et + t2(1− sin (2t)) +
2t2−α

Γ(3− α)

]

sin(πx),

whose exact analytical solution reads u(x, t) = t2 sin(πx).
Table 4 presents the L2 - norm, the maximum norm errors and the

temporal convergence order for α = 0.75, 0.85, 0.95. Here we can see that the
order of convergence in time is two.

Table 5 shows that if τ = 1/20000 is kept fixed, while h varies, then one
obtains the expected fourth-order spatial accuracy.
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Table 6 shows that as the number of spatial subintervals and time steps
is increased keeping h2 = τ , a reduction in the maximum error takes place,
as expected and the convergence order of the approximate of the scheme is
O(h4).

In Table 7 for the case N = ⌈
√
M⌉ the maximum error, the convergence

order and CPU time (seconds) are given. For this case we obtain the expected
rate of convergence O(τ 2).

Table 4.

L2 - norm and maximum norm error behavior versus τ -grid size reduction
when h = 1/100.
α τ max

0≤n≤M
‖zn‖0 CO in ‖ · ‖0 ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ )

0.75 1/10 1.6336e− 3 2.3103e− 3
1/20 4.0889e− 4 1.9983 5.7826e− 4 1.9983
1/40 1.0229e− 4 1.9990 1.4466e− 4 1.9990
1/80 2.5581e− 5 1.9995 3.6177e− 5 1.9995

0.85 1/10 1.7130e− 3 2.4225e− 3
1/20 4.2856e− 4 1.9989 6.0607e− 4 1.9989
1/40 1.0718e− 4 1.9994 1.5158e− 4 1.9994
1/80 2.6801e− 5 1.9997 3.7902e− 5 1.9997

0.95 1/10 1.7582e− 3 2.4865e− 3
1/20 4.3967e− 4 1.9996 6.2179e− 4 1.9996
1/40 1.0993e− 4 1.9998 1.5547e− 4 1.9998
1/80 2.7484e− 5 1.9999 3.8868e− 5 1.9999
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Table 5.

L2 - norm and maximum norm error behavior versus h-grid size reduction
when τ = 1/20000.
α h max

0≤n≤M
‖zn‖0 CO in ‖ · ‖0 ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ )

0.10 1/4 1.1004e− 3 1.5562e− 3
1/8 6.7512e− 5 4.0267 9.5476e− 5 4.0267
1/16 4.2000e− 6 4.0067 5.9397e− 6 4.0067
1/32 2.6213e− 7 4.0021 3.7070e− 7 4.0021

0.50 1/4 1.0836e− 3 1.5325e− 3
1/8 6.6485e− 5 4.0267 9.4024e− 5 4.0267
1/16 4.1360e− 6 4.0067 5.8491e− 6 4.0067
1/32 2.5790e− 7 4.0034 3.6472e− 7 4.0034

0.90 1/4 1.0654e− 3 1.5067e− 3
1/8 6.5371e− 5 4.0266 9.2449e− 5 4.0266
1/16 4.0665e− 6 4.0068 5.7510e− 6 4.0068
1/32 2.5346e− 7 4.0040 3.5844e− 7 4.0040

Table 6.

L2 - norm and maximum norm error behavior versus grid size reduction
when h2 = τ .
α h max

0≤n≤M
‖zn‖0 CO in ‖ · ‖0 ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ )

0.10 1/10 2.4349e− 5 3.4434e− 5
1/20 1.5166e− 6 4.0049 2.1448e− 6 4.0049
1/40 9.4708e− 8 4.0012 1.3394e− 7 4.0012
1/80 5.9180e− 9 4.0003 8.3693e− 9 4.0003

0.50 1/10 1.4211e− 5 2.0097e− 5
1/20 8.8285e− 7 4.0087 1.2485e− 6 4.0087
1/40 5.5094e− 8 4.0022 7.7914e− 8 4.0022
1/80 3.4420e− 9 4.0006 4.8677e− 9 4.0006

0.90 1/10 1.5119e− 5 2.1381e− 5
1/20 9.5080e− 7 3.9910 1.3446e− 6 3.9911
1/40 5.9571e− 8 3.9965 8.4247e− 8 3.9964
1/80 3.7274e− 9 3.9984 5.2714e− 9 3.9984
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Table 7.

Maximum norm error behavior versus grid size reduction

when N = ⌈
√
M⌉ and CPU time (seconds).

α M ‖z‖C(ω̄hτ ) CO in || · ||C(ω̄hτ ) CPU(s)
0.70 10 2.0986e− 3 0.0156

30 2.1085e− 4 2.0916 0.0468
90 2.3672e− 5 1.9905 0.1404
270 2.6359e− 6 1.9980 0.5460
810 2.9428e− 7 1.9956 3.0108
2430 3.2802e− 8 1.9971 22.2925

0.80 10 2.1403e− 3 0.0156
30 2.2690e− 4 2.0427 0.0468
90 2.5342e− 5 1.9953 0.1716
270 2.8146e− 6 2.0004 0.5616
810 3.1383e− 7 1.9968 3.2604
2430 3.4962e− 8 1.9976 23.3065

0.90 10 2.2549e− 3 0.0156
30 2.4088e− 4 2.0358 0.0468
90 2.6745e− 5 2.0007 0.1404
270 2.9607e− 6 2.0033 0.5460
810 3.2949e− 7 1.9986 3.6670
2430 3.6670e− 8 1.9985 22.7605

6. Conclusion

In this paper, the stability and convergence of a family of difference
schemes approximating the time fractional diffusion equation of a general
form is studied. Sufficient conditions for the unconditional stability of such
difference schemes are obtained. For proving the stability of a wide class of
difference schemes approximating the time fractional diffusion equation, it
is simple enough to check the stability conditions obtained in this paper. A
new difference approximation of the Caputo fractional derivative with the
approximation order O(τ 3−α) is constructed. The basic properties of this
difference operator are investigated. New difference schemes of the second
and fourth approximation order in space and the second approximation or-
der in time for the time fractional diffusion equation with variable coefficients
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are constructed as well. The stability and convergence of these schemes in
the mesh L2 - norm with the rate equal to the order of the approximation
error are proved. The method can be easily extended to other time fractional
partial differential equations with other boundary conditions.

Numerical tests completely confirming the obtained theoretical results are
carried out. In all the calculations MATLAB is used.
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