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The solution of a Caputo time fractional diffusion equation of order 0 < α < 1 is expressed in
terms of the solution of a corresponding integer order diffusion equation. We demonstrate a linear
time mapping between these solutions that allows for accelerated computation of the solution of
the fractional order problem. In the context of an N -point finite difference time discretisation, the
mapping allows for an improvement in time computational complexity from O

(
N2

)
to O (Nα), given

a precomputation of O
(
N1+α lnN

)
. The mapping is applied successfully to the least squares fitting

of a fractional advection-diffusion model for the current in a time-of-flight experiment, resulting in a
computational speed up in the range of one to three orders of magnitude for realistic problem sizes.
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I. INTRODUCTION

Derivatives of non-integer order have been particu-
larly successful in describing a variety of complex pro-
cesses with memory effects. These include applications
in statistical finance [1], economic modelling [2], image
processing [3], quantum systems [4] and kinetics [5–11].
This paper will focus on the numerical solution of a frac-
tional kinetics description of anomalous diffusion. Un-
like normal diffusion, whose mean squared displacement
grows linearly with time, the anomalous diffusion con-
sidered here is characterised by a mean squared displace-
ment that grows sublinearly according to a power law
of the form tα with 0 < α < 1 [10, 12–15]. A num-
ber of stochastic approaches are capable of describing
this kind of anomalous diffusion [14–20]. For example,
Scher and Montroll [21] used a continuous time random
walk (CTRW) model to describe the anomalous trans-
port of charge carriers in disordered semiconductors. In
this case, anomalous behaviour arises due to the localised
trapping of charge carriers. To describe this trapping, a
CTRW was chosen that sampled from a distribution of
trapping times of the power law form w (t) ∼ t−(1+α).
Here, α describes the severity of the trapping, with smal-
ler values of α corresponding to increasingly severe traps.
In disordered semiconductors, α arises physically from
the energetic width of the density of localised states
[7, 9, 22]. It has been rigorously shown [15, 23, 24] that
a CTRW of this form can be described by a diffusion
equation with a time derivative of fractional order α. In
this paper, we are concerned with the numerical solution
of a Caputo fractional advection-diffusion model for the
current in a time-of-flight experiment for a disordered
semiconductor [8, 9, 25–27]

C
0Dαt u (t, x) = DL

∂2

∂x2
u (t, x)−W ∂

∂x
u (t, x) , (1)
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where W is a generalised drift velocity, DL is a gener-
alised diffusion coefficient and the operator for Caputo
fractional differentiation of order 0 < α < 1 is defined in
terms of the convolution integral [28]

C
0Dαt f (t) ≡ 1

Γ (1− α)

ˆ t

0

dτ (t− τ)
−α

f ′ (τ) . (2)

Note that the normal advection-diffusion equation can be
recovered in the relevant limit of no trapping

lim
α→1

C
0Dαt u (t, x) =

∂

∂t
u (t, x) . (3)

Numerous methods exist [29–35] for finding the nu-
merical solution of fractional differential equations of the
form of Eq. (1). Many of these are direct analogues
to approaches that are also applicable to integer order
differential equations. This is to be expected with the
definition of fractional differentiation (2) defined in terms
of both differentiation and integration. Unfortunately,
when solving fractional differential equations numerically
there is an increase [36] in time computational complex-
ity over that encountered when solving differential equa-
tions of integer order. This is due to the global nature of
fractional differentiation and, as in the case of anomalous
diffusion, can be interpreted as a result of the system hav-
ing memory. Consequently, any numerical algorithm that
computes the solution at a present point in time requires
the entire solution history to do so. In the context of an
N -point finite difference time discretisation, this causes
a time computational complexity increase from O (N) to
O
(
N2
)
[37].

A number of approaches have been proposed to accel-
erate the computation of the numerical solution of frac-
tional differential equations [36–40]. As this added com-
putational complexity stems from the memory inherent
to the system, many of these approaches involve restrict-
ing this memory in some way. Podlubny [36] considered
this approach by introducing the fixed memory principle,
which amounts to truncating the convolution integral in
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the definition of fractional differentiation (2). In effect,
this restricts the memory of the system to a fixed interval
of time into the past, subsequently allowing for the solu-
tion to be found numerically in O (N) in exchange for
some loss in solution accuracy. Unfortunately, the only
way to guarantee the accuracy of a numerical method
used in conjunction with the fixed memory principle is to
choose a fixed interval of time that encompasses the en-
tire history of the solution, returning the computational
complexity to O

(
N2
)
. Ford and Simpson [37] demon-

strated exactly this and, as an alternative, introduced
the logarithmic memory principle, which samples from
the solution history in a logarithmic fashion, allowing for
the solution to be found in O (N lnN) without comprom-
ise in solution accuracy. Finally, a number of parallel
computing algorithms have also been introduced [39, 40].
These approaches are viable ways for accelerating the
computation of the solution although, as they often in-
volve splitting the problem into smaller problems of the
same computational complexity, they are ultimately still
of O

(
N2
)
.

In Section II of the current study, we show that the
solution to the fractional advection-diffusion equation (1)
can be related to the solution of the normal advection-
diffusion equation through a linear mapping in time. This
mapping relationship, which takes the form of a matrix
multiplication, provides an approach for the numerical
acceleration of the fractional solution. In Section III, an
algorithm for the computation of the matrix that defines
the linear mapping is presented that utilises the fast Four-
ier transform. Additionally, we show that many elements
of this matrix may contribute negligibly to the solution
and so can be neglected, subsequently allowing for even
further acceleration. In Section IV, we demonstrate the
accuracy of this mapping approach by benchmarking the
numerical solution of a fractional relaxation equation
against its exact analytic solution. In Section V, this
mapping is applied successfully to accelerate the fitting
of Eq. (1) to experimental data for a time-of-flight ex-
periment. Finally, in Section VI, we present conclusions
and briefly list possible applications of our approach to
various generalisations of the considered fractional-order
problem.

II. MAPPING BETWEEN NORMAL AND
FRACTIONAL DIFFUSION

In this section, we will explore accelerating the numer-
ical solution of the fractional advection-diffusion equation
(1) by relating it to the solution of the normal advection-
diffusion equation

∂

∂τ
v (τ, x) = DL

∂2

∂x2
v (τ, x)−W ∂

∂x
v (τ, x) , (4)

where τ has fractional units of time due to the presence
of the generalised transport coefficients DL and W . By
enforcing both equivalent initial conditions and boundary

conditions, we can relate these solutions using the known
integral transform relationship [41–45]

u (t, x) =

ˆ ∞
0

dτA (τ, t) v (τ, x) , (5)

which also holds true for any other shared linear spatial
operator in the considered advection-diffusion equations.
Here, the kernel is defined

A (τ, t) ≡ L−1
{
sα−1e−s

ατ
}

=
∂

∂τ

[
1− Lα

(
t

α
√
τ

)]
,

(6)
where L denotes the Laplace transform and Lα (t) is the
one-sided Lévy distribution, which is expressible in terms
of the one-sided Lévy density lα (t) as

Lα (t) ≡
ˆ t

0

dτ lα (τ) , Llα (t) ≡ e−s
α

. (7)

This integral relationship is known as a subordination
transformation, where A (τ, t) is the probability distri-
bution function providing subordination of the random
process governed by Eq. (1) on the physical time scale
t to that governed by Eq. (4) on the operational time
scale τ [46].

In order to determine the fractional order solution nu-
merically, we wish to find a discrete analogue of this
transform. We note that this relationship acts on time
alone, independent of space. As such, in what follows, we
shall consider the solutions u (t, x) and v (τ, x) solely as
functions of time and reintroduce spatial dependence at
a later point. Performing separation of variables, we can
instead consider the ordinary time differential equations

C
0Dαt u (t) = λu (t) , (8)

d

dτ
v (τ) = λv (τ) . (9)

where λ is the separation constant or eigenvalue of the
shared spatial operator. We will now perform a finite
difference time discretisation of these ordinary differen-
tial equations. We will denote time steps by super-
scripts un ≡ u (n∆t), where ∆t is the time step size
and n = 0, . . . , N is the time step number with N be-
ing the total number of time steps and t ≡ N∆t being
the present point in time. To numerically approximate
the fractional time derivative we will make use of the
L1 algorithm [47], which was introduced by Oldham and
Spanier to approximate the Riemann-Liouville fractional
derivative. This algorithm has since been applied by a
number of authors [29, 30, 48–50] to the Caputo frac-
tional derivative, resulting in the approximation

C
0Dαt u (t) = ∆t−α

N∑
n=1

wn
(
uN−n+1 − uN−n

)
+O (∆t) ,

(10)
where we have the quadrature weights defined

wn ≡
n1−α − (n− 1)

1−α

Γ (2− α)
. (11)
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This discretisation of the Caputo fractional derivative in-
cludes the limiting case where α→ 1 from which we can
recover the Euler method

d

dτ
v (τ) =

vN − vN−1

∆τ
+O (∆τ) . (12)

Applying these discretisations to the ordinary differential
equations, respectively (8) and (9), yields the recurrence
relationships for the finite difference solution approxim-
ations(

1− λ∆tα

w1

)
uN = ŵNu

0 +

N−1∑
n=1

(ŵn − ŵn+1)uN−n, (13)

(1− λ∆τ) vN = vN−1, (14)

where we have introduced the normalised quadrature
weights ŵn ≡ wn/w1. As expected, the fractional order
solution at each time step depends on the entire solution
history, while the integer order solution depends only the
nearest prior point in the neighbourhood of the present.
We can solve these recurrence relationships analytically
for the present time step in terms of their respective ini-
tial conditions

uN =

N∑
n=1

aNn
u0(

1− λ∆tα

w1

)n , (15)

vN =
v0

(1− λ∆τ)
N
, (16)

where aNn, which is yet to be determined, denotes the
n-th weight in the weighted sum for the fractional order
solution at the N -th time step. If we choose the integer
order initial condition to coincide with the fractional one
v0 = u0 and also choose a time step size for the integer
order case of ∆τ = ∆tα/w1 we can relate the solution to
the fractional order problem directly to the solution of
the integer order one as

uN =

N∑
n=1

aNnv
n. (17)

This is a discrete analogue of the continuous integral re-
lationship (5) and so the weights aNn can be interpreted
as quadrature weights. We should expect this discrete
analogue to coincide with the continuous relationship in
the limit of many time steps N . Most generally, reintro-
ducing spatial dependence and considering all time steps,
we can write each weighted sum in the form of Eq. (17)
using the matrix multiplication

U = AV, (18)

where we have the matrix of quadrature weights

A =

 a11 0 0
...

. . . 0
aN1 · · · aNN

 , (19)

which allows for mapping from the integer order solution
matrix

V =

 — v1 —
...

— vN —

 , (20)

to the fractional order solution matrix

U =

 — u1 —
...

— uN —

 , (21)

where the rows of these solution matrices correspond to
the spatial solution at each time step for the same spa-
tial points. As the mapping matrix A is lower triangular,
determining the solution matrixU using this matrix mul-
tiplication is of O

(
N2
)
. This is no better than directly

applying Eq. (13) to find the solution recursively. Fortu-
nately, this is only the case if we absolutely require the
solution at every time step. Indeed, if we are content with
the solution at a subset of the overall time steps, we can
perform the matrix multiplication in Eq. (18) partially
in O (N). Consider, for example, stability limitations
such as the Courant-Friedrichs-Lewy condition [51] that
arise in explicit finite difference schemes and may require
time steps smaller than would otherwise be needed. In
such a situation, we can solve the integer order problem
with sufficiently small time steps (to satisfy the stability
criterion), and then map it onto the fractional problem
using sparser time steps. Of course, the usefulness of this
approach also depends on the computational complexity
in computing the required rows of the mapping matrix.
Fortunately, as the solution mapping depends solely on
the operator of fractional differentiation, the mapping
matrix can be precomputed for a given value of α and
used repeatedly. The precise computational complexity
for computing the mapping matrix will be considered in
Section III.

III. THE SOLUTION MAPPING MATRIX

In this section, we address the problem of efficiently
computing and applying the mapping matrix A, present
in Eq. (18) for the numerical relationship between integer
and fractional order solutions.

A. Computation of the mapping matrix A using
the fast Fourier transform

Substitution of the fractional finite difference solution
approximation (15) back into its recurrence relationship
(13) allows us to express the elements of the mapping
matrix A in the form of a generating function recurrence
relationship

An (x) = Ω (x)An−1 (x) , (22)
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where we have the generating function for the n-th
column of the mapping matrix

An (x) ≡
∑
m≥1

amnx
m, (23)

with the first column given by the initial condition
weights from Eq. (13)

A1 (x) ≡
∑
m≥1

ŵmx
m, (24)

and the generating function of past time step weights
from Eq. (13)

Ω (x) ≡
∑
m≥1

(ŵm − ŵm+1)xm. (25)

The Cauchy product [52] allows us to write this gener-
ating function recurrence relationship explicitly using a
discrete linear convolution ann

...
aNn

 =

 ŵ1 − ŵ2

...
ŵN−n+1 − ŵN−n+2

 ∗
 an−1,n−1

...
aN−1,n−1

 ,
(26)

where the initial column vector is provided by its gener-
ating function A1 (x) a11

...
aN1

 =

 ŵ1

...
ŵN

 . (27)

This convolution representation can be implemented us-
ing the fast Fourier transform, allowing for the computa-
tion of an N ×N mapping matrix in O

(
N2 lnN

)
. Evid-

ently, determining the mapping matrix alone is more
computationally intensive than finding the finite differ-
ence solution recursively in only O

(
N2
)
. Certain situ-

ations exist, however, where the mapping matrix may
be precomputed and reused, allowing for computational
benefit even with this larger computational complexity.
One such situation is the focus of Section V, where the
least squares fit of a fractional order model to experi-
mental data is considered. Fortunately, as described in
the following subsection, we are not limited to only these
situations when it comes to useful application of this solu-
tion mapping.

B. Column truncation of the mapping matrix A

The magnitude of the elements of the mapping matrix
A is illustrated in Figure 1 for various values of the frac-
tional differentiation order α. It can be seen that, as α
decreases, fewer elements are likely to contribute to the
solution mapping. This suggests that we can truncate
the mapping matrix at some point during its column-
wise computation described by Eq. (26). Here, we will

(a)

α =
99

100

(b)

α =
2

3

(c)

α =
1

3

(d)

α =
1

100

10
−4

10
−3

10
−2

10
−1

10
0

Figure 1. Illustration of the matrix A that maps from the
solution of the normal diffusion equation (4) to the solution
of the order α fractional diffusion equation (1). Each matrix is
of size 50×50 with elements that have been coloured according
to their magnitude on a logarithmic scale. (a) As α→ 1, the
identity matrix is recovered, corresponding to the fractional
and integer order solutions coinciding. (b-c) As α decreases,
the matrix is dominated by elements with a lower column
number, indicating that the early time solution to the integer
order problem becomes increasingly significant. (d) As α →
0, the matrix approaches having only an initial column of
ones, which corresponds to a time-invariant solution. This
rapid decrease in element magnitude suggests the possibility
of column-wise truncation of the mapping matrix, allowing for
improved efficiency in both its computation and application,
especially for small values of α.

specifically consider truncating the weighted sum (17)
corresponding to the solution at the last time step. As
a simplification, we will take both integer and fractional
order solutions to be constant and hence equal, allow-
ing us to remove all solution dependence and focus on
truncating the summation∑

n>0

aNn = 1. (28)

This expression can also be derived from the generating
function representation (22) and is equivalent to stating
that the rows of the mapping matrix sum to unity. Now,
by introducing a truncation tolerance 0 < ε < 1, which is
proportional to the absolute error incurred by the trun-
cation, we can define the number of columns in the trun-
cated mapping matrix as the smallest integer Ntrunc that
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satisfies ∑
n>Ntrunc

aNn ≤ ε. (29)

Evidently, to determine Ntrunc using this inequality re-
quires computation of matrix elements that will ulti-
mately be truncated. Fortunately, using the row sum-
mation identity (28), we can restate this inequality using
known matrix elements∑

1≤n≤Ntrunc

aNn ≥ 1− ε. (30)

We can gain some insight into the asymptotic form of
Ntrunc, and hence any computational benefit of this trun-
cation, by considering the continuous analogue of this
solution mapping, provided by Eq. (5). As before, by
choosing an integer order solution that is constant, we
find that ˆ ∞

0

dτA (τ, t) = 1, (31)

which is evident from the Laplace space representation
(6) of A (τ, t) as being the normalisation condition for an
exponential distribution in τ . By nondimensionalising in
terms of the finite difference time step indices, that is tak-
ing t = N∆t and τ = n∆tα/w1, we find the continuous
analogue to the row summation identity (28)
ˆ ∞

0

dnaNn = 1, aNn ≡
∆tα

w1
A

(
n∆tα

w1
, N∆t

)
, (32)

where both n and aNn are continuous here. Continuing
with the analogy, we can now choose to truncate this in-
tegral at the point n = Ntrunc, resulting in the continuous
analogue to truncation tolerance definition (29)

ε ≡
ˆ ∞
Ntrunc

dnaNn = Lα
α

√
w1Nα

Ntrunc
, (33)

where we have made use of the Lévy distribution rep-
resentation (6) of the kernel A (τ, t). It is evident here
that we can make this truncation tolerance an arbitrar-
ily small constant that is independent of N by choosing
that Ntrunc is directly proportional to Nα. As the dis-
crete truncation tolerance coincides with this continuous
one in the limit of large N , we should expect to find the
asymptotic behaviour Ntrunc ∼ Nα for the continuous
case. Indeed, Figure 2 shows precisely this as the size of
the mapping matrix is increased for select values of α.
Therefore, when truncated, an N × N mapping matrix
becomes of size N × O (Nα), allowing for column-wise
computation of it using the recurrence relationship (26)
in only O

(
N1+α lnN

)
. Similarly, we can now find the

fractional order solution at particular instants in time
in O (Nα). Finally, with this truncation, it should be
noted that we are no longer required to precompute the
mapping matrix in order to obtain a solution in a com-
putational complexity better than O

(
N2
)
.
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Truncation (α = 0.25)

Figure 2. The number of columns in the mapping matrix A,
truncated according to the inequality (30) with a truncation
tolerance of ε = 10−2. The gradient of each case approaches
α as the number of time steps N grow large, suggesting the
asymptotic form Ntrunc ∼ Nα.

IV. BENCHMARK OF THE TRUNCATED
MAPPING

In this section, we will demonstrate the expected ac-
curacy of the truncated mapping solution described in
Section III relative to the direct finite difference solution
provided either recursively or by the full mapping in-
troduced in Section II. Specifically, we will consider the
solution of the fractional relaxation equation [15]

C
0D

1
2
t u (t) = u (t) , u (0) = 1, (34)

which we chose because it has the exact analytic solution
[53]

u (t) = et
(

1 + erf
√
t
)
, (35)

where erf (x) ≡ 2π−1/2
´ x

0
dξe−ξ

2

is the Gauss error func-
tion. Additionally, the finite difference solution here can
be found recursively by simply taking Eqs. (13) and (14)
with α = 1/2 and λ = 1.

Figure 3 shows that the truncated mapping can be
applied to find the solution to the fractional relaxation
equation (34) to an accuracy comparable to the finite
difference method, while still maintaining an improved
computational complexity.



6

0 1

10
−2

10
−1

t

R
el
at
iv
e
er
ro
r,

|u
an
al
yt
ic
−

u
n
u
m
er
ic
|/

u
an
al
yt
ic

O
(

N
2
)

Explicit finite difference method

O(
√

−3
)

O(
√

−4
)

O(
√

N) Truncated mapping
(

ε = 10

N) Truncated mapping
(
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)

Figure 3. The error of an N = 100 point finite difference
solution of the fractional relaxation equation (34) relative to
its analytic solution (35). The truncated solution mapping
described in Section III is applied for decreasing values of the
truncation tolerance ε. Note how the truncated mapping can
be made to be arbitrarily accurate, while still retaining its
computational complexity of O

(√
N
)
. The divergence in ac-

curacy for late times stems from the truncation of more terms
at later time steps. To perform this plot, a truncated map-
ping matrix A was precomputed in O

(
N

3
2 lnN

)
and then

truncated further as required.

V. APPLICATION TO THE FITTING OF
EXPERIMENTAL DATA

Our approach is ideally suited to the acceleration of
curve-fitting problems where the solution defining the
curve must be found repeatedly and at relatively few
points. In this section, we will demonstrate this by fit-
ting a fractional-order model to experimental data for the
current in a time-of-flight experiment for a disordered
semiconductor. As stated in Section I, this can be de-
scribed by the fractional advection-diffusion model (1).
This model describes the charge carrier density in a thin
sample held between two large plane-parallel boundar-
ies with all spatial variation occurring normal to these
boundaries. It will be assumed that the boundaries are
perfectly absorbing, providing the Dirichlet boundary
conditions

u (t, 0) = 0 = u (t, d) , (36)

where d is the thickness of the sample. We will choose the
initial distribution of charge carriers to be governed by
the Beer-Lambert law resulting in the exponential initial

condition

u (0, x) ∝ e−ax, (37)

where a is the absorption coefficient of the sample. We
can use the expression for the current in a time-of-flight
experiment [8]

I (t) ∝ ∂

∂t

ˆ d

0

(x
d
− 1
)
u (t, x) dx, (38)

to find the current directly from the number density solu-
tion of Eq. (1). For spatial consideration, we will make
use of the centred finite difference approximations

∂

∂x
u (t, x) =

uNj+1 − uNj−1

2∆x
+O

(
∆x2

)
, (39)

∂2

∂x2
u (t, x) =

uNj+1 − 2uNj + uNj−1

∆x2
+O

(
∆x2

)
, (40)

where j = 0, . . . , J is the spatial index, J is the total num-
ber of spatial nodes and subscripts have been used to de-
note spatial indexing unj ≡ u (n∆t, j∆x). Hence, we can
enforce the boundary conditions by setting un0 = 0 = unJ
for all n = 0, . . . , N . Applying these spatial derivative
approximations, in conjunction with Eq. (10) for approx-
imating the Caputo fractional derivative, results in the
recurrence relationship for the number density solution
to Eq. (1)

CuN = ŵNu0 +

N−1∑
n=1

(ŵn − ŵn+1)uN−n, (41)

where we have the tridiagonal matrix

C ≡


1− 2r r + s 0

r − s 1− 2r
. . .

0
. . . . . .

 , r ≡ −DL∆tα

w1∆x2
, s ≡ W∆tα

2w1∆x
.

(42)
Figure 4 plots photocurrent data alongside the model

(38) fitted using a trust-region-reflective non-linear least
squares algorithm [54, 55], as implemented in the
lsqcurvefit function [56] located in MATLAB’s Curve
Fitting Toolbox.

To explore the computational benefits of applying the
solution mapping described in Section II and its trun-
cation described in Section III, we require the number
density solution when α = 1, corresponding to normal
transport. Proceeding as before, this time using Eq. (12)
for the approximation of the first derivative, yields the re-
currence relationship for the integer order solution v (t, x)

CvN = vN−1. (43)

As C is tridiagonal, we can step forward the fractional
order solution recurrence relationship (41) in a time com-
putational complexity of O (J) [58]. As such, the total
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Figure 4. A least squares fit of the model (38) to the transient
photocurrent in a sample of intrinsic hydrogenated amorphous
silicon a-Si:H at 160K (adapted from Ref. [57]). To within a
confidence interval of 95%, the fitting algorithm determined
a severity of trapping of α = 0.535 ± 2%, a generalised drift
velocity of Wd−1tαtr = 2.89 × 10−1 ± 4% and a generalised
diffusion coefficient of DLd

−2tαtr = 6.07× 10−3 ± 21%, where
the “transit time” separating the current regimes has been
taken as ttr ≡ 10−5s.

computational complexity to determine the fractional or-
der solution in time and space becomes O

(
N2J

)
. Simil-

arly, by applying the solution mapping we have a compu-
tational complexity of O

(
N2J lnN

)
, which improves to

O
(
N1+αJ lnN

)
with truncation. The value of α present

here can be estimated by noting the asymptotic form of
the current in a time-of-flight experiment [21]

I (t) ∼

{
t−(1−α), early times,

t−(1+α), late times,
(44)

which provides a criterion for recognising dispersive
transport by noting that the sum of the slopes of the
asymptotic regions of a current versus time plot on log-
arithmic axes is −2. In this particular case, we can use
this criterion to bound the severity of trapping to within
the interval 0.5 < α < 0.55.

Figure 5 plots the computation time for fitting the
model (38) to the photocurrent data considered in Figure
4 for an increasing number of time steps. The observed
fitting times do not increase monotonically with N . This
is due to the nature of the fast Fourier transform (FFT)
algorithm. The FFT is very sensitive to the prime factor-
isation of the input size. For example, the FFT is fastest
when N is a power of 2, and it is especially slow when
N is prime. Additional variations in fitting time may
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O(JN 2) Finite difference method

O(JN 2 lnN) Full mapping
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Figure 5. Comparison of computation time versus number of
time steps for least squares fitting performed using the finite
difference method (41), the accelerated solution mapping de-
veloped here (18) and the truncation thereof defined by Eq.
(30). To maintain solution accuracy, the truncation tolerance
ε was chosen to decrease in proportion to N . It can be seen
that the solution mapping without truncation is two orders of
magnitude faster than the recursive approach for the largest
problem size that was considered. With truncation, this im-
proves to a three orders of magnitude speed up.

be due to the curve fitting algorithm and the number of
iterations it requires to perform the fit.

VI. CONCLUDING REMARKS AND FUTURE
WORK

Finite difference solutions to fractional differential
equations are known to have a computation time that
scales with the square of the number of time steps. This
stems mathematically from the global nature of fractional
differentiation, and physically can be interpreted as a
consideration of memory effects. In this study, we have
related the solution of the fractional diffusion equation
(1) of order 0 < α < 1 to the solution of a the normal
diffusion equation (4) using a linear mapping in time Eq.
(18). We have found that, for an N -point finite differ-
ence time discretisation, we can use this mapping to im-
prove upon the O

(
N2
)
time computational complexity

of the finite difference method and determine the solution
at any instant in time in O (Nα), given a precomputa-
tion of O

(
N1+α lnN

)
. This representation is especially

useful in situations where the solution must be found
repeatedly, as then the relatively expensive precomputa-
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tion only has to be performed once. We have presented
one such situation in Section V where we have success-
fully applied this approach to fit the fractional advection-
diffusion model (1) to experimental data for the current
in a time-of-flight experiment. For this we achieved com-
putational speed ups in the range of one to three orders
of magnitude for the realistic problem sizes considered.

Although this work considered a fractional advection-
diffusion model, the mapping approach described in this
paper is applicable for any other linear spatial operator,
including those of higher dimensions. With modifica-
tions, this solution mapping can be generalised to con-

sider both the inclusion of a source term as well as higher
order fractional derivatives for which α > 1.
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