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Abstract

Multi-frequency subspace migration imaging technique are usually adopted for the non-
iterative imaging of unknown electromagnetic targets such as cracks in the concrete walls
or bridges, anti-personnel mines in the ground, etc. in the inverse scattering problems. It
is confirmed that this technique is very fast, effective, robust, and can be applied not only
full- but also limited-view inverse problems if suitable number of incident and correspond-
ing scattered field are applied and collected. But in many works, the application of such
technique is somehow heuristic. Under the motivation of such heuristic application, this
contribution analyzes the structure of imaging functional employed in the subspace migra-
tion imaging technique in two-dimensional full- and limited-view inverse scattering when
the unknown target is arbitrary shaped, arc-like perfectly conducting cracks located in the
homogeneous two-dimensional space. Opposite to the Statistical approach based on the
Statistical Hypothesis Testing, our approach is based on the fact that subspace migration
imaging functional can be expressed by a linear combination of Bessel functions of inte-
ger order of the first kind. This is based on the structure of the Multi-Static Response
(MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic
(TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann
boundary condition). Explored expression of imaging functionals gives us certain properties
of subspace migration and an answer of why multi-frequency enhances imaging resolution.
Particularly, we carefully analyze the subspace migration and confirm some properties of
imaging when a small number of incident field is applied. Consequently, we simply intro-
duce a weighted multi-frequency imaging functional and confirm that which is an improved
version of subspace migration in TM mode. Various results of numerical simulations via the
far-field data affected by large amount of random noise are well matched with the analytical
results derived herein, and give some ideas of future studies.
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1. Introduction

The main purpose of inverse scattering problems like a non-destructive evaluation is
identifying unknown characteristics of defects such as sizes, locations, shapes, electric and
magnetic properties. Among them, identification of shape of arbitrary shaped cracks in a
structure such as bridges, concrete walls, machines, etc., is an interesting problems that
can be easily faced in human life. Unfortunately, due to the intrinsic difficulties of its
ill-posedness and nonlinearity, a successful accomplish of this problem cannot be easily
performed.

Nowadays, many remarkable inversion techniques and corresponding computational en-
vironments are developed and established to solve this problem. The main approach of
solving is based on the Newton-type iteration method that is finding the shape of tar-
get (minimizer) which minimize the discrete norm (generally L2−norm) between measured
scattered or far-fields in the presence of true and man-made targets. This iterative-based
technique such as the level-set method and optimization algorithm have been applied suc-
cessfully to identify the number, locations, shapes, and topological properties of cracks with
a small number of directions of incident and scattered field data as exhibited in many works
[2, 16, 20, 29, 48, 53]. Nevertheless, finding a good initial guess close to the target, estimating
a priori information such as length, locations, material properties, selecting an appropriate
regularization terms highly dependent on the problem, and evaluation of so-called Fréchet
(or domain) derivative are must be considered beforehand as described in [31]. If one of
these conditions is not full-filled, one shall encounters various problems such as phenomenon
of non-convergence, occurrence of local minimizer problem, and requirement of large com-
putational costs due to the large number of iteration procedure. In order to overcome, a
simultaneous reconstruction algorithm is developed [23, 50]. However, this kind of algorithm
still has a difficulty that it must be performed with a good initial guess and generally very
slow hence this fact indicate that it is desperately required the development of alternative
fast algorithm and corresponding rigorous mathematical theory for finding a good initial
guess in the the beginning stage of iteration procedure.

Correspondingly, for an alternative, various non-iterative imaging algorithms have been
developed and successfully applied to various inverse problems. Based on the calculations of
inverse Fourier transform, a variational algorithm has been proposed in [10, 11, 13]. Based
on these nobel works, this algorithm produces very good results but it is still restricted
for identifying locations of small inclusions so that extension to the reconstruction of the
arbitrary shaped electromagnetic targets is further research topic. In [15, 18, 28], a linear
sampling method is developed and applied for determining locations and shapes of unknown
scatterers, but this approach requires a large number of directions of incident and scattered
field, and does not considered in the limited-view inverse scattering problems. MUltiple
SIgnal Classification, which is closely linked to the linear sampling method (see [17]), is also
applied various inverse scattering problems for full- and limited-view problems for imaging
arbitrary shaped thin penetrable electromagnetic scatterers, cracks, and extended targets
in two- and three-dimensional spaces, refer to [8, 9, 7, 12, 25, 27, 38, 42, 45, 46, 47]. Based
on results in [3, 45, 47], it still requires huge amount of directions of incident and scattered
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field data in order to obtain an acceptable result and does not guarantee complete shape
of targets due to the intrinsic resolution limit related to the half of applied wavelength. In
recent works [8, 42, 46], MUSIC algorithm is applied to the limited-view inverse problems
however, it yields incorrect location of small inhomogeneities and shape of extended targets
(for example, see Figure 1), and throughout the structure of MUSIC imaging function derived
in [27], the reason of this phenomenon is mathematically proved. Originally, topological
derivative strategy is applied in shape optimization problems but throughout recent works,
it has been confirm that it is a non-iterative imaging technique and successfully applied to
the various inverse scattering problems, see [5, 14, 16, 33, 37, 40, 43, 44, 52] and references
therein. The remarkable advantages of topological derivative based imaging technique are
that it produces good results even in the small number of directions of incident field data
and robust with respect to the huge amount of random noise. However, throughout the
derivation of topological derivatives in [12, 40, 43, 44], this strategy covers only the case
of full-view inverse scattering problems and small number of directions of incident field
must span unit circle S1 it means that is is especially vulnerable in the limited-view inverse
problems.
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(a) full-view case
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Figure 1: Reconstruction of arbitrary shaped extended perfectly conducting crack via
MUSIC-type algorithm [45]. In the full-view problem, MUSIC offers very good result but
very poor result is appeared in the limited-view problem.

Kirchhoff and subspace migration imaging techniques operated at single and multiple
time-harmonic frequency has been applied successfully not only for full- but also limited-
view inverse scattering problem if the number of directions of incident field and corresponding
scattered field are sufficiently large enough. Related works can be found in [7, 24, 26, 32, 39,
41, 42, 46, 49] and reference therein. Although these techniques are very robust with respect
to the random noise and media, and offer very good results for imaging of small and extended
scatterers, it is still used in many research field without rigorous mathematical theory.
Based on the statistical hypothesis testing [7] and relationship between Bessel functions of
integer order of the first kind [26], it is confirm that why multi-frequency Kirchhoff and
subspace migration technique gives better results than single-frequency ones in the full-view
inverse scattering problems. Recently, in [32], it is proved that why they can be applied in
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the limited-view problems, and discovered some necessary conditions for obtaining proper
results. However, this work was restricted in the imaging of small targets so that analysis
of imaging functions for arbitrary shaped extended target is still remaining.

The main purpose of this paper is a rigorous mathematical analysis and identification
of the structure of subspace migration for imaging of arbitrary shaped perfectly conducting
cracks in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Trans-
verse Electric (TE) mode (Neumann boundary condition) for full- and limited-view inverse
scattering problems. This is based on a factorization of the Multi-Static Response (MSR)
matrix collected in the far-field data, and the fact that structure of singular vectors of MSR
matrix is linked to the known incident field data. Based on the orthonormal property of
left- and right-singular vectors of MSR matrix, it is clear that why subspace migration
imaging produces an imaging of targets but this fact cannot explain some facts for exam-
ple, appearance of unexpected replicas and the reason behind enhancement in the imaging
performance by applying multiple frequencies. Fortunately, structure of singular vectors of
MSR matrix leads us that subspace migration imaging functional is highly related to the
integral representations of the Bessel functions of integer order of the first kind so that some
definite integral formulas of Bessel functions is needed. Unfortunately, some of such formu-
las derived in the full-view case and does not considered in the limited-view case because
there is no finite representation linked to the considering problem so that we will evaluate
an approximation of such integrals by applying well-known Jacobi-Anger expansion formula
and asymptotic properties of Bessel functions. From the derived structure of imaging func-
tional, we can explore certain properties (such that why two curves are appeared instead of
true curve for TE case), fundamental limitations, and a clue of improvements (for example,
multi-frequency subspace migration weighted by each frequency).

For numerical simulations, two different approaches – the Nyström method in [29, 34]
and the second-kind Fredholm integral equation [36] – are adopted for evaluating the far-
field pattern data in order to avoid committing inverse crimes. The numerical results of
images from far-field data corrupted by the large amount of random noise appear almost
indistinguishable from those. Let us signal that the extension of several cracks is available
without any additional configuration. For simplicity, its mathematical derivation is not
considered; only some numerical results for two cracks are illustrated. Once the shape of
interested crack is mapped, it can be accepted as an initial guess and one can evolve it in
order to retrieve a better shape via a Newton-type iteration algorithm [29, 30, 35], level-set
methodology [2, 20, 46, 50, 53] and optimization concept [4], and it is possible to observe
that only a few iteration procedure is required due to the closeness of initial guess so that
it does not requires a great deal of computation.

We will organize this paper as follows. In section 2, the two-dimensional direct scattering
problem is briefly discussed in some detail, here mostly for the sake of completeness. In
section 3, multi-frequency based subspace migration imaging functional is sketched and
mathematical analysis of the structure of imaging functional is provided in full- and limited-
view cases. In section 5, a set of results of numerical simulations from noisy, discrete TM
and TE data, such data being computed from the application of the Nyström method in
[29, 34] or by the second-kind Fredholm integral equation [36], is exhibited for supporting
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our investigations. A short conclusion including an outline of current and future work is
mentioned in section 6.

2. Mathematical survey on two-dimensional direct scattering problem and multi-

frequency subspace migration imaging

2.1. Direct scattering problem

In this section, we consider the two-dimensional electromagnetic scattering by a perfectly
conducting crack, denoted by Γ, located in the homogeneous space R2. The crack is an
oriented piecewise smooth nonintersecting arc without cusp that can be represented as

Γ = {z(s) : s ∈ [−1, 1]} (1)

where z : [−1, 1] −→ R2 is an injective piecewise C3 function (see Figure 2).

Figure 2: Illustration of two-dimensional perfectly conducting crack Γ.

First, let us consider the so-called Transverse Magnetic polarization case, letting u(x, θ; k)
be the (single-component) electric field that satisfies the two-dimensional Helmholtz wave
equation

∆u(x, θ; k) + k2u(x, θ; k) = 0 in R
2\Γ (2)

with incident direction θ and strictly positive wave number k = ω
√
µε, letting ε be the

electric permittivity and µ the magnetic permeability. Throughout this paper, applied wave
number k is of the form k = 2π/λ, where λ denotes the wavelength. The field cannot
penetrate into Γ, i.e., u satisfies the Dirichlet boundary condition

u(x, θ; k) = 0 on Γ. (3)

Conversely, let us consider the Transverse Electric polarization case, letting u be the (single-
component) magnetic field that satisfies the two-dimensional Helmholtz wave equation (2)
yet now with the following Neumann boundary condition on Γ:

∂u(x, θ; k)

∂ν(x)
= 0 on Γ\ {z(−1), z(1)} , (4)

where ν(x) is a unit normal vector to Γ at x.
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Let us notice that the total field can always be decomposed as u(x, θ; k) = uinc(x, θ; k)+
uscat(x, θ; k). In this paper, we will consider the plane-wave illumination hence, uinc(x, θ; k) =
eikθ·x be the given incident field for incident direction θ ∈ S1 (unit circle), and uscat(x, θ; k)
be the unknown scattered field, which is required to satisfy the Sommerfeld radiation con-
dition

lim
|x|→∞

√

|x|
(

∂uscat(x, θ; k)

∂ |x| − ikuscat(x, θ; k)

)

= 0

uniformly into all directions x̂ = x
|x|
. The determination of uscat is a special case of the

following problem

∆uscat(x, θ; k) + k2uscat(x, θ; k) = 0 in R
2\Γ (5)

that satisfies the Dirichlet boundary condition

uscat(x, θ; k) = f(x, θ; k) on Γ (6)

or the Neumann boundary condition

∂uscat(x, θ; k)

∂ν(x)
= f(x, θ; k) on Γ, (7)

and the Sommerfeld radiation condition. Let us remind that from the boundary conditions
(3) and (4), we can set f(x, θ; k) = −uinc(x, θ; k) and f(x, θ; k) = −∇uinc(x, θ; k) · ν(x)
for the boundary conditions (6) and (7), respectively. Let us notice at this stage that the
above works only for smooth arcs, and we should refer to [36] for a broader and thoughtful
coverage of electromagnetic scattering by general arcs, including ours.

2.2. The far-field pattern

Let us first consider the case of the Dirichlet boundary problem (TM polarization). The
author in [29] establishes the existence of a solution by searching it in the form of a single-
layer potential

uscat(x, θ; k) =

∫

Γ

Φ(x,y; k)ϕ(y, θ; k)dy for x ∈ R
2\Γ (8)

with the two-dimensional fundamental solution to the Helmholtz equation

Φ(x,y; k) =
i

4
H1

0(k |x− y|) for x 6= y,

expressed in terms of the Hankel function H1
0 of order zero and of the first kind. For the

Neumann boundary problem, the author in [34] establishes the existence of a solution by
searching it as a double-layer potential

uscat(x, θ; k) =

∫

Γ

∂Φ(x,y; k)

∂ν(y)
ψ(y, θ; k)dy for x ∈ R

2\Γ. (9)
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Let us assume that for all x ∈ Γ\ {z(−1), z(1)}, the limits of the following quantities
exist

u(x, θ; k) = lim
h→+0

u(x± hν(x), θ; k)

∂u±(x, θ; k)

∂ν(x)
= lim

h→+0
ν(x) · ∇u(x± hν(x), θ; k)

−ϕ(x, θ; k) = ∂u+(x, θ; k)

∂ν(x)
− ∂u−(x, θ; k)

∂ν(x)

−ψ(x, θ; k) = u+(x, θ; k)− u−(x, θ; k).

The far-field pattern u∞ of the scattered field uscat is defined on the two-dimensional unit
circle S

1. It can be represented as

uscat(x, θ; k) =
eik|x|
√

|x|

(

u∞(x̂, θ; k) +O

(

1

|x|

))

uniformly in all directions x̂ = x/ |x| and |x| −→ ∞. From the above representation and
the asymptotic formula for the Hankel function, the far field pattern for Dirichlet boundary
problem can be written as

u∞(x̂, θ; k) = − ei
π
4

√
8πk

∫

Γ

e−ikx̂·y

(

∂u+(y, θ; k)

∂ν(y)
− ∂u−(y, θ; k)

∂ν(y)

)

dy

=
ei

π
4

√
8πk

∫

Γ

e−ikx̂·yϕ(y, θ; k)dy.

(10)

Similarly, the far-field pattern for the Neumann boundary problem can be expressed as

u∞(x̂, θ; k) = − ei
π
4

√
8πk

∫

Γ

∂e−ikx̂·y

∂ν(y)

(

u+(y, θ; k)− u−(y, θ; k)

)

dy

= −
√

k

8π
e−iπ

4

∫

Γ

x̂ · ν(y)e−ikx̂·yψ(y, θ; k)dy.

(11)

2.3. Introduction to multi-frequency subspace migration imaging functional

In this section, we apply the far-field pattern formulas (10) and (11) in order to build up
a subspace migration imaging functional. For that purpose, we use the eigenvalue structure
of the Multi-Static Response (MSR) matrix

K(k) :=

[

Kjl(x̂j, θl; k)

]N

j,l=1

=

[

u∞(x̂j, θl; k)

]N

j,l=1

.

First, let us consider the Dirichlet boundary condition case. If the directions of incident
and observation are coincide i.e., if x̂j = −θj , then the MSR matrix K can be written as

K(k) =
ei

π
4

√
8πk

∫

Γ

ED(x̂,y; k)FD(x̂,y; k)
Tdy, (12)
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where ED(x̂,y; k) is the illumination vector

ED(x̂,y; k) =

[

e−ikx̂1·y, e−ikx̂2·y, · · · , e−ikx̂N ·y

]T ∣
∣

∣

∣

x̂j=−θj

=

[

eikθ1·y, eikθ2·y, · · · , eikθN ·y

]T

(13)
and where FD(x̂,y; k) is the resulting density vector

FD(x̂,y; k) =

[

ϕ(y, θ1; k), ϕ(y, θ2; k), · · · , ϕ(y, θN ; k)

]T

. (14)

Here, {x̂j}Nj=1 ⊂ S1 is a discrete finite set of observation directions and {θl}Nl=1 ⊂ S1 is the
same number of incident directions.

Formula (12) is a factorization of the MSR matrix that separates the known incoming
wave information from the unknown information. The range of K(k) is determined by the
span of the ED(x̂,y; k) corresponding to the Γ, i.e., we can define a signal subspace by using
a set of left singular vectors of K(k). We refer to [25, 45] for a detailed discussion.

Assume that the crack is divided into M different segments of size of order half the
wavelength λ/2. Having in mind the Rayleigh resolution limit, any detail less than one-half
of the wavelength cannot be probed, and only one point, say ym for m = 1, 2, · · · ,M , at
each segment is expected to contribute at the image space of the response matrix K(k), refer
to [3, 12, 45, 47].

Since the coincide configuration of incident and observation directions, MSR matrix
K(k) is complex symmetric, refer to [6, 24, 38, 41, 42, 45, 46, 47]. Therefore, K(k) can be
decomposed as

K(k) = H(k)B(k)H(k)T ≈
M
∑

m=1

Bm(k)Hm(k)H
T
m(k). (15)

Having in mind of the structure of ED(x̂,y; k) in (13), we define a vector

SD(x; k) =

[

eikθ1·x, eikθ2·x, · · · , eikθN ·x

]T

(16)

and corresponding normalized vector ŜD(x; k) =
SD(x;k)
|SD(x;k)|

. Then for m = 1, 2, · · · ,M , there

exists some constants γm such that (see [24] for instance)

Hm(k) = eiγm Ŝ(ym; k). (17)

Since the firstM columns of the matrix H(k), {H1(k),H2(k), · · · ,HM(k)}, are orthonormal,
one can easily examine that

ŜD(x; k)
∗Hm(k) 6= 0 if x = ym

ŜD(x; k)
∗Hm(k) ≈ 0 if x 6= ym

(18)

where ∗ is the mark of complex conjugate.
8



Based on above observations, we consider the following:

ID(x) =

∣

∣

∣

∣

∣

M
∑

m=1

(

ŜD(x; k)
∗Hm(k)

)(

ŜD(x; k)
∗Hm(k)

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

m=1

|ŜD(x; k)
∗Hm(k)|2

∣

∣

∣

∣

∣

. (19)

Then, from the relationships (17) and (18), ID(x) becomes 1 at x = ym ∈ Γ for m =
1, 2, · · · ,M , and 0 at x ∈ R2\Γ. With this, we can design a subspace migration imaging
functional as follows: let us perform the Singular Value Decomposition (SVD) of K(k) as

K(k) = U(k)Λ(k)V(k)∗ ≈
M
∑

m=1

σm(k)Um(k)V
∗
m(k), (20)

where σm(k) denotes non-zero singular values, Um(k) and Vm(k) are left- and right-singular
vectors, respectively. Then, for several frequencies {kf : f = 1, 2, · · · , F} we design a
normalized imaging functional as

ID(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf )

)

∣

∣

∣

∣

∣

∣

, (21)

where Mf is number of nonzero singular values of MSR matrix at kf for f = 1, 2, · · · , F .
Then, from the relationships (17) and (18), ID(x;F ) is expected to exhibit peaks of magni-
tude of 1 at the location x = ym for m = 1, 2, · · · ,Mf and of small magnitude at x ∈ R2\Γ.
A suitable number of Mf for each frequency can be found via careful thresholding (see
[25, 45, 47]).

For the Neumann boundary condition case, the MSR matrix K(k) can be decomposed
as

K(k) =

√

k

8π
e−iπ

4

∫

Γ

EN(x̂,y; k)FN(x̂,y; k)
Tdy, (22)

where EN(x̂,y; k) is the illumination vector

EN(x̂,y; k) = −
[

x̂1 · ν(y)e−ikx̂1·y, x̂2 · ν(y)e−ikx̂2·y, · · · , x̂N · ν(y)e−ikx̂N ·y

]T ∣
∣

∣

∣

x̂j=−θj

=

[

θ1 · ν(y)eikθ1·y, θ2 · ν(y)eikθ2·y, · · · , θN · ν(y)eikθN ·y

]T
(23)

and where FN(x̂,y; k) is the corresponding density vector

FN(x̂,y; k) =

[

ψ(y, θ1; k), ψ(y, θ2; k), · · · , ψ(y, θN ; k)

]T

. (24)

Formula (22) is a factorization of the MSR matrix that, like with the Dirichlet boundary
condition case, separates the known incoming plane wave information from the unknown
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information. The range of K(k) is determined by the span of the EN(x̂,y; k) corresponding
to the Γ, i.e., we can define a signal subspace by using a set of left singular vectors of K(k).

The imaging algorithm for the Neumann boundary condition case is very similar to the
Dirichlet boundary condition case. Based on the structure of (23), define a vector

SN(x; k) =

[

θ1 · ν(x)eikθ1·x, θ2 · ν(x)eikθ2·x, · · · , θN · ν(x)eikθN ·x

]T

(25)

and corresponding normalized vector ŜN(x; k) = SN(x;k)
|SN(x;k)|

. Since the unit normal ν(x) is

still unknown, for each point x of the search domain, we use a set of directions ν l(x) for
l = 1, 2, · · · , L, and we choose ν l(x) which is to maximize the imaging functional among
these directions at x. With this considerations, we suggest following normalized image
functional with MSR matrices at several frequencies {kf : f = 1, 2, · · · , F} as

IN(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

max
1≤l≤L

{

(

ŜN(x; kf)
∗Um(kf)

)(

ŜN(x; kf)
∗Vm(kf)

)

}

∣

∣

∣

∣

∣

∣

, (26)

where Mf is number of nonzero singular values of MSR matrix K at kf for f = 1, 2, · · · , F .
Remark 2.1. For the near-field data case, the illumination vector (13) of MSR matrix K(k)
(12) is (see [24])

ED(x̂,y; k) =

[

Φ(−θ1,y; k),Φ(−θ2,y; k), · · · ,Φ(−θN ,y; k)

]T

.

Therefore, it is natural to use the vector SD(x; k) of (16) for establishing imaging functional
(21) as follows:

SD(x; k) =

[

Φ(−θ1,x; k),Φ(−θ2,x; k), · · · ,Φ(−θN ,x; k)

]T

. (27)

Note that for sufficiently large k,

Φ(x,y; k) =
ei

π
4

√
8kπ

e−ikŷ·x + o

(

1
√

|y|

)

,

hence the result will be similar to (21).
For the Neumann boundary case, the vector SN(x; k) is selected as:

SN(x; k) =

[

∂Φ(−θ1,x; k)

∂ν l(x)
,
∂Φ(−θ2,x; k)

∂ν l(x)
, · · · , ∂Φ(−θN ,x; k)

∂ν l(x)

]T

.

Since for sufficiently large k,

∂Φ(x,y; k)

∂ν(y)
= − ei

π
4

√
8kπ

(

ikŷ · ν(y)
)

e−ikŷ·x + o

(

1
√

|y|

)

,

the result will be similar to (26).
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3. Analysis of multi-frequency subspace migration imaging functionals: full-view

case

3.1. Common features

Based on the statistical hypothesis testing, image functionals (21) and (26) at single
frequency offers an image with poor resolution hence one must applied sufficiently large F ,
i.e, application of multi-frequency is needed (see [7, 25, 41, 42, 46, 49] for instance). However,
some phenomena such as appearance of unexpected ghost replicas cannot be explained. From
now on, we carefully analyze the structure of (21) and (26). For this, we shall prove two
useful identities in Theorem 3.1. Note that this result is derived in [22, Lemma 4.1] but our
approach is different.

Theorem 3.1. For sufficiently large N , following relations holds

1

N

N
∑

n=1

eikθn·x =
1

2π

∫

S1

eikθ·xdθ = J0(k|x|)

1

N

N
∑

n=1

θn · ξeikθn·x =
1

2π

∫

S1

θ · ξeikθ·xdθ = i

(

x

|x| · ξ
)

J1(k|x|),

where ξ ∈ R2, and θn ∈ S1, n = 1, 2, · · · , N . Here, Jn(·) denotes the Bessel function of
integer order n of the first kind.

Proof. We write θ := (cos θ, sin θ), ξ = ρ(cos ξ, sin ξ) and x = r(cosφ, sinφ). Then since
following Jacobi-Anger expansion holds uniformly (see [19]),

eiz cosφ = J0(z) + 2
∞
∑

n=1

inJn(z) cos(nφ), (28)

elementary calculus yields

∫

S1

eikθ·xdθ =

∫ 2π

0

eikr cos(θ−φ)dθ

≈ 2πJ0(kr) + 2

∞
∑

n=1

inJn(kr)

∫ 2π

0

cosn(θ − φ)dθ

= 2πJ0(kr) + 4
∞
∑

n=1

in

n
Jn(kr) cos

n(2π − 2φ)

2
sin

2nπ

2
= 2πJ0(kr).

Therefore,
1

2π

∫

S1

eikθ·xdθ = J0(kr) = J0(k|x|).

11



Similarly, we can write
∫

S1

θ · ξeikθ·xdθ =

∫ 2π

0

ρ cos(θ − ξ)eikr cos(θ−φ)dθ

≈
∫ 2π

0

ρ cos(θ − ξ)

(

J0(kr) + 2

∞
∑

n=1

inJn(kr) cosn(θ − φ)

)

dθ

= 2ρ

∞
∑

n=1

inJn(kr)

∫ 2π

0

cos(θ − ξ) cosn(θ − φ)dθ.

If n = 1 then elementary calculus yields
∫ 2π

0

cos(θ − ξ) cos(θ − φ)dθ =

[

θ

2
cos(φ− ξ) +

1

4
sin(2θ − φ− ξ)

]2π

0

= π cos(φ− ξ).

If n ≥ 2 then since sin(1− n)π = sin(1 + n)π = 0,
∫ 2π

0

cos(θ − ξ) cosn(θ − φ)dθ =

[

sin{(1− n)θ + nφ− ξ}
2(1− n)

+
sin{(1 + n)θ − nφ− ξ}

2(1 + n)

]2π

0

=
sin{(1− n)π} cos{(1− n)π + nφ− ξ}

1− n

+
sin{(1 + n)π} cos{(1 + n)π − nφ− ξ}

1− n
= 0.

Therefore,

1

2π

∫

S1

θ · ξeikθ·xdθ = iρ cos(φ− ξ)J1(kr) = i
rρ

r
cos(φ− ξ)J1(kr) = i

(

x

|x| · ξ
)

J1(k|x|).

This completes the proof.

3.2. Dirichlet boundary condition (TM) case

First, we consider the imaging functional (21). Applying Lemma 3.1, we can obtain
following results:

Theorem 3.2. For sufficiently large N and F , (21) can be written as follows:

1. If kF < +∞ then

ID(x;F ) =

∣

∣

∣

∣

∣

M
∑

m=1

[

kF
kF − k1

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− k1
kF − k1

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

+

∫ kF

k1

J1(k|x− ym|)2dk
]
∣

∣

∣

∣

. (29)

Moreover, if F = 1 then (21) becomes

ID(x; 1) =
M
∑

m=1

J0(kf |x− ym|)2.

12



2. If kF −→ +∞ then
ID(x;F ) = χ(Γ), (30)

where χ denotes the characteristic function.

Proof. We assume that for every f , number of non-zero singular values Mf is almost equal
to M . Then, based on (17), (18), and (20), we can observe that

ID(x;F ) ≈
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

ŜD(x; kf)
∗ŜD(ym; kf)

)(

ŜD(x; kf)
∗ŜD(ym; kf)

)

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

N
∑

s=1

eikfθs·(x−ym)

)(

N
∑

t=1

eikfθt·(x−ym)

)
∣

∣

∣

∣

∣

=
1

4π2F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(
∫

S1

eikfθ·(x−ym)

)2

dθ

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

J0(kf |x− ym|)2
∣

∣

∣

∣

∣

=
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

J0(k|x− ym|)2dk
∣

∣

∣

∣

∣

.

1. Since kF < +∞, based on following indefinite integral (see [51, Page 35])

∫

J0(t)
2dt = t

(

J0(t)
2 + J1(t)

2

)

+

∫

J1(t)
2dt

with change of variable t = k|x− ym| yields

ID(x;F ) ≈
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

[

kF

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

−k1
(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

+

∫ kF

k1

J1(k|x− ym|)2dk
]
∣

∣

∣

∣

.

Note that this proof can be found in [26].

2. If x = ym then it is clear that ID(x;F ) = 1. Suppose that x 6= ym then

lim
kF→+∞

∫ kF

k1

J0(k|x− ym|)2dk

≈ lim
kF→+∞

[

kF

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

+

∫ kF

k1

J1(k|x− ym|)2dk
]

.

Since following asymptotic form holds for k|x− ym| ≫ |n2 − 0.25|,

Jn(k|x− ym|) ≈
√

2

kπ|x− ym|
cos

(

k|x− ym| −
nπ

2
− π

4
+O

(

1

k|x− ym|

))

, (31)
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we can observe that

lim
kF→+∞

1

kF − k1

(

kFJ0(kF |x− ym|)2
)

≈ lim
kF→+∞

1

kF − k1

[

2

π|x− ym|
cos2

(

kF |x− ym| −
π

4

)

]

= 0,

lim
kF→+∞

1

kF − k1

(

kFJ1(kF |x− ym|)2
)

≈ lim
kF→+∞

1

kF − k1

[

2

π|x− ym|
cos2

(

kF |x− ym| −
3π

4

)]

= 0,

lim
kF→+∞

1

kF − k1

∫ kF

k1

J1(k|x− ym|)2dk

≈ lim
kF→+∞

1

kF − k1

∫ kF

k1

[

2

kπ|x− ym|
cos2

(

kF |x− ym| −
3π

4

)]

dk

≤ 2

π|x− ym|
lim

kF→+∞

ln kF − ln k1
kF − k1

= 0.

Hence, (30) can be derived.

Remark 3.3. Note that the last term of (29) does not significantly contribute the imaging
performance because

ID(x;F ) = O(1) and
1

kF − k1

∫ kF

k1

J1(k|x− ym|)2dk ≪ O(1).

Hence, Theorem 3.2 tells us that multi-frequency subspace migration (i.e., map of ID(x;F ))
yields better images owing to less oscillation than single-frequency subspace migration (i.e.,
map of ID(x; 1)) does. A detailed discussion can be found in [26].

Remark 3.4 (Kirchhoff migration). Based on [7], classical Kirchhoff migration at single
frequency can be written as

IKM(x) := ŜD(x; k)
∗
K(k)ŜD(x; k).

14



Then it can be represented as

IKM(x) =ŜD(x; k)
∗

(

N
∑

m=1

σm(k)Um(k)V
∗
m(k)

)

ŜD(x; k)

≈
M
∑

m=1

σm(k)
(

ŜD(x; k)
∗ŜD(ym; k)

)(

ŜD(x; k)
∗ŜD(ym; k)

)

+
N
∑

m=M+1

σm(k)
(

ŜD(x; k)
∗ŜD(ym; k)

)(

ŜD(x; k)
∗ŜD(ym; k)

)

=

M
∑

m=1

σm(k)J0(k|x− ym|)2 +
N
∑

m=M+1

σm(k)

(

1− J0(k|x− ym|)2
)

,

Hence, we can observe that IKM(x) plots magnitude σm(k), m = 1, 2, · · · ,M , at the location
ym ∈ Γ. However, it also produces (unexpected) magnitude σm(k)(1 − J0(k|x − ym|)2) at
ym ∈ R2\Γ. This is the reason why subspace migration is an improved version of Kirchhoff
migration. Multi-frequency Kirchhoff migration can be treated by a similar manner.

Let us denote Ninc and Nobs be the number of incident and observation directions. At
this moment, we assume that only Nobs is sufficiently large. Then, we can obtain following
result.

Theorem 3.5. For sufficiently large Nobs and kF , (21) can be written as follows:

1. If kF < +∞ then

ID(x;F ) ≃
∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

[

kF
kF − k1

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− k1
kF − k1

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

+ Λ1(kF , k1, |x− ym|; θs)

]
∣

∣

∣

∣

.

(32)

Here, Λ1(kF , k1, |x− ym|; θs) is given by

Λ1(kF , k1, |x−ym|; θs) :=
2

kF − k1

∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J0(k|x−ym|)Jn(k|x−ym|)dk ≪ O(1),

where

θ̂s = cos−1

(

θs · (x− ym)

|θs · (x− ym)|

)

. (33)

2. If kF −→ +∞ then

ID(x;F ) ≃
M
∑

m=1

Ninc
∑

s=1

1
√

|x− ym|2 − (θs · (x− ym))2
, (34)
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where A ≃ B means that there exists a constant C such that A = BC.

Proof. Same as above, we assume that Mf is almost equal to M for every f = 1, 2, · · · , F .
Then, (21) becomes

ID(x;F ) ≈
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

ŜD(x; kf)
∗ŜD(ym; kf)

)(

ŜD(x; kf)
∗ŜD(ym; kf)

)

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

Ninc
∑

s=1

eikfθs·(x−ym)

)(

Nobs
∑

t=1

eikfθt·(x−ym)

)
∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

Ninc
∑

s=1

eikfθs·(x−ym)J0(kf |x− ym|)
∣

∣

∣

∣

∣

=
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

∫ kF

k1

eikθs·(x−ym)J0(k|x− ym|)dk
∣

∣

∣

∣

∣

.

Note that if x = ym, ID(x;F ) ≈ 1. Hence, we assume that x 6= ym.

1. Similar to the proof of Theorem 3.1, we let θs := (cos θs, sin θs), x−ym = rm(cosφ, sinφ).
Then applying Jacobi-Anger expansion (28), we can write

∫ kF

k1

eikθs·(x−ym)J0(k|x− ym|)dk =

∫ kF

k1

J0(k|x− ym|)2dk (35)

+ 2
∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk. (36)

Note that integration of (35) is derived in Theorem 3.2 hence we consider (36). Since
all terms of (35) are convergent, (36) converges. For x ∈ R, since following relation
holds

Jn(x) ≤
|x|n
2nn!

, (37)

applying Hölder’s inequality, we can obtain

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk ≤ (kn+1
F − kn+1

1 )|x− ym|n
2n(n + 1)!

.

Since

lim
n→∞

in cos(nθ̂s)

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk = 0,

for sufficiently large number L, (36) can be represented as

2
L
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk.
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Now, we assume that x is close enough to ym such that kF |x − ym| ≪
√
L+ 1 then

since

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk ≤ (kn+1
F − kn+1

1 )|x− ym|n
2n(n+ 1)!

≪ kF
√
L+ 1

2n(n + 1)!
,

we can conclude that
∣

∣

∣

∣

∣

2

kF − k1

∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J0(k|x− ym|)Jn(k|x− ym|)dk
∣

∣

∣

∣

∣

≪ O(1). (38)

Suppose that x is located away from ym such that kF |x− ym| ≫ |L2 − 0.25|, then for
n = 1, 2, · · · , L, applying asymptotic form (31) yields

∫ kF

k1

J0(k|x−ym|)Jn(k|x−ym|)dk ≤
∫ kF

k1

√

2

kπ|x− ym|
cos
(

k|x− ym| −
nπ

2
− π

4

)

dk

≤
√

2

π|x− ym|
(
√

kF −
√

k1) ≤ kF

√

2

πkF |x− ym|
≪ kF

√

2

π|L2 − 0.25| ,

we can obtain (38). Hence, (32) is derived.

2. Since θs ∈ S1, we can observe following relation

|x− ym|2 − (θs · (x− ym))
2 = |x− ym|2

[

1−
(

θs ·
x− ym

|x− ym|

)2
]

≥ 0. (39)

Applying (39) with the following identity (see [21])

∫ ∞

0

eiatJν(bt)dt =
1√

b2 − a2

[

cos
(

ν sin−1 a

b

)

+ i sin
(

ν sin−1 a

b

)

]

for a < b, (40)

we can evaluate following

∫ kF

k1

eikθs·(x−ym)J0(k|x− ym|)dk ≈
∫ ∞

0

eikθs·(x−ym)J0(k|x− ym|)dk

=
1

|x− ym|
√

1−
(

θs ·
x− ym

|x− ym|

)2

Hence, (34) is obtained.

Remark 3.6. Theorems 3.2 and 3.5 tell us some properties of (21) summarized as follows:
17



(D1). Application of multiple frequencies should guarantees an accurate shape of Γ via (21).
Note that this fact can be identified via Statistical Hypothesis Testing [7].

(D2). Based on (34), (21) plots a large magnitude at x satisfying

x = ym ∈ Γ and θs = ± x− ym

|x− ym|
.

This means that (21) produces not only the shape of Γ but also unexpected ghost repli-
cas. Hence, sufficiently large number of Ninc and Nobs is required for producing a good
result.

3.2.1. Weighted multi-frequency imaging: an improvement

At this moment, we consider the following multi-frequency subspace migration imaging
functional weighted by given frequency:

IW(x;F, p) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(kf)
p
(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

, (41)

where p is a positive integer. Based on recent work [41], (41) is an improved version of (21)
when p = 1. We briefly introduce the structure of (41) as follows.

Theorem 3.7. For sufficiently large N and kF , (41) can be written

IW(x;F, 1) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

(kF )
2

2

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− (k1)
2

2

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)
∣

∣

∣

∣

.

Proof. See [41, Theorem 4].

Theorem 3.8. For sufficiently large Nobs and kF , (41) can be written

1. For kF < +∞,

IW(x;F, 1) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

(kF )
2

2

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− (k1)
2

2

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

+ Λ5(kF , k1, |x− ym|; θs)

∣

∣

∣

∣

,

where Λ5(kF , k1, |x− ym|; θs) is represented as follows

Λ5(kF , k1, |x− ym|; θs) = 2
∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

kJ0(k|x− ym|)Jn(k|x− ym|)dk.

Here, θ̂s is given by (33).
18



2. For kF −→ +∞,

IW(x;F, 1) =

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

θs · (x− ym)
(

|x− ym|2 − (θs · (x− ym))
2
)3/2

∣

∣

∣

∣

∣

.

Proof. Similar to the proof of Theorem 3.5, (41) can be written as

IW(x;F, 1) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

∫ kF

k1

keikθs·(x−ym)J0(k|x− ym|)dk
∣

∣

∣

∣

∣

.

1. Borrowing the polar coordinate in the proof of Theorem 3.5 and Jacobi-Anger expan-
sion (28), we can write

∫ kF

k1

keikθs·(x−ym)J0(k|x− ym|)dk

=

∫ kF

k1

kJ0(k|x− ym|)2dk + 2
∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

kJ0(k|x− ym|)Jn(k|x− ym|)dk.

Following well-known indefinite integral (see [1])

∫ x

0

tJ0(t)
2dt =

x2

2

(

J0(x)
2 + J1(x)

2

)

yields

∫ kF

k1

kJ0(k|x− ym|)2dk =
(kF )

2

2

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− (k1)
2

2

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

.

And similar to the proof of Theorem 3.5, it is easy to observe that IW(x;F, 1) = O(kF )
and

1

kF − k1
Λ5(kF , k1, |x− ym|; θs) ≪ O(kF ).

2. Let kF −→ +∞. Since following identify holds for b > 0, p > −q−2 (see [21, Formula
6.621-4])

∫ ∞

0

xq+1e−axJp(bx) = (−1)q+1b−p d
q+1

daq+1

[

(
√
a2 + b2 − a)p√
a2 + b2

]

,

elementary calculus yields
∫ ∞

0

xe−axJ0(bx) =
a

(a2 + b2)3/2
.
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Hence, we can obtain

∫ ∞

0

keikθs·(x−ym)J0(k|x− ym|)dk =
iθs · (x− ym)

|x− ym|3
[

1−
(

θs ·
x− ym

|x− ym|

)2
]3/2

.

3.3. Neumann boundary condition (TE) case

Next, we consider the imaging functional (26). It is worth mentioning that if we have
a priori information of Γ (specially, ν(x) at x ∈ Γ) we can obtain same result in Theorem
3.2. However, due to the fact that since the normal direction to Γ is unknown, mapping of
(26) consumes large computational costs. Unfortunately, based on the results in section 5.3,
the results are still poor. Hence, we consider the following alternative subspace migration
imaging functional:

IA(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

, (42)

where SD(x; kf) is defined in (16). Then we can obtain following result.

Theorem 3.9. For sufficiently large N and F , (42) can be written as follows:

IA(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

[(

x− ym

|x− ym|
· ν(ym)

)

J1(k|x− ym|)
]2

dk

∣

∣

∣

∣

∣

.

Furthermore,

1. If x is close enough to ym, then

IA(x;F ) =
(kF )

3 − (k1)
3

12(kF − k1)

∣

∣

∣

∣

∣

M
∑

m=1

(

(x− ym) · ν(ym)

)2
∣

∣

∣

∣

∣

. (43)

2. If x is far away from ym, then

IA(x;F ) ≤
2

π(kF − k1)

∣

∣

∣

∣

∣

M
∑

m=1

((x− ym) · ν(ym))
2

√
2kF |x− ym|4

∣

∣

∣

∣

∣

.
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Proof. Same as the proof of Theorem 3.5, we assume that for every f , number of non-zero
singular values Mf is almost equal to M . Then

IA(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

N
∑

s=1

θs · ν(ym)e
ikfθs·(x−ym)

)(

N
∑

t=1

θt · ν(ym)e
ikfθt·(x−ym)

)
∣

∣

∣

∣

∣

=
1

4π2F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(
∫

S1

θ · ν(ym)e
ikfθ·(x−ym)dθ

)2
∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

[(

x− ym

|x− ym|
· ν(ym)

)

J1(kf |x− ym|)
]2
∣

∣

∣

∣

∣

=
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

[(

x− ym

|x− ym|
· ν(ym)

)

J1(k|x− ym|)
]2

dk

∣

∣

∣

∣

∣

.

Unfortunately, there is no finite representation of the integral
∫

J1(x)
2dx. Therefore we

cannot go further. In order to observe some properties of (42), we consider the following
two cases.

1. Assume that x is close to ym such that 0 < k|x−ym| ≪
√
2. Then applying asymptotic

form of Bessel function

J1(k|x− ym|) ≈
k|x− ym|

2
for 0 < |x− ym| ≪

√
2

k
,

we can observe that

IA(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

[(

x− ym

|x− ym|
· ν(ym)

)

J1(k|x− ym|)
]2

dk

∣

∣

∣

∣

∣

=
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

(

(x− ym) · ν(ym)

)2 ∫ kF

k1

k2dk

∣

∣

∣

∣

∣

=
(kF )

3 − (k1)
3

12(kF − k1)

∣

∣

∣

∣

∣

M
∑

m=1

(

(x− ym) · ν(ym)

)2
∣

∣

∣

∣

∣

.

2. Assume that x is far away from ym such that k|x− ym| ≫ |1− 0.25|. Then since (31)
can be approximated as follows

J1(k|x− ym|) ≈
√

2

kπ|x− ym|
cos

(

k|x− ym| −
3π

4

)

for |x− ym| ≫
3

4k
,
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we can observe that

IA(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

[(

x− ym

|x− ym|
· ν(ym)

)

J1(k|x− ym|)
]2

dk

∣

∣

∣

∣

∣

=
2

π(kF − k1)

∣

∣

∣

∣

∣

M
∑

m=1

((x− ym) · ν(ym))
2

|x− ym|3
∫ kF

k1

1√
k
cos

(

k|x− ym| −
3π

4

)

dk

∣

∣

∣

∣

∣

.

Let k|x − ym| = t. Then since t is sufficiently large, based on following asymptotic
behavior (see [21])

1√
2π

∫ x

0

sin t√
t
dt =

1

2
− 1√

2πx
cosx+O

(

1

x

)

1√
2π

∫ x

0

cos t√
t
dt =

1

2
+

1√
2πx

sin x+O

(

1

x

)

,

we can obtain
∫ kF

k1

1√
k
cos

(

k|x− ym| −
3π

4

)

dk =
1

√

2|x− ym|

∫ kF |x−ym|

k1|x−ym|

sin t− cos t√
t

dt

=
cos(k1|x− ym|) + sin(k1|x− ym|)√

2k1|x− ym|
− cos(kF |x− ym|) + sin(kF |x− ym|)√

2kF |x− ym|
.

Hence,

IA(x;F ) ≤
2

π(kF − k1)

∣

∣

∣

∣

∣

M
∑

m=1

((x− ym) · ν(ym))
2

√
2kF |x− ym|4

∣

∣

∣

∣

∣

.

Above result tells us that IA(x;F ) = 0 at x = ym ∈ Γ so that IA(x;F ) should plots 0
(or small values) along the crack(s). Moreover, based on (43), map of IA(x;F ) gives two
curves in the neighborhood of true crack(s). This means that although IA(x;F ) does not
produces image of crack(s), an approximate shape of crack(s) can be recognized from the
images two-curves. See Figure 3 and various numerical examples in Section 5.3.

Throughout a similar argument of Theorem 3.5, we can obtain following result.

Theorem 3.10. For sufficiently large Nobs and kF , (42) can be written as follows:

1. If kF < +∞ then

IA(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

(

θs

|x− ym|
· ν(ym)

)(

x− ym

|x− ym|
· ν(ym)

)

Λ2(x,ym; θs)

∣

∣

∣

∣

∣

,

(44)
where

Λ2(x,ym; θs) =
1

2

(

J0(k1|x−ym|)2−J0(kF |x−ym|)2
)

+Λ3(kF , k1, |x−ym|; θs). (45)
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Figure 3: 1-D plot of IA(x;F ).

Here, Λ3(kF , k1, |x− ym|; θs) satisfies

Λ3(kF , k1, |x− ym|; θs) := 2

∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J1(k|x− ym|)Jn(k|x− ym|)dk,

where θ̂s is given by (33).

2. If kF −→ +∞ then

IA(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

(

θs · ν(ym)

)(

x− ym

|x− ym|
· ν(ym)

)

Λ4(x,ym; θs)

∣

∣

∣

∣

∣

, (46)

where Λ4(x,ym; θs) is

Λ4(x,ym; θs) =
1

|x− ym|

(

1 + i
θs · (x− ym)

√

|x− ym|2 − (θs · (x− ym))2

)

.
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Proof. Assume thatMf is almost equal toM for every f = 1, 2, · · · , F . Then, (42) becomes

IA(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

Ninc
∑

s=1

θs · ν(ym)e
ikfθs·(x−ym)

)(

Nobs
∑

t=1

θt · ν(ym)e
ikfθt·(x−ym)

)
∣

∣

∣

∣

∣

=
1

2πF

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

Ninc
∑

s=1

θs · ν(ym)e
ikfθs·(x−ym)

∫

S1

θ · ν(ym)e
ikfθ·(x−ym)dθ

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

Ninc
∑

s=1

(

θs · ν(ym)

)(

x− ym

|x− ym|
· ν(ym)

)

eikfθs·(x−ym)J1(kf |x− ym|)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

m=1

Ninc
∑

s=1

(

θs · ν(ym)

kF − k1

)(

x− ym

|x− ym|
· ν(ym)

)
∫ kF

k1

eikθs·(x−ym)J1(k|x− ym|)dk
∣

∣

∣

∣

∣

.

1. Assume that kF < +∞. Considering the polar coordinate θs := (cos θs, sin θs), x −
ym = rm(cosφ, sinφ), and applying Jacobi-Anger expansion (28), we can write

∫ kF

k1

eikθs·(x−ym)J1(k|x− ym|)dk =

∫ kF

k1

eik|x−ym| cos(θs−φ)J1(k|x− ym|)dk

=

∫ kF

k1

J0(k|x−ym|)J1(k|x−ym|)dk+2
∞
∑

n=1

in cos(nθ̂s)

∫ kF

k1

J1(k|x−ym|)Jn(k|x−ym|)dk.

Hence, applying well-known indefinite integral
∫

J0(x)J1(x)dx = −1

2
J0(x)

2 (47)

yields (45). Moreover, through the similar process of the proof of Theorem 3.5, we can
observe that the term

1

kF − k1
Λ3(kF , k1, |x− ym|; θs)

can be negligible.

2. Suppose that kF −→ +∞. Then, applying (40) yields

lim
kF→∞

∫ kF

k1

eikθs·(x−ym)J1(k|x− ym|)dk ≈
∫ ∞

0

eikθs·(x−ym)J1(k|x− ym|)dk

=

cos

(

sin−1 θs · (x− ym)

|x− ym|

)

+ i sin

(

sin−1 θs · (x− ym)

|x− ym|

)

|x− ym|

√

1−
(

θs ·
x− ym

|x− ym|

)2
.
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Therefore, from the elementary calculus

cos(sin−1 φ) =
√

1− φ2 and sin(sin−1 φ) = φ,

structure (46) can be obtained.

The result in Theorem 3.10 shows that when the number of incident directions are small,
the property of IA(x;F ) is similar to the one in Theorem 3.9 but due to the remaining terms
(for example, Λ3(kF , k1, |x− ym|; θs)), produces results should be poor.

4. Analysis of multi-frequency subspace migration imaging functionals: limited-

view case

4.1. Common features

We now turn our attention to the limited-view problems. We assume that the unit circle
divided into the two-disjoint connected sets S1 = S1

+ ∪ S1
− and every θn are elements of S1

+

such that

θn = (cos θn, sin θn) , θn = α + (β − α)
n− 1

N − 1
, (48)

where 0 < α < β < 2π. In this case, we let IL(x;F ) be either (21) or (42). In order to
explore the structure of IL(x;F ), we must evaluate following integrals

∫

S1+

eikθ·xdθ and

∫

S1+

θ · ξeikθ·xdθ.

In our knowledge, there is no finite representation of above integrals so at this moment,
we cannot conclude any properties of imaging functionals (21) and (42). Hence, we find
approximations of above integrals and consequently discover certain properties of IL(x;F ).

Theorem 4.1. Let x = r(cosφ, sinφ) and ξ = (cos ξ, sin ξ). Then for sufficiently large N ,
following relations holds

∫

S1+

eikθ·xdθ =(β − α)J0(k|x|) + 4
∞
∑

n=1

ΛD(α, β, k|x|;n)
∫

S1+

θ · ξeikθ·xdθ =2J0(k|x|) sin
β − α

2
cos

β + α− 2ξ

2

+ iJ1(k|x|)
[

(β − α)

(

x

|x| · ξ
)

+ sin(β − α) cos(β + α− ξ − φ)

]

+ 2
∞
∑

n=2

ΛN(α, β, k|x|;n),
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where

ΛD(α, β, k|x|;n) =
in

n
Jn(k|x|) cos

n(β + α− 2φ)

2
sin

n(β − α)

2

and

ΛN(α, β, k|x|;n) =inJn(kf |x− ym|)
[

1

1− n
sin

(1− n)(β − α)

2
cos

(1− n)(β + α) + 2nφ− 2ξ

2

+
1

1 + n
sin

(1 + n)(β − α)

2
cos

(1 + n)(β + α)− 2nφ− 2ξ

2

]

.

Proof. Similar to the proof of Theorem 3.1, we let θ = (cos θ, sin θ), x = r(cosφ, sinφ), and
ξ = (cos ξ, sin ξ). Then applying Jacobi-Anger expansion (28), we can obtain

∫

S1+

eikθ·xdθ =

∫ β

α

eikr cos(θ−φ)dθ

≈ (β − α)J0(kr) + 2
∞
∑

n=1

inJn(kr)

∫ β

α

cosn(θ − φ)dθ

= (β − α)J0(kr) + 4
∞
∑

n=1

in

n
Jn(kr) cos

n(β + α− 2φ)

2
sin

n(β − α)

2

= (β − α)J0(k|x|) + 4
∞
∑

n=1

ΛD(α, β, |x|;n).

Similarly, since

∫

S1+

θ · ξeikθ·xdθ =

∫ β

α

cos(θ − ξ)eikr cos(θ−φ)dθ

=

∫ β

α

cos(θ − ξ)

[

J0(k|x|) + 2

∞
∑

n=1

inJn(k|x|) cosn(θ − φ)

]

dθ.

Elementary calculus yields

∫ β

α

J0(k|x|) cos(θ − ξ)dθ = 2J0(k|x|) sin
β − α

2
cos

β + α− 2ξ

2
.

In order to evaluate remaining terms, we recall following indefinite integral (see [21, Formula
2.532-3,6])

∫

cos(ax+ b) cos(ax+ d) =
x cos(b− d)

2
+

sin(2ax+ b+ d)

4a
∫

cos(ax+ b) cos(cx+ d) =
sin[(a− c)x+ b− d]

2(a− c)
+

sin[(a + c)x+ b+ d]

2(a+ c)
for a2 6= c2.
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Then

∫ β

α

2iJ1(k|x|) cos(θ − ξ) cos(θ − φ)dθ

= iJ1(k|x|)
[

(β − α)

(

x

|x| · ξ
)

+ sin(β − α) cos(β + α− ξ − φ)

]

and for n 6= 1,

∫ β

α

2inJn(k|x|) cos(θ − ξ) cosn(θ − φ)dθ

=inJn(kf |x− ym|)
[

1

1− n
sin

(1− n)(β − α)

2
cos

(1− n)(β + α) + 2nφ− 2ξ

2

+
1

1 + n
sin

(1 + n)(β − α)

2
cos

(1 + n)(β + α)− 2nφ− 2ξ

2

]

.

4.2. Dirichlet boundary condition (TM) case

First, we consider the TM case. Applying Theorem 4.1, we can obtain following results.

Theorem 4.2. For sufficiently large N and F , (21) can be written as follows:

IL(x;F ) ≈
∣

∣

∣

∣

∣

M
∑

m=1

[

kF
kF − k1

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− k1
kF − k1

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)]
∣

∣

∣

∣

.

Proof. Similar to the proof of Theorem 3.2, we assume that for every f , number of non-zero
singular values Mf is almost equal to M . Then

IL(x;F ) ≈
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

ŜD(x; kf)
∗ŜD(ym; kf)

)(

ŜD(x; kf)
∗ŜD(ym; kf)

)

∣

∣

∣

∣

∣

=
1

F

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

N
∑

s=1

eikfθs·(x−ym)

)(

N
∑

t=1

eikfθt·(x−ym)

)
∣

∣

∣

∣

∣

=
1

(β − α)2F

∣

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

∫

S1+

eikfθ·(x−ym)dθ

)2
∣

∣

∣

∣

∣

∣

=
1

(β − α)2(kF − k1)

∣

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

(

∫

S1+

eikθ·(x−ym)dθ

)2

dk

∣

∣

∣

∣

∣

∣

.
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Letting θ = (cos θ, sin θ) and x = r(cosφ, sinφ), and applying Theorem 4.1, we can evaluate
the following

(

∫

S1+

eikθ·(x−ym)dθ

)2

=

[

(β − α)J0(k|x− ym|) + 4
∞
∑

n=1

ΛD(α, β, k|x− ym|;n)
]2

=(β − α)2J0(k|x− ym|)2

+ 8(β − α)
∞
∑

n=1

J0(k|x− ym|)ΛD(α, β, k|x− ym|;n)

+ 16

(

∞
∑

n=1

ΛD(α, β, k|x− ym|;n)
)2

.

Similar to the derivation of (38) in Theorem 3.5, for sufficiently large k,

1

kF − k1

∞
∑

n=1

J0(k|x− ym|)ΛD(α, β, k|x− ym|;n) ≪ O(1)

1

kF − k1

(

∞
∑

n=1

ΛD(α, β, k|x− ym|;n)
)2

≪ O(1).

Hence,

IL(x;F ) ≈
∣

∣

∣

∣

∣

M
∑

m=1

[

kF
kF − k1

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− k1
kF − k1

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)]
∣

∣

∣

∣

.

Above result shows that the terms ΛD(α, β, |x−ym|;n) will disturb the shape identifica-
tion of Γ i.e., imaging performance of IL(x;F ) highly depends on the range of incident and
observation directions, and applied wavenumber kf . Note that if one can find α and β such
that

β 6= α and sin
n(β − α)

2
= 0,

an accurate shape of Γ can be obtained. Notice that this is only for β−α = 2π, i.e., full-view
case. Hence, for obtaining a good result in the limited-view problem, sufficiently large kf
must be applied.

4.3. Neumann boundary condition (TM) case

Now, we consider the TE case. With the same configuration of previous subsection, we
can obtain following result.
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Theorem 4.3. For sufficiently large N and F , (26) can be written as follows:

IL(x;F ) ≈
1

(β − α)2

∣

∣

∣

∣

∣

M
∑

m=1

[

kF (C1)
2

kF − k1

(

J0(kF |x− ym|)2 + J1(kF |x− ym|)2
)

− k1(C1)
2

kF − k1

(

J0(k1|x− ym|)2 + J1(k1|x− ym|)2
)

+
(C1)

2 − (C2)
2

kF − k1

∫ kF

k1

J1(k|x− ym|)2dk

+i
C1C2

2(kF − k1)|x− ym|

(

J0(k1|x− ym|)2 − J0(kF |x− ym|)2
)]
∣

∣

∣

∣

,

where constants C1 and C2 are defined in (49).

Proof. Suppose that for every f , number of non-zero singular values Mf is almost equal to
M . Then (42) becomes

IL(x;F ) =

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

=
1

(β − α)2F

∣

∣

∣

∣

∣

∣

F
∑

f=1

M
∑

m=1

(

∫

S1+

θ · ν(ym)e
ikfθ·(x−ym)dθ

)2
∣

∣

∣

∣

∣

∣

=
1

(β − α)2(kF − k1)

∣

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

(

∫

S1+

θ · ν(ym)e
ikθ·(x−ym)dθ

)2

dk

∣

∣

∣

∣

∣

∣

.

Then, by setting θ := (cos θ, sin θ), ν(ym) = (cos νm, sin νm), and x−ym := rm(cosφm, sinφm),
applying Jacobi-Anger expansion yields

∫

S1+

θ · ν(ym)e
ikθ·(x−ym)dθ =

∫ β

α

cos(θ − νm)e
ik|x−ym| cos(θ−φm)dθ

=

∫ β

α

cos(θ − νm)

[

J0(k|x− ym|) + 2

∞
∑

n=1

inJn(k|x− ym|) cosn(θ − φm)

]

dθ

=C1J0(k|x− ym|) + iC2J1(k|x− ym|) + 2
∞
∑

n=2

ΛN(α, β, k|x− ym|;n),

where

C1 = 2 sin
β − α

2
cos

β + α− 2νm
2

C2 = (β − α)

(

x− ym

|x− ym|
· ν(ym)

)

+ sin(β − α) cos(β + α− νm − φm).
(49)
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Same as the derivation of (38) in Theorem 3.5, the following holds for sufficiently large k:

C1

kF − k1

∞
∑

n=2

J0(k|x− ym|)ΛN(α, β, k|x− ym|;n) ≪ O(1)

C2

kF − k1

∞
∑

n=2

J1(k|x− ym|)ΛN(α, β, k|x− ym|;n) ≪ O(1)

1

kF − k1

(

∞
∑

n=2

ΛN(α, β, k|x− ym|;n)
)2

≪ O(1).

Hence, we can evaluate

IL(x;F ) =
1

(β − α)2(kF − k1)

∣

∣

∣

∣

∣

(C1)
2

M
∑

m=1

∫ kF

k1

J0(k|x− ym|)2dk

−(C2)
2

M
∑

m=1

∫ kF

k1

J1(k|x− ym|)2dk + iC1C2

M
∑

m=1

∫ kF

k1

J0(k|x− ym|)J1(k|x− ym|)dk
∣

∣

∣

∣

∣

.

Finally, applying Theorem 3.2 and (47), we can obtain desired result.

It is interesting to observe that opposite to the (42) in Theorem 3.9, IL(x;F ) will plots
large magnitude at x = ym ∈ Γ since J0(k|x− ym|) exists. But it also produces unexpected
points of large magnitude at x /∈ Γ. Note that in the full-view case, i.e., β − α = 2π, then

C1 = ΛN(α, β, k|x− ym|;n) = 0 and C2 = 2π

(

x− ym

|x− ym|
· ν(ym)

)

.

Hence, we can obtain Theorem 3.9.
Now, we end up this subsection with the following conclusion: if the range of incident

and observation directions is sufficiently wide, produced image should be acceptable but if it
is narrow, one cannot obtain a good result when each applied wavenumber kf is sufficiently
large enough.

5. Numerical examples

5.1. Common features

In this section, we present some numerical examples for imaging arc-like cracks satis-
fying the Dirichlet (TM polarization) or Neumann boundary condition (TE polarization).
Throughout this section, the applied wave number is taken of the form kf = 2π

λf
; here λf ,

f = 1, 2, · · · , F , is the given wavelength. In this paper, the wavenumbers kf are always
equi-distributed in the interval [k1, kf ].
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Four Γj are chosen for illustration:

Γ1 = {(s, 0.3) : s ∈ [−0.5, 0.5]}

Γ2 =

{(

s,
1

2
cos

sπ

2
+

1

5
sin

sπ

2
− 1

10
cos

3sπ

2

)

: s ∈ [−1, 1]

}

Γ3 =

{

(

2 sin
s

2
, sin s

)

: s ∈
[

π

4
,
7π

4

]}

Γ4 = Γ
(1)
4 ∪ Γ

(2)
4

where

Γ
(1)
4 =

{(

s− 0.2,−0.5s2 + 0.6
)

: s ∈ [−0.5, 0.5]
}

Γ
(2)
4 =

{(

s+ 0.2, s3 + s2 − 0.6
)

: s ∈ [−0.5, 0.5]
}

.

The search domain Ω is illustrated in Table 1 for Γj , j = 1, 2, 3 and 4. For each x ∈ Ω, the
step size of x is taken of the order of 0.02. As for the observation directions x̂j , same as
(48), they are taken as

x̂j = (cos θj , sin θj) , θj = α + (β − α)
j − 1

N − 1

where α = 0 and β = 2π for the full-view case, and α = π/6 and β = 5π/6 for the
limited-view case.

It is worth mentioning that, since the reliable and efficient solution of the direct scattering
problem indicated previously is very important (for example, avoiding inverse crime, etc.),
all numerical data in this section (the elements u∞(x̂j , θl; kf) for j, l = 1, 2, · · · , N of the
dataset K(kf )) are generated by the Nyström method for both the Dirichlet and Neumann
boundary conditions as presented in [29] and [35], respectively. After obtaining the dataset,
a 15dB Gaussian random noise is added to the unperturbed data to show the robustness
of the proposed algorithm. In order to obtain the number of nonzero singular values Mf

for each frequency, a 0.01-threshold scheme (choosing first M singular values sm such that
sm/s1 ≥ 0.01) is adopted. A more detailed discussion of thresholding can be found in [45, 47]
(see [25] for volumetric extended target case).

5.2. Dirichlet boundary condition case - TM

In this case, we consider the imaging of crack with Dirichlet boundary condition. First,
let us consider the Γ1. Throughout many references, [42, 45, 47], one can easily notice that
when a crack is straight line, it can be successfully retrieved. In this result, an expected
result is appeared, refer to Figure 4.

Similarly with the penetrable inclusion case as dealt with in [41, 42, 45, 46, 47], when the
crack is not anymore a straight line, for example, the image of Γ2, poor results are observed.
Fortunately, in this case, the location of the end-points of Γ2 is well identified. That is,
connected by a straight line, it should provide a good initial guess for an iterative solution
algorithm, refer to Figure 5.
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Crack
TM case (section 5.2) TE case (section 5.3)

λ1 λF
search domain

N F N F Ω

Γ1 16 10 16 10 0.5 0.4 [−1, 1]× [−1, 1]
Γ2 28 12 36 12 0.6 0.3 [−2, 2]× [−2, 2]
Γ3 40 16 64 16 0.5 0.3 [−2, 2]× [−1, 3]
Γ4 32 24 64 24 0.4 0.2 [−1, 1]× [−1, 1]

Table 1: Test configuration for Γj , j = 1, 2, 3 and 4.
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Figure 4: Maps of ID(x;F ) and IL(x;F ) for Γ1.
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Figure 5: Same as Figure 4 except the crack is Γ2.

In addition, for a complicated crack case Γ3, only limited part of crack can be imaged,
refer to Figure 6. In order to detect the remaining part of Γ3, one must change the observa-
tion (and also incident) directions. For example, if one wants to detect the right-hand side
of Γ3, α = −π

6
and β = π

6
of (48) will be a good choice. In Figure 7, corresponding results

are exhibited. For the imaging of extended targets, similar phenomenon can be found in
[24].
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Figure 6: Same as Figure 4 except the crack is Γ3.
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Figure 7: Maps of IL(x;F ) for Γ3.

Remark 5.1. Instead of the scattered field dataset generated from the Nyström method, some
authors introduce a similar formulation involving the solution of a second-kind Fredholm
integral equation along the crack, refer to [36]. Numerical experimentation shows that images
of a crack from far-field data acquired by the Nyström method or from the ones calculated
via this alternative formulation are almost indistinguishable (see Figure 8). Using near-field
data instead of far-field one yields similar results.

Both the mathematical configuration and the numerical analysis could be extended in
somewhat straightforward fashion to the case of non-overlapped multiple cracks. We will
not present the derivation herein and simply illust some examples. Let us notice that
the elements u∞(x̂j , θl; kf) for j, l = 1, 2, · · · , N of dataset K(kf) are generated from the
Nyström method now applied to scattering by more than one crack (see [36, 38]).

Now, let us work with Γ4. Maps of ID(x;F ) are displayed in Figure 9. Similarly with

the previous example, we can only identify the Γ
(1)
4 with α = π

6
and β = 5π

6
of (48). For

retrieving Γ
(2)
4 , one must choose another incident (and observation) direction setting for

example, α = 7π
6
and β = 11π

6
is a good choice.
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Figure 8: Map of IL(x;F ) for Γj, j = 1, 2, 3, where dataset generated via method in [36].

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Map of ID(x;F )

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Map of IL(x;F )

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) True shape

Figure 9: Same as Figure 4 except the crack is Γ4.

5.3. Neumann boundary condition case - TE

In this case, we present some imaging results for the Neumann boundary condition. The
configuration is the same as previously and we use a set of fixed directions ν l as

ν l =

(

cos
2πl

L
, sin

2πl

L

)

for l = 1, 2, · · · , L.

Throughout this section, we use L = 8 directions for the imaging of Γ1 and L = 24 for Γ2, Γ3

and Γ4. Let us emphasize here that the fact that the direction normal to Γ is not known of
us results in the slowness of the imaging, i.e., some computational costs are needed (about
2 minutes are required to obtain Figure 10 and 15 minutes to obtain Figures 11, 12, 13 and
14 on a personal computer with 2.44 GHz dual-core pentium processor).

Let us consider the imaging of Γ1. Similarly with the Dirichlet boundary condition case,
although a blurred image appeared, it can be successfully retrieved, refer to Figure 10.

In contrast with the Dirichlet boundary condition case, see Figure 11, when the crack
is not anymore a straight line, a few ghost replicas appear and the location of end-points
cannot be identified.
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Figure 10: Maps of IN(x;F ), IA(x;F ), and IL(x;F ) for Γ1.
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Figure 11: Same as Figure 10 except the crack is Γ2.

Let us consider the imaging of Γ3. Typical results are in Figure 12. It is interesting
to observe that opposite to the Dirichlet boundary condition case, two parts of Γ3 can be
retrieved. However, the result is still bad. It means that if one wants to detect the remaining
parts of Γ3, more incident (and observation) directions are needed.

Remark 5.2. Similarly with the Dirichlet boundary condition case, we can generate images
from far-field data computed by the algorithm presented in [36], refer to Figure 13. Numerical
experimentation shows that images of a crack from data acquired by the Nyström method or
from the ones calculated via this alternative formulation are almost same. Using near-field
data instead of far-field one yields similar results.

For the final example, imaging of multiple cracks is illustrated in Figure 14. Unlike the
Dirichlet boundary condition case, some parts of not only Γ

(1)
4 but also Γ

(2)
4 are retrieved

but the result is still poor.

5.4. Complete shape reconstruction - TM case only

Now, we consider the complete shape reconstruction of perfectly conducting crack with
Dirichlet boundary condition (3). For that purpose, we proceed the Newton method intro-
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Figure 12: Same as Figure 10 except the crack is Γ3.
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Figure 13: Map of IA(x;F ) for Γj, j = 1, 2, 3, where dataset generated via method in [36].
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Figure 14: Same as Figure 10 except the crack is Γ4.

duced in [29, Section 7] in order to reconstruct Γ2 from far-field measurement with k = 2π
0.5

,
x̂j of (48) with N = 8, α = π/6, and β = 5π/6.

In order to perform the Newton method, we denote Γ
(n)
2 be the crack after n−th iteration,
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i.e., Γ
(0)
2 is the initial guess. Throughout this section, we assume that Γ

(n)
2 can be represented

as follows:
Γ
(n)
2 =

{

z(n)(s) : s ∈ [−1, 1]
}

,

where z(n) : [−1, 1] −→ R2 is of the form

z(n)(s) =

(

s,

p
∑

j=0

a
(n)
j Tj(s)

)

, s ∈ [−1, 1].

Here Tj(s) denotes the Chebyshev polynomials of the first kind defined by the recurrence
relation

T0(s) = 1

T1(s) = s

Tj+1(s) = 2sTj(s)− Tj−1(s).

Based on the numerical experience in [29], we use p = 5 polynomials to reconstruct Γ2. Note
that true crack Γ2 = {z(s) : s ∈ [−1, 1]} is represented as

z(s) ≈
(

s, 0.26T0(s) + 0.23T1(s)− 0.22T2(s)− 0.03T3(s)− 0.06T4(s)

)

.

From the identified parts of Γ2 in Figure 5a, we can evaluate the coefficients a
(0)
j , j =

0, 1, · · · , 5. With this good initial guess (see Figure 15a), we apply Newton’s method until
the value of discrete least square functional in two consecutive steps

R(n) :=
1

2

N
∑

j=1

|utrue

∞ (x̂j; θ)− ucomp

∞ (x̂j ; θ)|2 (50)

was less than a tolerance 0.001, i.e., we stop this at n−th iteration procedure when |R(n)−
R(n − 1)| < 0.001. In this experiment, only 4 iterations yield a good shape reconstruction

of Γ2. Obtained values of a
(n)
j and corresponding shape of crack Γ

(4)
2 are illustrated in Table

2 and Figure 15, respectively.
We believe that the results in section 5.3 could be good initial guesses for Neumann

boundary condition problem [35]. It is worth mentioning that if one proceed Newton method
with an initial guess that does not close to the true crack (or arbitrary blind initial guess),
it is very hard to obtain a desired result even with more iterations, refer to [48].

6. Conclusion

In this paper, subspace migration imaging technique has been considered to image per-
fectly conducting, arc-like cracks modeled via a Dirichlet or Neumann boundary condition
(TM and TE polarization in two-dimensional electromagnetics) in the two-dimensional full-
and limited-view inverse scattering problems. It is based on the factorization of collected
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iterations a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 a

(n)
4 a

(n)
5 value of R(n)

0 0.2741 0.2267 −0.2062 −0.0276 −0.0678 0.0009 0.1203
1 0.2702 0.2274 −0.2052 −0.0277 −0.0639 0.0007 0.0935
2 0.2630 0.2274 −0.2085 −0.0281 −0.0614 0.0006 0.0388
3 0.2622 0.2275 −0.2110 −0.0282 −0.0611 0.0006 0.0344
4 0.2619 0.2276 −0.2114 −0.0282 −0.0610 0.0006 0.0337

true 0.2600 0.2300 −0.2200 −0.0300 −0.0600 0.0000

Table 2: Numerical results for Γ2.

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Initial guess
True crack

(a) Initial guess Γ
(0)
2

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
4 iterations
True crack

(b) After 4 iterations Γ
(4)
2

0 1 2 3 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

va
lu

e 
of

 d
is

cr
et

e 
le

as
t s

qu
ar

e

iteration number

(c) Value of least square (50)

Figure 15: Shape reconstruction of Γ2 via Newton method in [29].

Multi-Static Response (MSR) matrix at multi-frequencies of operation and the structure of
singular vectors associated to the nonzero singular values.

Throughout rigorous derivation of various definite integrations of Bessel function, we have
examined that subspace migration imaging functional can be represented as the combination
of Bessel function of integer order of the first kind, and this investigation presents certain
properties, limitations in TM and TE polarization cases, and a way of improvements of
imaging in TM case.

Presented various numerical simulations from synthetic data computed by rigorous so-
lution methods, it has been shown that the subspace migration imaging technique is very
fast, effective and robust with respect to noise for imaging of perfectly conducting cracks.
Moreover, it can be easily applied to the imaging of non-overlapped multiple cracks. Nev-
ertheless, some improvements are still required, e.g., when the crack is of large curvature or
highly oscillating shaped, and the choice of the normal direction on the crack and method
of implementation in TE polarization case.

It is needless to say that such results are obtained at low computational cost. So, though
they do not guarantee complete shaping of the cracks, they could be a good initial guess of a
level-set evolution or of a standard iterative algorithm [2, 4, 16, 20, 23, 29, 30, 35, 48, 50, 53].
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Finally, we mention a point which is interesting but the proof is unsolved and numerical
examples are left out in this paper: Opposite to the improvement in section 3.2.1, we intro-
duce the following multi-frequency imaging functional weighted by log of given wavenumber
kf :

IWL(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

ln(kf )
(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

. (51)

Note that if x 6= ym, then since 0 ≤ ln(k)J0(k|x− ym|)2 ≤ kJ0(k|x− ym|)2,

0 ≤ IWL(x;F ) =
1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

ln(k)J0(k|x− z|)2dk
∣

∣

∣

∣

∣

≤ 1

kF − k1

∣

∣

∣

∣

∣

M
∑

m=1

∫ kF

k1

kJ0(k|x− z|)2dk
∣

∣

∣

∣

∣

= IW(x;F, 1),

we can observe that IWL(x;F ) is an improved version of IW(x;F, 1) due to the less oscillation
property. Throughout several numerical results, we identified that this imaging functional
is also an improvement of multi-frequency subspace migration and offers better results than
(41). In order to identify the structure of (51) one must evaluate the following definite
integration of Bessel function combined with the natural logarithmic function:

∫

ln(x)J0(x)
2dx.

But in our knowledge, there is no finite representation of this integration. Hence, derivation
of this integration and examination of structure of (51) should be an interesting and remark-
able research topic. Moreover, throughout several numerical experiments, it turns out that
if a function ζ satisfies for sufficiently large x

1 < ζ(x) < x,

then following imaging functional successfully improves IW(x;F, 1)

IWF(x;F ) =
1

F

∣

∣

∣

∣

∣

∣

F
∑

f=1

Mf
∑

m=1

ζ(kf)
(

ŜD(x; kf)
∗Um(kf)

)(

ŜD(x; kf)
∗Vm(kf)

)

∣

∣

∣

∣

∣

∣

. (52)

For example, ζ(kf) = ln(kf), ζ(kf) =
√

kf , and so on. Hence, finding an optimal function ζ
will be an interesting task.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and
Mathematical Tables, 1996, Dover, New York.

39
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