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Abstract

This work addresses the inverse problem of electrocardiography from a new perspective,
by combining electrical and mechanical measurements. Our strategy relies on the defini-
tion of a model of the electromechanical contraction which is registered on ECG data but
also on measured mechanical displacements of the heart tissue typically extracted from
medical images. In this respect, we establish in this work the convergence of a sequential
estimator which combines for such coupled problems various state of the art sequential
data assimilation methods in a unified consistent and efficient framework. Indeed we ag-
gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented
Kalman Filter applied on the parameters to be identified and a POD projection of the
electrical state. Then using synthetic data we show the benefits of our approach for the
estimation of the electrical state of the ventricles along the heart beat compared with
more classical strategies which only consider an electrophysiological model with ECG
measurements. Our numerical results actually show that the mechanical measurements
improve the identifiability of the electrical problem allowing to reconstruct the electrical
state of the coupled system more precisely. Therefore, this work is intended to be a first
proof of concept, with theoretical justifications and numerical investigations, of the ad-
vantage of using available multi-modal observations for the estimation and identification
of an electromechanical model of the heart.

1. Introduction

In the last few years, more and more attention has been paid to the problem of state
and parameters identification for complex three-dimensional models used in biomedical
applications. Several works can be cited: for example in cardiac electrophysiology [11,
12, 16, 47] or in cardiac mechanics [14, 31, 63], or also in hemodynamics [6, 20, 41,
49]. The observations available in these contexts are often multiphysics since several
modalities can be used simultaneously: electrocardiograms, electrograms, MRI, CT scan,
flow measurements with ultrasound, pressure measurement with catheters, myocardium
thickness measurement with piezoelectric sensors, etc. Up to now, the multiphysics
nature of these problems has sometimes been taken into account in the direct models
but it has rarely been used in the inverse problems.
Preprint submitted to Elsevier October 6, 2018
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The first purpose of the present study is to exhibit an example where multiphysics
observations actually improve the identifiability of a coupled system. More precisely,
considering an electromechanical model of the heart, it is shown that the estimation
of an electrical parameter is improved if the electrical observation, namely the elec-
trocardiogram, is enriched with mechanical observations, namely the movement of the
myocardium. In this model, the electrophysiology acts as an input for the mechanics, but
the electromechanical feedback is neglected [17]. The coupling is therefore only one-way.
The second purpose of this article is to show that a reduced order filtering strategy is
well-suited to this class of multiphysics problems. Optimal filtering, like Kalman filter
and its nonlinear extensions, is known to be very efficient but also too expensive to be
used for large problems like those considered here. An effective strategy consists in using
this kind of methods for the parameters only, and to address the uncertainties on the
state variables through a less expensive approach. This strategy has been successfully
used for example in mechanics where the state variable was handled with a Luenberger
filter [43]. In this paper, a similar strategy is proposed to filter the electrical state vari-
ables, by exploiting the special structure of the one-way coupled problem. But due to the
structure of the equations, a Luenberger approach is not straightforward in electrophysi-
ology. A different reduced order method, based on Proper Orthogonal Decomposition is
then proposed, as it was done for cardiac mechanics in [16].

1.1. Background and related work

The goal of the inverse problem of electrocardiography, also called cardiac electrical
imaging, is to reconstruct the electrical activity of the heart from body surface potential
maps. Various strategies have been proposed since four decades. All of them assume that
measurements of the electrical potential uT are available on parts of the torso boundary
∂ΩT.

The different strategies can be distinguished by the cardiac electrical source models
they rely on. One of the first approaches was to estimate equivalent electrical dipoles
[25, 39]. Another popular approach is to estimate the heart surface potential, usually
called epicardial potential (even though pericardial potential would be more appropriate
as noted in [38]). The potential uT within the torso ΩT is assumed to be solution of the
Poisson problem: {

∇ · (D
T
· ∇uT) = 0, in ΩT

uT = ue, on ∂ΩH
0

(1)

where ∂ΩH
0 denotes the boundary of the heart and D

T
is the electrical conductivity of

the torso. The inverse problem then consists in estimating ue on ∂ΩH
0 (see e.g. [2,

13, 61]). This problem being notoriously ill-posed, various regularizations have been
proposed: Tikhonov [37], the use of temporal information [24, 48], truncated Singular
Value Decomposition or truncated Total Least Square [51].

Another approach to address the inverse problem of electrocardiography is to consider
the following equation within the heart ΩH

0 :

−∇ · ((D
i
+D

e
) · ∇ue) = ∇ · (D

i
· ∇ vm), in ΩH

0 ,

which is one of two equations of the bidomain model (see Section 2.1). Then, instead
of estimating the epicardial potential ue on the surface ∂ΩH

0 , the goal is to estimate the
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transmembrane potential vm within the heart. In [38], the two approaches were com-
pared: investigating the null-space of the inverse problem, the authors concluded that the
transmembrane potential-based formulation is more promising because it is based on a
stronger biophysical a priori. As the epicardial potential approach, the transmembrane
potential approach is ill-posed and must be regularized. In [34], four variants of L2-
Tikhonov regularization are compared. In [45], H1-Tikhonov regularization is used with
a prior taking two different homogeneous values in the myocardium depending on cardiac
phase (plateau or rest values). The inverse problem, formulated in a PDE-constrained
framework, is addressed by directly solving the optimality saddle-point problem. In [46],
the estimation of the transmembrane potential is combined with a level set technique
to efficiently identify the location of a myocardial infarction. In [62], the approach of
[45] is generalized to more general objective functions and constraints in order to iden-
tify ischemic regions (characterized by lower amplitude during the plateau phase). Two
different regularizations are investigated: the Tikhonov regularization, which is found to
overestimate ischemic regions but with good sensitivity, and the Total Variation regular-
ization which is found to underestimate ischemic regions but with high specificity.

In [54], the authors note that the usual regularization techniques have no physical
ground. Instead, they propose to regularize the inverse solution with the monodomain
equations coupled to the Fenton-Karma ionic model. The strategy proposed in the
present paper has some similarities with this approach. We rely on a full electrophysio-
logical model of the action potential coupled to the Poisson problem (1) to estimate the
solution of the heart electrical activation. This physical model is personalized on the fly
with respect to its parameters in order to adapt it to a specific patient. Furthermore,
we propose an additional step of modeling by considering the mechanical response to
the electrophysiological activation, so we are able to also integrate mechanical measure-
ments. Indeed, we believe that multimodal observations improve the identifiability of
the complete model and therefore improve the quality of the electrical and mechanical
state reconstruction. Another originality of our work is the use of a sequential data as-
similation strategy that is adapted to a coupled electromechanical evolution model. Here
we demonstrate how state-of-the-art gain filter on the electrophysiological model and on
the mechanical model can be aggregated to propose a joint gain filter for the coupled
problem.

1.2. Organization of the present work

The paper is organized as follows. In Section 2, the electromechanical model is pre-
sented. In Section 3, the observation operators – namely the measurements – are detailed
for the electrical and the mechanical variables. In Section 4, the general notions of data
assimilation, optimal filtering and reduced order filtering are reviewed. Although the
algorithms of this section are not new, their presentation differs from what is most often
done in the literature since a purely deterministic description is adopted. In Section 5,
the algorithms used for the electromechanical problem are proposed and analyzed. In
Section 6, numerical experiments based on synthetic data are presented. The main pur-
pose is to estimate a non-homogeneous parameter of the electrical model using electrical
and mechanical observations.
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2. Models

We present the models in a time and space continuous context before entering into
the discretization details and their numerical implementation. Concerning the continuous
context, we denote by an underline character any vector field of R3 and two underlines
any second-order tensor.

2.1. Electrophysiology

A widely accepted model of the macroscopic electrical activity of the heart is the so-
called bidomain model [19, 56, 59, 60]. It consists of two degenerate parabolic reaction-
diffusion PDEs which describe the dynamics of the averaged intra- and extracellular
potentials ui and ue, coupled to a system of ODEs defining an ionic model. This model
is related to the chemical dynamics of the myocardium cell membrane, in terms of the
(vector or scalar) variable w representing the distributed ion concentrations and gating
states, or a phenomenological counterpart. The model reads

am

(
cm∂tvm + Iion(vm, w)

)
−∇ · (D

i
∇ui) = amIapp, in ΩH

0 ,

am

(
cm∂tvm + Iion(vm, w)

)
+∇ · (D

e
∇ue) = amIapp, in ΩH

0 ,

∂tw + g(vm, w) = 0, in ΩH
0 ,

(2)

where vm = ui−ue represents the transmembrane potential, cm is the membrane capac-
itance per unit area, am is a constant representing the rate of membrane area per unit
volume, D

i
, D

e
are the intra- and extra-cellular conductivity tensors, Iapp is an external

volume current. In (2) the function g represents an ionic model. In this article, the
Mitchell-Schaeffer ionic model [40] is considered, with the same rescaling as in [10]. It is
a reduced complexity model capable of integrating relevant phenomenological properties
of the ventricle cell membrane:

Iion(vm, w) = − w

τin

(vm − Vmin)2(Vmax − vm)

Vmax − Vmin
+

1

τout

vm − Vmin

Vmax − Vmin
,

g(vm, w) =


w

τopen
− 1

τopen(Vmax − Vmin)2
if vm ≤ Vgate,

w

τclose
if vm > Vgate,

(3)

where Vgate, τin, τout, τopen, τclose are given constants and Vmin and Vmax are scaling
constants (typically Vmin = −80mV and Vmax = 20mV ).

On the boundary ∂ΩH
0 , we have D

i
· ∇ui · n = 0, and the heart is assumed to be

isolated, D
e
·∇ue ·n = 0, as often done in the literature [18, 50]. For well-posedness, the

condition
∫

ΩH
0
ue = 0 is enforced.
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Summing and subtracting the first two equations of (2), the system reads

am

(
cm∂tvm + Iion(vm, w)

)
−∇ · (D

i
· ∇ (ue + vm)) = amIapp, in ΩH

0 ,

−∇ · ((D
i
+D

e
) · ∇ue)−∇ · (D

i
· ∇ vm) = 0, in ΩH

0 ,

∂tw + g(vm, w) = 0, in ΩH
0 ,

(D
e
· ∇ue) · n = 0, on ∂ΩH

0 ,

(D
i
· ∇ (ue + vm)) · n = 0, on ∂ΩH

0 .

(4)

A P1 finite element discretization of the potential variables is used – see the corre-
sponding refined electrical mesh in Figure 2. This leads to a discretization space Ve

h with
N e degrees of freedom (i.e. Ve

h ' RN
e

). To each field – for instance vm – is associated its
corresponding approximation, denoted with an index h – for example vmh. Equivalently,
this approximation can be represented by its corresponding vector of degrees of freedom
written with a vector in uppercase letter – i.e. ~Vm. The finite element vector of degrees
of freedom or the discretization of linear form are then defined with vectors in straight
uppercase letter whereas the finite element matrix operator with a bold uppercase letter.
With this notation:

∀~U \ ∈ Ve
h, ~U \Me~Vm =

∫
Ω0

vmhu
\
h dΩ, ~U \Me

a
~Vm =

∫
Ω0

amcmvmhu
\
h dΩ,

∀~U \ ∈ Ve
h, ~U \Ke

i
~Vm =

∫
Ω0

D
i
· ∇ vmh · ∇u\h dΩ,

∀~U \ ∈ Ve
h,

∫
Ω0

am (Iapp − Iion(vmh, wh))u\h dΩ ' ~U \Me
I

(
~Iapp −~Iion(~Vm, ~W )

)
and if a spatial discretization of the internal variable is done by node

∀~U \ ∈ Ve
h,

∫
Ω0

g(vmh, wh)u\ dΩ ' ~U \Me~G(~Vm, ~W )

where the applied current and the ionic variables have been interpolated, allowing to
define the ionic variables at the nodes instead of the quadrature points. Finally, after
spatial discretization system (4) reads

Me
a
~̇Vm + Ke

i (~Vm + ~Ue) = Me
I(
~Iapp −~Iion(~Vm, ~W )),

(Ke
i + Ke

e)~Ue + Ke
i
~Vm = 0,

~̇W + ~G(~Vm, ~W ) = 0.

(5)

The state of this system is Xe =
(
~Vm
~W

)
while ~Ue appears as an auxiliary variable verifying

the static equilibrium (5)2 with ~Vm. This can be summarized by
Ẋe = Ae(Xe, θe),

Xe(0) = Xe
� + ζXe ,

θe = θe
� + ζθe .

(6)

where θe denotes the vector of parameters of the electrophysiology model, ζθe and ζXe

the uncertainty on the parameters and the initial condition respectively.
5



2.2. Mechanics

The heart domain is denoted by ΩH(t) at any time t. This domain is the image of a
reference configuration ΩH

0 through the solid deformation mapping φ

φ :

∣∣∣∣∣ΩH

0 × [0, T ] −→ ΩH(t),

(ξ, t) 7−→ x = ξ + y(ξ, t)

where y is the solid displacement. The solid velocity is given by v = ẏ. The deformation
gradient F is given by F (ξ, t) = ∇

ξ
φ = 1 + ∇

ξ
y, and its determinant is denoted by

J . The right Cauchy-Green deformation tensor is defined by C = F ᵀ · F , the Green-

Lagrange tensor by e = 1
2 (C−1) = 1

2

(
∇
ξ
y+(∇

ξ
y)ᵀ+(∇

ξ
y)ᵀ ·∇

ξ
y
)
, and its linearization

by ε = 1
2

(
∇
ξ
y + (∇

ξ
y)ᵀ
)
.

The mass per unit volume is denoted by ρ and the Cauchy stress tensor by σ. In the
reference configuration, the first and second Piola stress tensor are respectively defined
by T = Jσ · F−ᵀ and Σ = F−1 · T = JF−1 · σ · F−ᵀ. The constitutive law is assumed
to be a combination of a hyperelastic law of potential W , a viscous component chosen
proportional to the strain rate ė, and an active part along the fiber direction τ represented
by 3 internal variables which are ec the active strain, kc the active stiffness and τc the
associated active stress [17]:

Σ(e, ec, kc, τc) =
∂W

∂e
(e) + ηsė+ σ1D(ec, kc, τc)τ ⊗ τ , (7)

with σ1D = 1+2ec
1+2τ ·e·τ (τc + µėc), where these 3 internal variables rely on a chemically-

controlled constitutive law describing the myofibre mechanics [7, 17, 27]:{
∂tkc = −(|u|+ α |ėc|)kc + n0k0 |u|+ in ΩH

0

∂tτc = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+ in ΩH

0

(8)

with α, k0, σ0 given parameters, n0 a function of ec accounting for the Frank-Starling
effect and u directly related to the electrical activity of the heart by

u(t) = avm(t) + b

where a and b are two scaling parameters.
Concerning the boundary conditions, the external organs are modeled by visco-elastic

boundary conditions on a sub-part of the epicardium: T ·n = ksy+ csv on Γn(t). A uni-
form pressure is enforced on the left and right endocardium: σ ·nt = pv,int on Γn,i(t), i =
{1, 2}. In summary, the mechanical problem reads

∂ty = v, in ΩH
0

ρ∂tv −∇ · (T ) = 0, in ΩH
0

∂tkc = −(|u|+ α |ėc|)kc + n0k0 |u|+ , in ΩH
0

∂tτc = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+ , in ΩH
0

T · n = ksy + csv, on Γn

T · n = Jpv,iF
−ᵀ · n, on Γc,i

T · n = 0, on ∂ΩH
0\((∪iΓc,i) ∪ Γn)

(9)
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with the constitutive law (7).

Remark 1
Several improvements can be formulated on this model: other active or passive constitu-
tive laws, more sophisticated boundary conditions for the tethering of the myocardium
or hemodynamics, etc. The estimation strategy presented here can be adapted to any
of these improvements since we only refer to state-space model description to formulate
our data assimilation methods.

The system is discretized with a P1 finite element – see the corresponding mechanical
mesh in Figure 2 – with a 5% compressibility acceptance in order to avoid any numerical
locking. Concerning the fibre directions, we prescribed them on each point of the mesh
with an elevation angle varying from -60 degrees to 60 degrees through the myocardium
thickness. The discrete system is based on the variational formulation associated with
(9):

∀v\ ∈ Vv,
∫

Ω0

ρ∂tv · v\ dΩ +

∫
ΩH

0

Σ(e, ė, ec, kc, τc) : dye · v\ dΩ

+

∫
Γn

(ksy + csv) · v\ dΓ = −
∑
i

∫
Γc,i

Jpv(F
−ᵀ · n) · v\ dΓ (10)

Using the same convention as for the electrophysiological model discretization, the mass
operator is defined by

∀~V \, ~V \
ᵀ
Mm ~̇V =

∫
ΩH

0

ρ∂tvh · v
\
h dΩ,

the stress residual by

∀~V \, ~V \
ᵀ ~Km(~Y , ~V ) =

∫
ΩH

0

Σ(e
h
, ė
h
, ec,h, kc,h, τc,h) : dyeh · v

\
h dΩ,

some weighted mass operators on the boundary by

∀~V \, ~V \
ᵀ
Mm

ks,Γn
~Y =

∫
Γn

ksyh · v
\
h dΓ, ~V \

ᵀ
Mm

cs,Γn
~V =

∫
Γn

csvh · v
\
h dΓ,

and a following pressure operator by

∀~V \, ~V \
ᵀ~Nm(~Y ) =

∫
Γc,i

Jh(F−ᵀ
h
· n) · v\h dΓ.

The internal variables ec, kc, τc are gathered in a vector ıc, which is discretized at the
integration points. A vector of degrees of freedom ~ıc is associated with the discontinuous
field (ec,h, kc,h, τc,h) and the model (8) is discretized by ~̇ıc = ~Bm(~ıc, ~Y , ~V ). The complete
mechanical model is spatially discretized into

~̇Y = ~V ,

Mm ~̇V + ~Km(~Y , ~V ,~ıc) + Mm
ks,Γn

~Y + Mm
cs,Γn

~V = −
∑
i pv,i

~Nm(~Y ),

~̇ıc = ~Bm(~ıc, ~Y , ~V ).

(11)
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The state of this system is Xm =
( ~Y
~V
~ıc

)
. Denoting by θm

� the set of the parameters

characterising the mechanics, affected by an a priori uncertainty ζθm and with ζXm the a
priori uncertainty on the initial condition, the mechanical system reads

Ẋm = Am(Xm, Xe, θm),

Xm(0) = Xm
� + ζXm ,

θm = θm
� + ζθm ,

(12)

where the electrical variable Xe, solution to (5), can be seen as an input.

2.3. Electromechanical coupling

From a computational point of view, the electromechanical problem consists in solv-
ing two coupled systems. We chose to keep the two sub-systems in independent solvers.
This choice allows us to use legacy codes, to make their maintenance easier and to take
advantage of the specific numerical methods adapted to each physical compartment. The
coupling algorithm sketched in Figure 1 is handled by a “master” code which exchanges
the heart displacements and the transmembrane potential with the electrical and mecha-
nical software. In this work, it is assumed that there is no electromechanical feedback.
The transmembrane potential vm is sent to the mechanical problem. Then, the one-way
coupling is performed through the quantity u = avm + b which triggers the mechanical
contraction via a change in the active stiffness kc and in the active stress τc, see (8).

Master Elec.-Mech.Slave Elec. Solver Slave Mech. Solver

Initialization
Mech. Solver

tn

Elec. Solver
tn

Interpolation
Mech. Solver
tn+1 = tn+∆tm

Elec. Solver
tn+1 =

tn + (∆tm
∆te

)∆te

vn+1
mvn+1

m

Start Iter.Start Iter.

•
•
•

∆te
∆tmn = n+ 1

Figure 1: Master - Slave coupling

Because of the characteristics of the action potential propagation, the space and time
steps required by the electrophysiology are typically smaller than those needed by the
mechanics. To ensure accuracy at a reasonable computational cost, each sub-problem is

8



solved with its own space and time step. The data are transmitted by the master code
at some check-point in time (see Figure 1) and interpolated in space from a mesh to
another (see Figure 2). Eventually, a typical complete direct simulation of our model is
presented in Figure 3.

Figure 2: Mechanical mesh (Left, 4907 nodes, 18193 elements) and electrical mesh (center, 108112 nodes,
541994 elements) and thorax mesh (right, 229782 nodes, 1250072 elements)

The inverse problem will be addressed on the discrete formulations. The state and
the parameters are defined as the combination of the electrical and the mechanical ones

X =
(
Xe

Xm

)
, θ =

(
θe

θm
)
. Defining A(X, θ) =

(
Ae(Xe,θe)

Am(Xm,Xe,θm)

)
, this state variable follows

the dynamics

Ẋ = A(X, θ) (13)

The initial condition includes the quantities ζX and ζθ which model the uncertainties
on the initial condition and on the parameters respectively. When necessary, a trajectory
will be denoted by X[ζX ,ζθ]. This system can also be written in an augmented form by

concatenated the state and parameters in [X =
(
X
θ

)
. This augmented state satisfies

[Ẋ = [A(X). The real trajectory is assumed to be a solution of the model for a given

value of the uncertainties and is given by [X† =
(
X†

θ†

)
.

3. Measurements

3.1. Electrophysiological measurements

The best way to access the electrophysiological quantities would be to directly mea-
sure the electrophysiological potential at the heart surface. This is possible with an

9



Figure 3: Direct simulation results in long axis view – deformed mesh with interpolated transmembrane
potential from electrical refined mesh. 10



invasive procedure where a basket of electrodes is immersed in the ventricle and records
the potential close to the endocardium surface ([21] e.g.). In that case, the electrophysi-
ological measurements can be represented by

Ze(t) = Hexe + χe (14)

where the observation operator He interpolates the values at the basket electrodes and
χe gathers all the measurement errors. After spatial discretization

Ze(t) = HeXe + χe (15)

where now χe takes also into account the finite element discretization error.
To avoid such invasive measurement procedures, it is preferable to rely on electrocar-

diograms. Physiologically, the electrical potential diffuses from the heart to the rest of
the body through the pericardium. The ECG depicts the time course of standardized
potential differences on the body surface. We refer to [10] for examples of healthy and
pathological ECG obtained with the electrophysiology model used in the present paper.

The electrical diffusion within the body ΩT can be modelled by a Poisson equation
with the extracellular potential as a boundary condition on the heart surface and homo-
geneous Neumann boundary elsewhere:

∇ · (D
T
· ∇uT) = 0, in ΩT

uT = ue, on ∂ΩH
0

(D
T
· ∇uT) · n = 0, on ∂ΩT\∂ΩH

0

(16)

where the conductivity tensor is assumed to be isotropic, but non-homogeneous to ac-
count for the different conductivities of the lungs, the bones and the rest of the body
(see [10]).

After spatial discretization – see the corresponding thorax mesh in Figure 2 – the
ECG measurements denoted by Ze are still related to the electrical state variable by an
observation operator He which is the composition of the discrete diffusion operator and
a linear combination of the potential at 9 points of the body surface. Assuming that
the model is accurate enough, the actual ECG can still be represented by (14) where
χe gathers all the possible measurement errors, including the errors resulting from the
modelling of the measurement procedure. After spatial discretization, a relation of the
form (15) still holds, but with χe also accounting for the discretization error.

3.2. Mechanical measurements

The heart contraction can also be perceived from a kinematic and even a mechani-
cal perspective. In fact, the displacements of the cavity can be observed using imaging
modalities, for example Cine-MRI sequence, CT-sequence or even Tagged-MRI sequence.
Considering for example this last type of measurement and assuming adequate registra-
tion strategies allowing to extract 3D displacements of material points [55], we can assume
that displacements are measured in a large part of the ventricles, typically between two
short axis planes, the first one slightly lower than the base and the second one slightly
higher than the apex – see Figure 3. With more standard sequences, like Cine-MRI or
CT sequences, we can benefit from optical flow strategies to extract displacements most
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of the time on part of the boundary. In both cases, after discretization, we can assume
the existence of an observation operator Hm such that the measured displacements are
given by

Zm(t) = HmXm + χm,

where χm is now a vector taking into account the discretization error.

Remark 2 (Generalized observation operators)
Extracting displacements using registration techniques is still a challenge and it of-
ten leads to the measurement of an apparent motion instead of the real motion. As
a consequence, it can be more adequate to consider the structure measured in itself
more than its collection of material points. This was done typically in [44] where in
Cine-MRI and CT sequences the contours of interest are extracted and compared to
the contours produced by the simulation by the use of a discrepancy field of the form
D(ξ, t) = distSt(x(ξ, t), t) = χ(ξ, t). Hence, the closer to 0 the discrepancy is the more
information we have extracted from the images. As demonstrated in [44], this type of dis-
crepancy operator is a simple non-linear generalization of the discrepancy computed by
subtracting to the actual measurements the one produced by the use of the observation
operator defined below. This generalization has demonstrated its efficiency in several real
cases of data assimilation investigations [14, 41]. But, for the sake of simplicity, and since
this work is primarily aimed at providing a proof of concept, we limit ourselves to more
simple observation operators. Note that the use of a non-linear observation operator is,
in the end, always analyzed in the light of the corresponding linearized operator [44].

The stresses are more intricate to measure. For now, the most common measure-
ment available is an intracavity pressure obtained after invasive catheterization or re-
constructed from arterial blood pressure measurements. In this article we assume that
we can consider the intracavity pressure as a given source term in our model (9). In a
more general case, we could model the evolution of the intracavity pressures with the
help for example of a Windkessel model and then use the possibly noisy measurements
in a data assimilation context where the intracavity pressures are additional variables of
the model.

3.3. Multi-modalities measurements

Finally the observations are concatenated and therefore given and the complete form

Z =

(
Ze

Zm

)
=

(
He 0
0 Hm

)(
Xe†

Xm†

)
+

(
χe

χm

)
= HX† + χ, (17)

which for the sake of generality will not be necessarily considered as linear when it is not
mandatory.

4. Data assimilation principles

Data assimilation has become a very popular strategy to estimate a wide range of
modeling uncertainties in numerical simulations [8]. It has been initiated for environ-
mental sciences but has now reached life sciences and especially cardiology. To introduce
its main concepts in the state-space formalism, we consider a dynamical model

ẋ = A(x, ϑ, t). (18)
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In this equation, x denotes the state variable, namely, the physical quantity which the
model aims at describing during its time evolution. In this generic notation, the whole
model is essentially summarized in the dynamical operator A, which applies on the state
variable itself, and may depend on time t as well as on a set of physical parameters
denoted by ϑ. In this work, (18) corresponds to the electromechanical system defined
by (4) and (9), or – to avoid issues associated with PDEs – its discrete counterpart
(6) and (12) (but most of what is presented here can be actually generalized to infinite
dimensional systems [4]).

The initial condition x(0) and the parameter vector ϑ must be prescribed in (18).
Hence, when these quantities are unknown, they have to be estimated. In general x(0)
and ϑ are decomposed into known parts x� and ϑ� called a priori and uncertain parts
ζx and ζϑ: {

x(0) = x� + ζx,

ϑ = ϑ� + ζϑ.

When necessary, the trajectory of x will be denoted by x[ζx,ζϑ].

Let us now re-consider an augmented state [x = ( xϑ ) in order to integrate parameter
uncertainties. The corresponding augmented model is defined by

[ẋ = [A([x), and [x(0) =

(
x� + ζx

ϑ� + ζϑ

)
= [x� + [ζ. (19)

Hence the parameters and the state can be consider in the same formalism. However,
these two quantities differ in their dimension. Indeed, when the state is defined based on
a PDEs model, the dimension of the state variable after space discretization is typically
of the size of 103 to 107 degrees of freedom. By contrast, the size of the parameter
vector is generally much more limited. Even if distributed parameters are considered,
their variation should be considered smooth enough so that they can be discretized on a
coarse mesh or a subdivision of the domain into large regions. Therefore, typically less
than a hundred of parameter values need to be estimated.

The measurements presented in Section 3 can be cast in a general form: given a real
trajectory x†, the noisy observations are represented using an observation operator H
such that

z = H(x†, t) + χ(t), (20)

where z denotes the actual data field. Note that H can possibly be extended to a function
of [x and will then be denoted by [H.

4.1. Data assimilation by filtering

A common strategy in data assimilation is to minimize a criterion that balances the
confidence in the a priori value of the state and parameters and a discrepancy measure
between the given observations and the simulated ones. In the state-space formalism this
criterion is typically least-square and reads

J (ζ) =
1

2
‖[ζ‖2

P−1
�

+
1

2

∫ T

0

‖z − [H([x[[ζ])‖2M dt. (21)

where M is a metric on the observation space and P� is the inverse of a metric which
can be interpreted as an initial uncertainty covariance. The so-called 4D-Var method
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[33] consists in finding the unknown quantities [ζ by minimizing J under the constraint
of following the dynamics (18). When T goes to infinity the minimization is expected
to produce a better and better estimate. This minimization under constraint requires
the computation of an adjoint variable used to compute the gradient. Hence, a gradient
based descent algorithm requires numerous iterations of the direct and adjoint dynamics.

When we do not wish to precisely retrieve the initial error [ζ but only seek to ac-
curately approximate the state [x = (x, ϑ) “independently” of the possible initial error,
we can avoid minimization iterations by the use of sequential estimation methods. The
principle in sequential estimation methods is to introduce a modified system – denoted
by a circumflex accent – called observer whose dynamics is changed to incorporate a cor-
rection based on the measured discrepancy. The new system dynamics therefore reads

[ ˙̂x = A([x̂, t) +G(z − [H([x̂)), [x̂(0) = [x� (22)

where G is called the observer gain or filter. The ultimate objective of the observer [x̂(t)
is to converge in time to the real trajectory

[x̂(t)
t→∞−−−→ [x(t)

and the gain has to be designed regarding this objective. Two strategies are commonly
followed in this respect. First, the gain can be constructed from the optimality criterion
(21) by defining the so-called optimal observer1 – or optimal sequential estimator – with

[x̂(t) = [x[argmin J (·,t)](t).

An optimal gain is obtained by differentiating this definition with respect to the time
variable t appearing in both the trajectory [x(t) and in the criterion J (·, t). This ap-
proach is well-known in a linear framework – i.e. where all the operators are linear
– and leads to the famous Kalman-Bucy filter [4, 30, 57]. The optimal filter is then
defined from the solution of a Riccati equation. In a non-linear framework, the gain is
more intricate to compute and derives from a Hamilton-Jacobi-Bellman solution [23].
Hence, in this case, numerous works rely on approximate solutions as defined for exam-
ple by the Extended Kalman Filter (EKF) which uses the Riccati equation of the linear
Kalman filter with the tangent operator of the non-linear model and observation oper-
ators [57]. Eventually, the great advantage of the optimal sequential approach is that,
like the 4D-Var, it can be defined for every model and every observation operator. The
biggest drawback is that – even with approximate solutions – the filter is very costly to
compute, especially for large dimensional systems like the ones produced by PDEs or
their discretizations. Therefore, alternative strategies – the Luenberger observers and
the Reduced Order Optimal filtering – will be presented below.

4.2. The Extended Kalman Filter (EKF)

Even if we will have to rely on alternative strategies, it is interesting to develop the
optimal filtering equations. For the sake of simplicity, we proceed after space discretiza-
tion. The space discretized system variable is denoted by X and the space discretized

1the observer is called optimal due to the fact that it is associated with an optimal control problem.
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parameters by θ. The observer state X̂ and parameters θ̂ follow a modified version of
the dynamics: 

˙̂
X = A(X̂, θ̂) + GX(Z −H(X̂, t)),
˙̂
θ = Gθ(Z −H(X̂, t)),

X(0) = X�,

θ(0) = θ�,

(23)

where the gain G =
(

GX

Gθ

)
is a linear operator. In the augmented form with [X̂ =

(
X̂
θ̂

)
we write

[ ˙̂
X = [A(X̂) + G(Z − [H(X̂, t)).

The most classical gain is given by the Extended Kalman Filter (EKF): G = P(dH)ᵀM,
where P is obtained from the solution of a Riccati equation on the augmented form

Ṗ = (d[A)P + P (d[A)ᵀ − P(d[H)ᵀM(d[H)P. (24)

The operator P solution of the Riccati equation is called covariance since it can be linked
in a stochastic framework to the covariance of the state estimation error evolving during
the sequential estimation [57]. When decomposed on the state and parameter

P =

(
PXX PXθ

(PXθ)ᵀ Pθθ

)
this gives

GX = PXX(dXH)ᵀM, Gθ = (PXθ)ᵀ(dXH)ᵀM,

and
Ṗθθ = −(PXθ)ᵀ(dXH)ᵀM(dXH)PXθ, Pθθ(0) = P∗

ṖXθ = (dXA)PXθ + (dθA)Pθθ − PXX(dXH)ᵀM(dXH)PXθ, PXθ(0) = 0

ṖXX = (dXA)PXX + (dθA)(PXθ)ᵀ + PXX(dXA)ᵀ + PXθ(dθA)ᵀ

−PXX(dXH)ᵀM(dXH)PXθ, PXX(0) = P�
(25)

The practical algorithms – for instance time-discrete EKF or UKF for Unscented
Kalman Filter – derived from this formulation are presented in Appendix A. Even
if UKF differs from EKF, it is easy to prove that their analysis which relies on the
linearization of their respective estimation error is based on the same error system [42].
This is due to the fact that when all operators are assumed to be linear, a finite difference
operator or the tangent operator are in fact identical. This implies that we will rely on
UKF for the numerical simulation whereas, for the estimator analysis, we will keep EKF
which can easily be written in both time-continuous and time-discrete formulations.

Various sequential estimators can be defined on any dynamical system, and parameter
identification can be easily included. This is due to the underlying optimal principles
behind the estimator presented before, even if in a non-linear framework we have only
relied on approximation rules to extend the optimal filters found in the linear case.
However, these estimators have a fundamental drawback since the covariance operator P
is a full matrix of MNX+d(R). Recalling that NX is the dimension of the state variables
which discretize the PDEs field variables, the optimal estimators are intractable for
classical finite element models.
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4.3. Reduced-Order Optimal Filters

A classical first strategy for circumventing the curse of dimensionality consists in
assuming a specific reduced-order form for the covariance operators. For example, making
the ansatz

∀t, P(t) = L(t)U(t)−1L(t)ᵀ (26)

with U an invertible matrix of small size r and L an extension operator, we can show [43]
that with linear operators the solution of the Riccati equation (24) in augmented form
reduces to

L̇ = [AL and U̇ = LᵀHᵀMHL, (27)

which are now computable in practice. In a non-linear framework, the covariance dy-
namics can then be approximated as in [43] by extending (27) as

L̇ = (d [A)L and U̇ = Lᵀ(dH)ᵀM(dH)L. (28)

This observer is called Reduced-Order Extended Kalman Filter (RoEKF). The time dis-
crete version of this approach is presented in Appendix B, as well as its UKF counterpart.

4.4. Luenberger Filters

Another way to circumvent the curse of dimensionality is to built a filter which is
not based on an underlying optimal criterion. This idea was initially introduced in [35]
and therefore is often called Luenberger filter and observer. It was quickly popularized
in data assimilation [26, 58, 1] where the curse of dimensionality was very limiting for
systems coming from the discretization of PDEs. In data assimilation this strategy is
also referred to as the nudging approach because the filter is designed to “gently” correct
the dynamics. The goal of the correction is to make the estimation error [x̃ = [x† − [x̂
converge to 0. In a linear framework, the state error dynamics is

[ ˙̃x = (A− [GH)[x̃,

thus the strategy is to design a filter gain G based on the underlying physics of the
problem which makes the dynamics operator (A−GH) dissipative – strongly if possible.
Such Luenberger filters are designed for the state estimation of specific physical systems
and for specific observation operators. For instance, filters have been proposed for trans-
port equations [1], Schrödinger problems [9], for waves [15], beams, elasticity [44, 64] or
fluid-structure problems [5]. In Section 5.2, this approach will be used for the mechanical
problem.

4.5. Joint state and parameter estimation and coupled system estimation with Luenberger
filters

System (19) has been defined from the augmented state vector gathering the original
state and the parameters. After decomposition on x and ϑ, this implies that the initial
parameters now evolve in time within the observer{

˙̂x = A(x̂, ϑ̂, t) +Gx(z −H(x̂)), x̂ = x�,
˙̂
ϑ = Gϑ(z −H(x̂)), ϑ̂(0) = ϑ�,

(29)
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We have seen that the optimal filter does not make any difference between state and
parameters. However, when dealing with Luenberger observer, there is no direct way to
incorporate the parameter identification – i.e. to design Gϑ – from an already defined
Luengerger filter Gx on the state. This problem is known as adaptative filtering [3, 65].
In particular in [42, 43] a systematic strategy has been proposed to extend a possible
Luengerger observer to a joint state and parameters estimation by combining the Luen-
berger filter and an optimal filter reduced to the remaining parameter space. Taking into
account that the parameter space is of much smaller dimension, this strategy allows us
to compute a physically-based gain on the large dimensional state and an optimal-based
filter on the small parameter space. The resulting observer is proved to converge under
adequate assumptions in linear cases and can be extended to non-linear cases.

When considering multi-physics coupled systems, as the electromechanical problem
(13), the same type of problem occurs as for joint state and parameters estimation. If
optimal filters are considered, there is no difficulty to combine them. When measurements
are available, and when Luenberger filters have also been designed for the different types
of physics, it is also easy to combined them. But, as said before, optimal filters are
extremely expensive, and it is not always possible to design a Luenberger filter for all the
physical compartments of the problem. It will be justified in Section 5.3 that, as done
for the state and parameter estimation, it is possible for one-way coupled problems to
combine a Luenberger filter in one part of the system and a reduced optimal filter on the
other part.

5. Data assimilation for the electromechanical model

5.1. State estimation in electrophysiology: a reduced-order approach

The above data assimilation principles can been applied to the system modeling the
cardiac electrophysiology. Using a few measures of the electrical potential, the goal is
to reduce the uncertainties on the state and the parameters involved in the modeling of
cardiac cells. For this system, contrary to the mechanical system that will be presented in
the next section, there is no straightforward Luenberger observer. The state has therefore
to be filtered differently.

A possible strategy to overcome the curse of dimensionality induced by the optimal
filtering is to discretize the problem on a low-dimensional basis. Here, we propose to build
this basis by Proper Orthogonal Decomposition (POD). The POD basis is obtained by
keeping the most relevant modes resulting from a Principal Component Analysis of a set
of pre-computed solutions. For more details about POD, we refer for example to [32, 53]
and to [11, 16] for applications to electrophysiology.

We denote by Π ∈ MNe,NPOD(R) the matrix made of the first NPOD modes. These
modes are orthonormal with respect to a given scalar product, typically in l2(RNPOD)
or L2(ΩH). Denoting by MPOD the Gramian matrix associated with this scalar product,
the POD expansion coefficients of a vector Xe are given by α = ΠᵀMPODX

e. Defining
Xe

POD = Πα and Xe
⊥ = Xe−Πα, the state vector can be decomposed as Xe = Xe

POD+Xe
⊥.

As for the reduced filtering, a first strategy would consist in replacing the full order
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model by the reduced one: 
Ẋe

POD = Ae
POD(Xe

POD, θ
e),

Xe
POD(0) = Xe

�POD
+ ζXe

POD
,

θe = θe
� + ζθe ,

where Ae
POD is computed from the finite element matrices Me, Ke

i and the vectors ~Fe, ~G
are projected on the POD space. Then, after discretization, this (small) system can be
estimated by EKF or UKF (Appendix A). In doing so, the estimator is known to be
stable, but this approach has a drawback: if the POD basis is not rich enough to capture
the relevant phenomena, the reduced order dynamics may be a poor approximation of
the full order one. Thus we may have a consistency problem in our way of modeling
and approximating the system of interest. That is why we prefer another strategy which
consists in solving the full order dynamics, and then applying the filter to the projection
of the state vector on the POD basis. In other words, we apply RoUKF algorithm
(Appendix B) with a reduced variable made of the parameters and the components of
the augmented state vector on the POD basis:

[Xe
r =

(
α
θ

)
∈ Rr = RNPOD+d such that [Xe =

(
Xe
⊥

Xe
r

)
(30)

Contrary to the first approach, the full model is preserved. The drawback is that it
cannot be proved that the part of the error which is not filtered will not grow and then
pollute the approximation. Thus, while the first approach could suffer from a consistency
problem, the second one can suffer from a stability problem. Nevertheless, in all our test
cases, this second strategy proved to be robust and accurate.

By combining this strategy with UKF, the following algorithm is obtained to filter
the electrical state. The initial condition projector is given by

L(0) =

(
L⊥(0)
Lr(0)

)
=

 L⊥(0)[
Lα(0)
Lθ(0)

] =

 0[
1

1

] .

Then we consider an adequate UKF sampling rule composed of weights and particles (see
[29] or Appendix A), we store the associated weights (αi) in the diagonal matrix Dα

and precompute specific particles, here the so-called unitary sigma-points (i.e. with zero
mean and unit covariance). More specifically, we consider the p = NPOD + d+ 1 unitary
simplex sigma points, where NPOD +d is the reduced space dimension [28, 42]. We denote
them by (Ii)1≤i≤p and perform at each time step: a first sampling step which generates
the particles identified by a subscript [i]; a prediction step denoted by an additional
superscript − and a correction step denoted instead by an additional superscript +.

1. Sampling: 

Cn =
√

(Un)−1

X̂
[i]+
⊥n = X̂+

⊥n + L
X⊥
n · Cn · Ii, 1 ≤ i ≤ p

α̂
[i]+
n = α̂+

n + Lαn · Cᵀ
n · Ii, 1 ≤ i ≤ p

θ̂
[i]+
n = θ̂+

n + Lθn · Cᵀ
n · Ii, 1 ≤ i ≤ p

(31a)
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2. Prediction: 

X̂
[i]−
n+1 = An+1|n(X̂

[i]+
n ), 1 ≤ i ≤ p

α̂
[i]−
n+1 = ΠᵀX̂

[i]−
n+1, 1 ≤ i ≤ p

X̂
[i]−
⊥n+1 = X̂

[i]−
n+1 −Πα̂

[i]−
n+1, 1 ≤ i ≤ p

X̂−⊥n+1 =
∑p
i=1 αiX̂

[i]−
⊥n+1

α̂−n+1 =
∑p
i=1 αiα̂

[i]−
n+1

θ̂−n+1 =
∑p
i=1 αiθ̂

[i]−
n+1

(31b)

3. Correction:

L
X⊥
n+1 = [X̂

[∗]−
⊥n+1]Dα[I [∗]]ᵀ

Lαn+1 = [α̂
[∗]−
n+1]Dα[I [∗]]ᵀ

Lθn+1 = [θ̂
[∗]−
n+1]Dα[I [∗]]ᵀ

Z
[i]−
n+1 = Hn+1(X̂

[i]−
n+1)

Z−n+1 =
∑p
i=1 αiZ

[i]−
n+1

Γn+1 = [Z
[∗]−
n+1 ]Dα[I [∗]]ᵀ

Un+1 = 1+ Γᵀ
n+1W−1

n+1Γn+1

X̂+
⊥n+1 = X̂−⊥n+1 + L

X⊥
n+1Mn+1Γᵀ

n+1Mn+1(Zn+1 − Z−n+1)

α̂+
n+1 = α̂−n+1 + Lαn+1Un+1Γᵀ

n+1Mn+1(Zn+1 − Z−n+1)

θ̂+
n+1 = θ̂−n+1 + Lθn+1Un+1Γᵀ

n+1Mn+1(Zn+1 − Z−n+1)

(31c)

where [I [∗]] is the matrix concatenating the (Ii) vectors side by side, and similarly for
other vectors [42]. From the last three corrections defined in (31), the state correction
reads

X̂+
n+1 = X̂−n+1 +

(
L
X⊥
n+1 + ΠLαn+1

)
Un+1Γᵀ

n+1Mn+1(Zn+1 − Z−n+1).

5.2. State estimation in mechanics: Luenberger observers

To filter the mechanical state, a Luenberger approach is used, following [44]. Consider
the first two equations of (9) with{

∂ty = v, in ΩH
0

ρ∂tv −∇ · (T ) = 0, in ΩH
0

(32)

where the observations are given by

zm = y|ωobs
m

. (33)

We then define the estimator by
∂tŷ = v̂ + γExtωobs

m
(zm − ŷ|ωobs

m

), in ΩH
0

ρ∂tv̂ −∇ · (T̂ ) = 0, in ΩH
0

same boundary conditions as (9)

(34)
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where γ is a scalar gain and Extωobs
m

is an extension operator typically given for any
displacement field d by

dext = Extωobs
m

(d) :



∇ · (A : ε(dext)) = 0 in ΩH
0\ωobs

m

dext = d in ωobs
m

A : ε(dext)) · n = ksd
ext, on Γn

(A : ε(dext)) · n = 0, on ∂ΩH
0\Γn

(35)

with A the elasticity tensor coming from the linearization of T around 0 or a given

trajectory at a given time t. On a linearized system, it can be proved that the the state

error x̃ =
( ỹ
ṽ

)
=
( y−ŷ
v−v̂

)
between the estimator and the target tends to zero [44].

A consistent space discretization is given by
˙̂
~Y = ~̂V + γ ~Ext(Zm −Hm(X̂)),

Mm
¨̂
~Y + ~Km(~̂Y, ~̂V ) = ~Nm

(36)

which converges to the real trajectory. Note that the proof of convergence after dis-
cretization is in general difficult and should be proved here using the internal viscosity
to control the spurious high frequencies introduced by the discretization.

Finally in a state-space form, there exists a Luenberger filter Gm
L such that

˙̂
Xm = Am(X̂m) + Gm

L (Zm −Hm(X̂m)) (37)

which converges for any initial error to an observed trajectory. This Luenberger filter,
defined in the context of passive non-linear mechanics, was also shown to be robust to
the introduction of the active part in the cardiac mechanics [14, 44]. In this context, the
Luenberger filter can be considered as a filter on the reduced space of the displacement
and velocity field whereas the internal variables associated with the heart contraction
are already stable. Nevertheless, note that the filter robustness has been demonstrated
numerically but remains to be proved theoretically.

5.3. Estimation of one-way coupled systems

In this section we present an original strategy to aggregate the already defined filters of
each submodel – namely the electrophysiological model and the mechanical model. This
strategy is then justified by an estimation error analysis. To simplify the presentation
and analysis of our method, we first consider the following one way coupling system
with perfectly known parameters. Indeed, we have already seen how a joint state and
parameter estimation can be added “in a second stage” once the state estimation is
proved to be effective. Hence in practice the parameter identification will be considered
but here, we can focus on the state as the main difficult aspect of the analysis. We thus
consider {

Ẋe = Ae(Xe), Xe(0) = Xe
� + ζe

Ẋm = Am(Xm, Xe), Xm(0) = Xm
� + ζm

(38)
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and we propose to combine the Luenberger state filter on the mechanical part and the
reduced order filter of Section 5.1 on the electrical part. We also recall that the observa-
tion operator is composed of two concatenated operators He(Xe) and Hm(Xm) as defined
in (17).

We can consider a RoEKF without loss by generality at the time-continuous level.
Concerning the derivatives, we denote dm and de respectively the partial differential with
respect to Xm and Xe respectively, whereas we keep d when there is no ambiguity or
when the differential is total – i.e. with respect to all variables. From the general reduced
order formulation of the EKF presented in Section 4.3 we introduce this time

L =

(
Le

Lm

)
such that 

˙̂
Xe = Ae(X̂e) + LeU−1LᵀdHᵀM(Z −H(X̂)), X̂e(0) = Xe

�
˙̂
Xm = Am(X̂m, X̂e) + Gm

L (Zm −Hm(X̂m))

+ LmU−1LᵀdHᵀM(Z −H(X̂)), X̂m(0) = Xm
�

L̇e = (dAe(X̂e))Le, Le(0) = 1

L̇m = (dmAm(X̂m, X̂m)−Gm
L dHm(X̂m))Lm

+(deAm(X̂m, X̂e))Le Lm(0) = 0

U̇ = Lᵀ(dH)ᵀM(dH)L, U(0) = Ue
�.

(39)

Note that in the dynamics (39) the Luenberger filter only applies on the mechanical part
using only the mechanical data. However, the optimal filter strategy allows to benefit
from both the electrical and mechanical data to correct the electrophysiology dynamics.
This correction is then reverberated to the mechanical dynamics which also reads

˙̂
Xm = Am(X̂m, X̂e) + Gm

L (Zm −Hm(X̂m)) + Lm(Le)−1(
˙̂
Xe −Ae(X̂e)),

when assuming Le invertible. Note that in the particular case where Ae is linear the last
expression simplifies into

˙̂
Xm = Am(X̂m, X̂e) + Gm

L (Zm −Hm(X̂m)) + Lm

·

(Le)−1X̂e,

5.3.1. Convergence analysis

To ensure the convergence of the observer, Le is assumed to be invertible. Note
that Le follows the tangent dynamics of the electrophysiological around the estimated
trajectory of the model, starting from the initial condition Le(0) = 1. Therefore, even for
a dissipative system, we can assume Le to be invertible but potentially ill-conditioned.
Moreover the invertibility of Le can also be verified numerically in the specific case of
concern. We recall that we denote by X̃ = X†− X̂ the estimation error. The variable X̃
follows a non-linear dynamics. Then by linearization of this dynamics around the target
trajectory we get a linear dynamics satisfied by linearized estimation error denoted by
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δX̃ =
(
δX̃e

δX̃m

)
. In fact we have

˙δX̃e = −U−1Lᵀ(dH)ᵀM(dH)δX̃, δX̃e(0) = ζe

˙δX̃m = (dmA−Gm
L dmHm)δX̃m + (deA)δX̃e+

Lm(Le)−1 ˙δX̃e, δX̃m(0) = ζm.

(40)

Here we introduce the change of variables

(δX̃m, δX̃e) 7→ (δη, δµ) = (δX̃m − Lm(Le)−1δX̃e, (Le)−1δX̃e),

and obtain 
δ̇η = (dmA−Gm

L dmHm)δη, δη(0) = ζm

˙δµ = −U−1Lᵀ(dH)ᵀM(dH)L ˙δµ

−U−1Lᵀ(dmHm)ᵀMm(dmHm)δη, δX̃e(0) = ζe.

(41)

The first equation corresponds to the dynamics of the linearized error studied for the
mechanical system. Hence it converges to 0. Therefore the second term in the second
equation tends to 0. The homogeneous part of the second equation can then be proved
to converge to 0 if the following observability (42) condition is satisfied with our linear
observation operator – namely, dH = H in our particular example. Namely we expect
for all initial error δX̃e(0) that

∃(C, T ),

∫ T

0

‖H(L(Le)−1δX̃e)‖2M ≥ C‖δX̃e(0)‖2Ue
�
, (42)

which can be at least verified numerically. In the last observability condition we see that
L(Le)−1δX̃e represents the effect of a variation on δX̃e on both the electrophysiology
and the mechanics. This effect is then observed through H. The observability is thus
expected to be improved with respect to the situation where only the electrophysiology
is considered. This will be confirmed numerically.

5.3.2. Practical algorithm

The correction steps of algorithms (B.5) (for mechanics) and (31) (for electrophysi-
ology) are independent of the problem, and can thus be implemented by adopting again
a master-slave strategy. In our electromechanical simulator, this yields a two-level in-
terweaved master-slave strategy, the master handling the electromechanical problem be-
coming a slave of the sequential estimator algorithm. The tasks of the electromechanical
master are the data exchange and the correction of unknowns and parameters. The
estimation algorithm is summarized in Figure 4 for a generic time step. The first data
transmission appearing in Figure 4 is done in order to update the initial value for each
solver. This is handled by the electromechanical master.

6. Numerical illustrations

In this section, the methodology presented in Section 5.1 is applied to the electrophys-
iological problem of Section 2.1. The purpose is twofold: first, assess the reduced order
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Figure 4: Estimation algorithm: “particle solver” denotes the electromechanical solver presented in
Section 2.3

state filtering based on POD; second, illustrate the interest of estimating simultaneaously
the state and the parameters.

All the test cases of this Section are performed on the geometry of Figure 2, including
the fibers in the conductivity tensors, and with the parameters typically used to generate
healthy ECG [10]. Synthetic data are generated by applying in (4) an external current
Iapp during 25ms. Two sets of measurements are considered: (1) 12-lead ECG only or
(2) 12-lead ECG enriched with the extra-cellular potential at 8 epicardium points. The
first set of measurements is of course the easiest to obtain. The rationale for the second
set is to foresee what could be the benefit of including the measurements available from
cardiac stimulators or implantable defibrillators. For both cases, these measurements
are perturbed by an additive Gaussian white noise of standard deviation of 0.25mV
(Figure 9). Note that another option could be to include endocardial extracellular po-
tentials, if a catheter can provide them. We do not anticipate significant differences with
respect to the results obtained with epicardial measurements.

6.1. ECG based state estimation of the electrophysiological model

Before addressing parameter estimations, a first test is run to assess the reduced order
state filter, assuming that all parameters are perfectly known – for instance with τin = 0.8
and τout = 18. In other words, we study the problem of the state estimation alone applied
only tp the electrophysiological model. The POD Basis used in the reduced order state
filter (31) was obtained, in this case, from snapshots generated with these parameters,
among others. We choose to run the estimation simulation without any external current
and compare it with the target simulation starting from t = 40ms. When the estimation
starts, the state variables are therefore significantly perturbed with respect to the direct
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simulation used to generate the synthetic data. In doing so, we introduce a significant
state error in our estimation problem. Figure 5 compares the estimated mean value of
the transmembrane potential vm and the ionic variable w with the target values, while
Figure 6 compares the spatial distributions over the whole heart domain. We see that,
despite the very large initial error, the estimator succeeds quite well in compensating for
the lack of information about the initial stimulation and retrieving in time the accurate
electrical state. Indeed, it is remarkable that with a correction only coming from the
reduced state filter and applied from t = 40ms, the resulting estimated transmembrane
potential and ionic current are in good agreement with their target values. Eventually,
we point out that, as expected, adding a few measurements on the myocardium slightly
improves the result. However this type of measurement clearly requires an invasive
procedure [21].

Simulation 1 2 3 4
τin 0.8 0.8 1.2 1.2
τout 18.0 12.0 18.0 12.0

Table 1: Set of parameters used to build the POD basis.
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Figure 5: Estimation of the transmembrane potential vm (Left) and the ionic variable w (Right). The
direct simulation was performed with an external current applied during 25ms. The curves represent
space-averaged quantities.

6.2. ECG based parameter identification of the electrophysiological model

Next, we address the question of the identification of parameters τin and τout when
still only considering the electrophysiological model. The values used to generate the
synthetic data are τin = 1 and τout = 16. The initial guess or a priori in the inverse
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Figure 6: Space distribution of the transmembrane potential for the direct simulation (top) and the state
estimation with ECG measurements (bottom). There is no initial activation in the bottom simulation
in order to generate a strong error in the initial condition. The correction of the filter is applied from
t = 40 ms. Note the good agreement of both simulation from t = 55ms.
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problems is τin = 1.5, τout = 11. We point out that neither the values used to generate
the synthetic data nor the initial ones are included in the set of solutions used to generate
the POD basis. In fact, the POD basis used in the reduced filter (31) is computed from
snapshots obtained with 4 sets of parameters τin and τout – presented in table 1 – which
are in a neighbourhood of the expected value, but do not coincide with it as theoretically
justified in [16]. Before launching the estimation, we proceed to a reparametrization of

the form τin = 2θ1τ †in and τout = 2θ2τ †out, where τ †in and τ †out are given and θ1 and θ2

are the new values to be estimated. This is motivated by the fact that the parameters
should be maintained positive during the estimation and the uncertainty variance is more
naturally centered with respect to a power of 2 of initial parameter. We then compare
two strategies: (1) parameter estimation only; (2) joint state-parameter estimation. In
strategy (1), the component Xr to be filtered is limited to the parameters θ, whereas in
strategy (2), Xr includes the parameters θ and the expansion coefficient α on the POD
basis (see (30)).

Param. Target A priori Only Param. Joint State &
Value (%Error) Identification Parameter Estim.

τin 1.0 1.5(50%) 2.19(118.8%) 1.02(1.99%)
τout 16.0 11.0(31.25%) 6.96(56.48%) 15.15(5.3%)

Table 2: Target vs A priori values for τin and τout

The evolution of τin and τout is reported in Figure 7, and summarized in Table 2. In
particular we clearly see in Figure 7 the convergence of the estimator on the parameters
variable. As an additional illustration of the performance of the joint state-parameter
estimator, we plot in Figure 8 8 leads of the corresponding standard body surface ECGs
obtained with the initial guess of the parameters (curve named “ECG built from wrong
initial guess”), with the parameters obtained after a simple parameter estimation (curve
named “ECG after identification only”), with the estimated parameters obtained after
a joint state-parameter estimation (curve named “ECG after joint state and param.
estim.”). All these curves should be compared to the one named “Target ECG” which
corresponds to the measurements used for the estimation. Two comments are in order.
First, we note that the ECG obtained with the “wrong initial guess” is indeed very
different from the target. This means that our initial guess was far from the solution we
looked for. Second, we see that the joint state-parameter estimation clearly outperforms
the simple parameter estimation (as noted in a different context in [43]). This means that
only a joint state-parameter estimation allows us to produce an electrical state that is
really compatible with the observations starting from realistic initial covariance – namely
without forcing a priori the estimation to fit the data.

6.3. Full electromechanical data assimilation

In this section, we demonstrate numerically the efficiency of our complete state and
parameter estimation chain for coupled models and, more importantly, we show that the
estimation of a piecewise constant electrical parameter can be improved by enriching the
electrical observations with kinematical observations. The parameter of interest is here
τclose, which controls the plateau duration of the action potential of the cardiac cells and
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is supposed to be heterogeneous in the myocardium. In fact, τclose is assumed to take
different constant values in 4 regions: inner part of the myocardium in the left ventricle,
that will be called “endocardium” for simplicity; outer part of the myocardium in the
left ventricle, that will be called “epicardium”; a thin region between the endocardium
and the epicardium in the left ventricle, that will be called “M-cell”; and finally the right
ventricle.

Two kinds of synthetic observations are generated from a direct simulation: the
electrocardiograms and the displacements of the myocardium. Hence for this numerical
illustration, we have at our disposal a 3D field of displacement as it could ideally be
processed from a 3D tagged-MRI sequence [55]. However this is clearly an ideal situation
from the mechanical point of view. Nevertheless, we believe that this illustration offers
a clear insight into the maximum of information that could be earned with mechanical
observations from the point of view of the electrophysiology model.
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Figure 9: I lead electrocardiogram with additive Gaussian noise (left) and displacement of a mesh point
with additive Gaussian noise (right)

These quantities are perturbed by an additive 10% gaussian white noise in time and
space, proportional to the mean amplitude of the signal – see the corresponding signals in
Figure 9. This type of noise is clearly illustrative as it is reasonable to choose independent
time observations whereas the spatial distribution of the noise could certainly be more
complex than a gaussian noise. In fact, real observations can even be spatially biased.
However, this choice of noise is well adapted to evaluate a minima the robustness to noise
of an estimation method. Facing these noises we follow the recommendation made in
[14] with real data to choose a time-discretized observation norm built from the inverse
of the standard deviation δobs by

∀n,Me
n = ∆te(δe

obs)
−2
1, and ,Mm

n = ∆tm(δm
obs)

−2
1.

with δe
obs ' 10% ∗ 2.5mV = 0.25mV and δm

obs ' 10% ∗ 10mm = 1mm.

As in Section 6.2, the unknowns are reparametrized as τclose = 2ϑτ †close, where τ †close

corresponds to the initial guess. The values to be estimated and the initial guess are
gathered in Table 3.
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Region Target value Initial guess Error(%)
Endocardium 140.0 56.0 60%

M-cell 105.0 42.0 60%
Epicardium 105.0 42.0 60%

Right ventricle 120.0 48.0 60%

Table 3: Target value and initial guess of τclose in the different regions
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Figure 11: Measurements sensitivity with respect to τclose: ECG Lead I sensitivity (left) and mechanical
sensitivity (right, the four curves are superimposed)

Figure 10 shows the time evolution of τclose during the sequential estimation in each
region for electrical measurements only and for the electromechanical – ECG plus dis-
placements – available measurements. The benefit of the electromechanical measure-
ments is striking, especially in the M-cell region. Then we present the final estimated
values and the error with respect to the target values in Table 4. We also report the
final estimated values for electromechanical measurements after three heart beats where
the estimation error is even more reduced. With the electrical measurements only, we
were not able to run three heart beats, because the estimated parameters diverged too
much from physiological values. On the contrary, with electromechanical measurements,
the results keep improving along the three heart beats. Thus, it clearly appears that the
estimation is much more accurate and robust when the electromechanical measurements
are taken into account. Our data assimilation procedure results can also be evaluated in
the light of ECGs that the model can produce. Indeed, we plot in Figure 12 the reference
ECG (in dashed black), the ECG corresponding to the initial guess (in black), the ECG
obtained from the estimated values with the electrical measurement (in gray) and finally
the ECG obtained from the estimated values with the electromechanical measurements
(in dashed gray). We clearly see that the ECG corresponding to the parameter initial
guess has a completely false T-wave, whereas after the estimation procedure the ECGs
are much closer to the reference, especially with electromechanical measurements.

In order to quantitatively understand the relevance of using the mechanical observa-

30



Parameter ECG only Estim ECG+Mech Estim ECG+Mech Estim
after 1 beat after 1 beat after 3 beat
(Error %) (Error %) (Error %)

τ endo
close 121.63 (13.12%) 139.42 (0.41%) 140.9 (0.64%)
τmcell
close 70.12 (33.22%) 96.98 (7.64%) 104.23 (0.73%)

τ epi
close 94.64 (9.87%) 102.68 (2.21%) 104.28 (0.69%)
τRV

close 106.94 (10.88%) 116.26 (3.12%) 118.74 (1.05%)

Table 4: Identification of τclose in the various regions and for the different scenarios

tions to estimate an electrical parameter, a sensitivity analysis is performed. To simplify
the presentation of this last calculus, let us consider a time continuous ROEKF for the
parameter estimation. We recall that the sensitivity of the model with respect to its
parameters is directly estimated with LX in the ROEKF filter [43]. In our practical case
we recall that LX is a matrix which consists of 4 columns vectors (one for each region
of the Table 3) of dimension the number of the electrical model degrees of freedom plus
the mechanical model degrees of freedom. Therefore, the measurements sensitivity with
respect to the parameters is estimated by HLX . Note that we have already seen such
sensitivity terms in the observability condition (42) introduced in the convergence study
of our coupled estimator. In our practical case, we focus on the sensitivity se, resp. sm,
of the first lead of the ECG, resp. the mean value of the measured displacements norm
in the myocardium, with respect to τclose, and we consider normalized quantities. We
denote by (Ze)1 the first index of Ze where the first lead of the ECG is gathered. We
thus define

se(t) =
τclose�
z̄e1

(HeLe(t))1, with z̄e
1 =

1

T

∫ T

0

|(Ze(t))1| dt,

and T is typically the heart beat duration. Identically we define

sm(t) =
τclose�
z̄m

((HmLm(t))ᵀMmHmLm(t))
1
2 , with z̄m =

1

T

∫ T

0

((Zm)ᵀMmZm)
1
2 dt.

In practice when using the ROUKF the computations are very similar but time in-
tegrations is replaced by time iteration summations whereas HL(t) are replaced by
Γn+1(Lθn+1)−1 computed from (31). Our two normalized sensitivities are represented
in Figure 11 for the four different regions. In the epicardium and in the right ventricle,
the sensitivity of the electrical measurement is higher than the mechanical one, as ex-
pected. But interestingly, the electrical sensitivity is lower than the mechanical one in
the M-cell and endocardium regions. This is particularly the case here where we observe
the displacement in the whole heart. However recent advances in tagged-MRI allows to
expect that intra-myocardial kinematics will be available in the future whereas it is out of
reach for non-invasive electrical measurement. In addition, the mechanical observation
is affected by τclose over a longer time window. Hence, the mechanical measurements
therefore increase the time interval during which the observer has the opportunity to
correct the value of τclose.

In conclusion, this last example is a rich illustration of our sequential strategy, with
a state filter based on a Luenberger approach for the mechanics and on a reduced order
optimal filter for the electrophysiology and the parameters. In particular it allows us to
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numerically justify the importance of having a correction for every type of uncertainties,
especially for state uncertainties. Moreover we numerically demonstrate the interest of
taking advantage of the multi-physics nature of a problem to identify some parameters
– here τclose accounting for the plateau duration – which have an impact on the coupled
physics.

7. Conclusion

In this work, a complete framework for the joint state and parameter estimation of a
complex multi-physics problem has been presented. The strategy consists of Luenberger
observers and reduced order optimal observers. The robustness of the approach is ensured
by the fact that each component of this system is corrected by the data. In particular,
the importance of state estimation when performing a parameter identification has been
illustrated. For weakly coupled systems we have justified that our filter combination and
aggregation lead to a reduction of the estimation error. It is expected that the same
type of results could be proved for fully coupled problems in the future. This general
strategy has been applied to an electromechanical model of the heart but other coupled
systems of interest in various fields of application can be estimated with this approach.
In this framework, we have also shown that the use of mechanical data could considerably
improve the observability of the problem.

The direct electromechanical model is clearly more demanding than the direct elec-
trophysiology model. However, we have shown that the associated inverse problem which
consists in identifying its parameters from all the available data – mechanical and elec-
trical – is better defined than the pure electrophysiology inverse problem.

In conclusion, this work provides a promising new strategy to address the classical
inverse problem of electrocardiography, and suggests a new way to reduce its well-known
ill-posedness. The numerical results, based on synthetic data, are presented primarily
to validate the methodology. This validation being successfully achieved, an important
issue to be addressed in future works concerns the adequacy and accuracy of the models.
Another important perspective is the validation against real data. Using real data will
necessitate a complete patient workflow where anatomical data, ECG and Tagged-MRI
(or at least Cine-MRI based on the results of [14]) are acquired and post-processed. In
this respect, we point out that our strategy is indeed quite demanding in term of data
acquisition and processing. This must be ultimately compared – in term of estimation ro-
bustness and accuracy versus difficulty– to existing methods such as electrocardiographic
imaging (ECGI) [52] where only ECG-like measurements are necessary with special vests
recording up to 224 body-surface potentials.
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Appendix A. Time-discrete EKF and UKF filters

The time-discretization of the optimal estimator presented in Section 4.2 is based on
the principle that the optimality should be conserved at the discrete level. Let us first
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denote a stable and consistent discretization of the original model by
Xn+1 = An+1|n(Xn, θn)

X0 = X� + ζx

θ = θ� + ζϑ
(A.1)

and define a discrete-time functional

JN (ζX , ζθ) =
1

2
‖ζX‖2

P−1
�

+
1

2
‖ζθ‖2

P−1
∗

+
1

2

NT∑
k=0

‖Zk −H(Xk,[ζX ,ζθ])‖2Mk

with Mk = ∆tM when a fixed time-step is considered. This choice of discrete observation
norm Mk ensures that the discrete-time functional JN is consistent with respect to the

continuous-time functional J . The discrete-time optimal filter is then defined by X̂n =
Xn,[argmin Jn]. The discrete-time counterpart of (25) for the optimal linear estimator can
be deduced with a prediction-correction time scheme. We denote by a superscript − the
prediction computations and by a superscript + the correction computations.

1. Prediction: 

X̂−n+1 = An+1|n(X̂+
n , θ̂

+
n )

θ̂−n+1 = θ̂+
n

PXX−
n+1 = (dXAn+1|n)PXX+

n (dXAn+1|n)ᵀ

+ (dXAn+1|n)PXθ+
n (dθAn+1|n)ᵀ

+ (dθAn+1|n)(PXθ+
n )ᵀ(dXAn+1|n)ᵀ

+ (dθAn+1|n)Pθθ+n (dθAn+1|n)ᵀ

PXθ−
n+1 = (dXAn+1|n)PXθ+

n + (dθAn+1|n)Pθθ+n

Pθθ−n+1 = Pθθ+n

(A.2a)

2. Correction: 

P+
n+1 =

(
(dHn+1)ᵀMn+1(dHn+1) + (P−n+1)−1

)−1

GXn+1 = PXX+
n+1 (dXHn+1)ᵀMn+1

Gθ
n+1 = (PXθ+

n+1)ᵀ(dXHn+1)ᵀMn+1

X̂+
n+1 = X̂−n+1 + GXn+1(Zn+1 −Hn+1(X̂−n+1))

θ̂+
n+1 = θ̂−n+1 + Gθ

n+1(Zn+1 −Hn+1(X̂−n+1))

(A.2b)

This algorithm can be interpreted as prediction-correction time discretization of (25).
Another way to propose an efficient estimator is to replace at the time-discrete level

the tangent operators by a finite difference interpolation based on the computation of the
original operator on numerous sampling points. This is the case for Ensemble Kalman
Filter (EnKF) [22] or the Unscented Kalman Filter (UKF) [29]. In this article we focus
on the second one which is a discrete-time estimator based on sampling particles called
sigma-points helping to replace the tangent computations. Let us introduce the so-called
unitary sampling points I [i] and weight αi with the following rules

p∑
i=1

αiI
[i] = 0,

p∑
i=1

αiI
[i] · I [i]ᵀ = 1, (A.3)
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so that, at each time step, the sigma-points can be generated around the estimated values
based on the covariance estimation by(

X̂
[i]+
n+1

θ̂
[i]+
n+1

)
=

(
X̂+
n+1

θ̂+
n+1

)
+
√

P+
n+1I

[i], (A.4a)

then we compute the prediction{
X̂

[i]−
n+1 = An+1|n(X̂

[i]+
n , θ̂

[i]+
n ), X̂−n+1 =

∑p
i=1 αiX̂

[i]−
n+1,

θ̂
[i]−
n+1 = θ̂

[i]+
n , θ̂−n+1 =

∑p
i=1 αiθ̂

[i]−
n+1 = θ̂+

n ,
(A.4b)

and the corresponding observations

Ẑ
[i]−
n+1 = H(X̂

[i]−
n+1), Ẑ−n+1 =

p∑
i=1

αiẐ
[i]
n+1. (A.4c)

The gain is then defined by

PXZ
n+1 =

∑p
i=1 αi(X̂

[i]−
n+1 − X̂

−
n+1)(Ẑ

[i]−
n+1 − Ẑ

−
n+1)ᵀ,

PθZ
n+1 =

∑p
i=1 αi(θ̂

[i]−
n+1 − θ̂

−
n+1)(Ẑ

[i]−
n+1 − Ẑ

−
n+1)ᵀ,

PZZ
n+1 =

∑p
i=1 αi(Ẑ

[i]−
n+1 − Ẑ

−
n+1)(Ẑ

[i]−
n+1 − Ẑ

−
n+1)ᵀ +M−1

n+1,

GXn+1 = (PXZ
n+1) · (PZZ

n+1)−1,

Gθ
n+1 = (PθZ

n+1) · (PZZ
n+1)−1

(A.4d)

so that, with the covariance

[P−n+1 =

p∑
i=1

αi

(
X̂

[i]−
n+1

θ̂
[i]−
n+1

)(
X̂

[i]−
n+1

θ̂
[i]−
n+1

)ᵀ

, [PXZ

n+1 =

(
PXZ
n+1

PθZ
n+1

)
,

we still have 
X̂+
n+1 = X̂−n+1 + GXn+1(Zn+1 − Ẑ−n+1),

θ̂+
n+1 = θ̂−n+1 + Gθ

n+1(Zn+1 − Ẑ−n+1),
[P+
n+1 = [P−n+1 − [PXZ

n+1(PZZ
n+1)−1([PXZ

n+1)ᵀ.

(A.4e)

This filter has the great advantage to be much easier to compute numerically since,
contrary to EKF, the tangent operators computations are no longer required.
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Appendix B. Reduced-Order filters: time discrete RoEKF and RoUKF

The reduced-order filtering concept presented in Section 4.3 can be directly applied
to the time and space discretized versions of the equations, leading to a time-discrete
RoEKF:

1. Prediction: {
[X̂−n+1 = [An+1|n([X+

n )

Ln+1 = (d [An+1|n)Ln
(B.1a)

2. Correction: 
Un+1 = Un + Lᵀ

n+1(dHn+1)ᵀMn+1(dHn+1)Ln+1

Gn+1 = Ln+1U−1
n+1Lᵀ

n+1(dHn+1)ᵀMn+1

[X̂+
n+1 = [X̂−n+1 + Gn+1(Zn+1 −Hn+1([X̂−n+1))

(B.1b)

This algorithm has been applied in [43] for parameter identification by reducing the
uncertainty space to the parameter space. Indeed, the extension L is initially decomposed
into

L(0) =

(
LX

Lθ

)
=

(
0
1

)
.

Using the fact that the parameters dynamics is null, we can easily proved that

∀t > 0, Lθ = 1. (B.2)

Then, by direct computation, we have the continuous-time formulation of the RoEKF in
a parameter identification context

˙̂
X = A(X̂, θ̂) + LX

˙̂
θ, X̂(0) = X�,

˙̂
θ = U−1LXᵀ(dXH)ᵀM(Z −H(X̂)), θ̂(0) = θ�,

L̇X = (dXA)LX + dθA, LX(0) = 0,

U̇ = LXᵀ(dXH)ᵀM(dXH)LX , U(0) = U∗.

(B.3)

In (B.3), we see that the filter correction appears in the parameters dynamics. Then,
the correction on the parameters is reverberated to the state by the mean of LX which
can be interpreted from its proper dynamics as the sensitivity of the model with respect
to the parameters. Therefore even for a reduced order strategy on the parameters the
global filter corrects the two components of the model, namely the parameters but also
the state.

The same principles can be applied after the time discretization of the model to get

1. Prediction: 
X̂−n+1 = An+1|n(X̂+

n , θ̂
+
n )

θ̂−n+1 = θ̂+
n

LXn+1 = (dXAn+1|n)Ln + dθAn+1|n

(B.4a)
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2. Correction:
Un+1 = Un + (LXn+1)ᵀ(dXHn+1)ᵀMn+1(dXHn+1)LXn+1

X̂+
n+1 = X̂−n+1 + LXn+1(θ̂+

n+1 − θ̂
−
n+1)

θ̂+
n+1 = θ̂−n+1

+U−1
n+1(LXn+1)ᵀ(dXHn+1)ᵀMn+1(Zn+1 −Hn+1(X̂−n+1))

(B.4b)

starting from the same initial conditions.
We have presented the Reduced Order EKF and have recalled its convergence. Now

a legitimate question is to know if a reduced order strategy can be applied to other types
of approximation of the optimal filtering approach. The answer was given for the UKF
filter in [42] where a reduced order version (RoUKF) was derived. Moreover it was also
applied to a specific case where the initial uncertainty is reduced to the parametric space.
In the general context – i.e. without particularizing the state and parameter dependency
– the RoUKF can be formulated as follow.

Given an adequate sampling rule, we store the corresponding weights (αi) in the diag-
onal matrix Dα and precompute specific unitary simplex sigma-points (Ii)1≤i≤p (i.e. with
zero mean and unit covariance) with p = d+ 1 since the reduced space corresponds here
to the parametric space. The algorithm consists of the following three steps computed
recursively:

1. Sampling: 
Cn =

√
(Un)−1

X̂
[i]+
n = X̂+

n + LXn · Cᵀ
n · Ii, 1 ≤ i ≤ p

θ̂
[i]+
n = θ̂+

n + Lθn · Cᵀ
n · Ii, 1 ≤ i ≤ p

(B.5a)

2. Prediction: 

X̂
[i]−
n+1 = An+1|n(X̂

[i]+
n , θ̂

[i]+
n ), 1 ≤ i ≤ p

θ̂
[i]−
n+1 = θ̂

[i]+
n , 1 ≤ i ≤ p

X̂−n+1 =
∑p
i=1 αiX̂

[i]−
n+1

θ̂−n+1 =
∑p
i=1 αiθ̂

[i]−
n+1

(B.5b)

3. Correction: 

LXn+1 = [X̂
[∗]−
n+1 ]Dα[I [∗]]ᵀ

Lθn+1 = [θ̂
[∗]−
n+1]Dα[I [∗]]ᵀ

Z
[i]−
n+1 = Hn+1(X̂

[i]−
n+1)

Z−n+1 =
∑p
i=1 αiZ

[i]−
n+1

Γn+1 = [Z
[∗]−
n+1 ]Dα[I [∗]]ᵀ

Un+1 = 1+ Γᵀ
n+1Mn+1Γn+1

X̂+
n+1 = X̂−n+1 + LXn+1U−1

n+1Γᵀ
n+1Mn+1(Zn+1 − Z−n+1)

θ̂+
n+1 = θ̂−n+1 + Lθn+1U−1

n+1Γᵀ
n+1Mn+1(Zn+1 − Z−n+1)

(B.5c)
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where [I [∗]] is the matrix concatenating the (Ii) vectors side by side, and similarly for
other vectors.

The analysis of this estimator can also be found in [42] and relies again on the fact
that the linearized error satisfies exactly the same dynamics as the linearized error of the
RoEKF. Therefore the demonstration by linearization is directly obtained. The combined
practical simplicity and efficiency of such parameter estimator in comparison to other
adaptive observers have made this approach popular for real case parameter estimation
problems [6, 14, 36, 63].
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