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In this paper, the numerical approximation of unsteady convection–diffusion–reaction 
equations with finite difference method on a special grid is studied in the convection 
or reaction-dominated regime. We extend the method [19] which was designed for 
multidimensional steady convection–diffusion–reaction equations to unsteady problems. 
We investigate two possible different ways of combining the discretization in time and 
in space (where the sequence of the discretizations is interchanged). Discretization in time 
is performed by using Crank–Nicolson and Backward-Euler finite difference schemes, while 
for the space discretization we consider the method [19]. Numerical tests are presented to 
show good performance of the method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Numerical solution of unsteady convection–diffusion–reaction (CDR) equations is an active research area. It is well known 
that when convection or reaction dominates standard Galerkin finite element method and central finite difference scheme 
produce undesired oscillations that pollute whole domain and stabilized methods have to be utilized. Within finite difference 
approaches, upwinding is one of the earliest and simple one to deal with convection-dominated problems. In the last few 
decades, essentially non-oscillatory (ENO) [17] and weighted ENO (WENO) [18] schemes have been developed in the context 
of hyperbolic partial differential equations. These schemes use a wider stencil than the simple upwinding. A comprehensive 
comparison of these methods was studied in [16]. Within finite element methods, one of the early attempts is streamline-
upwind Petrov–Galerkin (SUPG) method which is first proposed in [6]. It is widely employed for many different applications, 
however, possible drawbacks of the method are its complexity and the presence of a stabilizing parameter that needs to 
be properly tuned for each problem. A more recent approach is the residual-free bubble method (RFB) which is based on 
enriching the finite element space. It is first studied in [2] to find a suitable value of stabilizing parameter for SUPG method. 
The main problem with this method is that it requires the solution of a local PDE. Inexpensive approximate solutions to this 
local problem were designed by several researchers [3–5,7,8]. Stabilized finite element methods for unsteady convection–
diffusion–reaction equations have been studied by several researchers. We refer to [11,14,15] for different techniques. It is 
worth noting that recently adaptive methods were introduced for unsteady convection–diffusion–reaction equations [9,10].

In connection with the RFB method and based on the idea of the augmented space, Link-Cutting Bubble (LCB) strategy 
has been proposed (see [3]). It has been designed for one-dimensional convection–diffusion–reaction equations, especially to 
treat the most interesting cases of convection-dominated or reaction-dominated. It has been extended to one-dimensional 
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unsteady convection–diffusion–reaction equation in [1]. Robustness and accuracy of LCB strategy in all regimes allow to 
employ two types of partial differentiation of different nature; method of lines and horizontal method of lines (Rothe method).

We have proposed a new finite difference method for multidimensional steady convection–diffusion–reaction equations 
which adapts very well to all regimes in [19]. There, we did a simple splitting of convection–diffusion–reaction equations 
into one-dimensional convection–diffusion–reaction equations. The same splitting was done in [13]. We can consider the 
method [19] as an unusual extension of LCB strategy to higher dimensions. We refer to [19] for more information. In this 
paper, we will extend this approach to multidimensional unsteady convection–diffusion–reaction equations. We will apply 
both the method of lines and the horizontal method of lines.

The outline of the paper is as follows. In Section 2, stabilization technique for the steady problem [19] is given. In 
Section 3, we extend the method to unsteady convection–diffusion–reaction equations. Numerical tests are illustrated in 
Section 4 to show the performance of the method. Finally, concluding remarks.

2. Stabilization technique for the steady problem [19]

We start with considering the following one dimensional linear elliptic convection–diffusion–reaction problem on unit 
interval I = (0, 1){

Lu = −εu′′ + βu′ + σu = f (x) on I,

u(0) = u(1) = 0,
(1)

under the assumptions that the diffusion coefficient ε is positive constant, convection field β and reaction field σ are 
non-negative constants. Th = {Kk} denotes the decomposition of I into subintervals and hk = xk −xk−1 size of the interval Kk , 
where Kk = (xk−1, xk), k = 1, . . . , N . Finite difference correspondence of Galerkin finite element method with piecewise 
linear basis functions on non-uniform mesh for problem (1) is as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ε
u j+1

h2
+ ε

u j

h2
+ ε

u j

h1
− ε

u j−1

h1
+ β

u j+1 − u j−1

2
+ σ

h2u j+1 + 2h2u j + 2h1u j + h1u j−1

6

= h2 f j+1 + 2h2 f j + 2h1 f j + h1 f j−1

6
,

u0 = uN = 0, j = 2, . . . , N − 1,

(2)

where h1 = x j − x j−1 and h2 = x j+1 − x j . Our aim is to mimic the stabilizing effect of LCB strategy [3]. To do this, we choose 
two sub-grid nodes say z1 and z2 in a typical element (x1, x2) which are defined as follows:

z1 − x1 = min

{
h − 2(x2 − z2),

3β + √
9β2 + 24εσ

2σ

}
,

x2 − z2 = min

{
h

3
,
−3β + √

9β2 + 24εσ

2σ

}
(3)

where h = x2 − x1. Once the sub-grid nodes are constructed, the finite difference scheme (2) gives the same result with LCB 
strategy on modified discretization. In two space dimensions, we consider the following constant coefficient linear elliptic 
convection–diffusion–reaction problem in a polygonal domain Ω;⎧⎪⎨

⎪⎩
−ε

(
∂2u

∂x2
+ ∂2u

∂ y2

)
+ b.

(
∂u

∂x
,
∂u

∂ y

)
+ σu = f (x, y) on Ω,

u(x, y) = g on ∂Ω

(4)

under the assumptions that ε > 0, b = (b1, b2)
T �= 0 and σ ≥ 0. Eq. (4) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε
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|b1| + |b2|u − ε

(
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= |b1|
|b1| + |b2| f (x, y) + |b2|

|b1| + |b2| f (x, y) on Ω,

u(x, y) = g on ∂Ω.

(5)

Next, we split Eq. (5) into two separate one dimensional convection–diffusion–reaction equations as in [13],⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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(
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2
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(
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)
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f (x, y).

(6)
dy dy |b1| + |b2| |b1| + |b2|
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Now, we apply the finite difference scheme (2) to the equations in (6) and sum up these discretizations to get the following 
finite difference approximation for Eq. (4);

−ε
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n2
+ ε

ui, j
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2
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6
− ε
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ui, j
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2
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6

= |b1|
|b1| + |b2|
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6
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m2 f i, j+1 + 2m2 f i, j + 2m1 f i, j + m1 f i, j−1

6
(7)

where ui, j ≈ u(xi, y j), n2 = xi+1 − xi , n1 = xi − xi−1, m2 = yi+1 − yi , m1 = yi − yi−1, i = 2, N − 1 and j = 2, M − 1.
As for the three dimensional convection–diffusion–reaction problem, we consider the following equation;⎧⎪⎨

⎪⎩
−ε

(
∂2u

∂x2
+ ∂2u

∂ y2
+ ∂2u

∂z2

)
+ b.

(
∂u
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,
∂u

∂ y
,
∂u

∂z

)
+ σu = f (x, y, z) on Ω,

u(x, y, z) = g on ∂Ω

(8)

where ε > 0, b = (b1, b2, b3)
T �= 0 and σ ≥ 0. Doing the same arrangement we did for Eq. (4), to Eq. (8) we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(9)

which can be considered as a sum of separate three one dimensional convection–diffusion–reaction equations,
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)
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)
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(
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)
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)
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|b3|
|b1| + |b2| + |b3|u = |b3|

|b1| + |b2| + |b3| f (x, y, z). (10)

Applying the finite difference scheme (2) to the equations in (10) and summing up these three discretizations we get the 
following approximate form for the problem (8);
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Fig. 1. Five point stencil (left) and its modified version (right) in 2D .

= |b1|
|b1| + |b2| + |b3|

n2 f i+1, j,k + 2n2 f i, j,k + 2n1 f i, j,k + n1 f i−1, j,k

6

+ |b2|
|b1| + |b2| + |b3|

m2 f i, j+1,k + 2m2 f i, j,k + 2m1 f i, j,k + m1 f i, j−1,k

6

+ |b3|
|b1| + |b2| + |b3|

k2 f i, j,k+1 + 2k2 f i, j,k + 2k1 f i, j,k + k1 f i, j,k−1

6

where i = 2, . . . , N − 1, j = 2, . . . , M − 1, k = 2, . . . , K − 1, n2 = xi+1 − xi , n1 = xi − xi−1, m2 = yi+1 − yi , m1 = yi − yi−1, 
k2 = zi+1 − zi , k1 = zi − zi−1 and ui, j,k ≈ u(xi, y j, zk).

2.1. Derivation of the finite difference schemes on non-uniform mesh with Taylor series expansion

We have provided a simple way to approximate the derivatives and function from Taylor series expansion on non-uniform 
mesh in [19]. Omitting the details, approximations are as follow;

u′(x) ≈ u j+1 − u j−1

h1 + h2
, (11)

u′′(x) ≈
(

u j+1

h2
− u j

h2
− u j

h1
+ u j−1

h1

)(
2

h1 + h2

)
, (12)

u(x) ≈ h2u j+1 + h1u j−1

h1 + h2
, (13)

u(x) ≈ h2u j+1 + 2h2u j + 2h1u j + h1u j−1

3(h1 + h2)
. (14)

Approximating u′′ by (12), u′ by (11), u and source function f by (14) for the one dimensional convection–diffusion–reaction 
equation (1) and multiplying both sides of the approximation with (h1 + h2)/2 we get the finite difference approximation 
(2) which is second order accurate, in the sense O (h2

1) + O (h2
2). At this point, we have two alternatives to approximate 

the multidimensional convection–diffusion–reaction equations. For the first case, we approximate the terms in the CDR 
equations by (11), (12) and (14) for which we obtain a first order accurate finite difference scheme. For the second case, we 
approximate with splitting the multidimensional CDR equation into one dimensional CDR equations, then we approximate 
the one dimensional CDR equations by (4), separately and sum up the approximations as I did. With the second approach, 
we get a second order accurate scheme, in the sense O (n2

1) + O (n2
2) + O (m2

1) + O (m2
2) where n2 = xi+1 − xi , n1 = xi − xi−1, 

m2 = yi+1 − yi , m1 = yi − yi−1 for two space dimensional CDR equation. Under the assumption n1 + n2 = m1 + m2 on 
non-uniform grid, one can get the second approximation from the first approach.

2.2. Discretization of the domain

Discretization of the domain consists of two steps. First we do an initial discretization that can be structured or un-
structured. A five point stencil of the initial discretization is presented in Fig. 1 (left) in two space dimensions. Second 
(augmented) stencil is obtained by adding 24 sub-grid nodes into the initial stencil as shown in Fig. 1 (right). The x-
coordinates of the sub-grid nodes are calculated using (3) with the problem parameters of the first equation in (6) either in 
the interval (xi−1, j, xi, j) or in (xi, j, xi+1, j) according to their projection onto the x-axis. Similarly, y-coordinates are deter-
mined by applying the same procedure to the second equation in (6) either in the interval (yi, j−1, yi, j) or in (yi, j, yi, j+1)

according to their projection onto the y-axis. In three space dimensions, 124 sub-grid nodes are added to get augmented 
stencil and locations of the sub-grid nodes are determined by applying the same procedure using the problem parameters 
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of equations in (10). Note that since everything is done on stencil level, the method can be applied on complex domains. 
We refer to [19] to see example in complex domain.

In particular, we denote the number of grid points of initial discretization in x, y and z-directions in a rectangular domain 
by N , M and K , respectively. Points in the initial discretization are denoted by (xi, j, yi, j) in 2D and by (xi, j,k, yi, j,k, zi, j,k) in 
3D where i = 1, .., N , j = 1, . . . , M , k = 1, . . . , K . We note that the modified discretization consists of (3N − 2) × (3M − 2)

points in 2D and (3N − 2) × (3M − 2) × (3K − 2) in 3D . Algorithm 1 summarizes the procedure in 2D and Algorithm 2
in 3D .

Data: (xi, j, yi, j) for i = 1, . . . , N , j = 1, . . . , M and the problem parameters.
Result: (x′

i, j, y
′
i, j) where i = 1, . . . , 3N − 2 and j = 1, . . . , 3M − 2.

Step 1: Do an initial discretization that can be structured or unstructured.
Step 2: The derivation of x′

i, j ,

Use the problem parameters of the first equation in (6): ε = ε , β = |b1| and σ = σ |b1|
|b1|+|b2| ;

for j = 1 to 3M − 2 do ;
for i = 1 to N − 1 do ;
Using Eq. (3), calculate z1 and z2 in (xi+1, j, xi, j) to get

x′
3i, j = z2 x′

3i−1, j = z1 x′
3i−2, j = xi, j x′

3N−2, j = xN, j .

Step 3: The derivation of y′
i, j ;

Use the problem parameters of the second equation in (6): ε = ε , β = |b2| and σ = σ |b2|
|b1|+|b2| ;

for j = 1 to 3N − 2 do ;
for i = 1 to M − 1 do ;
Using Eq. (3), calculate z1 and z2 in (y j,i+1, y j,i) to get

y′
j,3i = z2 y′

j,3i−1 = z1 y′
j,3i−2 = y j,i y′

j,3M−2 = y j,M .

Algorithm 1: Discretization of the domain in 2D in a rectangular domain.

Fig. 2 illustrates an initial discretization and augmented discretizations in 2D obtained with Algorithm 1. We first 
set ε = 1, (b1, b2) = (cos 45◦, sin 45◦), σ = 10−6 (which corresponds to diffusion-dominated case), then we set ε = 0.01, 
(b1, b2) = (cos 45◦, sin 45◦), σ = 10−6 (which corresponds to convection-dominated case), finally we set ε = 0.01, (b1, b2) =
(cos 45◦, sin 45◦), σ = 10 (which corresponds to reaction-dominated case) to show samples of discretizations in three dif-
ferent regimes.

Note that the problem is first solved on augmented grid and then the sub-grid nodes are excluded to simulate the 
numerical results.

3. The unsteady problem

LCB strategy has been extended to unsteady convection–diffusion–reaction equations in one dimension in [1]. Two dif-
ferent types of partial differentiation of different nature; the method of lines and the horizontal method of lines were 
employed. The method of lines was referred as FEs−FDt and the horizontal method of lines was referred as FDt−FEs. Unlike 
[1], we will do finite difference discretization in space and we will refer to the method of lines as FDs−FDt and to the hori-
zontal method of lines as FDt−FDs. We focus on the Crank–Nicolson and the Backward-Euler (one step BDF formula) finite 
difference schemes for the time integration. We will refer to the Crank–Nicolson scheme as CN and to the Backward-Euler 
scheme as BE. For example, CN−FDs−FDt means that the method of line is used with the Crank–Nicolson time discretization.

Let Ω ⊂ Rd , d ∈ {2, 3} be a polygonal bounded domain and let [0, T ] be a finite time interval. The unsteady convection–
diffusion–reaction equation which will be considered in this paper is as follows:

∂t u − ε�u + b.∇u + σu = f in (0, T ] × Ω,

u = g on ∂Ω,

u(0, X) = u0(X) in Ω (15)

where ε > 0, σ ≥ 0 and b �= 0.

3.1. First approach: FDt−FDs

Consider a uniform partition {0 = t0 < t1 < . . . < tN = T } of the time interval [0, T ] with time-step size �t . Then, time 
discretization of problem (15) by the Crank–Nicolson scheme gives
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Data: (xi, j,k, yi, j,k, zi, j,k) for i = 1, . . . , N , j = 1, . . . , M , k = 1, . . . , K and the problem parameters.
Result: (x′

i, j,k, y
′
i, j,k, z

′
i, j,k) for i = 1, . . . , 3N − 2, j = 1, . . . , 3M − 2 and k = 1, . . . , 3K − 2.

Step 1: Do an initial discretization that can be structured or unstructured.
Step 2: The derivation of x′

i, j,k ,

Use the problem parameters of the first equation in (10): ε = ε , β = |b1|, σ = σ |b1|
|b1|+|b2|+|b3| and use Eq. (3) to 

calculate z1, z2 in (xi+1, j,k, xi, j,k) then,
for k = 1 to 3K − 2 do ;
for j = 1 to 3M − 2 do ;
for i = 1 to N − 1 do ;

x′
3i, j,k = z2 x′

3i−1, j,k = z1 x′
3i−2, j,k = xi, j x′

3N−2, j,k = xN, j,k.

Step 3: The derivation of y′
i, j,k ,

Use the problem parameters of the second equation in (10): ε = ε , β = |b2|, σ = σ |b2|
|b1|+|b2|+|b3| and use Eq. (3) to 

calculate z1, z2 in (y j,i+1,k, y j,i,k) then,
for k = 1 to 3K − 2 do ;
for j = 1 to 3N − 2 do ;
for i = 1 to M − 1 do ;

y′
j,3i,k = z2 y′

j,3i−1,k = z1 y′
j,3i−2,k = y j,i,k y′

j,3M−2,k = y j,M,k.

Step 4: The derivation of z′
j,i,k ,

Use the problem parameters of the third equation in (10): ε = ε , β = |b3|, σ = σ |b3|
|b1|+|b2|+|b3| and use Eq. (3) to 

calculate z1, z2 in (z j,i,k+1, z j,i,k) then,
for j = 1 to 3N − 2 do ;
for i = 1 to 3M − 2 do ;
for k = 1 to K − 1 do ;

z′
j,i,3k = z2 z′

j,i,3k−1 = z1 z′
j,i,3k−2 = y j,i z′

j,i,3K−2 = y j,i,K .

Algorithm 2: Discretization of the domain in 3D in a rectangular domain.

Fig. 2. Initial discretization and modified discretizations in three different regimes for N = M = 4.
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Fig. 3. Initial discretization of an unstructured grid.

−ε�t

2
�un+1 + �t

2
b.∇un+1 +

(
σ�t

2
+ 1

)
un+1 = ε�t

2
�un − �t

2
b.∇un −

(
σ�t

2
− 1

)
un + �t

2

(
f n+1 + f n),

n = 0,1, . . . , N − 1, u0 = u0 (16)

which might be regarded as a family of steady advection–diffusion–reaction problems. Since ε�t/2, �t
2 b and (σ�t/2 + 1)

play the role of diffusion, advection and reaction coefficients, respectively, discretization of the domain is done by means of 
the algorithms given in Section 2 using these modified parameters. Time discretization of Eq. (15) with the Backward-Euler 
scheme gives

−ε�t�un+1 + �tb.∇un+1 + (�tσ + 1)un+1 = un + �t f n,

n = 0,1, . . . , N − 1, u0 = u0. (17)

In this approach, ε�t , b�t and (σ�t + 1) play the role of diffusion, advection and reaction coefficients, respectively. Hence, 
these modified problem parameters are used to calculate the sub-grid nodes. Once the time discretization is carried out, for 
each n = 0, 1, 2, . . . , N −1 we discretize problems (16) and (17) in space by means of the finite difference schemes reviewed 
in Section 2.

3.2. Second approach: FDs−FDt

In this approach, we first discretize in space by means of the finite difference scheme reviewed in Section 2. Discretiza-
tion of the domain is done with the original problem parameters as in Section 2. Once the space discretization is carried 
out, we use the desired time discretization to get full discretized version of problem (15).

Observe that the final results of FDt−FDs and FDs−FDt discretizations are algebraically equivalent. The difference occurs 
in problem parameters that are used to calculate the sub-grid nodes.

4. Numerical tests

In this section, we report some numerical experiments to illustrate the performance of the present algorithm. N repre-
sents the number of grid points in x, y and z-directions throughout this section. We apply all tests in unit square in 2D and 
in unit cube in 3D . The domains are discretized by considering both structured and unstructured grids. The unstructured 
grids are obtained by randomly perturbing the interior nodes of structured grids of initial discretization with coordinates 
(xi, yi) as follows:

x′′
i = xi − h1 rand()/2, y′′

i = yi − h2 rand()/2 (18)

where (x′′
i , y′′

i ) represents the corresponding coordinates of the unstructured grid, h1 = xi+1 − xi , h2 = yi+1 − yi and rand()

is a function that returns random numbers uniformly distributed in the interval [0, 1]. Fig. 3 illustrates an example obtained 
with this procedure. In order to take cut planes parallel to xy-plane in 3D , I did not apply the perturbation in z-direction. 
MGMRES iterative solver was used to solve the linear system of equations and I did not experience any problems.

4.1. Test 1

The first example is the advection–diffusion–reaction equation where the reaction field is negligible (σ = 10−6). The 
diffusion coefficient is set to ε = 10−4, the convective field to b = (1, 0). There are no existing external forces acting on the 
system. We take a smooth initial condition which is defined as follows:

u(0, x, y) = −10e−(x2+y2) log 2/0.09 sin (3x) sin (πx) cos

(
π + y

)
cos

(
π y

)
. (19)
2 2
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Fig. 4. Test 1, convergence rates in L2, H1 and L∞ norms obtained with Crank–Nicolson time discretization.

The Crank–Nicolson and the Backward Euler time discretizations combined with FDs−FDt and FDt−FDs were employed. The 
exact solution of this problem was obtained with standard Galerkin method with 320 000 triangular elements and with time 
step �t = 0.0001. Taking h = 0.1, 0.05, 0.025, 0.0125 uniform grid sizes in x and y directions, we found errors. Figs. 4, 5
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Fig. 5. Test 1, convergence rates in L2, H1 and L∞ norms obtained with Backward Euler time discretization.

show convergence rates in L2, H1 and L∞ norms for different CFL numbers at time t = 0.2. Our first observation is that, 
CN−FDt−FDs approach performs better at CFL = 0.25 in L2 norm (second graph in Fig. 4) and getting worse as CFL number 
becomes smaller. This behavior of the method is consistent with characteristic feature of the LCB method (see [1]). Moreover, 
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Fig. 6. Test 2, initial condition.

Fig. 7. Test 2, numerical solutions at time t = 0.6 obtained with Crank–Nicolson scheme combined with FDs−FDt and FDt−FDs approaches.

we can infer from Fig. 4 that there are no significant differences between CN−FDs−FDt and CN−FDt−FDs approaches in H1
and L∞ norms. As for the Backward Euler time discretization, we see from Fig. 5 that the same behavior observed for 
CN−FDt−FDs approach can be seen for BE−FDt−FDs approach in L2 norm for large h. Again, there exists no considerable 
difference between BE−FDs−FDt and BE−FDt−FDs approaches in H1 and L∞ norms.

4.2. Test 2

In this test problem, we consider a moving cylinder which is subject to nonignorable reaction field. The problem data 
is: ε = 10−8, (b1, b2) = (cosπ/4, sinπ/4), σ = 10 and f = 0. The initial condition is represented in Fig. 6 and defined as 
follows:

u(0; x, y) =
{

1000 if
√

(x − 0.15)2 + (y − 0.15)2 ≤ 0.1,

0 otherwise.
(20)

We employ both Crank–Nicolson and Backward Euler time discretizations combined with FDs−FDt and FDt−FDs approaches. 
121 × 121 uniform grid points are used for initial discretization. Homogeneous Dirichlet boundary condition is imposed 
everywhere on the boundary. The difficulty of this problem is that two processes take place at the same time. As time 
evolves, the cylinder moves in the direction of angle of the wind and height of the cylinder decreases because of the 
non-ignorable reaction field. It is very difficult to design numerical methods that are able to cope with these two processes, 
simultaneously. Fig. 7 illustrates numerical solutions obtained with Crank–Nicolson scheme at time t = 0.6 for CFL = 0.25
for which 205 time steps are used and for CFL = 0.1 for which 5128 time steps are used. Fig. 8 shows results obtained 
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Fig. 8. Test 2, numerical solutions at time t = 0.6 obtained with Backward Euler combined with FDs−FDt and FDt−FDs approaches.

with Backward Euler scheme for the same parameters. Oscillations near layer regions occurred in the solutions obtained 
with Crank–Nicolson scheme diminish as CFL number gets smaller. However, FDt−FDs approach leaves some pollutions at 
the back of the moving body for both time discretizations.

4.3. Test 3

We consider an experiment which is studied in [10]. The problem data is: ε = 10−6, b = (1, 0), σ = 0, f = 1, u0 = 0
and homogeneous Dirichlet boundary condition is imposed everywhere on the boundary. Numerical approximations are 
obtained with time step �t = 0.001. 21 × 21 nodes are used for initial discretization. The solution to this problem has an 
exponential boundary layer at the outflow boundary x = 1 and characteristic or parabolic boundary layers at the tangential 
boundaries y = 0 and y = 1. The solutions obtained with CN−FDs−FDt and CN−FDt−FDs approaches are presented in Fig. 9
on structured grid and in Fig. 10 on unstructured grid at time t = 0.6, 1.2. Comparing them with [10, Fig. 3] we see that 
the results are very similar on both structured and unstructured grids for both CN−FDs−FDt and CN−FDt−FDs approaches.

4.4. Test 4

In this test problem we consider non-uniform velocity which was studied in [10]. The problem data is: ε = 10−6, b =
(y, −x), σ = 0, f = 1, u0 = 0. Time evolves with time step �t = 0.001. Boundary conditions are: u = 0 at the boundaries 
x = 1, y = 0, y = 1 and u = 1 at x = 0. 81 × 81 nodes are used. In this example, a front is generated at the side x = 0 and 
as time evolves, it moves through the domain, thereby rotating around the origin, a curved interior layer is created. Fig. 11
illustrates numerical solutions computed with CN−FDs−FDt and CN−FDt−FDs approaches at times t = 0.6, 1.2 on uniform 
grid and Fig. 12 represents the corresponding contour plots. Moreover, Figs. 13, 14 illustrate the results on unstructured 
grids for the same problem parameters. The numerical solutions in Figs. 11–14 show that the results are consistent with the 
physical configuration of the problem on both structured and unstructured grids. However, CN−FDt−FDs approach produces 
small undesired oscillations near layer regions which makes CN−FDs−FDt approach better.

4.5. Test 5

This is a benchmark problem which considers a configuration of three geometrical bodies that rotate clockwise. It was 
studied in [11,12,16]. We consider the case N = 129 and �t = 0.001 to be comparable with other methods that appeared in 
literature. The solid body is modeled with a scalar density function that has three shapes; a slotted cylinder, a cone and a 
sinusoidal hump. The problem data is: ε = 10−6, b = (y − 0.5, 0.5 − x), σ = 0 and f = 0. Homogeneous Dirichlet boundary 
condition is imposed everywhere on the boundary. The initial condition, consisting of three disjoint bodies, is represented in 
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Fig. 9. Test 3, numerical solutions at time t = 0.6 (left column) and at time t = 1.2 (right column) obtained with structured grid.

Fig. 10. Test 3, numerical solutions at time t = 0.6 (left column) and at time t = 1.2 (right column) obtained with unstructured grid.
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Fig. 11. Test 4 numerical solutions obtained with structured grid.

Fig. 12. Test 4, corresponding contour plots of solutions in Fig. 11.
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Fig. 13. Test 4, numerical solutions obtained with unstructured grid.

Fig. 14. Test 2, corresponding contour plots of solutions in Fig. 13.
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Fig. 15. Test 5, elevation and contour plots of initial condition.

Fig. 15 and it is zero outside the three bodies. More precisely, for a given (x0, y0), let r(x, y) = √
(x − x0)2 + (y − y0)2/0.15. 

The center of the slotted cylinder is (0.5, 0.75) and it is defined by

u(0; x, y) =
{

1 if r(x, y) ≤ 1, |x − x0| ≥ 0.0225 or y ≥ 0.85,

0 otherwise.
(21)

The hump is given by (x0, y0) = (0.25, 0.5) and

u(0; x, y) = 1

4

(
1 + cos

(
π min

{
r(x, y),1

}))
.

The cone on lower part of the domain is described by (x0, y0) = (0.5, 0.25) and

u(0; x, y) = 1 − r(x, y).

Numerical solutions and corresponding contour plots obtained with CN−FDs−FDt and CN−FDt−FDs approaches on uniform 
grid at time t = 2π are presented in Fig. 16. Furthermore, Fig. 17 illustrates the results obtained with the same approaches 
and the same problem parameters on unstructured grid. We can say from Fig. 16 and Fig. 17 that there exists no significant 
difference between two approaches on both structured and unstructured grids for this test problem.

4.6. Test 6

Our final test problem is devoted for three space dimensional convection–diffusion–reaction equation in unit cube. The 
problem data is: ε = 10−5, (b1, b2, b3) = (y − 0.5, 0.5 − x, 1), σ = 0 and f = 0. Boundary conditions are: u = 1 at the 
boundary (x, y, z = 0) and u = 0 on the rest of the boundary. Initial condition is set to u0 = 0. Time evolves with time 
step �t = 0.001. 41 × 41 × 41 nodes are used for initial discretization. We take final time T = 1. In this example, a front is 
generated at the bottom of the unit cube and as time advances, it rotates clockwise and moves in the z-direction. Fig. 18
represents numerical solutions at the cut planes z = 0.2, z = 0.4 and z = 0.6 obtained with CN−FDt−FDs approach on 
structured grid. Results for CN−FDs−FDt approach are presented in Fig. 19 on structured grid. Moreover, results derived by 
unstructured grids are illustrated in Fig. 20 for CN−FDt−FDs approach and in Fig. 21 for CN−FDs−FDt approach. We can say 
that numerical results are consistent with physical configuration of the problem for both approaches both on structured 
and on unstructured grids. However, small oscillations in the vicinity of internal layers can be observed in the results of 
CN−FDt−FDs approach.

5. Conclusion

In this paper, we have addressed the numerical solution of multidimensional unsteady convection–diffusion–reaction 
problems with finite difference method on a special grid. The finite difference scheme considered for space discretization 
is based on [19]. For time discretizations we used Crank–Nicolson and Backward-Euler schemes. Two types of partial dif-
ferentiation; method of lines and horizontal method of lines were employed. In the numerical tests, we did experiments 
in 2D and 3D on both structured and unstructured grids and obtained very good results. As we have seen, the method 
preserves its quality under non-ignorable reaction field. We have observed that FDt−FDs approach (Rothe method) exhibits 
a similar convergence in L2 norm with LCB method for unsteady problem (see [1]). Unlike the results in [1], the best results 
with the smallest spurious oscillations, have been obtained discretizing first the space variable (method of lines). This is 
not a contradiction because non-uniform advection which may change superiority of Rothe method with respect to method
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Fig. 16. Test 5, elevation and corresponding contour plots of numerical solutions after a full rotation on structured grid.

Fig. 17. Test 5, elevation and corresponding contour plots of numerical solutions after a full rotation on unstructured grid.
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Fig. 18. Test 6, numerical solutions and corresponding contour plots obtained with CN−FDt−FDs approach on uniform grid at the cut planes z = 0.2, z = 0.4
and z = 0.6.

Fig. 19. Test 5, numerical solutions and corresponding contour plots obtained with CN−FDs−FDt approach on uniform grid at the cut planes z = 0.2, z = 0.4
and z = 0.6.
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Fig. 20. Test 5, numerical solutions and corresponding contour plots obtained with CN−FDt−FDs approach on unstructured grid at the cut planes z = 0.2, 
z = 0.4 and z = 0.6.

Fig. 21. Test 5, numerical solutions and corresponding contour plots obtained with CN−FDs−FDt approach on unstructured grid at the cut planes z = 0.2, 
z = 0.4 and z = 0.6.
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of lines, was not considered in [1]. The results suggest that accuracy of the method proposed in [19] for convection and 
reaction-dominated regimes in the steady problem allow it to be a good method for unsteady problems.
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