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Abstract

In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and 

microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of 

the three methods that will be discussed in detail have been previously reported in the literature; 

the two-regime method (TRM) and the compartment-placement method (CPM). The third method 

that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works 

by constructing a “ghost cell” in which molecules can disappear and jump into the compartment-

based simulation. Presented is a comparison of sources of error. The convergent properties of this 

error are studied as the time step Δt (for updating the molecular-based part of the model) 

approaches zero. It is found that the error behaviour depends on another fundamental 

computational parameter h, the compartment size in the mesoscopic part of the model. Two 

important limiting cases, which appear in applications, are considered:

(i) Δt → 0 and h is fixed;

(ii) Δt → 0 and h → 0 such that √Δt/h is fixed.

The error for previously developed approaches (the TRM and CPM) converges to zero only in the 

limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the 

limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic 

description is much coarser than the microscopic part of the model.
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1. Introduction

Multiscale stochastic reaction-diffusion methods which use models with different levels of 

detail in different parts of the computational domain are applicable to a number of biological 

systems, including modelling of intracellular calcium dynamics [14], MAPK pathway [22] 

and actin dynamics [11]. In these applications, a detailed modelling approach (which 

requires simulation of trajectories and reactive collisions of individual biomolecules) is only 

needed in a small part of the computational domain. The main idea of multiscale methods is 

then simple to formulate [12]: we use a detailed modelling approach in the small subdomain 

of interest and a coarser model in the rest of the computational domain. In this paper, 

detailed molecular-based (microscopic) models will be given in terms of Brownian 

dynamics [3, 30]. The remainder of the computational domain will be divided into 

compartments and a mesoscopic (compartment-based) model will be used, i.e. we will 

simulate the time evolution of the numbers of molecules in the corresponding compartments 

[6, 21].

There have been a number of approaches developed for coupling different reactiondiffusion 

models. They include coupling of mesoscopic (compartment-based) models with coarser 

(mean-field) PDE-based descriptions [15, 2, 31, 25], coupling of microcopic (molecular-

based) models with mean-field PDEs [17, 20, 16], coupling of microscopic and mesoscopic 

models [12, 13, 22, 23, 28] or even coupling microscopic models with more detailed 

molecular dynamics simulations [7]. Conceptually similar ideas have been pursued in 

related fields [4, 32]. In [32] they consider the flow of a liquid past a large molecule by 

coupling molecular dynamics simulations closest to the molecule with a Lattice-Boltzmann 

simulation in other parts of the domain. An accurate coupling is accomplished by 

introducing a bufffer region overlapping the two domains, through which the flux of mass 

and momentum is preserved.

A successful multiscale algorithm requires an accurate implementation of inter-regime 

transfer of molecules. In this paper, we will study convergence properties of two algorithms 

for coupling microscopic and mesoscopic descriptions which were previously published in 

the literature: the two-regime method (TRM) [12, 13] and the compartment-placement 

method (CPM) [22]. One of the conclusions of our analysis is that these algorithms do not 

converge in the limit of small time steps and a fixed compartment size. Thus, we also 

propose another approach, the ghost cell method (GCM) which is suitable for this parameter 

regime. We then present a more detailed exploration of the GCM and its accuracy using a 

number of test problems.

We will consider a reaction-diffusion model in the computational domain Ω ⊂ ℝN for N = 1, 

2 and 3. We will divide Ω into two parts, open sets ΩMand ΩC, which satisfy

(1)

where an overbar denotes the closure of the corresponding set. The microscopic simulation 

technique is used in ΩM. Each molecule, j, in ΩM is considered to be a point particle at some 
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location in space, Xj(t), at time t, which is updated according to discretized Brownian 

motion, i.e.

(2)

where Dj is the diffusion constant of the j-th molecule, Δt is a small prescribed time step and 

ζ is a vector containing zero mean, unit variance normally distributed random numbers. 

Notably, all of these methods can be redesigned trivially for other microscopic algorithms 

(such as the GFRD [30] or eGFRD [29]).

In this paper, we will study the convergence of multiscale methods in the limit Δt → 0. 

Since the time-discretized Brownian motion (2) is only used in ΩM, we have to specify what 

will be done in the remainder of the domain, ΩC, where the mesoscopic model is used. In 

this paper, we distinguish the following two cases:

(i) the mesoscopic model is kept fixed in the limit Δt → 0;

(ii) the mesoscopic model is refined as Δt approaches zero.

The resolution of the mesoscopic model (compartment size) will be denoted by h. Of 

particular interest is the error that is caused as a direct result of the coupling and thus we will 

use the parameter h as a measure of the compartment size at/on the interface between the 

two modelling subdomains. In the case of regular cubic compartments of volume h3, the 

parameter h is simply the length of an edge of each cube. We will also consider unstructured 

meshes where the compartment size hwill be suitably generalized. Using h, the cases (i)–(ii) 

can be formulated as follows:

(i) Δt → 0 and h is fixed;

(ii) Δt → 0 and h → 0 such that √Δt/h is fixed.

Both limits (i) and (ii) are important in applications. We will see that the error at the 

interface ∂ΩM Һ ∂ΩC of previously developed methods [12, 13, 22] converges to zero in the 

limit (ii). This limit requires the refinement of the mesoscopic model. However, the standard 

mesoscopic model converges in the limit h → 0 only if the molecules are subject to 

zeroorder or first-order chemical reactions [10]. It fails to converge when bimolecular 

reactions are present [9]. This makes the limit (i) attractive in applications. In Section 4, we 

introduce the GCM which converges in the limit (i).

The paper is organized as follows. In Section 2, we summarize the TRM for coupling of 

structured mesoscopic meshes with microscopic simulations. The methodology for 

simulation of stochastic reaction-diffusion processes on irregular meshes and the 

implementation of the CPM is presented in Section 3. The GCM is introduced in Section 4. 

Using numerical examples in Section 5, we compare the computational error associated with 

the TRM with that of the GCM for structured meshes and the CPM with the GCM for 

unstructured meshes. In Section 6, we shall explore the GCM further with a test problem 

involving reactions and another of morphogen gradient formation on a circular domain. We 

will then discuss the sources of errors, ways in which they may be reduced and other 

implementation issues that arise with the presented coupling methods.
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2. The two-regime method (TRM)

The two-regime method (TRM) [12, 13] couples microscopic and mesoscopic subdomains 

by carefully redefining the jump rate over the interface from the mesoscopic compartments 

and purposeful and deliberate placement of these molecules into the microscopic domain. To 

date, the TRM has been used with mesoscopic subdomains with regular meshes [14, 11]. It 

has also been extended to the case where the decomposition of domain Ω into ΩM and ΩC is 

adaptively updated during the simulation, which is useful for studying travelling fronts [28] 

The advantage of using this technique (as is the case with all of the coupling techniques in 

this manuscript) is that accuracy can be gained in ‘regions of interest’ ΩM without the need 

to run computationally expensive microscopic simulations over the entire domain Ω. In this 

section we will briefly cover the two different simulation paradigms and then discuss how 

these paradigms are combined using the TRM.

2.1. Microscopic simulation

The defining characteristic of ‘microscopic’ simulation techniques for diffusion is that each 

molecule in the system is simulated individually on a continuous domain. In particular, these 

techniques follow the trajectory of each Brownian molecule to a resolution dependent on the 

time steps that are used. For illustrative purposes we consider here a time-driven 

microscopic algorithm (event-driven algorithms can be analysed as a time-driven algorithm 

with an infinitely small time step), that is, an algorithm with a defined constant time step. 

Furthermore, we will not be considering volume exclusion effects in this manuscript. Each 

molecule, j, is therefore considered to be a point particle at some location in space, Xj(t), at 

time t. The Brownian diffusion of these molecules is modelled by (2). Reactions may take 

place between these diffusing molecules at a particular time step if the reactants are within a 

given reaction radius of each other [26, 24].

Molecule interactions with boundaries depend on the type of boundary: boundaries can be 

reflective, adsorbing or reactive (partially adsorbing) [8]. For √DΔt much smaller than the 

local radius of curvature of the boundary, the boundary can be considered locally flat on the 

scale of relative motion of the molecules in one time step. In the case of absorbing 

boundaries, molecules are removed from the system when they are updated to a position 

outside of the boundary. Since we simulate Brownian motion using a finite time step, we 

have to take into account that a molecule can interact with the boundary during the time step 

[t, t+Δt] even if its computed position at time t+Δtis inside the simulation domain. The 

probability, Pm that this molecule-boundary interaction occured within the time interval (t, t

+Δt] is dependent on the diffusion constant and the initial and final normal distances from 

the boundary the molecule is found (Δxi and Δxfrespectively)

(3)

This probability will also be important when it comes to coupling of microscopic 

simulations with mesoscopic simulations via an interface in the two-regime method [12, 13].
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2.2. Mesoscopic simulation

Mesoscopic approaches to reaction-diffusion processes are simulated on a lattice. For the 

purposes of the TRM we will describe how this is done for a regular cubic lattice. The 

distance between each node is h. In a mesoscopic model, molecules can be thought to exist 

only at lattice nodes rather than existing in continuous space. The state of the simulation at 

any moment of time is defined by a set of numbers describing the copy numbers Ni,j of 

molecules of the i-th type at the j-th lattice point. Considering the diffusion of (non-reacting) 

molecules, the expected state of the system E(Ni,j) is described by the equation:

(4)

where qk,j is the propensity per molecule to go from the k-th compartment to the j−th 

compartment. It is possible to show that for a regular lattice with spacing h,

(5)

results in the recovery of the discretized form of the diffusion partial differential equation 

and can therefore be used to approximate a diffusion process on the lattice correct to order 

h2 accuracy. The simulation of a mesoscopic reaction-diffusion process usually makes use of 

event-driven algorithms, such as the Gillespie algorithm [19] or the Gibson-Bruck algorithm 

[18]. We shall conceptualize the mesoscopic simulation by considering that when a 

molecule is at a particular lattice point, rather than existing at the node, it is somewhere at 

random inside the compartment belonging to the node defined by the lattice dual mesh [6]. 

That is, for a regular cubic lattice with node spacing h, each molecule which is at a particular 

lattice point is thought to exist inside the cubic compartment of side length hfor which the 

lattice point is at the center. It is important to note that the state of the molecule has no 

specific location but rather is thought to exist in a probabilistic sense uniformly over its 

compartment.

2.3. Interfacing microscopic and mesoscopic simulations

Interfacing microscopic and mesoscopic simulations of reaction-diffusion processes using 

the TRM has previously been derived for mesoscopic regimes that use regular cubic lattices 

[12, 13]. The TRM is proposed by partitioning the domain Ω into subdomains (1) separated 

by the interface I= ∂ΩM ∩ ∂ΩC. In what follows, we consider that this partitioning is fixed 

during the simulation, but the TRM can also be generalized to situations where I≡ I(t) 

changes during the simulation [28]. In both subdomains ΩM and ΩC, molecules behave as 

they would normally according to the rules of that particular regime. We describe the TRM 

with an event-driven mesoscopic simulation in ΩCand a time-driven microscopic simulation 

with constant time step Δtin ΩM. Reactions do not cause any issue within the domain 

because they occur locally. We focus, therefore, on the correct manner in which molecules 

may migrate over the interface I. It is assumed that the TRM is simulated such that 

. A diagram of the numerical TRM scheme using a regular cubic lattice can be 

seen in two dimensions in Figure 1. A detailed TRM algorithm may be found in the 
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reference [12]. A defining feature of the TRM that characterizes it apart from the other 

methods discussed in this paper is the notion that molecules are free to migrate over the 

interface within a small boundary layer near the interface that naturally appears from the 

molecular-based simulation. That is, molecules jumping from ΩC to ΩM replace molecules 

that are absorbed in the opposite direction. Therefore the propensity for molecules to jump 

out of a compartment into the molecular-based domain ΩMdepends on both the lattice 

spacing h as well as the molecular-based time step Δt. When implementing the TRM, in 

order that a molecular migration over the interface is smooth with optimally small error, the 

propensity per molecule to cross the interface I from each adjacent compartment needs to be 

treated individually as a special case (We denote the special case of jump propensity 

over the interface I in the TRM with the shorthand Γ).

For a regular cubic mesoscopic lattice,

(6)

where D is the diffusion constant of the migrating molecule. The TRM considers that 

microscopic molecules in ΩM cease to be microscopic molecules, in principle, when they 

migrate over the interface. Molecules are therefore absorbed by the interface I from ΩM and 

placed in the closest compartment in ΩC. Equation (3) is used to absorb all molecules which 

interacted with the interface. If this is not used then molecules effectively migrate into ΩC 

and back out again without changing from a microscopic molecule to a mesoscopic one. 

This is crucial for coupling of the two regimes as outlined in the derivation in the reference 

[12]. Furthermore, molecules must be precisely placed in ΩM when migrating from ΩC. In 

particular, the perpendicular distance x the molecule is placed from the interface into ΩM is 

found by sampling from the distribution f(x)

(7)

where erfc  is the complementary error function. In higher dimen 

sions, the initial position of molecules migrating into ΩM can be chosen to be uniformly 

distributed tangentially to the interface in the region of the originating compartment [13]. 

Then the error associated with the TRM is O(h). We shall investigate the error associated 

with the TRM in 1D in a later section of this manuscript and compare it with the GCM 

method introduced in Section 4.

3. Compartment-placement method (CPM)

In this section, we will discuss how mesoscopic simulation is implemented on an irregular 

lattice [6]. We will then present a brief description of the CPM [22].
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3.1. Mesoscopic simulation on unstructured meshes

Mesoscopic simulations on Cartesian meshes are convenient in the sense that they are 

memory lenient. However, complex geometries and surfaces with high curvature are easier 

to resolve accurately with an unstructured mesh. Living cells can have different shapes and 

eukaryotes have a complicated internal structure with two-dimensional membranes and a 

one-dimensional cytoskeleton [1]. The geometrical flexibility of unstructured meshes is 

therefore an advantage when considering simulations of realistic biological problems.

Consider a domain Ω. The domain is covered by a primal mesh, such that the boundary ∂Ω is 

covered with non-overlapping triangles and the domain Ω is covered with non-overlapping 

tetrahedra (resp. triangles in 2D). A dual mesh is constructed from the primal mesh, see 

Figure 2, from the bisectors of the tetrahedra (resp. triangles) that use the nodes as vertices. 

The diffusion of molecules is now modelled as discrete jumps between the nodes of the dual 

mesh. The rate qi,j at which a molecule jumps from compartment Vi to Vj is given by the 

diffusion constant of the molecule and the finite element discretization of the Laplacian on 

the primal mesh. For details on how the unstructured meshes and the diffusion matrix are 

generated the reader is referred to [6].

3.2. Interfacing microscopic and mesoscopic simulations

The algorithm for the CPM is presented in a similar way to the TRM. The algorithm 

progresses asynchronously by updates in the mesoscopic simulation and microscopic 

simulation separately [22]. The jump rates from compartments that are on the interface I 

between regimes are calculated from the underlying mesh over the entire domain. That is, 

the jump rates are calculated by computing the mesoscopic jump rates between interfacial 

compartments and “compartments” that are adjacent to the interface in the microscopic 

domain ΩM (see Figure 2).

Molecules that start in a compartment in ΩC and, at the end of the time step, have ended up 

in ΩM are initialized uniformly inside the “compartment” which they jump into, and is the 

process from which the CPM has been named. Molecules in ΩMmigrate back to ΩC via 

microscopic domain diffusion (2). When a molecule appears inside one of the mesoscopic 

compartments from Brownian motion, it is encorporated into that compartment by 

increasing the copy number inside this compartment.

The CPM has been determined using heuristics. Molecules that are in compartments obey 

mesoscopic rules for diffusive migration. This includes molecules that are on interfacial 

compartments. They jump to compartments in ΩM as though they were still in ΩC. When this 

occurs, initialization of the molecules must take place. The molecules are initiated uniformly 

over the compartment in which they are placed. Molecules are not placed at the node at the 

center of this compartment because this would unphysically concentrate molecules at this 

point and reactions would occur between possible reactants upon migration over the 

interface. Conversely, molecules that are in ΩM obey microscopic rules for diffusive 

migration (Brownian trajectory). When this Brownian trajectory leads to a compartment, it 

can no longer be described using the microscopic description and is added to the 

compartment in which it lands. As we shall see, this heuristic approach can lead to 
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inaccuracies. The inaccuracies can be minimized if h2 ~ DΔt (that is, if the size of the 

compartment is approximately the size of a microscopic molecular jump).

4. The ghost cell method (GCM)

Here we will consider a new method for interfacing mesoscopic and microscopic 

simulations. This method uses different assumptions to the TRM and CPM and is therefore 

implemented differently. We call this method the ghost cell method (GCM) since 

microscopic molecules in ΩM feel the presence of a pseudo-compartment allowing for 

instantaneous jumping from ΩM to ΩC in the same way that molecules within compartments 

jump instantaneously. The steps of the GCM are given in Table 1.

The key assumption that is used in the TRM and CPM is that molecules in ΩM migrate via 

diffusion (2) over the interface I whereby they become parts of the corresponding 

compartment. In the GCM, this assumption is relaxed. Instead, molecules migrate over the 

interface using the compartment-based approach in both directions. Microscopic molecules 

in ΩM near the interface feel the presence of a layer of “ghost” cells (compartments). In the 

step [G.2] in Table 1, we calculate the numbers of molecules in these “ghost” cells. They are 

used in the step [G.4] to create a fully compartment-based simulation of transition across the 

interface I.

To justify the GCM, let us consider a hypothetical simulation of diffusion in a domain Ω for 

which a mesoscopic method was implemented. Then consider the same domain where a 

microscopic simulation is implemented. Let the molecules of the microscopic simulation be 

“binned” according to compartments of the mesoscopic simulation. The expected number of 

molecules binned into each compartment should match that of the mesoscopic simulation to 

within the precision of the mesoscopic method. This is because both simulations are 

accurate representations of the same phenomena, diffusion. This is the philosophy behind 

the GCM. Molecules which are binned into ghost compartments near the interface may jump 

into compartments in ΩC via the rates prescribed by the mesoscopic algorithm. If both 

regimes are correct individually then the fiux over the interface I is the same as though a 

mesoscopic algorithm was used over the whole domain. To ensure that microscopic 

molecules do not migrate to ΩC via diffusion (2), they are reffected at the interface I in the 

step [G.5]. Figure 3 demonstrates the principle differences between a TRM/CPM and a 

GCM description of the interface. In Appendix A we provide a mathematical analysis of the 

GCM in one dimension to demonstrate that the expected concentration and fiux of 

molecules over the interface are matched. The theoretical error associated with the GCM 

scales as √Δt which is on the same order as that of the TRM. Unlike the TRM, this error, as 

we will see in the later part of this manuscript, is reduced to zero by reducing √Δt/h.

The ghost cell method is implemented using the algorithm in Table 1. This algorithm is 

given for an event-driven mesoscopic simulation and a time-driven microscopic simulation, 

however it can also be extended to event-driven microscopic simulations.
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5. Numerical tests: Method convergence

In the following two sections, we present various numerical tests. Here we present a simple 

tests comparing the accuracy of the GCM against the TRM and CPM respectively. In the 

following Section 6 we focus on the GCM and, in particular, numerical tests considering its 

applicability to reaction-diffusion processes.

5.1. One dimensional simulations: TRM versus GCM

We use a simple diffusion test problem to compare the diffusive flow over the interface with 

an exact solution which can be analytically obtained. We use the domain Ω = (0, 1) and 

subdomains ΩC= (0, 0.5), ΩM = (0.5,1), which are separated by the interface I = {0.5}. We 

initially position N0 = 5 × 105 molecules according to the distribution g(x) = 2x, x ∈ Ω. We 

construct regular spaced compartments of width h0 = 0.1 within ΩC and “bin” the molecules 

generated in ΩC into these compartments. We allow these molecules to diffuse throughout 

the domain Ω with a diffusion constant D = 1 using the TRM or GCM until time t = 1. At the 

boundary x = 0 molecules are absorbed and placed at x = 1. At the boundary x = 1 molecules 

are reffected. In this way, N0g(x) is the steady state distribution of this system and 0.25N0 is 

the steady state number of molecules in the compartment-based subdomain ΩC. We define a 

measure of the error E to this test problem for each simulation schemewhere Nj(1) is the 

copy number of molecules in the j-th compartment evaluated at t = 1 and the sum is taken 

over all compartments in the compartment-based subdomain ΩC.

(8)

In order to see the effect of the compartment spacing near the interface h on the error E for 

both the TRM and GCM we start with the set of regular compartments

which have nodes (compartment centers) at . Then we use the 

following lattice refinement technique designed speciflcally so that the position of the 

interface does not change (see Figure 4):

[R.1] Delete the two nodes closest to the interface.

[R.2] Introduce into the space between the new node closest to the interface and the 

interface (a distance of Δx) three nodes placed consecutively a distance of 2Δx/7 from the 

node to its left.

[R.3] Recompute the compartments by finding the bisectors of each node.

The specific distances in the step [R.2] are chosen such that the interface does not change 

location and the last two compartments have the same size. This is also the size that is given 

to the ghost cell in the GCM. The refinement algorithm [R.1]–[R.3] is repeated m times such 

that the size of the final compartment in ΩC (and ghost cell), hm, is
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(9)

A diagram representing one iteration of the refinement technique [R.1]–[R.3] is shown in 

Figure 4. The error is computed for various final compartment sizes hm(m = 0,…, 10) and 

various time steps Δtk (k = 0, 1,…, 10) where

(10)

.

Figures 5 and 6 show how the absolute error  given by (8) depends on both parameters 

hm (compartment size on the interface) and Δt for the TRM and GCM algorithms 

respectively. The error due to the interface in the TRM includes a shift of hm/2 in the 

expected distribution of molecules at the interface into ΩC[12]. This is because of the 

“initialization” of molecules from ΩM into ΩC. Unlike the initialization of molecules from 

ΩC into ΩM, molecules that are transported in the reverse direction cannot be placed 

carefully according to a continuous distribution but must necessarily be placed in the nearest 

compartment. This initialization has an expected position of hm/2 away from the boundary 

causing a shift of hm/2 in the distribution of molecules. However, if molecules could be 

initialized into ΩC with a continuous distribution, for symmetry reasons one would expect 

this to be done with a distribution of f(x) given by (7). The average distance, therefore, that a 

molecule would ideally be placed into ΩC is . Therefore, the error 

that is due to unphysical shifting of molecules is proportional to the expected shift of 

molecules as they are transferred from ΩM to ΩC. That is .

In Figure 5 a dotted red line showing  approximately follows the path of the 

minimum absolute error. The discrepancy between the actual minimum absolute error and 

the dotted red line in Figure 5 can be attributed to higher order error that is inherent in the 

mesoscopic approximation to the diffusion equation. To show that 

Figure 7 is a plot of error  The plot is generated by using various values of hm 

(see legend) and then plotting a number of points while changing Δt. Whilst it is clear that 

the graph is approximately linear, the higher order mesoscopic error is clearly seen in the 

form of a vertical displacement of this curve about the origin. The efiect that the higher 

order mesoscopic error has on the interface is dificult to quantify because it will depend on 

the particular molecular system. Therefore, the best choice of parameters that can be chosen 

for the TRM is .

In Figure 6, we see that the error of the GCM depends on Δt and specifically on its relative 

size compared to h (the analysis of the GCM is provided in Appendix A). Rapidly increasing 

error (quickly saturating the color bar in Figure 6) is observed when . The higher 

order mesoscopic error artefact can also be seen in Figure 6 since this artefact is independent 

of the coupling mechanism (see the larger absolute error for large values of h). The GCM is 
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therefore most accurate for very small values of Δt. Whilst in practice making Δt small may 

significantly increase the computing time, small Δt is often required for accurate 

microscopic simulation (for example, capturing reactions with high resolution) and in such 

cases the GCM is more appropriate than the TRM.

5.2. Three dimensional simulations: CPM versus GCM

In this section we will demonstrate how, when using an unstructured mesh, the error 

associated with the GCM coupling converges as Δt → 0 whereas error associated with the 

CPM is minimized when  where h is the average size of boundary compartments. 

Both the error associated with the CPM and GCM are due to imbalances in the fiux of 

molecules over the interface. We implement the CPM and GCM in three spatial dimensions 

using a tetrahedral primal mesh as described in Section 3. The implementation builds on the 

freely available software URDME [5]. The choice of a cubic domain here does not fully 

utilise the capabilities of the unstructured mesh, however, it does provide simple analytical 

results as a standard for measuring accuracy. It is important to note that the interface I that is 

generated from using an unstructured mesh automatically is not straight/trivial and therefore 

motivates this test. The irregularity of the interface can be clearly seen in Figure 8.

We consider a cube with side length L = 1. The cube is first discretized with an unstructured 

mesh and then divided into a mesoscopic region ΩC, and a microscopic region ΩM, where 

ΩM is the set of all compartments with a vertex (x, y, z) such that x< 0.5 and ΩC= Ω ΩM. 

Here Ω is the set of all compartments. The partitioning is illustrated in Figure 8 for two 

different mesh sizes. We start each simulation with N0= 2 × 104 molecules whose initial 

positions are sampled from a uniform distribution. The diffusion constant of the molecules is 

D = 1, and we simulate the system for time t=0.1. Since we start with a uniform distribution 

and the molecules only diffuse and do not react, we expect the distribution to be uniform at 

the final time. As the interface is parallel with the y − z-plane, we expect that the 

distributions of molecules in the y- and z-directions are uniform, but that we get a small error 

in the distribution of molecules in the x-direction. We now divide the x-axis into 10 bins of 

equal length, and then count the number of molecules in each bin at the final time. 

Mesoscopic molecules are binned by first sampling a continuous position from a uniform 

distribution on the compartment. We expect N0/10 molecules in each bin, and can therefore 

define the error of the method by

(11)

In Figure 9 we have computed ∥E∥ for different mesh sizes and time steps. As expected, the 

error decreases as we refine the mesh and decrease the time step.

In the CPM method, mesoscopic (resp. microscopic) molecules stay mesoscopic (resp. 

microscopic) during a time step. This implies that the time step should be chosen suffciently 

small such that a molecule does not diffuse across several compartments. On the other hand, 

if the time step is too small the distribution of molecules in space will be biased towards the 

microscopic region. This can be seen by considering a microscopic molecule diffusing into 

the mesoscopic regime. If the time step is small, it is likely that it will be close to the 
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microscopic regime at the end of the time step, but if it ends up on the mesoscopic side it 

will nevertheless be considered uniformly distributed in the compartment at the end of the 

time step. Thus, the time step should not be chosen too small relative to the size of the 

compartments, or the error due to the spatial splitting will become large.

Since the GCM converges with decreasing time step, but performs worse for larger time 

steps, one could suspect that there is a regime where the CPM in [22] performs better than 

the GCM. At some point, however, the error of the GCM will become small and outperform 

the CPM in [22]. The errors of the different methods are compared in Figure 10 for a mesh 

with 49101 compartments. Indeed, we see that the CPM method performs better for time 

steps down to almost Δt = 10−4, at which point the error of the GCM method becomes 

smaller. Importantly, the GCM error as we have measured it does not converge in the strict 

sense for small Δt. This is because there are natural errors associated with broken symmetry 

in the accuracy of the transport methods on both sides of the interface. That is, molecular-

based transport is more accurate than compartment-based transport (accurate only to order 

h2). This breaking of symmetry adds an error that perfect coupling cannot overcome and is 

not easily filtered from the measurement of error associated with coupling since it depends 

on the molecular system which is generalised as far as the algorithm rules are concerned. 

This error was also seen in Section 5.1.

6. Numerical tests: The ghost cell method

6.1. Test problem 1: Bimolecular reactions

Here we demonstrate that any errors that may be introduced by the GCM do not 

significantly effect the rates of diffusion-limited bimolecular reaction.

Consider the following domain represented in Figure 11. Let ΩM be the cube (−1, 1) × (−1, 

1) × (−1, 1). ΩCfills the infinite 3D space around ΩM with cubic compartments with non-

dimensionalized side length of h = 0.1. Let us consider a pair of reactant molecules A and B. 

The domain is considered to be in the frame of A. A is therefore fixed at the origin. We 

consider that the sum of non-dimensionalized diffusion constants DAB = DA + DB = 1 and 

that these molecules may react with a macroscopic rate of kAB = 0.4π such that the reaction 

radius around A is ρAB = h = 0.1. Here we shall show that the probability for reaction as a 

function of initial separation d is not effected by the boundary between ΩM and ΩC.

After a time t, given an initial separation d, it is possible to exactly solve for the probability 

of reaction between two isolated molecule reactants. This is done by solving the diffusion 

equation describing the probability to find molecule B with an absorbing boundary at r = 

ρAB. Integrating over the probability distribution from r = ρAB to r = ∞ gives the probability 

that the particle has not reacted. From here we find that for d ≥ ρAB

(12)

and P (reacted|d, t) = 1 for d < ρAB as reaction is instant.
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Using 5 × 104 simulations of molecule B, implementing the GCM on the infinite domain Ω 

= ΩM ∪ ΩC, up until the non-dimensionalized time t = 1, we predict the probability of 

reaction. This is done simply by finding the proportion of simulations resulting in a reaction. 

This test was performed for various separations d ∈ [0, 0.7]. In order to show that the 

boundary does not effect this reaction probability, the orientation of the separation was 

considered in two directions (1) along the y-axis and (2) along the diagonal, towards the 

corner of ΩM, where the azimuthal (φ) and polar (θ) angles both equal to π/2. These 

directions are shown in blue and red respectively in Figure 11.

In Figure 12, it is shown that as Δt → 0 the GCM rapidly predicts the correct reaction rate in 

comparison to the exact result given in equation (12). Changes in orientation from those 

towards boundary surfaces (blue circles) to boundary corners (red crosses) do not influence 

the rate of probability (or the conditional probability for molecules to move freely 

throughout the whole domain). Discrepancies between the GCM data and the analytical 

result (12) is shown to differ by a factor that does not depend on relative distance from the 

boundary but rather only depends on Δt. This phenomena is an artefact of the molecular-

based algorithm alone. It is the probability that a molecule will come close to the reaction 

radius and not react due to the finite time step. It was calculated that for the three time steps 

tested, Δt = 5 × 10−2, Δt = 5 × 10−3 and Δt = 5 × 10−4, reaction was 61.7%, 88.0% and 

95.3% effcient and was independent of d.

6.2. Test problem 2: Morphogen gradient

Morphogen gradients are formed from a localized source of diffusing molecules which are 

undergoing decay. Far away from the source concentrations can be very low and noise 

becomes important to model accurately. In this test problem, we model a 2D circular domain 

void of degradable chemical. The chemical flows at a constant rate from the boundary into 

the domain where it is in low concentrations at the center. These circumstances are typical 

of biological problems such as wound healing (where the center of the wound is devoid of 

oxygen and nutrient).

We model a normalized circular domain 0 ≤ r ≤ 1. Let c(x, t) be the concentration of 

morphogen throughout the domain at time t. This concentration, in the continuum limit, is 

governed by the partial differential equation

(13)

where μ is the decay rate and D is the diffusion constant. We use the initial condition c(x, 0) 

= 0 and the boundary condition , where  is the outward facing normal 

vector and λ is the number of molecules entering the domain over the boundary per unit time 

per unit length. We choose λ = 5 × 104 to reduce noise for comparison with deterministic 

simulations. We also choose D = 0.1 and μ = 1. The circular domain is discretized using 

tlabs PDE toolbox inbuilt Delaunay triangulation algorithm. Compartments are drawn 

according to the dual mesh. Compartments whose nodes lie within 0 ≤ r ≤ 0.4 are removed, 

except for a layer of ghost cells. This region is to be modelled using a molecular-based 

approach and coupled with the ghost-cell method.
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In Figure 13, we qualitatively compare a typical GCM-derived simulated molecule 

distribution against that expected deterministically by solving equation (13) on the 

triangulated lattice using the Finite Element Method (FEM). A full video showing the 

evolution of both the GCM and deterministic FEM is provided in the Supporting Material.

For a more detailed comparison of the GCM simulation against the FEM expected 

distribution, in Figure 14, we plot both the number of molecules in the compartment region 

ΩC and in the molecular region ΩM against those expected by the deterministic model. We 

observe very strong agreement between the GCM simulation and the solution of the 

equivalent partial differential equation (13).

7. Summary

In this paper we have compared two existing mesoscopic-microscopic coupling techniques 

for stochastic simulations of reaction-diffusion processes with a method called the ghost cell 

method (GCM). Here we will summarize the specific sources of error of the TRM, CPM and 

GCM, when they converge, how they may be optimized for accuracy and notes on their 

computational effciency.

7.1. Summary of the two-regime method

The TRM couples molecules by considering that mesoscopic compartments contain 

molecules that are evenly distributed in a probabilistic sense. As these molecules diffuse 

over the interface they are placed according to the distribution f(x) given by (7). Molecules 

migrating in reverse from the microscopic regime to the mesoscopic regime must be 

absorbed by the interfacial compartments and be indistinguishable from other molecules in 

these compartments by virtue of this paradigm. As such, instead of migrating an average 

distance over the interface proportional to  it becomes evenly distributed over the 

compartment with an expected location of h/2 over the interface. The molecules are 

therefore effectively shifted  into the compartment regime. This shift in 

the molecules therefore creates a discontinuity of in the distribution to find molecules on the 

interface and therefore an error due to the presence of the coupling proportional to 

. The nature of this error is that, if the expected net flux of molecules over the 

interface is 0, then no error due to the presence of the interface will be experienced. This is 

important to note, since, this is not the case for both the CPM and GCM methods. 

Furthermore, since the error is proportional to  it clearly converges in the 

limiting case (ii) described in the introduction but not in the limiting case (i).

Whilst the TRM can give controllably accurate results, it can be computationally more 

costly to implement. This is because perfect absorption of molecules is required on the 

boundary and this means that each molecule in the molecular-based domain needs to be 

checked for interaction with the boundary in a given time step using (3).

7.2. Summary of the compartment-placement method

The CPM is a coupling mechanism that, whilst heuristically derived, can produce accurate 

results under some circumstances and do so with minimum computational cost. Molecules 
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are placed within a pseudo-compartment in the molecular-based domain via diffusion from 

the compartment-based domain. In reverse molecules are placed in compartments from the 

molecular-based domain via diffusion of these molecules in the continuous domain over the 

interface. The antisymmetry that is seen in the methods of migration, mesoscopic to 

microscopic and microscopic to mesoscopic, result in a boundary layer in the expected 

distribution of molecules at the interface. This boundary layer is caused by the fact that 

molecules diffusing from the molecular region to the compartmental region are considered 

uniformly distributed on the compartment at the end of the time step. If Δt is small compared 

to h, this will be a poor approximation. It should thus be noted that the error of the CPM 

does not converge in the limiting case (i) described in the introduction, however the error 

appears to converge according to limiting case (ii).

The CPM is computationally effcient. Its only ineffciency is that, unlike the TRM, it 

requires the knowledge of a pseudo-compartment in the microscopic domain. The TRM is 

therefore more appropriate than the CPM for coupling completely independent simulation 

algorithms, since the CPM requires its own custom algorithm to be implemented fully.

7.3. Summary of the ghost cell method

The GCM couples molecules according to a discrete domain on each side of the interface. 

Molecules that are in the microscopic domain are binned according to a ghost compartment/

cell and jump into the mesoscopic domain using jump rates derived using the mesoscopic 

approach. In such a way, symmetry is conserved in the method of migration from 

mesoscopic to microscopic and from microscopic to mesoscopic, unlike the CPM. It is 

important that the molecules are binned correctly for this coupling to work accurately. The 

error, therefore, can be attributed to molecules that are in the ghost cell when they should 

not be, or not in the ghost cell when they should be. Therefore, if the compartment size h at 

the interface (and of the ghost cell) is much larger than the resolution of the particle tracking 

in the microscopic domain, the correct number of molecules will be in the ghost cell. The 

error therefore converges in the limit of small Δt so long as h is suffciently coarse. 

Furthermore, it is possible to show that, unlike the TRM, this source of error is not due to a 

displacement of molecules but an unbalanced flux of molecules (see Appendix A) and will 

therefore appear even if the expected net flux over the interface is 0. The GCM, however, is 

convergent in the limiting case (i) but not (ii) from the introduction giving the GCM a 

unique advantage over both the CPM and TRM.

The GCM is computationally effcient for small Δt since the jump rates from the microscopic 

domain to the mesoscopic domain are determined by the ghost cell size and not the time step 

(like the TRM for example).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Mathematical justification for the ghost cell method

Here we present an analysis of the GCM in one-dimension. We show that error of the GCM 

that is produced on the interface between mesoscopic and microscopic subdomains 

converges in the case (i). Specifically, we see convergence of the interface-derived error as 

. This property of convergence is unique to the GCM when compared 

with other reported coupling mechanisms. In showing that the interface-derived error 

vanishes in the small time step limit, we will show that rapid variation within the boundary 

layer of the interface vanishes as Λ → 0, leaving behind a linear approximation of the true 

distribution of molecules. Since the error at the interface will be of order h2 it is accurate to 

the same order as the mesoscopic algorithm itself.

Without loss of generality, consider an interface at x = 0 on an infinite one-dimensional 

domain. To the left of this interface (x < 0) a compartment-based model is used with fixed 

compartment size h. To the right of the interface (x > 0) a molecular-based algorithm is used 

and is updated at fixed time increments of Δt, i.e. ΩC = (−∞, 0) and ΩM= (0, ∞). We denote 

the compartments in ΩC by Ck = (−kh, −kh + h), where k = 1, 2,…. Then the interface 

compartment is C1= (−h, 0). The ghost cell will be denoted by CM= (0, h).

Molecules in ΩC are described only by their compartment. Their compartment changes with 

an exponentially distributed random time with a rate that is given by D/h2. This rate is 

conditional on initial and final states being compartments. The rate given by D/h2 is chosen 

in such a way that the expected number of molecules in each compartment matches that of a 

discretized diffusion equation (see (4) and (5)). These rates, however, breakdown in the case 

of the TRM because the initial and final states of jump across the interface are not 

compartments but rather the final state is a molecule in ΩM. The jump across the boundary 

for the TRM is given by (6). Molecules in ΩM have one thing in common with those in 

compartments. A domain that is modeled microscopically and then binned into 

compartments shows the same expected behaviour as a domain modeled with compartments 

to leading and first order accuracy in h in the limit as Δt → 0. Therefore, in an attempt to 

interface the two regimes together it may be appropriate to bin molecules in ΩM into a ghost 

cell/compartment CM near the interface. The molecules that are in CM will then have the 

same properties as a compartment from the perspective of the interface compartment C1. To 

this end, any molecule in CM may spontaneously change state from the molecular domain to 

C1. We expect that since the interface compartment-bound molecules see a compartment 

state for molecules in CM, the change of state from C1 to a random position within CM will 

occur with a normal inter-compartmental rate. In the following analysis we show that this is 

the case.

We shall test the hypothesis by matching the master equations for C1 and the probability 

distribution in ΩM in such a way that no rapid variation in probability to find molecules, 
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, is apparent at the interface. We shall assume that the rate for molecules to jump into 

ΩM from C1 is Γ+ and are placed in an initial position from the interface given by the 

probability distribution f (x). Molecules in ΩM spontaneously jump into C1 with a rate 

Γ−g(x). Functions f (x) and g(x) are normalized such that they have a unit integral over ΩM. 

We shall show that

(A.1)

We will find it convenient for the sake of notation to introduce the parameters

To show (A.1) we focus on the purely diffusive problem, since bulk reactions have no effect 

on boundary conditions. In order to limit the flux of molecules jumping into C1, all 

molecules in ΩM that hit the interface by Brownian motion are reffected back to ΩM.

We denote the probability of finding a molecule in compartment 

 approximates the probability density 

function at the node within this compartment). If we denote by p(x, t) the probability density 

function of the discretetime molecular-based algorithm, then the transmission/reffection 

rules give us the following master equation

(A.2)

(A.3)

In the vicinity of x = 0 there is a boundary layer of width O(h) so long as f(x) and g(x) vanish 

for  [8]. We rescale (A.2) and (A.3) using the (dimensionaless) boundary layer 

coordinate . We also denote . The rescaling of f and g by h are done to 

keep the integrals of these functions equal to 1. Thus, in the boundary layer coordinates, (A.

2) and (A.3) become

(A.4)

(A.5)
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where . The parameter Λ gives us the relative size of DΔt to 

h2 and we wish to show that as Λ → 0 the distribution of molecules across the boundary is 

smooth and the error that remains is of the order of h2, which is the same size of the error 

associated with the mesoscopic discretization in ΩC. In order to join these models smoothly 

we require in ΩC that

(A.6)

(A.7)

(A.8)

while, for the molecular-based side, we want variation from the linear approximation in the 

boundary layer to be limited to O(Λ) up to order h2 accuracy, so that

(A.9)

(A.10)

The prescription of a consistent probability density p(0, t) and derivative px(0, t) for both 

sides of the interface, along with linear approximations suffciently close to the interface 

equates to continuity and differentiability over the interface which is the matching condition 

that we are attempting to achieve.

Substituting (A.6)–(A.10) into (A.4) and (A.5) and equating terms of the same order in h and 

leading order in Λ gives the following conditions that must be placed on g(x), f (x), α+ and 

α−:

(i) O(h0Λ0) terms from equation (A.4) give condition:

(A.11)

Condition (A.11) states how the relative rates for molecules to transition to and from ΩM and 

ΩC must be dependent on the relative sizes of C1 and CM.

(ii) O(h1Λ0) terms from equation (A.4) give condition:

(A.12)
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Condition (A.12) states how the rates for molecules to transition to and from ΩM and ΩC 

depend on the average distance molecules are placed from the interface when placed within 

CM. This is the same condition given in ΩC for jumps between the compartments.

(iii) O(h0Λ0) terms from equation (A.5) give condition:

(A.13)

Condition (A.13) states that molecules must be placed into ΩM with the same probability 

weighting that they are taken out and placed back into ΩC.

(iv) O(h1Λ0) terms from equation (A.5) are automatically satisfied.

The GCM that is presented in this manuscript uses parameters (A.1) which satisfy the three 

conditions (A.11)–(A.13) listed above. Such a scheme, therefore, has an error that is no 

greater than the error of the mesoscopic scheme in the limit Λ → 0, in other words, in the 

limit Δt → 0 whilst h remains constant.
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Figure 1. 
Graphical representation of the TRM on a regular square lattice.
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Figure 2. 
Schematic of CPM computational domain. (a) The primal mesh is indicated with red dashed 

lines. The nodes are connected to form triangles. The bisectors are then drawn in to create 

the dual mesh (blue dotted lines). Compartments are drawn from the dual mesh with one 

node at the center of each compartment. One example compartment is shown in blue.

(b) The domain is split into mesoscopic ΩC and microscopic ΩM domains. Jumps between 

compartments and from the compartments into ΩM are calculated using a finite element 

discretization of the Laplacian. The copy numbers of molecules in each compartment in ΩC 

are stored whilst in ΩM each molecule has its own position in continuous space.
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Figure 3. 
A diagram illustrating the fundamental differences between (a) the TRM/CPM paradigm and 

(b) the GCM paradigm.
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Figure 4. 
Diagram of one iteration of the lattice refinement [R.1]–[R.3].
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Figure 5. 
Surface plot of the absolute error ∥E∥ defined by (8) as a function of compartment size at 

the interface hm and time step Δt for the one dimensional test problem using the TRM.
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Figure 6. 
Surface plot of the absolute error ∥E∥ defined by (8) as a function of compartment size at 

the interface hm and time step Δt for the one dimensional test problem using the GCM.
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Figure 7. 

Scatter plot of the error E versus  for the TRM. The different color points 

represent different value of the commpartment size at the interface h (see lengend) and in 

each instance Δt varied from .
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Figure 8. 
The cube [0, 1]3 is partitioned into a mesoscopic region (grey) and a microscopic region 

(white). (a) a coarse mesh; (b) a fine mesh.
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Figure 9. 
The error ∥E∥ of the GCM method for different mesh sizes and time steps. The error 

decreases with decreasing time step, as expected.
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Figure 10. 
Comparison of the error ∥E∥ produced by the GCM and CPM for interfacing microscopic 

and mesoscopic simulations as a function of the time step in the microscopic simulation 

domain Δt. The length scale h is defined to be the cubic root of the average volume of a 

compartment.
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Figure 11. 
Diagram of ΩM domain used in Test problem 1. ΩM is the cube (−1, 1) × (−1, 1) × (−1, 1) 

surrounded by compartments of size h = 0.1. Molecule A is at the centre with a reaction 

radius (indicated by a red sphere) of ρAB = 0.1. Molecule B (indicated by black spot) is 

initially placed a distance d from the origin. Two sample orientations for this separation are 

chosen (1) along the y-axis (shown in blue) and (2) along the orientation φ = θ = π/2 (shown 

in red).
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Figure 12. 
Probability of reaction at t = 1 for Test problem 1 versus initial separation, d. Gold standard 

Greens Function Reaction Dynamics (GFRD) reaction probability is given by a solid blue 

curve (see equation (12)). Scatter points are probabilities derived from GCM simulation. 

Blue circles correspond to orientation (1) and red crosses correspond to orientation (2). See 

Figure 11 for details. Simulations were completed using three different time steps Δt = 5 × 

10−2, Δt = 5 × 10−3 and Δt = 5 × 10−4 showing progressive improvement against the GFRD 

probability. Blue dashed lines do not represent lines of best fit but rather, in each case, a 

constant factor decrease from the GFRD curve. Note that the y-axis has a log scale.
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Figure 13. 
Distribution of molecules at t = 1 for Test problem 2. The GCM simulation is on the left and 

the deterministic FEM solution is on the right. The colormap represents compartment 

particle concentration calculated by dividing copy number in each compartment by the area. 

The solid white line for the GCM simulation corresponds to the boundary between regimes, 

the white dashed line represents the boundary of the ghost cells. Individual molecules in the 

molecular-based regime are represented by red dots. Also note that λ = 5000 for plotting 

purposes.
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Figure 14. 
Copy numbers in the compartment-based regime (black) and the molecular-based regime 

(red) for both the GCM simulation (solid lines) and the expected FEM solution (dotted 

lines). Notice that the dotted lines are indistinguishable from the solid lines.
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Table 1

The ghost cell method algorithm.

[G.1] Initialize lattice over whole domain Ω and construct dual mesh (compartments).
Generate interface I on the edges of compartments to separate ΩM from ΩC. Choose
Δt and set time t = 0. Determine qk,j using the finite element method between all
compartments [6].

[G.2] Initialize the state of the system by placing molecules in compartments in ΩC and
placing molecules in continuous space in ΩM. Count and store numbers of molecules
in ghost cells, those compartments in ΩM which are adjacent to the interface I.

[G.3] Determine the time τ for the next event (reaction or diffusive) in ΩC or diffusive
jumps to and from ghost cells and ΩC.

[G.4] If t + τ < Δt + Δt ⌊t/Δt⌋ then change the state of the system to reflect the next
event corresponding to τ and update time t := t+τ. If this event is a diffusive jump
from ghost cell to ΩC choose a molecule at random within the relavant ghost cell
to migrate. If this event is a diffusive jump from ΩC to a ghost cell then initialize
this molecule with uniform probability over the ghost cell.

[G.5] If t + τ ≥ Δt + Δt ⌊t/Δt⌋ then update the positions of all molecules in ΩM using
(2). Check for reactions in ΩM [13]. All molecules incident on the interface I are
reflected. Update time t := Δt + Δt⌊t/Δt⌋

[G.6] Repeat steps [G.3]–[G.5] until the desired end of the simulation.
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