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Abstract

Non-linear entropy stability and a summation-by-parts framework are used to derive en-
tropy stable wall boundary conditions for the three-dimensional compressible Navier—Stokes
equations. A semi-discrete entropy estimate for the entire domain is achieved when the new
boundary conditions are coupled with an entropy stable discrete interior operator. The data
at the boundary are weakly imposed using a penalty flux approach and a simultaneous-
approximation-term penalty technique. Although discontinuous spectral collocation opera-
tors on unstructured grids are used herein for the purpose of demonstrating their robust-
ness and efficacy, the new boundary conditions are compatible with any diagonal norm
summation-by-parts spatial operator, including finite element, finite difference, finite vol-
ume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruc-
tion schemes. The proposed boundary treatment is tested for three-dimensional subsonic and
supersonic flows. The numerical computations corroborate the non-linear stability (entropy
stability) and accuracy of the boundary conditions.
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1. Introduction

During the last twenty years, scientific computation has become a broadly-used technol-
ogy in all fields of science and engineering due to a million-fold increase in computational
power and the development of advanced algorithms. However, the great frontier is in the
challenge posed by high-fidelity simulations of real-world systems, that is, in truly transform-
ing computational science into a fully predictive science. Much of scientific computation’s
potential remains unexploited—in areas such as engineering design, energy assurance, ma-
terial science, Earth science, medicine, biology, security and fundamental science-because
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the scientific challenges are far too gigantic and complex for the current state-of-the-art
computational resources [1].

In the near future, the transition from petascale to exascale systems will provide an
unprecedented opportunity to attack these global challenges using modeling and simula-
tion. However, exascale programming models will require a revolutionary approach, rather
than the incremental approach of previous projects. Rapidly changing high performance
computing (HPC) architectures, which often include multiple levels of parallelism through
heterogeneous architectures, will require new paradigms to exploit their full potential. How-
ever, the complexity and diversity of issues in most of the science community are such that
increases in computational power alone will not be enough to reach the required goals, and
new algorithms, solvers and physical models with better mathematical and numerical prop-
erties must continue to be developed and integrated into new generation supercomputer
systems.

In computational fluid dynamics (CFD), next generation numerical algorithms for use
in large eddy simulations (LES) and hybrid Reynolds-averaged Navier—Stokes (RANS)-LES
simulations will undoubtedly rely on efficient high-order accurate formulations (see, for in-
stance, [2, 3, 4., [ @, [7, 8, @ 10, 11], 12} 13}, 14, 15]). Although high order techniques are well
suited for smooth solutions, numerical instabilities may occur if the flow contains discontinu-
ities or under-resolved physical features. A variety of mathematical stabilization strategies
are commonly used to cope with this problem (e.g., filtering [16], weighted essentially non-
oscillatory (WENO) [17], artificial dissipation, and limiters[2]), but their use for practical
complex flow applications in realistic geometries is still problematic.

A very promising and mathematically rigorous alternative is to focus directly on dis-
crete operators that are non-linearly stable (entropy stable) for the Navier—Stokes equations.
These operators simultaneously conserve mass, momentum, energy, and enforce a secondary
entropy constraint. This strategy begins by identifying a non-linear neutrally stable flux for
the Euler equations. An appropriate amount of dissipation can then be added to achieve the
desired smoothness of the solution. Regardless of whether dissipation is added, enforcing a
semi-discrete entropy constraint enhances the stability of the base operator.

The idea of enforcing entropy stability in numerical operators is quite old [I8], and is
commonly used for low-order operators [19, 20]. An extension of these techniques to include
high-order accurate operators recently appears in references [21, 22 23], 24] and provides
a general procedure for developing entropy conservative and entropy stable, diagonal norm
summation-by-parts (SBP) operators for the compressible Navier-Stokes equations. The
strong conservation form representation allows them to be readily extended to capture shocks
via a comparison approach [19, 22]. The generalization to multi-domain operators follows im-
mediately using simultaneous-approximation-term (SAT) penalty type interface conditions
[25], whereas the extension to three-dimensional (3D) curvilinear coordinates is obtained by
using an appropriate coordinate transformation which satisfies the discrete geometric conser-
vation law [20]. See reference LeFloch and Rohde [27] for a more comprehensive discussion
on high order schemes and entropy inequalities. Therein, the focus is on the approximation
of under-compressive, regularization-sensitive, non-classical solutions of hyperbolic systems



of conservation laws by high-order accurate, conservative, and semi-discrete finite difference
methods.

Several major hurdles remain, however, on the path towards complete entropy stability
of the compressible Navier—Stokes equations including shocks. A major obstacle is the need
for solid wall viscous boundary conditions that preserve the entropy stability property of the
interior operator. In fact, practical experience indicates that numerical instability frequently
originates at solid walls, and the interaction of shocks with these physical boundaries is
particularly challenging for high order formulations. An important step towards entropy
stable boundary conditions appears in the work of Sviard and Ozcan [28]. Therein, entropy
stable boundary conditions for the compressible Euler equations are reported for the far-
field and for the Euler no-penetration wall conditions, in the context of finite difference
approximations.

The focus herein is on building non-linearly stable wall boundary conditions for the
compressible Navier—Stokes equations; primarily a task of developing stable wall boundary
conditions for the viscous terms. At the semi-discrete level, the proposed boundary treat-
ment mimics exactly the boundary contribution obtained by applying the entropy stability
analysis to the continuous, compressible Navier-Stokes equations. Furthermore, the new
technique enforces the Euler no-penetration wall condition as well as the remaining no-slip
and thermal wall conditions in a weak sense. The thermal boundary condition is imposed by
prescribing the heat entropy flow (or heat entropy transfer), which is the primary means for
exchanging entropy between two thermodynamic systems connected by a solid viscous wall.
Note that the entropy flow at a wall is a quantity that in some experiments is directly or in-
directly available (e.g., through measurements of the wall heat flux and temperature in some
supersonic or hypersonic wind tunnel experiments), or can be estimated from geometrical
parameters and fluid flow conditions for the problem at hand. For fluid-structure interaction
simulations, (e.g., supersonic and hypersonic flow past aerospace vehicles, heat-exchangers),
the entropy flow can be numerically computed at no additional cost while numerically solving
the coupled systems of partial differential equations of the continuum mechanics and fluid
dynamics.

Historically, most boundary condition analysis for the Navier-Stokes equations is per-
formed at the linear level by linearizing about a known state; a rich collection of literature is
available [29] 30, 31, 32]. The non-linear wall boundary conditions developed herein are fun-
damentally different from those derived using linear analysis and cannot rely on a complete
mathematical theory. In fact, a fundamental shortcoming that limits further development
of any entropy stable boundary conditions is the incomplete development of the analysis
at the continuous level for proving well-posedness of the compressible Navier—Stokes equa-
tions. Nevertheless, the boundary conditions proposed herein is extremely powerful because
they provide a mechanism for ensuring the non-linear stability in the L? norm of the semi-
discretized compressible Navier—Stokes equations. In fact, they allow for a priori bounds
on the entropy function when imposing “solid viscous wall” boundary conditions. The new
boundary conditions are easy to implement and compatible with any diagonal norm SBP spa-
tial operator, including finite element (FE), finite volume (FV), finite difference (FD) schemes



and the more recent class of high-order accurate methods which include the large family of
discontinuous Galerkin (DG) discretizations [33] and flux reconstruction (FR) schemes [34].

The robustness and accuracy of the complete semi-discrete operator (i.e., the entropy
stable interior operator coupled with the new boundary conditions) is demonstrated by
computing subsonic and supersonic flows past a 3D square cylinder without any stabilization
technique (e.g., artificial dissipation, filtering, limiters, de-aliasing, etc.), a feat unattainable
with several alternative approaches to wall boundary conditions based on linear analysis. In
fact, instabilities are observed when wall boundary conditions designed with linear analysis
are used in combination with highly clustered grids and/or high order polynomials, or very
coarse grids near solid walls, which yield unresolved physical flow features.

The paper is organized as follows. In Section[2], the compressible Navier—Stokes equations,
their entropy function and symmetrized form are introduced. Section [3| presents the entropy
analysis of the viscous wall boundary conditions at the continuous level. Section ] provides a
discussion of the inviscid flux condition which allows the construction of high-order accurate
entropy conservative and entropy stable fluxes at the semi-discrete level, for the interior
operator. The new entropy stable wall boundary conditions and their non-linear stability
(entropy stability) analysis are presented in Section . Finally, the accuracy and high level
robustness of the proposed approach in combination with a discontinuous high-order accurate
entropy stable interior operator are demonstrated in Section [} Conclusions are discussed in
Section

2. The compressible Navier—Stokes equations

Consider a fluid in a domain 2 with boundary surface denoted by 02, without radiation
and external volume forces. In this context, the compressible Navier—Stokes equations,
equipped with suitable boundary and initial conditions, may be expressed in the form

o of or"
2%t o0 = 5. %€ Q, tel0,00),
qloa = g(B)(x,t), xed, tel0,o00),

q(z,0) = ¢V(z), z€Q,

(1)

where the Cartesian coordinates, x = (1, x2, xg)T, and time, t, are the independent variables.
Note that in Einstein notation is used. The vectors ¢(x,1), fz-([) = fi(I)(q), and fi(v) =
fi(v)(q, V¢q) are the conserved variables, and the inviscid and viscous fluxes in the i direction,
respectively[] Both boundary data, g(®), and initial data, ¢, are assumed to be bounded,
L2N L>. Furthermore, g(®) is also assumed to contain (linearly) well-posed Dirichlet and /or

Neumann and/or Robin data. The vector of the conservative variables is

q = (p, pur, pus, puz, pE) ", (2)

!The symbol Vq denotes the gradient of the conservative variables.



where p denotes the density, u = (uy, u2,u3)T is the velocity vector, and E is the specific
total energy, which is the sum of the specific internal energy, e, (defined later) and the kinetic
energy, suju;. The convective fluxes are

fi(]) = (pui, pujug + 61 p, puiug + di2p, pusts + 0;3p, PUiH)T ) (3)

where p, H and 0;; are the pressure, the specific total enthalpy and the Kronecker delta,
respectively. The viscous fluxes are

fi(v) = (0, 71, T2, Tig, Tjill; — @), (4)

where the shear stress tensor, 7;;, assuming a zero bulk viscosity, is defined as

B Ou;  Ou; 2 Ouy,
Ty = (83@ * dr; % 36xk) ’ (5)

and the heat flux, according to the Fourier heat conduction law, is

orT
8ZEZ‘ ’

Q= —K (6)
The symbols 7', = 41 (T') and £ = £ (T') which appear in (f]) and (6]) denote the temperature,
the dynamic viscosity and the thermal conductivity, respectively. The viscous fluxes in ({4])
can also be expressed as

% 9q¢ _ , Ov
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where ¢;; and ¢}; are variable five-by-five matrice and v = (p, uy, ug, us, T)T is the vector of
the primitive variables. The functional form of the matrices c}; is given in [Appendix Al As
we will show later, relation is a very convenient form for the entropy stability analysis.
The constitutive relations for a calorically perfect gas are

1
e=c¢,T, h:H—éujuj:cpT, (8)

where the symbols ¢, and ¢, denote the specific heat capacity at constant volume and con-
stant pressure, respectively, and

R,

= T = —
p=pRT, R Wiia

(9)

where R, is the universal gas constant and MW is the molecular weight of the gas. The

2The coefficient matrices ¢;; and c;; depends on the solution variables.



speed of sound for a perfect gas is

@ (10)

c=+\YRT, Vzc &
2

In the entropy analysis that will follow, the definition of the thermodynamic entropy is the

explicit form,
R T p
= 1 — | — RI —_— 11
’ v—log(Tw> R°g<poo>’ .

where T, and p., are the reference temperature and density, respectively.

Note that in practical situations, most simulations are performed in computational space,
that is, by transforming all grid elements in physical space to standard elements in compu-
tational space via a smooth mapping. However, to keep the notation as simple as possible,
a uniform Cartesian grid is considered in the derivations presented herein. The extension to
generalized curvilinear coordinates and unstructured grids follows immediately if the trans-
formation from computational to physical space preserves the semi-discrete geometric con-
servation (GCL) [26].

2.1. Entropy function and entropy variables of the compressible Navier—Stokes equations

In the linear hyperbolic framework, L? stability is sought as a discrete analogue for a
priori energy estimates available in the differential formulation (e.g., Richtmyer and Morton
[35] and Gustafsson, Kreiss and Oliger [29]; Kreiss and Lorenz [36]). In the context of non-
linear problems dominated by non-linear convection, we seek entropy stability as a discrete
analogue for the corresponding statement in the differential formulation [19]. Moreover, for
systems of conservation laws, stability with respect to a mathematical entropy function is
considered as an admissibility criterion for selecting physically relevant weak solutions. In
fact, the entropy condition plays a decisive role in the theory and numerics of such problems
as shown, for instance, by Lax [37] and Smoller [3§].

Harten [39] and Tadmor [40] showed that systems of conservation laws are symmetrizable
if and only if they are equipped with a convex mathematical entropy function. Given a
set of conservation variables ¢(x,t), the entropy variables which symmetrize the system
are defined as the derivatives of the mathematical entropy function with respect to ¢(z,1t).
Hughes and co-authors [1§] extended these ideas to the compressible Navier—Stokes equations
(1)). Therein, it is shown that the mathematical entropy must be an affine function of the
physical (or thermodynamic) entropy function and that semi-discrete solutions obtained
from a weighted residual formulation based on entropy variables will respect the second law
of thermodynamics. Hence, it is again found that the entropy function and the entropy
variables are critical ingredients in the design of numerical schemes exhibiting non-linear
stability.

Definition 2.1. A scalar function S = S(q) is an entropy function of Equation of it
satisfies the following conditions:



o The function S(q) when differentiated with respect to the conservative variables (i.e.,
0S/0q) simultaneously contracts all the inviscid spatial fluzes as follows

os of" _asof”" og _ OF, 9g _ OF,
dq Oxr;  Oq Oq Ox;  Oq Ox;  Ox;

i=1,2,3. (12)

The components of the contracting vector, S/dq, are the entropy variables denoted as
w' = 0S5/9q. Fi(q), i = 1,2,3, are the entropy fluzes in the three Cartesian directions.

e The new entropy variables, w, symmetrize Equation (|1)):

ag  of"  of" oqgow ofY ow 0 [ dw
o om  om owor % 5y
J

= — —0, Q- 13
ot Ox; Oz ow ot  Ow Ox; Ox; ) 0, i=1,2,3 (13)

-
with the symmetry conditions: dq/dw = (dq/dw)’, 8fi(1)/8w = (8]‘2»(1)/811)) and
Cij = /C\ZTJ, with the matrices ¢;; included in .

The mathematical entropy is convex, meaning that the Hessian, 0°S/0¢*> = 0w/dq, is
symmetric positive definite (SPD),

928
CT 8_q2< > 07 VC 7£ 07 (14>

and yields a one-to-one mapping from conservation variables, ¢, to entropy variables, w' =

9S/dq. Likewise, dw/dq is SPD because dq/dw = (Ow/dq)”" and SPD matrices are invert-
wble. The entropy and corresponding entropy flux are often denoted as entropy—entropy flux
pair, (S, F), [19]. If the entropy function S(q) is convez, a bound on its global estimate can
be converted into an a priori estimate on the solution of in suitable LP space [{1)].

The symmetry of the matrices dq/0w, 0 fi(l) /Ow indicates that the conservative variables,
¢, and the inviscid fluxes, fi(l), are Jacobians of scalar functions with respect to the entropy

variables, 5 _—

T_ 09 N\ i

T b (") " ow’ (15)
where the non-linear function ¢ is called the potential and v, i = 1,23, are called the
potential fluxes [19]. Just as the entropy function is convex with respect to the conservative
variables (925/0¢* is SPD), the potential function is convex with respect to the entropy
variables.

Godunov [42] proved that (see reference [39] for a detailed summary of the proof):

Theorem 2.1. If Fquation (1) can be symmetrized by introducing new variables w, and q
is a convex function of ¢ (the so-called potential), then an entropy function S(q) is given by

p=w'qg-S5, (16)



and the entropy fluxes satisfy
bi=w' fi ~ F, (17)

where V;,1 = 1,2,3,, are the so-called potential fluxes. The potential and the corresponding
potential fluz are usually denoted as potential-potential flux pair, (p, ), [19].

In the specific case of the compressible Navier—Stokes equations, the entropy—entropy
flux pair is
S=—ps, F,=-pus, i=1,23, (18)

and the potential-potential flux pair is

Note that the mathematical entropy has the opposite sign of the thermodynamic entropy. To
avoid confusion, herein entropy refers to the mathematical entropy unless otherwise noted.
The entropy variables using the pair in ((18)) result in

oS T h U;U; U U Us 1 T (20)
w = _— — —_ — 5 — _— Y, —, — — .
dq T 2’ T’ T T T
A sufficient condition to ensure the convexity of the entropy function S(gq) (and, hence, a
one-to-one mapping between the entropy variables and the conservative variables )
is that p, T > 0 (for the proof see, for instance, Appendix B.1 in [22]). Expressly:
0%S
("N S0, WCA0, pT >0
dq
This restriction on density and temperature weakens the entropy proof, making it less than
full measure of non-linear stability. Another mechanism must be employed to bound p and

T away from zero to guarantee stability and positivity; positivity preservation will not be
considered herein.

Remark 2.1. The semi-discrete entropy stability does not necessarily lead to fully discrete
stability as is usually the case for linear partial differential equations (PDFEs). However, as
noted by Tadmor [19], entropy stability is enhanced by fully implicit time discretization. For
example, the fully implicit backward Euler time discretization is unconditionally entropy-
stable and 1s responsible for additional entropy dissipation. In contrast, explicit time dis-
cretization, leads to entropy production. Thus, the entropy stability of explicit schemes hinges
on a delicate balance between temporal entropy production and spatial entropy dissipation.
For example, the fully explicit Fuler time discretization does not conserve entropy except in
the case of linear fluzes [27]. Consequently, both the fully explicit and fully implicit Euler
differencing do not respect (non-linear) entropy conservation, independent of the spatial dis-
cretization. Fully discrete entropy conservation is offered, for instance, by Crank—Nicolson
time differencing [19].



3. No-slip boundary conditions: Continuous analysis

The problem of well-posed boundary conditions is an essential question in many area of
physics. For the two- (2D) and three-dimensional (3D) Navier—Stokes equations, the number
of boundary conditions implying well-posedness can be obtained using the Laplace transform
technique [29]; a complicated procedure for system of PDEs like the compressible Navier—
Stokes equations. Nordstrom and Svérd [30] proposed an alternative semi-discrete approach
to arrive at the number and type of boundary conditions for a general time-dependent
system of PDEs. This analysis was applied to the 3D compressible Navier—Stokes equations
for different flow regimes and the case of the Euler no-penetration velocity condition.

In 2008, Svird and Nordstrom [31] showed that the no-slip boundary conditions together
with a boundary condition on the temperature imply stability for the linearized compressible
Navier—Stokes equations. Their result, can also be generalized to assess the stability of the
non-linear problem for smooth solutions as indicated in [43, 29] and references therein. In
2011, Berg and Nordstrom [32] proved that the no-slip boundary conditions together with
a thermal Robin boundary condition also imply stability for the same linearized equations.
In this section we address the non-linear stability (entropy stability) of the wall boundary
conditions for the (non-linear) compressible Navier—Stokes equations given in . The aim
is to derive a sharp a priori bound for the entropy function which holds for smooth and
non-smooth solutions.

Contracting the system of equations (|1)) with the entropy variables and using the relations
given in and ((13) results in the differential form of the (scalar) entropy equation:

050¢  OSOLT 05 | OF _OSOLT _ 0 (v _(2w)'
Oq Ot  0q Ox; ot Odx; 0q Oux; ox; ! ox; !

. 0 T (V) ow T,\ ow
=5 (071) = (5 “ 5z,

Integrating Equation over the domain yields a global conservation statement for the
entropy in the domain,

(21)

d ow\ ' . dw
— dx = |tV _ F —/ —) @—dx = [w' Y~ K| - DT, (22
dt 5 dx [w Ji ’]aQ 9z, ) Y oz * [w /i ’]aQ - (22)
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where DT is the viscous dissipation term,

au\T  ouw Ow /0, T 11 G2 Ci3 ow /0,
DT = (—) /C\ij—dX: 3w/6x2 A21 /0\22 /0\23 8w/8x2 dx. (23)
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Q)

This equation indicates that the entropy can only increase in the domain based on data
that convects and diffuses through the boundaries. It is shown in [I8] 22] that the larger



15 x 15 coefficient matrix in (23 is positive semi-definite, which makes the term —DT in
strictly dissipative. Therefore, the sign of the entropy change due to viscous dissipation
is always negativeﬁ

To simplify, we let the domain of interest, €, be the unit cube 0 < xy,29,23 < 1.
Expanding the Einstein notation in equation yields

d
% Sdl’l diL‘Q dill'g =-DT
Q
[ __ Ow ow ow \ |
+ / +F - w' (e + C12 + i3 dxy dxs
I 0x; Oxs Oxs ) |
x1=0
[ 0 0  Ow ]
+ —F1 + U)T 11 o + C12 v + C13 v d%g Clﬂ?g
L 8:1:'1 81’2 85133 ]
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+ —FB+w' (e ad + Coa = + Co3 2 dxy dzs
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[ _ow . Ow . Ow\]
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L 8:1:1 81'2 8273 ]
x3=0
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L 8:61 8:162 (9.253 )

x3=1

Consider the case of a wall placed at 1 = 0, and assume that all the other boundaries terms
are entropy stable; their contributions are neglected without loosing generality. Therefore,
estimate reduces to

d
% / Sdl’l dl’Q dl‘g =-DT
Q

+ / - w' (e Ou + 12 Ou + i3 Ou dxy dxs .
0xq 0xs 0x3

r1=

(25)

To bound the time derivative of the entropy, the right-hand-side (RHS) of Equation
requires boundary data. For a solid viscous wall, assuming linear analysis, four independent

3From a physical point of view, this means that the viscous dissipation always yields an increase of the
thermodynamic entropy.
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boundary conditions must be imposed [43]E| Three boundary conditions are the so-called
no-slip boundary conditions, u; = uy = uz = 0 (i.e., the velocity vector relative to the wall
is the zero vector). In the linear settings (see, for instance, [32] [31]), the fourth condition
is the gradient of the temperature normal to the wall, (0T/0n)ya, (Neumann boundary
condition; e.g., the adiabatic wall), or the temperature of the wall, Ty, (the Dirichlet or
isothermal wall boundary condition), or a mixture of Dirichlet and Neumann conditions (the
Robin boundary condition). These four boundary conditions lead to energy stability (linear
stability); see, for instance, [31],32]. In the remainder of this section, we will show the type
and the form of the wall boundary conditions that have to be imposed to bound estimate
and, hence, to attain entropy stability.
Consider the inviscid contribution to the boundary terms in ([25)).

Theorem 3.1. The no-slip boundary conditions wy, = us = ug = 0 bound the inviscid
contribution to the time derivative of the entropy in equation (25)).

Proof. Equation ([17)) provides the definition of the entropy flux, Fi:

Fr=w'f =1, = puR. (26)

Substituting the no-slip conditions, u; = us = ug = 0, into the definition of the inviscid flux,
fl(l), (Equation [3|) and the condition u; = 0 into the definition of 1y, yields the desired result
F=0. ]

Consider now the viscous contribution to the boundary terms in ([25)).

Theorem 3.2. The boundary condition,

_aT 1

g(t) = T (27)

where the symbol n defines the normal direction to the wall, bounds the viscous contribution
to the time deriwative of the entropy .

Proof. Using the definition of matrices ¢;; given in [Appendix Al the viscous vector-matrix-
vector contraction given in yields the following term

_wT(6118w+,C\l2(9w o 8w> :/€<8Tl). (28)
8x1

833'2 13 81'3 8_3;1T

Therefore, specifying the condition g(t) = (g—;%) where g(t) is a known bounded function
(i.e., L?* N L), eliminates the last potential source of instability on the right-hand-side of
equation (25)). O

4Using the linear analysis, it can be shown that a solid viscous wall behaves like a subsonic outflow [30].

11



The boundary condition given by Theorem at first glance appears ad hoc. Note,

oT 1
ox1 T

x1 = 0, due to the wall heat flux, q,qu, and it is often denoted heat entropy transfer or heat
entropy flow [44]. In fact,

however, that the scalar value k accounts for the change in entropy at the boundary

orT 1 . 0 1 0 _qwall

Yo T "on [w(5)] w) = " om [log(T")] = T (29)

where w(5) denotes the fifth component of the entropy variable vector, w, in . Equation
(29) indicates that, in the context of the entropy stability analysis of the compressible Navier—
Stokes equations, it is admissible and physically (thermodynamically) correct to impose the
fourth wall boundary condition as given in Theorem [3.2]

To the best of our knowledge, Theorem provides new insight for future development
of any entropy stable boundary conditions for the compressible Navier-Stokes equations.

Remark 3.1. We strongly remark that the non-linear contraction obtained in is dif-
ferent from that obtained from the linearized compressible Navier—Stokes equations [31), [32)].
The linear analysis produces velocity gradient terms in the energy estimate (not present in
), and temperature gradient terms in the normal direction of the form Tg—z, with T and

g—; being perturbations; see, for instance, [31),[32).

Remark 3.2. The boundary condition g(t) = 0, which corresponds to an adiabatic wall
0T /0xy = 0, bounds the solution, and, as physically expected, does not contribute to the time
deriwative of the entropy because the heat flux is zero.

4. Entropy stable spectral discontinuous collocation method for the semi-discretized
system: Interior operator

In this section, we summarize the main results that allow us to construct a numerical
high order entropy stable discontinuous collocation interior operator of any order, p, on
unstructured grids. The formalism provided here, will then be used in Section 5] to design new
entropy stable solid wall boundary conditions for the semi-discretized compressible Navier—
Stokes equations.

Using an SBP operator and its equivalent telescoping form (see, for instance, [45] [46]),
the semi-discrete form of the compressible Navier—Stokes equations becomes

9q

=P, A, <—f§1) + ﬂm) +P,} (gz(B) + g§1")> : (30)
q(z,0) =g”(x), z€Q

where the subscript x; indicates the coordinate direction to which the operators apply. The
source terms gl(.B) and giln), with ¢« = 1,2, 3, enforce boundary and interface conditions,

12



respectively; and g(®) represents the initial condition. The matrix 7P may be thought of as a
mass matrix in the context of Galerkin finite element method. While it is not true in general
that P is diagonal, herein the focus is exclusively on diagonal norm SBP operators, based
on fixed element-based polynomials of order p. The matrix D is used to approximate the
first derivative; and it is defined as P~'Q, where the nearly skew-symmetric matrix, Q, is
an undivided differencing operator where all rows sum to zero and the first and last column
sum to —1 and 1, respectively [45] 46]. The operator A is the telescopic flux matrix and
allows to express the semi-discrete system in a telescopic flux form, by evaluating the fluxes

. =(I =(V . .

at the collocated flux points, f g and f ( ), (see Figure . Note that the spacing between
the flux points is incorporated into the operator P. In fact, the diagonal elements of P are
equal to the spacing between flux points. In the remainder of this paper, the elements of P

are denoted as Py, 1 = 1,2, ... ,Nﬂ

fo fi fa f3 fa fs

f1 Ja f3 fa fs

0 U U2 us 4
x e X . X e x

X1 ) I3 Xq Is

To T To T3 T4 T
-9 3 —16 +16 3 +9

-1 35 V= e 0 5 V7 T t1

Figure 1: The one-dimensional discretization for p = 4 Legendre collocation. Solution points are denoted by
e and flux points are denoted by x.

The semi-discrete entropy estimate is achieved by mimicking term by term the continu-
ous estimate given in Equation . The non-linear analysis (entropy analysis) begins by
contracting the semi-discrete equations given in Equation (30) with the entropy variables:
w ' P. For clarity of presentation, but without loss of generality, the derivation is simpli-
fied to one spatial dimension. Tensor product algebra allows the results to extend directly
to three dimensions. The resulting global equation that governs the time derivative of the
entropy is given by

WTPZ—? +w AR = wTATY £ w T (g®) 4 g, (31)

where
-

W= (w(Q1)T7 w(Q2)T7 S 7w(qN)T)

is the vector of the entropy variables at the solution points.

5In the remainder of this work, all quantities evaluated at the flux points are denoted with an overbar.
6N =p+1 for a pth-order scheme.
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4.1. Time deriwative
The time derivative in is in mimetic form for diagonal norm SBP operators. The
entropy variables are defined by the expression w' = 95/9q (see Definition , which when
combined with the definition of entropy yields the point-wise expression
wl Iq; @ dq; a5;

T A TR TR

Now, define the diagonal matrices 0S/0q = W = diag[w]. Since P is a diagonal matrix and
arbitrary diagonal matrices commute, the semi-discrete rate of change of entropy becomes
dq Jdq Jq 989q JS

=1"WPp—= =1"PW— = 1"Tp= 1Tp==

w P ot ot ot oq ot ot’

where

is a vector with N elements[’]

4.2. Inviscid terms
The inviscid portion of Equation (31]) is entropy conservative if it satisfies

wT AT = F(qy) = Fla) = Flav) — F(@1) = 17AF. (32)

Note that in , the first and last flux points are coincident with the first and last solution
points, which enables the endpoint fluxes to be consistent (see Figure [1)). Condition ([32))
leads to globally entropy conservative schemes but it is difficult to enforce at the flux points.
One plausible solution to circumvent this problem is to use a more restrictive point-wise
relation between solution and flux-point data, which telescopes across the domain and yields
a local condition on the flux for the global entropy consistency constraint (32)). Tadmor [19]
developed such a solution based on second-order accurate centered operators. Carpenter and
co-authors [40], have generalized this solution for Legendre spectral collocation operators of
any order of accuracy, p.

In the following paragraphs, we present, without any proof, the main theorems which
allow to construct inviscid entropy conservative and stable fluxes of any order of accuracy,
p. Interested readers should consult [22, [46] and the references therein for details. Note that
in this section the subscripts ¢ — 1, ¢ and 7 + 1 are used to denote a scalar or vector quantity
at the © — 1, 7 or 7 + 1 collocated point, and do not have to be confused with the subscript
used, for instance, in (/1))

Theorem 4.1. The local conditions

(Wig1 — )f 1/1z+1 7:51'; 1=12,...,N—-1 ; %:wl, TZNzlﬁN (33)

"Recall that N = p + 1 for a pth-order scheme.
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when summed, telescope across the domain and satisfy the entropy eonservative condition
given in Equation (32)). A ﬂux that satisfies the condition given in equation (33|) is denoted
f(s . The potentials @/},H and @b, need not be the point-wise ;11 and ;, Tespectwely

(2

Proof. See Theorem 3.3 in reference [46] for the proof of this theorem. O

A possible strategy for constructing high order entropy conservative fluxes is to construct
a linear combination of two-point entropy conservative fluxes by using the coefficients in the
SBP matrix Q. This approach follows immediately from the generalized telescoping struc-
tural properties of diagonal norm SBP operators (see, for instance, [45, 46]). Because it
requires only the existence of a two-point entropy conservative flux formula and the coeffi-
cients of Q, it is valid for any SBP operator that satisfies the following SBP constraints

Q" =B-9Q, B=diag(-1,0,...,0,1).
Thus, it is also valid for Legendre spectral collocation operators used herein; see [46].
The following theorem establishes the accuracy of the new fluxes.

Theorem 4.2. A two-point entropy conservative flux can be extended to high order with
formal boundary closures by using the form

N 7
= > > 2Qufs(ga), 1<i<N-—1, (34)

k=i+1 (=1
when the two-point non-dissipative function from Tadmor [19],

1

Fs (arq0) Z/Q(W(qk)+€(W(CIe) —w(gr))) d§,  g(w(u)) = f(u), (35)

0
is used. The coefficient, Qpy, corresponds to the k row and | column in Q.
Proof. See Theorem 3.1 in reference [22] for the proof of this theorem. O

Thus, Theorem ensures that a high order flux constructed from a linear combination
of two-point entropy conservative fluxes retains the design order of the original discrete
operator for any diagonal norm SBP matrix Q.

The following theorem establishes instead that the linear combination of two-point en-
tropy conservative fluxes does preserve the property of entropy stability for any arbitrary
diagonal norm SBP matrix Q.

Theorem 4.3. A two-point high order entropy conservative flux satisfying Equation (33))
with formal boundary closures can be constructed using Equation (34)),

N i
= > > 2Qufs(ga), 1<i<N-—1, (36)

k=i+1 (=1
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where fs (qe, qi) is any two-point non-dissipative function that satisfies the entropy conser-
vation condition

T

(we —wr) " fg(qe,qr) = e — Vr. (37)
The high order entropy conservative flux satisfies an additional local entropy conservation
property,

)
7771Aﬁs<—7>1AF__55F()4¥E+h (38)

where Ty is the truncation error of the approximation of OF (q) [0z, or equivalently,

w (F7=720) = (Fi=Fia), 1<i<N, (39)
where
N i B
Fi= > Y Qu [(w€+wk)Tfs(QZ7Qk) - (WJF%)} , 1<i<N-1L (40)
k=i+1 (=1
Proof. See Theorem 3.2 in reference [22] for the proof of this theorem. O

4.2.1. Affordable entropy consistent Euler flux
The inviscid terms in the discretization of the compressible Navier—Stokes equations

are calculated according to Equations by using the two-point entropy conservative flux
of Ismail and Roe [47],

_ AN\ T
Foslaisaie) = (s, pisios + 81, pistia + 8y, pisity + 0y, pis )

1L + Vi1 Di + Pit1
N \/,ZT 1/Ti+1 N \/T'L N/Ti-‘rl
U= — o1 pP=— T 1
VE T o VE T no
1Og( VTip: )
n \ Tiv1pit1
h=R—Y"""7 (0, +0,),

\/_Tii + 1/Ti+1
6, = VTipi + VTiipiv (41)

( 1 \/_) (VTipi — \/Tﬂpm)’

_ v+l log ( ZT)
V—110g<\/%pf;> (ﬁ—ﬁ)
(%ﬁ}ﬁ;)WTm—fm@m)
2 (log(vVTipi) — log(v/Tiz1piv1))
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The index j denotes the spatial direction. This somewhat complicated explicit form is the
first entropy conservative flux for the convective terms with low enough computational cost
to be implemented in a practical simulation code.

To our knowledge, the Ismail and Roe flux [47] cannot be written in the form given by
(35). Therefore, there is no mathematical proof that show that the entropy conservative flux
constructed as in by using will retain the design-order of the spatial discretization.
However, thorough numerical experiments reported in [22], [48] 23] and herein indicate that
the inviscid terms calculated with the two-point entropy conservative flux of Ismail and Roe
[47] do not destroy the order of accuracy of the spatial operator.

4.2.2. Entropy stable inviscid interface flux

Herein, the solution between adjoining elements is allowed to be discontinuous. An
interface flux that preserves the entropy consistency of the interior operators on either side
of the interface is needed. An entropy consistent (or entropy conservative) inviscid interface

flux constructed according to equation by using is indicated as f*" (ql( ), ql(+)> The

superscripts (—) and (+) combined with the subscript i denote the left and right state used
to compute the two-point entropy conservative flux and therefore replace the subscripts ¢
and 7 + 1 in (41)).

A more dissipative and hence entropy stable inviscid interface flux %" (q.(f),qi(ﬂ > is

7

constructed as
£ (07 a) = 7 (a0 ) A (- w7 (42)

where A is a negative semi-definite interface matrix with zero or negative eigenvalues. The
entropy stable flux f**" < l( ), qz( )> is more dissipative than the entropy conservative inviscid

flux, as is easily verified by contracting f*" <qi(7), q§+)> against the entropy variables to yield

the expression

T
(o ) £ (40, ) = 6P o+ (u =) A (ol 0l (19

The matrix A can be constructed using different approaches, e.g., using an upwind operator
that dissipates each characteristic wave based on the magnitude of its eigenvalue:

f( ),%“)) — e <qf ) gt ) 1/2y\A|yT< wf)) :

agf(Q) = VAT, (44)
Iq T
Y0 =YYy,

where A and ) are the diagonal matrix of the eigenvalues and the matrix of the eigenvectors,
respectively. Note that the relation g—g = YY7T is achieved by an appropriate scaling of the
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rotation eigenvectors. Unless otherwise noted, the entropy stable characteristic flux is
used in all test simulations presented herein. In particular, we adopt the scaled eigenvectors
introduced by Merriam [49] which allow to introduce an artificial viscosity from the viewpoint
of numerical satisfaction of the second law of thermodynamics.

Remark 4.1. In [28] grid interfaces for entropy stable finite difference schemes are studied
and interface fluxes similar to are proposed.

4.8. Viscous Terms

Using the SBP formalism (see, for instance, [45, [46]), the contribution of the viscous
terms to the semi-discrete time derivative of the entropy is

w AR = wTB&Dw — (Dw)T Péy (Dw). (45)

The last term is negative semi-definite. As with the continuous estimate given in , only
the boundary term can produce a growth of the entropy (see RHS of ), and thus the
approximation of the viscous terms is entropy stable. (Entropy stable boundary conditions
bound these terms.)

4.3.1. Entropy stable viscous interface coupling

Herein, the 3D entropy stable viscous interface coupling procedure proposed by Parsani,
Carpenter and Nielsen [45] is used to patch interior interfaces for the compressible Navier—
Stokes equations. This treatment is based on a precise combination of local discontinuous
Galerkin (LDG) and interior penalty (IP) approaches.

5. Entropy stable solid wall boundary conditions for the semi-discrete system

An estimate for the time derivative of the entropy of an isolated element is derived,
followed by a derivation of entropy stable penalty terms that impose physical data on a
viscous wall

5.1. General approach for the entropy stability analysis of a SBP-based spatial discretization

Consider a single tensor product element and a spatially discontinuous collocation dis-
cretization with NV = p+1 solution points in each coordinate direction; the following element-

8The same boundary conditions (without stability proofs) could be used for almost any spatial discretiza-
tion, including the family of DG methods, FR approaches, WENO schemes, FD and FV methods.
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wise matrices will be used:

D,y =DPvRINRIy®I5), -+ Dpy=(In®Iy@Dy®I5),
Poy=Pv@In®IN®IL), - Puy=In®IN®Py®I5),
Pwll'g :(PN®PN®IN®I5), PIQISI(IN®PN®PN®I5),
(46)
P:P$1$2$3 = (,PN®,PN®IPN®]5)7
B:(;1:(BN®IN®IN®I5), Bxdz([N®[N®BN®I5),
Am1:(AN®IN®[N®[5)7 Axgz([N®[N®AN®I5),

where Dy, Py, Ay, and By are the one-dimensional (1D) SBP operators [45], and Iy
is the identity matrix of dimension N. I5 denotes the identity matrix of dimension five[]
The subscripts in indicate the coordinate directions to which the operators apply (e.g.,
D,, is the differentiation matrix in the z; direction). Furthermore, we define the norm
w!'Pq=|S H?P, where w and S are the vector of the entropy variables at the solution points
and the mathematical entropy of the system, respectively. When applying these operators
to the scalar entropy equation in space, a hat will be used to differentiate the scalar operator
from the full vector operator. For example,

P = (Py ® Py ® Py). (47)

Within one tensor product element, the 3D compressible Navier—Stokes equations are
discretized as

99 poan (B 1) epnan, (B -87) s, (1) -8)

(48)
=P (a7 + ™) + Pt (& +el™) + P (88 +el™).

where the vector of the conservative variables is ordered as
_ T T Y T T T
a=(a(rwnm) 1 @Eome) - a@omem) ) = (@ a g ), (49)

and fz(»l) and fgv),i = 1,2,3, are the inviscid and viscous grid fluxes, respectively. The

9The 3D compressible Navier-Stokes equations form a system of five non-linear PDEs.
10Recall that the vectors with an over-bar are defined at the flux points.
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vectors gEB), 1= 1,2, 3, enforce the boundary conditions, while g,gln),i = 1,2, 3, patch inter-

faces together. The derivatives appearing in the viscous fluxes are also computed using the
operator D,,, i =1, 2,3, defined in (46)).

As in the continuous case, we apply the entropy analysis to Equation by multiplying
with w'P from the left. Moreover, we substitute to fil , 1 =1,2,3, the high-order accurate
entropy consistent flux constructed according to Equation with the two-point entropy
conservative flux presented in Section [4.2.1L The final expression for the time derivative of
the entropy in the element is then

d A A A A A
SIS + 17 (PravaBosFr + Pore B P + oy Bu Fy)
= W (Praa BB 4 Po Buly 4 P BBy ) + DT (50)

B In B In B n
= (P (874 67) + Pr, (&7 5 887) + P, (617 87)).

Note that in the bar over the flux vectors could be safely removed because the
contraction of against w' P leads only to the fluxes at the face flux points, which are
coincident with the first and last solution points (see Figure . This duality is needed to
define unique operators and is important in proving entropy stability [46]. The quantity DT
denotes a positive quadratic term in the first derivative approximation of the solution:

3 3
DT =)

=1

(Dxiw)—r Plcij] (ijw)

D, w\ | [Ple] Pl P\ [De,w

= me 'P[/C\m} 'P[522] 'P[E23] DzQW )
ngw ’P[/C\gﬂ P[/C\32] P[Egg] DmSW

where [¢;;] denotes a block diagonal matrix with blocks corresponding to the viscous coethi-
cients of each solution point. The positive semi-definiteness of DT follows from the positivity
of the matrices ¢;; (see Appendix B.2 in [22] for the proof and herein for the
expression of these matrices). The matrices B,,, i = 1,2, 3, pick the interface terms in the
respective directions (i.e., for a high-order accurate scheme on a tensor product cell, they
pick the solution value at the nodes of the two “opposite” faces). Therefore, Equation ({50))
is the semi-discrete form of Equation (24), which was obtained from the analysis at the
continuous level.

5.2. Entropy stability analysis for the solid wall boundary conditions

In this section, we focus now on the construction of an entropy stable penalty term for
imposing the solid wall boundary conditions for the compressible Navier—Stokes equations.
Without loss of generality, we study a hexahedral element with edge length equal to
one and we consider only the face plane (0, x5, x3). With these assumptions, Equation ([50))
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reduces to
d ~ 5 =V
2SI = 17 Prsu Gy Fr + W PGl + DT = w PruGug®.  (52)

The operators gA(k) and Gy are defined as

~

where

e = (0,0,...,1,0,...,0,0)"

is a vector of length N and has a non-zero element corresponding to the location k. Therefore,
the operators G(;) and Gy pick out the nodal values of the solution or any flux vector at a
specific plane according to the ordering introduced in . Herein, the face plane (0, 22, x3)
is characterized by the index k = 1. Thus, Equation represents the contribution to the
time derivative of the entropy of the boundary points that lie on the face plane (0, zo, x3).

In the remainder of this paper, we assume that the node with solution vector ¢ ($(1)(1)(1)) =
qq) (see expression (49))) lies on this face plane. This point will be used to derive entropy
stable wall boundary conditions. All numerical states associated to it will be identified with
the subscript (-) ;).

In estimate , the penalty source term ggB) is composed of three design-order terms
that weakly enforce the wall boundary conditions:

=(I) sr —=(V =(V,B e
g” = - (f1 — " (a g(E))) - (f1 - )> +[M] (w— g™V (54)

In each of the three contributions, the first component (the numerical state) is constructed
from the numerical solution, while the second component (the boundary state) is constructed
from a combination of the numerical solution and four independent components of physical
boundary data.

The first term enforces the Euler no-penetration wall condition through the inviscid flux of
the compressible Euler equations. The boundary state is formed by constructing an entropy
conservative flux based on the numerical state at boundary point, g(;), and a manufactured

boundary state given by the vector ¢(&):
1 0 000
0 -1 0 00 T
g =10 0 10 0 Q(Tl) = (P(l), - (Pul)(1) ’ (Puz)(1) ) (Pus)(n ; (PE)@))
00 010 (55)
0 0 0 01

= (a)(1), —a)(2), 4y (3), 4y (4), 4y (5))

The second term in enforces the heat entropy flow boundary condition , facili-
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tated by manufacturing a boundary viscous flux 7§V’B)

of the entropy variables in the numerical state as

. Define the component of the gradient

.

@361,(1) = [@:731,(1)(1)7@11,(1)(2)7@361,(1)(3)7@Sﬂl,(l)(4)7@$1,(1)(5>] ) (563)
T

Ouas(1) = [Os,1)(1), Oy (1)(2), O (1) (3), O 1) (4), Oy 1) (B)] (56b)
T

Ouss(1) = [Ows1)(1), O, (1)(2), O, (1) (3), O, (1) (4), Oy, (1) (B)] (56¢)

where ©,, 1)(j) denotes the derivative of the j-th entropy variable in the ¢ direction. Next,
specify the value of g(t), the externally provided bounded function given by . Finally,
define the manufactured component of the gradient in the normal direction, ©,,, as

~ - T
@:rl = [@x1,(1)(]‘)7 @xl,(l) (2)7 63317(1) (3)7 @171»(1) (4)’ @331 (5)i| ’ <57)
where ©,,(5) is computed as

6,,(5) = —g(t) wp(5) = B2 (58)

: . : —(V,B) .
With these definitions, the manufactured viscous flux f § ! is constructed as

—=(V,B) ~ = ~ 2
fg ) = €11 Oy + C12 Oy, (1) + €13 O (1), )

where the matrices ¢, j = 1,2, 3, are calculated using the numerical solution. As we will
show later, the boundary flux, ﬂv’B), constructed using will yield a mimetic contribution
to the time derivative of the entropy. Note that for an adiabatic wall g(t) = 0, and from
expression (H8) we get é$1(5) = 0.

The third term in enforces the no-slip wall (Dirichlet) boundary conditions (u; =
us = uz = 0) through a standard SAT approach. The manufactured boundary state g9 Vel
is defined in terms of entropy variables as

. T
g(Ns),V I _ (w(l)(1)7 O, O, 0, w(l)(5)) > (60)

where, as usual, w(;)(1) and w(;)(5) are the first and the fifth components of the entropy
vector constructed from the numerical solution. Three boundary conditions are imposed
in Equation (60]); all velocity components are set to zero at the wall. This is immediately
clear by recalling that the entropy variables for the compressible Navier—Stokes equations

are defined as -
h U;U; U Uz U3 1

w==—-5s— —, =, = = —= :
T 2T T T T’ T

Vel
)

Note that the no-slip conditions are not used to define the first component of gV as
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the matrices ¢;;, 7, ] = 1 2,3, have zeros on the first row and column (see [Appendix Al B
The matrix [M] in is a block diagonal matrix with N* five-by-five blocks'?| which are
defined as

(B)
M=-—""H& H H=dag1,1,1,1,0, o >0 (61)
(Pwl)(l)(l)

The matrix ¢;; has the functional form of the usual symmetric positive semi-definite ma-
trix ¢1; defined in [Appendix A} This matrix has to be constructed using a set of primitive
variables that is independent of the numerical solution at all times. For example, for ex-
ternal flows, ¢1; can be constructed using the externally provided data at the far-field (e.g.,
(Poos |[Usols [Uso], [Usol, Too)) The coefficient a® in is used to modify the strength of
the SAT penalty term, and can be specified by the user. The factor (le)(l)(l) > 0 in the
denominator is the first diagonal element of the operator leﬁ and is introduced to get the
correct dimensions. This factor is also important because it allows to achieve the correct
asymptotic order of accuracy and yields an increase in the strength of M with increased
resolution [
Summarizing Equation , the penalty at the face point is the sum of three terms:

e the difference between inviscid flux and the entropy consistent flux at the node in the
normal direction;

e the difference between the internal viscous flux and a boundary viscous flux at the
node in the normal direction;

e the difference between the solution (in entropy variables) at the node and the data
imposed at boundary, multiplied by the matrix M.

The penalty term contracted with the entropy variables and simplified, yields the
expression

Y sr
+ WTszxz.g(l) <?§V) — ng’B)) (62)
+ WTP$2z3g(1)[M] (W — g(NS),Vel) '

The entropy stability of the penalty source term defined by Equation is demon-
strated in the following theorems. First, the inviscid term is proven to be entropy conservative
and then entropy stable, if dissipation is added. Next, the second term, which specifies the

" Currently, there are no diffusion terms in the equation that describes the conservation of mass.

123 — (p+1)? is the number of solution points within a three-dimensional tensor product cell.

13In a general framework, the matrix M is built using the five-by-five matrix ¢;; where the index i denotes
the normal direction to the wall.

14Recall that the diagonal element of any operator P are equal to the spacing between flux points.

15This dependence on the mesh size in the normal direction to the face is similar to that of the interior
penalty approach used in finite element methods.
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thermal condition, is proven to be bounded by physical data provided by the user. Finally,
the third term, which specifies the no-slip boundary conditions, is proven to be entropy
stable.

Theorem 5.1. The penalty inviscid flux contribution in Equation (54)) is entropy conserva-
tive if the vector g'¥) is defined as in .

Proof. The inviscid contribution of the boundary node, T), to the time derivative of the
entropy can be written as (see Equations and (62))

T = (ngzg)(l)(l) Fi—w (Pa:zrs)(l)(l) Fl (q(l)) - (q(1)79(E))} ’ (63)

where (Puyay) 1)) # 0. Substituting the expression for the entropy flux F, (i.e., Equation

(L7) with ¢ = 1) and evaluating the entropy consistent flux f;" using ¢(1) and ) yields the
desired result

—() —) sr
TU):(ﬁkﬂQuﬂn[waﬂﬁ (a0)) = v1 = wlyFy (@) +why fi @“%9@0} (64)
= (Pasas) (1)) [t + w(Tl) T (q(l)ag(E))} =0.

0

Corollary 5.1. The penalty inviscid fluz contribution in Equation 15 entropy stable if
the vector ¢'F) is defined as in and £°" is replaced by the entropy stable flux £5°7 defined

m .

Remark 5.1. A result similar to Corollary is given by Svird and Ozcan [28] in the
context of high order entropy stable finite difference schemes for the compressible Fuler equa-
tions. Therein, an entropy dissipative Fuler no-penetration boundary treatment is proposed
to bound the time derivative of the entropy.

Using Theorem [5.1] we are left only with the viscous contributions:
d =) V) §(v.B)
E ||S||3? + WT,P$2$3 g(l) fl +DT <+ WT,P$2$3 g(l) <f1 : - fl >
+ WTP$2I‘3 g(l) [M] (W _ g(NS),Vel) ]

(65)

Theorem 5.2. The viscous penalty terms in ,
V) F(v.B) e
Gy (B = 177) + G M] (w — g™

are entropy stable for any value of g(t) and any five-by-five matriz M as defined in (61]).
Proof. Clearly, the viscous flux term on the left-hand-side (LHS) of is balanced by the
same term on the RHS. Therefore, expression reduces to

V,B)

d =V, e
7 15]% + DT < — W' Py, Gy fg + W Poyay Gy [M] (w — gV Vel (66)
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The contraction —w ' Py, G1) fﬁV’B) with Tﬁv’B) defined as in yields the following nodal

contribution _vB)
- wa) (Pcczws)a)(l) i = (sz:cs)(1)(1) K g(t). (67)

Since g(t) is a known bounded function (i.e., L? N L*°) expression ([67) is also bounded. We
highlight that for an adiabatic wall g(t) = 0 and, consequently, the viscous flux penalty
in conserves the entropy (as it should) because the heat flux is zero.m Note that the
contribution @ mimics exactly the boundary contribution to the time derivative of the
entropy that has been obtained from the continuous analysis (see Equation ((28])).

We are then left with the contribution w'P,,,,Gq) [M] (w — gW¥V9Vel). At the nodal
level, this term can be re-written as

Wy (Pages) iy M (wiy = g™) =+ 5 (Praas) )0y wly My

-
(szxg)(l)(l) (g(NS),Vel) M gNS)vel

NN NGRS N I

(Px2m3)(1)(1) (w(l) - g(NS)’Vel)T M (w(l) — g(NS)»Vel) )

(68)
The penalty contribution given by Equation imposes the no-slip Dirichlet boundary
conditions on the velocity components and is bounded if

_|_

e M is negative semi-definite;
e M is independent of the numerical state.

If these two conditions are fulfilled, the first and the last term in introduce only dissi-
pation, whereas the second one is a bounded term because it is just a function of data; and
it is zero for no-slip boundary conditions. O]

For a Reynolds number (Re) that approaches +o00, we would like to smoothly recover only
the no-penetration (or wall slip) boundary condition that characterizes the Euler equations
(first contribution in (54)). To achieve that, the matrix M needs to be a function of the
Reynolds number and can be computed as in , ie.,

B)
M=————H¢&,H, H=diag(1,1,1,1,0), o® >0,
(le)(l)(l)

where ¢17 has the functional form of the usual ¢;; matrix and it is constructed using a state
that is independent of the numerical solution at all times.

16g(t) = 0 in Equation yields zero.
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6. Numerical results

The objective of this section is to demonstrate the accuracy and robustness of the new
entropy stable wall boundary conditions coupled with the family of high-order entropy stable
interior operators developed in [46]. The unstructured grid solver used herein uses a trans-
formation from computational to physical space that satisfies the semi-discrete geometric
conservation law.

Before proceeding with the numerical tests, we demonstrate with an example that the
construction of a penalty source term with only an inviscid and a viscous contributions leads
to a non-entropy stable boundary treatment.

6.1. Non-entropy stable viscous wall boundary conditions: Isothermal wall

In Section , we have shown that constructing ggB) as in yields entropy stable
wall boundary conditions. However, one might attempt to construct ggB) as the sum of an
inviscid penalty flux and only a viscous interior penalty term,

gl == Go (B~ &7 (a.8®)) + G [2] (w — ™). (69)

For an isothermal wall, for instance, g S) is a vector of data that imposes both the no-slip
boundary conditions (i.e., u; = uy = uz = 0) and the wall temperature:

1 T
g(NS) — <w(1)(1),0,0,0,—T ) . (70)
wall

The matrix [L] in is a block diagonal matrix with N3 blocks of size five-by-five. Com-

paring the two definitions of ggB) given in Equations and , it can be seen that in the
latter approach no viscous flux penalty terms are introduced. This is a key difference, and as
shown in [Appendix B] yields a provably non-entropy stable solid wall boundary conditions.
Such a boundary treatment leads to unstable simulations when used in combination with
fine grids and/or high-order accurate polynomial representations of the solution.

6.2. Computation of a square cylinder in subsonic freestream

The flow past a square cylinder represents a benchmark test case for external flow past
bluff bodies. This flow has been the subject of intense experimental and numerical research
in the past. In fact, a cylinder with square cross section is a simple but a central shape
for many engineering applications, including aeroacoustics and air pollutant transport and
dispersion in urban environments.

The flow is described in a Cartesian coordinate system (z1, s, x3), in which the x;-axis
is aligned with the inlet flow direction, the xs-axis is parallel with the cylinder axis and the
x9-axis is perpendicular to both directions (see Figure . A fixed two-dimensional square

17Note that g(NV9) is expressed in terms of entropy variables.
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cylinder with a side d is exposed to a uniform freestream velocity vector with modulus ||
The length of the square cylinder in the x3-direction is 10d.

The following boundary conditions are used. A uniform flow is prescribed at the inlet
which is located 10 d units upstream of the cylinder. At the outlet, located 20 d unit down-
stream of the cylinder, far-field boundary conditions are used. A no-penetration (Euler)
boundary condition is prescribed at the upper and lower boundaries. No-slip and adiabatic
conditions are enforced at the body surface. A periodic boundary condition is used in the
spanwise direction z3. In the zo-direction, the solid blockage of the confined flow (i.e., the
vertical distance between the upper and the lower inviscid walls) is set to 18d.

The flow has a freestream Mach number of M., = 0.1, and a Reynolds number of Re,, =
2 x 10%. The Reynolds number is based on the modulus of the freestream velocity vector,
|is| and the height of the cylinder d. At this Reynolds number, the regime is laminar and
it usually persists up to a Reynolds number of about 4 x 102. Moreover, the vortex shedding
is characterized by one very well-defined frequency [50]. A very small time step is used to
integrate the system of ordinary differential equations (ODEs) so that the temporal error is
negligible compared to that of the spatial discretization.

6.2.1. Accuracy of the no-slip wall boundary conditions

The proposed entropy stable no-slip wall boundary conditions do not force the numerical
solution to exactly fulfill the boundary conditions. Instead the effect can be described as a
rubber-band pulling the solution towards the boundary conditions. The computed bound-
ary value (or numerical state) typically deviates slightly from the prescribed value but the
deviation is reduced as the grid is refined. Therefore, the error at the boundary can serve as
a rough measure of the error of the entire solution.

We compute the maximum norm L*° of the error of the three velocity components w1, us,
and ug on the complete surface of the cylinder at ¢ = 1, for three different grids. The meshes
are fully unstructured, although a structured subdivision is used around the square cylinder
and the near wake region to perform a grid convergence study (see Figure . Grid 3 is the
finest grid and has 20 points on each side of the square, 20 points in the “radial” direction in
the “structured portion” near the body, 40 points in the near wake region in the freestream
direction, and 8 points in the spanwise direction. Grid 2 and Grid 1 are obtained by taking
every other and every fourth grid point of Grid 3 in the structured region. The simulations
are performed using different orders of the polynomial (p = 1,2, 3,4). The results are shown
in Tables [T} 2| and [3]

We highlight a few observations. First, in all cases an increase in theoretical order of
accuracy results in a error reduction on all grids. Secondly, although the convergence rates
in model problems are shown on much finer meshes, the computed order of accuracy is very
close to the formal value between the medium and fine grids, even for these more realistic
meshes.

6.2.2. Vortex shedding
In this section we investigate the vortex shedding and the time variation of the lift
and drag coefficients. We compare our results against the data reported by Sohankar et
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Figure 2: Example of structured/unstructured grids used for the flow past a 3D square cylinder at Reo, =
2 x 10% and My = 0.1.

‘ p=1 rate ‘ p=2 rate ‘ p=3 rate ‘ p=4 rate
Grid 1 | 4.73e-2 - 2.15e-2 - 9.61le-3 - 4.54e-3 -
Grid 2 | 1.47e-2 1.69 | 2.88e-3 2.90 | 5.83e-4 4.04 | 1.39e-4 5.02
Grid 3 | 3.55e-3 2.04 | 3.66e-4 2.98 | 3.40e-5 4.10 | 4.52e-6 4.94

Table 1: L°° error norm of the velocity component u; at the wall and convergence rates; ¢t = 1; 3D unsteady
laminar flow past a square cylinder at Res = 2 x 10?2 and M, = 0.1.

al. [51]. We compute the following quantities: The Strouhal number, fd/|i|, where f
is the frequency of the vortex shedding; the time-averaged drag coefficient, c¢p, and the
spanwise-averaged root-mean-square (RMS) of the lift coefficient, ¢S, We use the same
grids presented in the previous section, and different orders of the polynomial (p = 1,2, 3,4).
The results are illustrated in Tables and [0 From these tables, it can be seen that in all
cases the accuracy of the results improve by increasing the order of accuracy of the scheme.
We also note that, on Grid 3, which is very coarse compared to the typical grids used with
second-order FV and FD schemes, fourth- (p = 3) and fifth-order (p = 4) accurate entropy
stable schemes perform very well. In fact, the aerodynamic coefficients computed with these
two discretizations are in very good agreement with the results reported in literature [51].

‘ p=1 rate ‘ p=2 rate ‘ p=3 rate ‘ p=4 rate
Grid 1 | 7.20e-2 - 2.71e-2 - 1.43e-2 - 5.14e-3 -
Grid 2 | 1.79e-2  2.01 | 3.34e-3 3.02 | 1.10e-3 3.70 | 1.96e-4 4.71
Grid 3 | 4.65e-3 1.94 | 4.20e-4 2.99 | 7.21e-5 3.93 | 6.48e-6 4.92

Table 2: L°° error norm of the velocity component us at the wall and convergence rates; ¢t = 1; 3D unsteady
laminar flow past a square cylinder at Re., = 2 x 10% and M, = 0.1.
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‘ p=1 rate ‘ p=2 rate ‘ p=3 rate ‘ p=4 rate
Grid 1 | 2.75e-4 - 1.34e-4 - 1.01e-4 - 8.62e-5 -
Grid 2 | 5.98e-5 2.20 | 1.71e-5 2.97 | 7.92e-6 3.67 | 3.14e-6 4.78
Grid 3 | 1.38e-5  2.12 | 2.03e-6 3.04 | 5.30e-7 3.90 | 8.70e-8 5.17

Table 3: L° error norm of the velocity component ug at the wall and convergence rates; t = 1; 3D unsteady
laminar flow past a square cylinder at Res, = 2 x 102 and M., = 0.1.

Solution St (cp) cBMS
SSDC p =1 0.098 1.01 0.02
SSDC p =2 0.109 1.08 0.06
SSDC p =3 0.142 119 0.11
SSDC p =4 0.151 1.28 0.15

Sohankar et al. [51] | 0.160 1.41 0.22

Table 4: Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for the
3D unsteady laminar flow past a square cylinder at Res, = 2 x 102 and M., = 0.1; Grid 1.

Solution St (cp) cBMS
SSDC p=1 0.128 1.16 0.07
SSDC p =2 0.139 1.28 0.13

SSDC p =3 0.153 1.36 0.20
SSDC p =4 0.159 1.40 0.23
Sohankar et al. [51] | 0.160 1.41 0.22

Table 5: Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for the
3D unsteady laminar flow past a square cylinder at Res, = 2 x 102 and M, = 0.1; Grid 2.

Solution St (cp) cRMS
SSDCp=1 0.134 1.29 0.12
SSDC p =2 0.154 1.37 0.19
SSDC p =3 0.159 1.40 0.22
SSDC p =4 0.159 1.42 0.23

Sohankar et al. [51] | 0.160 1.41 0.22

Table 6: Strouhal number, mean drag coefficient, and spanwise-averaged RMS of the lift coefficient for the
3D unsteady laminar flow past a square cylinder at Re,, = 2 x 102 and M, = 0.1; Grid 3.
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6.3. Heat entropy flow

In this section we perform a convergence study of the thermal condition to verify that the
heat entropy flow at the wall converges to the prescribed value. At t = 100, we compute the
maximum norm L of the error of the quantity [éxl(S)T(.)} (see expression (58])) for all the

solution points that lie on the solid wall. The entropy flow g(¢) is set to g(t) = const = 0.02.
The results are illustrated in Table[7] As for the convergence study on the no-slip boundary

p=1 rate ‘ p=2 rate ‘ p=3 rate ‘ p=4 rate
Grid 1| 6.17e-2 - 3.68e-2 - 9.16e-3 - 7.23e-3 -
Grid 2 | 3.35e-2 0.88 | 9.95e-3 1.89 | 1.32e-3 2.79 | 5.83e-4 3.63
Grid 3 | 1.63e-2 1.03 | 2.23e-3 2.16 | 1.68e-4 2.97 | 2.59¢e-5 4.22

Table 7: L error norm of the heat entropy flow at the wall and convergence rates; g(t) = const. = 0.02
(see ); t = 100; 3D unsteady laminar flow past a square cylinder at Reso = 2 x 102 and My, = 0.1.

conditions, it can be seen that in all cases the accuracy of the results improve by increasing
the order of accuracy of the scheme. On this set of grids, the convergence rate of the error
associated to the heat entropy flow is p.

6.4. Computation of a square cylinder in supersonic freestream

The development of a high-order accurate entropy stable discretization aims to provide
the next generation of robust high fidelity numerical solvers for complex fluid flow simula-
tions, for which standard suboptimal algorithms suffer greatly or fail completely. By com-
puting the flow past a 3D square cylinder at Re,, = 10* and M., = 1.5, we provide numerical
evidence of such robustness for the complete entropy stable high order spatial discretization.
This supersonic flow is characterized by a very large range of length scales, strong shocks and
expansion regions that interact with each other, leading to complex flow patterns. During
the past three decades, this fluid flow problem has been thoroughly investigated by several
researchers for aerodynamic applications (see, for instance, [52] 53] [54]).

The domain of interest spans one square cylinder edge in the x5 direction, and at the two
planes perpendicular to this coordinate direction, periodic boundary conditions are used.
The flow is computed using an unstructured grids with 43,936 hexahedrons. A fourth-order
accurate (p = 3) entropy stable discretization without absolutely any stabilization technique
is used. The body surface is considered adiabatic. The solution is initialized using a uniform
flow at M., = 1.5 with zero angle of attack.

At the beginning of the simulation a strong shock is formed in front of the bluff body.
Subsequently, the discontinuity moves upstream until it reaches a “stationary” position that
is about 2.15 square cylinder edges far from the frontal surface of the body. During this phase,
additional weaker shocks, which originate from the four sharp corners of the body, interact
with the subsonic regions formed near the walls. This complicated flow pattern, yields the
formation of shock-lets in the wake of the square cylinder. Figure [3| shows a portion of the
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“high order grid”[™] close to the body and its near-wake region, and the Mach number and
density contours at ¢ = 1.5. It can be seen that relatively small oscillations are generated
in front of the shock. This numerical feature is absolutely natural and expected because the
solution has been computed with a fourth-order accurate scheme without artificial dissipation
or filtering technique. Nevertheless, the simulation remains stable at all time, and the
oscillations are always confined in small regions close to the discontinuities.

In Figures [4] a global view of the “high order grid”, the Mach number, density, tem-
perature and entropy contours at ¢ = 100 are shown. At ¢t = 100, the shock has already
reached a stationary position, and the flow past the square cylinder is completely unsteady,
characterized by subsonic and supersonic regions. The formation of shock-lets in the near
wake region are clearly visible.

7. Conclusions

Herein, we have shown that no-slip boundary conditions together with a boundary con-
dition on the heat entropy flow, (1/7°07/0n),,,;. imply stability for the continuous com-
pressible Navier—Stokes equations. The boundary condition on the heat entropy flow is in
complete agreement with the thermodynamic (entropy) analysis of a generic system. An
entropy stable numerical procedure is presented for weakly enforcing these solid wall bound-
ary conditions via a penalty approach. The resulting semi-discrete operator mimics exactly
the behavior at the continuous level. The proposed non-linear boundary treatment pro-
vides a mechanism for ensuring the non-linear stability in the L? norm of the continuous
and semi-discretized compressible Navier—Stokes equations. Although discontinuous spec-
tral collocation operators are used in this work, the new boundary conditions are compatible
with any diagonal norm summation-by-parts spatial operator, including finite element, finite
volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes.

Numerical computations around a three-dimensional square cylinder in the subsonic
regime are performed to highlight the accuracy and robustness of the proposed numeri-
cal procedure. Measurement of forces on the cylinder showed very good agreement with the
results available from the literature. Furthermore, we have shown that the no-slip conditions
approach zero to design-order (i.e., the convergence rate is p+ 1), and the heat entropy flow
converges to the prescribed boundary value at a rate of p.

The robustness of the complete semi-discrete operator (i.e., the entropy stable interior op-
erator coupled with the new boundary treatment) has been demonstrated for the supersonic
flow past a three-dimensional square cylinder at Re,, = 10* and M., = 1.5. This test has
been successfully computed with a fourth-order accurate method without the need to intro-
duce artificial dissipation, limiting techniques or filtering, for stabilizing the computations,
a feat unattainable with several alternative approaches just based on linear analysis.

This work clearly indicates that, although incremental improvements to existing algo-
rithms will continue to improve overall capabilities, the development of novel robust numer-
ical techniques such as entropy preserving or entropy stable schemes and their extension

180riginal grid with element-wise interior node connections.
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(a) High order grid in the near-body and near-wake regions.
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(b) Mach number; AM = 0.0146.
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(c) Density; Ap = 0.0114.

Figure 3: Unsteady flow past a 3D square cylinder at Re,, = 10* and M., = 1.5; fourth-order (p = 3)
accurate entropy stable spatial discretization without stabilization technique; t = 1.5.
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Figure 4: Unsteady flow past a 3D square cylinder at Re,, = 10* and M., = 1.5; fourth-order (p = 3)
accurate entropy stable spatial discretization without stabilization technique; ¢t = 100.
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to complex multi-scale and multi-physics problems offers the possibility of radical advances
in computational fluid dynamics and computational aerodynamics in terms of robustness,
fidelity and efficiency.
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Appendix A. Coefficient matrices of the viscous flux

The viscous coefficient matrices ¢;; used to define the viscous fluxes in Cartesian coordi-
nates in (7)) are defined as

0 0 0 0 0 0 0 0 00

0 g0 0 0 0 0 0 —2u 00
dy=10 0 u 0 0], dy=10 p 0 0 0f,

0 0 0 p O 0 0 0 00

0 %/Lul Hug  pus K 0 pue —%,uul 0 0

0O 0 0 0 0 0 0 0 00

0 0 0 —2u 0 0 0 w 00
dy=|(0 0 0 0 Of, d=[0 -2 0 00],

O . 0 0 0 0 0 0 00

0 pus O —%,uul 0 0 _§MU2 pup 00

0 0 0 0 0 00 0 0 0

0 p 0 0 0 00 0 0 0
=10 0 3u 0 Of, dy=[00 0 =24 0],

0 0 0 o 0 00 u 0 0

0 puy Fpup pug kK 0 0 pus —3puy 0

0O 0 0 0 0 00 0 0 0

0O 0 0 p O 00 0 0 0
=10 0 0 0 0], c=]00 0 po 0],

0 —2x 0 0 0 00 —2p 0 0

0 —spus 0 pup O 0 0 —spus puz 0
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The symmetrized coefficient matrices used in to define the viscous fluxes as a function
of the gradient of the entropy variables are found using

- dq , Ov
G = gy, = gy
Therefore, they take the following form:
0 0 0 0 0
4 4
Cl11 = 0 0 T,u 0 T/J/U/Q )
0 0 0 Tu T us
0 3Tpuy Tpuy Tpus T?k+ 5T (dpuf + 3pu3 + 3pu3)
0 0 0 0 0
0 Tu 0 0 T g
Cp=|0 0 3Tp O 3T s :
0 O 0 Tu T g
0 Tpuy 3Tpuy Tpus Tk + 5T (Buud + 4pu3 + 3pu3)
0 0 0 0 0
0 Tu 0 0 Ty
/0\33 = 0 0 T,u 0 T/JJUQ )
0 0 0 3T s T pus
0 Tpuwy Tpuy 3Tpus Tk + 5T (Buud + 3pu3 + 4pu3)
0 0 0 0 0 0O 0 O 0 0
0 0 —%Tu 0 —§T/LU2 0 0 0 —%T,u —%Tuug
/0\12 = 0 T,u 0 0 Tuul s /0\13 = 0 0 0 0 0 s
0 0 0 0 0 0 Tup O 0 T puy
0 Tpus —%Tuul 0 %Tpulm 0 Twpus O —%T,uul %Tuulu;z,
00 O 0 0
00 O 0 0
c3=10 0 0 —2Tu  —3Tpuus |,
00 Tu 0 T 1y
0 0 Tuus —%Tp,uQ %T,LLUQU;;
where

~ ~T ~ ~T ~ ~T
C21 = Cq9, C31 = Cy3, C32 = Cog3.
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Appendix B. Counter example of non-linear wall boundary conditions

Carrying out the entropy stability analysis by using expression (69), it can be shown that
the inviscid penalty in is entropy conservative (see the proof of Theorem [5.1)). Therefore,
the remaining relation to analyze is

d _

To obtain a quadratic form in boundary terms we need to borrow from DT:

3 3
DT =Y > (D, w)' Plc] (Ds,w)
i=1 j=1

Dy, w\ ' (Pleu] Pl P\ (Dnw

= | Dy, w Plca] Plcz] Pleas] | | Day W
'Dgc3 %% ’P[/C\gl] 'P[Agz] ’P[Agg] 'Dm3 %%

T . . - (B.2)

Dml w ngmg[ 11] nga:g [012] nga:g [013] Dxl W o

= | Doy W (Px1)(1)(1) Pasas[C21] Py [C22]  Pagay [C23] Dy, w | +DT
D, w Prows /0\31] Prows /0\32] Proes [/0\33] Dy, w
Dccl W ' [/0\11] [/0\12] [/6\13] Dxl w o

= | Do W | (Pu)yy P | [C21] [C22] [Cos] | | Duyw | + DT,
Dy w (1] [c32] [c33]) \Dayw

where

Pl = dla’g (sza:ga ngmga ngm;),) 9
and the scalar (Pm)u)(l) > 0. Therefore, Equation (B.1) may be written as

d —
7 |18l +DT

L v | —
§+§W'P ~

1
+ _WTPxQ:):g g(l) [L] W — WTPzgmg g(l) [L] g(NS)7

2
(B.3)
where .
7)/ = dlag <P$2x37 Px2x37 P:E2$37 P372$3) ?
and
~T T T T T
W= ((W(O,mz,x3)7 0, (Dm W)(O,zz,m) ) (sz W)(0,$2@3) ’ (Dm W)(O’m’m?’) ’O) ’ (B4)
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The bold zeros in indicates that all the numerical states (entropy variables and gradi-
ents of the entropy variables) of the nodes which do not lie on the plane (0, xs, z3) are set
to zero.

To bound the time derivative of the entropy we must ensure that each term in is
bounded. The first contribution on the RHS is a quadratic term in w and dissipative if the
large matrix

[L] —[en] —[C12] —[Cus]
1 [/C\ll] - (Pw1>(1)(1) [811] (Pw1>(1 )(1) [012] —2 (P331)(1)(1) [/0\13] (B 5)
2 _[/0\12] —2 (Pa:1>(1)(1) [812] ( w1)(1 )(1) [022] —2 (Pw1)(1)(1) [/0\23] .
_[/0\13] —2 (Pa:1>(1)(1) [813] ( w1>(1 )(1) [023] —2 (Px1)(1)(1) [/0\33]

is symmetric negative semi-definite. However, to ensure that we only need to construct the
following 20 x 20 matrix,

L Ci ¢ ¢

1 =tn 22(Pa)my) en =2(Pe) o) G2 =2 (Pa) ) G3

F - = -~ I~ ) (BG)
)(1)(1) C12 -2 (le) )
) ) )

2| —Ci2 —2(Py,
—13 —2(Pa) iy @3 —2(Pay) )y €28 =2 (Pay) 1)1y Cs3

so that it is symmetric negative semi-definite. The matrices ¢;;,4,7 = 1,2,3, in are
constructed using the primitive variable at the usual boundary node. The rows and columns
of the matrix I' corresponding to the density components are all zero because the first
component of the viscous fluxes is zero. Therefore, such rows and columns do not affect the
negativity of . The matrix I' can be expressed in block form as

- (;T lB)) | (B.7)

The condition on the five-by-five matrix L that ensures the negative-definiteness of (B.7))
can obtained by requiring that the Schur complement of I' is negative,

4 (Pw1)(1)(1)
The inequality in (B.8) is a sufficient condition because the block matrix D is already well be-

haved (i.e., it is already symmetric and positive semi-definite). Thus, the Schur complement
(B.8]) is smaller than or equal to zero if

Schur = A— BD 'B" = —

<0. (B.8)

C;
L<-— &

< (B.9)
2 (Pa) ()

The last two terms on the RHS of expression (B.3|) are the remaining contributions to
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bound. Such terms can be re-written in a quadratic form as

1
2

_WTngzg g(l) [L] W — WTnga:g g(l) [L] g(NS) =+

(W - g(NS))T Peses g(l) [L] (W - g(NS))

N — DN —

(&9) " Pryay Gy [L] g™,
(B.10)

From inequality (B.9)), we know that the matrix [L] is negative definite or negative semi-
definite. Therefore, the first term, which is quadratic in (W — gV S)), is dissipative. However,
the second contribution is a positive term and cannot be bounded because it is not only a
function of the imposed boundary data gV, In fact, the element in the fifth row and fifth
column of the matrix L is non-zero and it is a function of the numerical solution through
relation (i.e., through the matrix ¢;; which is built from the numerical state at the
boundary node).
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