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Abstract

A semi-implicit preconditioned iterative method is proposed for the time-integration
of the stiff chemistry in simulations of unsteady reacting flows, such as turbulent
flames, using detailed chemical kinetic mechanisms. Emphasis is placed on the si-
multaneous treatment of convection, diffusion, and chemistry, without using oper-
ator splitting techniques. The preconditioner corresponds to an approximation of
the diagonal of the chemical Jacobian. Upon convergence of the sub-iterations, the
fully-implicit, second-order time-accurate, Crank-Nicolson formulation is recovered.
Performance of the proposed method is tested theoretically and numerically on
one-dimensional laminar and three-dimensional high Karlovitz turbulent premixed
n-heptane/air flames. The species lifetimes contained in the diagonal preconditioner
are found to capture all critical small chemical timescales, such that the largest
stable time step size for the simulation of the turbulent flame with the proposed
method is limited by the convective CFL, rather than chemistry. The theoretical
and numerical stability limits are in good agreement and are independent of the
number of sub-iterations. The results indicate that the overall procedure is second-
order accurate in time, free of lagging errors, and the cost per iteration is similar
to that of an explicit time integration. The theoretical analysis is extended to a
wide range of flames (premixed and non-premixed), unburnt conditions, fuels, and
chemical mechanisms. In all cases, the proposed method is found (theoretically) to
be stable and to provide good convergence rate for the sub-iterations up to a time
step size larger than 1 ps. This makes the proposed method ideal for the simulation
of turbulent flames.

Key words: numerical integration, stiff chemistry, semi-implicit preconditioning,
iterative method
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1 Introduction

Simulations of reacting flow systems using detailed finite-rate chemistry are
extremely challenging [1]. The expensive nature of the chemical source terms
integration comes from four main challenges: 1) their high non-linearity in
the Arrhenius form of the chemical reaction rate constants (i.e. high compu-
tational cost for each function evaluation) [2], 2) the typically large number
of species involved, 3) the strong coupling between chemistry and transport
processes (convection and diffusion) [3], and 4) their very large magnitude
(or equivalently small timescales) [4,5]. As a result of all these challenges, de-
tailed chemical mechanisms including a large number of species (above 50)
and reactions (above 200) have been included in the numerical simulations
of reacting flows only for relatively simple geometries (e.g. homogeneous or
stratified reactors and statistically one-dimensional flames) [6-11]. The num-
ber of species (and number of reactions) included in the numerical simulations
of two-dimensional and three-dimensional turbulent flames has been relatively
limited [12-15,11,16]. Most of these simulations have been focused on inves-
tigating the combustion of relatively simple fuels (e.g. hydrogen, methane,
and ethylene). Only very few studies have considered turbulent flames with
large hydrocarbon fuels (e.g. propane and n-heptane) [11,17] due to the large
inherent simulation cost. In order to perform numerical simulations with de-
tailed chemical kinetics, robust, accurate, and efficient numerical algorithms
are needed for solving the coupled, highly non-linear, multi-dimensional, Par-
tial Differential Equations (PDE) governing the unsteady evolution of these
complex reacting systems. There exist various methods to improve the effi-
ciency of chemical source term integration in reacting flow problems. These
are reviewed in the following paragraphs and are organized according to the
challenges mentioned above.

First, the computational cost associated with the evaluation of exponential
functions in the chemical source terms (challenge #1 mentioned above) can be
reduced by using single precision calculations, or by tabulating the exponential
functions [18]. However, the associated efficiency gain is not significant and the
loss of accuracy might be problematic given the large range of timescales in a
reacting flow simulation. Alternatively, the non-linear chemical source terms
may be expanded using some type of low-order expansion [19-21]. However,
it has been shown that these methods may be subject to severe time step size
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restrictions and stability issues when applied to combustion simulations [19],
since they do not fully account for the non-linearity of the system [20].

Second, regardless of the chosen time-integration scheme, the cost of the chem-
ical models could be alleviated by reducing the total number of species (chal-
lenge #2 mentioned above). This can be accomplished using Quasi-Steady-
State (QSS) assumptions and Partial-Equilibrium (PE) approximations [22,23],
or more advanced methods such as Directed Relation Graph (DRG) [24] and
DRG with Error Propagation (DRGEP) [25] before being applied to the simu-
lation [23,26]. Even with these techniques, it has been pointed out in previous
work that the size of reduced mechanisms for practical hydrocarbon fuel sur-
rogates is still too large to be used directly in Direct Numerical Simulations
(DNS) with finite-rate chemistry [27]. Alternative chemistry reduction tech-
niques based on separation of chemical timescales could be applied. Such tech-
niques include the Computational Singular Perturbation (CSP) method [28§]
and the Intrinsic Low Dimensional Manifold (ILDM) [4] method. However,
these methods require significant computational efforts to conduct chemical
Jacobian decomposition and mode separation [27], which makes them not
suited for the DNS of multi-dimensional reacting flows.

Third, to avoid the cost associated with the coupled reactive-transport system
(challenge #3 mentioned above), most numerical frameworks rely on some
variant of splitting techniques (e.g. Godunov [29] or Strang [30] splitting)
followed by the chemical source term integration in a zero-dimensional set-
ting. These techniques have been widely applied in the numerical simulations
of turbulent reacting flows, for instance in the code developed at Lawrence
Berkeley National Laboratory [31,32]. The lagging errors introduced by the
operator splitting treatment are unimportant for steady-state configurations,
but may be substantial in some circumstances, for instance in the proximity of
unsteady premixed flame fronts [3,33], and become more severe when running
with larger time step sizes. The effects of these errors have been the subject
of many previous studies [33-37], and have been found to be case-dependent.
Note that, with the application of these techniques, the resulting Ordinary
Differential Equations (ODE) associated with the chemistry (instead of the
coupled PDEs) remain stiff. To alleviate the high computational overhead as-
sociated with the integration of these stiff ODEs, methods relying on implicit
numerical schemes based on Backward-Differentiation Formulas (BDF) have
been developed [38,39] and implemented in packages such as VODE [40] and
DASSL [41,42]. These packages integrate stiff chemical kinetics using BDFs
with a modified iterative Newton procedure [41-44], and have been widely
adopted in numerical simulations of chemically reacting flows [3,33,34]. Despite
the significant computational efficiency gain brought by the stiff chemistry in-
tegration techniques discussed above, it is important to recall that these tech-
niques are designed for time-dependent ODE systems (and not PDE), which
arise from the application of time-splitting techniques to separate the reactive



(chemical kinetic) part of the PDE system (species transport equations) from
the convective-diffusive part [45].

Forth, time-integration techniques designed for the coupled PDEs governing
the unsteady evolution of complex reacting systems are discussed in the fol-
lowing. First and foremost, species chemical source terms can be integrated
explicitly. For instance, an explicit time-integration scheme, along with QSS
assumptions, is used in S3D [46], a massively parallel DNS solver developed
at Sandia National Laboratories for the simulations of compressible, turbu-
lent reacting flows. This code has been applied to the simulation of turbulent
flames with relatively simple fuels, for instance hydrogen [47,48], methane [49],
and ethylene [50]. Heavier fuels have been considered in ignition simulations
of HCCI-like systems (e.g. n-heptane [6], iso-octane [8], and ethanol [9]). The
application of explicit time-integration methods are commonly limited by pro-
hibitively small time step sizes to resolve the smallest chemical timescales
present in the system (challenge #4) [27,40]. This is the reason why the
S3D code relies on “stiffness removal” techniques such as QSSA [22,49,23].
On the other hand, implicit time-integration methods generally yield bet-
ter stability characteristics and allow for larger integration time step sizes
than explicit methods [51]. Unfortunately, fully-implicit methods are gener-
ally prohibitively expensive [27], especially for unsteady problems [52], due
to the large computational overhead for chemical Jacobian inversion within
each time step. This makes fully-implicit time-integration methods prohibitive
for simulations of reacting flows with large hydrocarbon fuels (e.g. n-heptane,
kerosene, and diesel), where up to hundreds of species and reactions are typ-
ically required [53-55]. Further, Krylov-based iterative methods have been
proposed [2,56,57] to reduce the computational burden associated with the
construction, storage, and inversion of large, often non-sparse, Jacobian ma-
trices [45,58]. Alternatively, chemical Jacobian diagonal-preconditioning has
also been proposed for the time-integration of the PDE system [5,59,60].

While these simple diagonal preconditioners have been used for the simula-
tion of steady-state chemically reacting flows [5,59,60], they were argued to
be inappropriate for time-accurate simulations of unsteady flows [5]. That is
why a large effort have been put in the development of iterative precondi-
tioning methods for solving the ODEs describing 0D chemical systems. Ex-
amples of efficient methods can be found in Ref. [7,56]. However, these meth-
ods are typically tailored for very large chemical mechanisms (thousands of
species) and are considerably more computationally expensive than explicit
time-integration for mechanisms of small to medium sizes (tens to hundreds of
species, with hundreds of reactions). In addition, these preconditioning meth-
ods rely on a decoupling of the chemistry and transport. In other words, the
inversion of the sparse-chemical Jacobian is spatially local and not global.
Consequently, computationally less expensive preconditioning iterative meth-
ods applied to the PDE system are desirable.



In view of the above discussion, the objective of the current work is to pro-
pose a time-integration method designed for the coupled, highly non-linear,
PDEs governing the evolution of unsteady reacting flows such as highly tur-
bulent flames. Emphasis is placed on the simultaneous treatment of convec-
tion, diffusion, and chemistry, without using operator splitting techniques.
As such, a diagonal-preconditioned iterative (to account for the non-linearity
of the system) method for the efficient integration of stiff chemistry in the
numerical simulation of unsteady chemically reacting flows is proposed in a
multi-dimensional setting.

The paper is organized as follows. The governing equations for chemically re-
acting flows under low Mach number approximation are presented in Section
2. In Section 3, the general iterative solving algorithm is first briefly described.
Then, the time-marching step of the species transport equations is shown to
be equivalent to a preconditioned Richardson iteration. A semi-implicit pre-
conditioner is finally proposed to improve computational efficiency. In Section
4, the flow configurations used for the numerical tests are presented. Results
on the performance of the method are presented in Section 5. Important prop-
erties such as convergence, stability, effects of the preconditioning matrix, and
temporal accuracy are discussed. Finally, Section 6 includes an extension of
the results to other reacting flows and a discussion of the advantages and the
limitations of the proposed method.

2 Governing equations

The equations governing the unsteady evolution of the chemically reacting
flows considered for the application of the proposed method are described in
the following.

2.1 Fluid mechanics

The reacting mixture is assumed to contain a total number of N species and
their chemistry is assumed to be given by a chemical kinetics mechanism in-
volving K reactions, with forward and backward reactions counted separately.
The chemically reacting flows of interest in the current study are of relatively
low Mach number (M,), typically below 0.3 [61,62,17]. Under this condition,
the acoustic waves can be ignored and the pressure field can be decomposed
into a spatially-invariant, but (potentially) time-dependent component, Py (t),



and a fluctuating hydrodynamic pressure, p (x,t) [61-64], with

p(x,1)
Py (t)

=0(M2). (1)

To simplify the description of the numerical algorithm (yet without loss of
generality), Soret and Dufour effects, body forces, and radiative heat transfer
are ignored [3,33,62,65]. In addition, the species molecular diffusion is assumed
to be described by the Fickian law [3,33,62-64]. Under these assumptions, the
evolution of the system is governed by the following conservation equations of
mass, momentum, energy, and species density [10,63,64]
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In the above equations, p is the density, u is the velocity vector, T" denotes
the temperature of the mixture, and Y; is the mass fraction of species 7. In the
momentum equation (Eq. 3), 7 is the deviatoric stress tensor, defined as

+V-(pu5€)—V-<p

T=pu[Va+ (Va)'] - zu(V -u)l (6)

where I is the identity matrix and p is the fluid viscosity. In the energy con-
servation equation (Eq. 4), wy includes heat source terms due to chemical
reactions, « is the thermal diffusivity, and ¢, is the specific heat at constant
pressure of the mixture, given by

N
cp = ZYZ-CN (7)
i=1

where ¢, ; is the specific heat at constant pressure of species ¢. In the species
conservation equations (Eq. 5), w; is the chemical source term of species ¢, and
Le; is the Lewis number of species i, defined as

(8)

with D; the mass diffusivity for species i. The correction velocity V; in Eq. 5
accounts for gradients in the mixture molecular weight as well as ensures zero



net diffusion flux. It has the following expression [63,64]

a VW N VY vw (& y;
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j=1

where .
N _
Y.
W=y L (10)
(Fl W )
represents the local mean molecular weight of the mixture, and W; is the
molecular weight of species j.

The above set of equations is complemented by the equation of thermodynamic
state P
_ W (11)
RT
where P, is the thermodynamic pressure (see Eq. 1) and R is the universal
gas constant.

2.2  Chemical model

The overall rate of change of species i, w;, in Eq. 5 can be split into a production
term, w;", and a consumption term, w; , as

7 )

79

Wy =t — o7 (12)

i %
It is important to note that both the production term ;™ and the consumption

term w; are positive.

The production rate of species i, w;", is given by the sum of the contributions
from all elementary chemical reactions leading to the formation of this species

ot =W, z [kj 1 (’;5)] - (13)

s=1

vj; >0

where 7 is the total number of chemical reactions and v;, is the stoichiometric
coefficient of species s in reaction j. In the above expression, the rate constant
of reaction j, kj, is given by the Arrhenius form, k; (T') = A;T% exp~Tas/T,
where Tj ; is the activation temperature of this reaction. Similarly, the con-
sumption rate of species i, w; , is given by the sum of the contributions from
all elementary chemical reactions leading to the destruction of this species

r N Vi

- pYs\ e
=W k. () . 14
“ 7j=1 [ ! 31;[1 WS ] ( )

l/ji<0



The local heat release rate is given by

N
wr =—>_ hi, (15)

=1

where .
hy = 1O + / ¢padT, (16)

To

is the specific enthalpy of species 7, and h? denotes its value under standard
and reference conditions.

3 Numerical algorithm

As mentioned in the introduction, the objective of the current work is to pro-
pose an iterative diagonal preconditioning strategy for the efficient integration
of the stiff system of equations introduced in the previous section. Towards
this end, a brief description of the flow solver and the numerical algorithms
used is given first. Second, the preconditioning method is introduced in the
context of the solver previously described. Third, an extension of the precon-
ditioner in a multi-dimensional setting is introduced. Finally, a summary of
the characteristics of the method is provided.

3.1  Qwerview of the numerical solver

The simulations in this work are performed using the structured, multi-physics
and multi-scale finite-difference code NGA [61]. The NGA code allows for ac-
curate, robust, and flexible simulations of both laminar and turbulent reac-
tive flows in complex geometries and has been applied in a wide range of test
problems; including laminar and turbulent flows [10,66,67], constant and vari-
able density flows [61,68,69], as well as Large-Eddy Simulations (LES) [66,70]
and Direct Numerical Simulations (DNS) [12,69,71]. This numerical solver has
been shown to conserve discretely mass, momentum, and kinetic energy, with
arbitrarily high order spatial discretization [61].

The variable density flow solver in NGA uses both spatially and temporally
staggered variables [61]. All scalar quantities (p, P, T,Y;) are stored at the vol-
ume centers, and the velocity components are stored at their respective volume
faces. The convective term in the species transport equations is discretized
using the bounded quadratic upwind biased interpolative convective scheme
(BQUICK) [72], and the diffusive term is discretized using a second-order
centered scheme. The variables are advanced in time using the second-order
semi-implicit Crank-Nicolson scheme of Pierce and Moin [73].



An iterative procedure is applied to fully cover the non-linearities in the
Navier-Stokes equations. This iterative procedure has been found of critical
importance for stability and accuracy considerations [61,62,73]. The numeri-
cal algorithmic sequence for one time step is described below, where a uniform
time step At is employed. The density, pressure, and scalar fields are advanced
from time level t"+1/2 to ¢t"+3/2 and the velocity fields are advanced from time
level t" to t"T1. A total number of () sub-iterations is assumed. Note that this
algorithmic sequence is independent of the preconditioning strategy. As such,
for clarity purposes, the chemical source terms are integrated explicitly in the
following and the proposed preconditioning strategy is presented in the next
section.

0. Upon convergence of the previous time step, the density, p"*'/2, pressure,
P2 yelocity fields, u”, and scalar fields, Y"*/2, are stored, where Y
represents the vector of species mass fractions (Y7, ..., Y ). The solutions for
pressure, species mass fractions, and momentum (from the previous time
step) are used as initial best guesses for the forthcoming iterative procedure

Byt = prtt oyt =y and (pu)ptt = ()", (17)

where the subscript indicates the index of the sub-iteration. The Adams-
Bashforth prediction is used for the initial density evaluation

n+3/2 —9

o0 n+1/2

p p 2 (18)

This ensures that the continuity equation is discretely satisfied at the be-
ginning of the iterative procedure. The vector of chemical source terms is
denoted by €2 = (wy,...,wy), and QSHS/ ? is evaluated using the thermo-
chemical quantities obtained at the conclusion of the previous time step

(explicit prediction).
For the sub-iteration k =1,...,Q

1. The scalar fields are advanced in time using the semi-implicit Crank-Nicolson
method [61,73] for the convective and diffusive terms, and explicit integra-
tion for the chemical source terms

y, Y +1/2 +Yk /

Y 19
k 2 ) ( )
pz+3/2Yzii’»/2 :pn+1/2Yn+1/2 + At [(CZH + DZ,H) Y: A+ Qﬂ

At (0C oD o n+3/2 n+3/2

To simplify the discrete notations for spatial differential operators, the op-
erators corresponding to the convective and diffusive terms in the scalar



equations (Eq. 5) are written as C and D, respectively. % and ‘3—3 are the

Jacobian matrices corresponding to the convective and diffusive terms, re-
spectively. C and gTC( are functions of the density and the velocity, while
D and g—g are functions of the density and the kinematic viscosity. They
are consistently updated at each sub-iteration. Depending on the order
of discretization, these operators are generally banded diagonal matrices
(e.g. tridiagonal for 2"¢ order discretization and pentadiagonal for 3'¢ or-
der discretization). It is important to note that the semi-implicit Crank-
Nicolson method proposed by Pierce and Moin [73] is not applied to the
time-integration of the species chemical source terms, €2;. As mentioned in

the introduction, this is due to the extremely high computational cost asso-

. . . . . . o0\ "1
ciated with the calculation of the chemical Jacobian matrix, (W)k

, and
the even more expensive inversion of this matrix.

The stiffness of chemically reacting flows is generally believed to be due
to the stiff source terms in the species transport equations, but not due
to the temperature transport equation [27,74,75]. An estimate for the tem-
perature time scale in a n-C;Hjg/air premixed flame (test case presented
in Section 4.1) gives 70 ~ (T, = T,,) / (wr/ (pcp)) . ~ 107% s, where T,
and T, are the burnt and the unburnt temperatures respectively. This time
scale is approximately an order of magnitude larger than the time step cor-
responding to a unity convective CFL in such a laminar flame. Therefore,
the temperature equation (Eq. 4) is advanced in time in the exact same
fashion as the species mass fractions (Egs. 19 and 20) without any further
implicit treatment. Cases for which the temperature time scale may not be
considered large are discussed in Section 6.3. Since the focus is placed on
the integration of the chemical source terms in the species equations, the
discretized temperature equation is not shown for clarity.

. The density field is predicted from thermodynamics using

N Y7L+3/2 -1
i,k+
Bo| 2 w;
n+3/2 =1

k+1 Sm+3/2
RTk+1

(21)

It is important to note that this density evaluation does not ensure conser-
vation of the species densities, pY;, since no density rescaling such as the
one proposed by Shunn et al. [62] is used. However, upon convergence of
the sub-iterations, this formulation is equivalent to the density treatment
proposed by Shunn et al.

. The momentum equation is advanced in time using a similar semi-implicit
Crank-Nicolson method as for the scalar fields

,ou"+urtt
u, = %7 (22)

10
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n

- utt), (23)

where C, and D, are discrete operators associated with the convective and
the viscous terms, respectively. u is the predicted velocity field used to
compute the fluctuating hydrodynamic pressure (Step 4).

4. A Poisson equation is then solved for the fluctuating hydrodynamic pressure

n+1/2 n+3/2 n+3/2 _ n41/2
V25p2ﬁ’/2 _ = V. (P + Pry1 ﬁn+1) 4 Pr+1 P ] (24)

2 ktl At

The Poisson equation is solved using the high-fidelity HY PRE package [61,76].
The predicted velocity field is then updated through a projection step

2At
n+1 ~n+1
llk::-_l = ukL an/Q +ort

n+3/2 n+3/2 n+3/2 n+3/2
Rk <V5p+/) and ppii"* = pi ™+ o

(25)
7. Upon convergence of the sub-iterations, the new solutions are updated

3/2 3/2 3/2
n+3/2 _ n+3/2  ny3/2 _ n+3/2 ntl nl and YRH/2 — Ygr /2

10 p y P pQ , U = uQ
(26)

It is important to note that the above formulation becomes equivalent to the
fully-implicit Crank-Nicolson time-integration scheme upon convergence of the
sub-iterations [73].

3.2 Preconditioning

Improvement of the above numerical procedure is based on modifying the
time-marching step for species mass fraction fields only (step 1 in the proce-
dure described in the previous section). All other intermediate steps are left
unchanged.

3.2.1 Preconditioned iterative method

For simpler implementation, the set of equations (Eq. 20) is solved in practice
in its residual form

11
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k

The above equation is equivalent to
YR =yt At @y, (28)

where the matrix J is defined as

f At (oC oD\
_ n—i—S/QI_ =y v et 9
T = 2 <8Y+8Y>k ’ (29)
and the vector
n+3/2Yn+3/2 o n+1/2Yn+1/2
O, — Py k Atp B KCZ—H + Dz-i-l) YZ + QZ} (30)

is the error (residual) made on the species transport equation at the previous
sub-iteration. When the sub-iterations are fully-converged, the residual, @y,
is zero.

Written in this form, the time-marching for species transport equations de-
scribed above resembles the standard preconditioned Richardson-type itera-
tive method [77], where the matrix J acts as a preconditioner. More precisely,
the choice of the preconditioner, J, can be arbitrary and does not modify the
discrete form of the equations to solve (i.e. ®; = 0). It only changes the
convergence characteristics of the iterative method. For instance, setting

J=p L (31)

is equivalent to the fully-explicit integration of the convective, diffusive, and
chemical source terms in the species transport equations, while setting

p— I—i [ —
T = oy "oy oy

n+1
n3/2 A;(&C oD aa) (32)

k

corresponds to the full-implicit integration of the convective, diffusive, and
chemical source terms in the species transport equations.

Clearly, there is a trade-off in the choice of the preconditioner. Since it is
applied at each step of the iterative method, it is preferable to have a pre-
conditioning matrix, J, with low computing and inversion cost. The cheapest
preconditioner would therefore be the one described by Eq. 31 (fully-explicit
integration), which leads to poor convergence performance requiring extremely
small time step sizes. On the other hand, the optimal preconditioner would be
the one leading to the fully-implicit integration of the various terms (Eq. 32).

12



Unfortunately, since the chemical source terms of most species are generally
dependent on a large number of other species, the chemical Jacobian matrix,
g—?{, is usually not sparse [7]. Therefore, its construction and inversion may
become prohibitively expensive especially when a large number of species is

considered.

3.2.2  Semi-implicit preconditioning for stiff chemistry

In an attempt to achieve better convergence characteristics while keeping the
form of the preconditioner as simple as possible, a preconditioning method
for stiff chemistry, which lies between the fully-explicit and fully-implicit ex-
tremes, is proposed.

The proposed preconditioner writes

At (0C 9D -
J=pPPI- = (2422 A 33
where A is a diagonal matrix defined as

The matrix A may be regarded as a very good approximation of the diagonal
of the chemical Jacobian:
Ow; ot Owy N w;

ov. ~ov, ov. S0y (35)

as the production rate of species i (Eq. 13) is not a function of the species
mass fraction and its consumption rate (Eq. 14) is often linear in Y;. The
ith element of A represents an approximation of the inverse of the timescale
corresponding to the chemical consumption of species i (approximation of the
inverse of the consumption characteristic times as used in Ref. [5,27]). The
proposed preconditioner aims to suppress the small timescales due to the fast
consumption of the different species in the system with stiff chemistry.

As the matrix A is diagonal, the preconditioner corresponds to a species-
wise relaxation, similar to the Jacobi preconditioner. The proposed method
accounts for the non-linearities by coupling the transport equations through
the iterative procedure (Eq. 30).

The proposed method is inspired by the work of Eberhardt and Imlay [60]
who first introduced a diagonal preconditioning in a point-implicit algorithm
for the simulation of steady-state reacting flows. The diagonal elements were
found by computing the Ls-norm of the corresponding row of the chemical

13



Jacobian. However, this was found lo lead to an improper approximation of
the chemical time scales and resulted in a lack of elemental conservation in
time-marching algorithms [5,78,79]. In an effort to improve the accuracy of
the method, Ju [5] replaced the jth element of the diagonal preconditioner
by the maximum between the inverse of the consumption characteristic time
of species j and the inverse of the production time of elementary reaction
in which species j is the product. It was argued that this type of precondi-
tioning is suited for the simulation of steady flows, but should fail to provide
time-accurate solutions of unsteady flows [5]. An implicit correction with the
diagonal approximation of the Jacobian would introduce errors that would
accumulate over time.

In the present algorithm, the diagonal preconditioning is applied within an
iterative procedure for each time step. This iterative method allows further
reduction of the residuals and this is the reason why the method is suitable
for the simulation of unsteady reacting flows.

3.8  Eaxtension to multi-dimensions

In multi-dimensional numerical simulations, inverting the proposed precondi-

tioner can be of high computational cost, despite its sparse nature. The method

of Approximate Factorization (AF) is therefore used to convert the single,

multi-dimensional problem into multiple, one-dimensional problems that can
oD

be solved efficiently [61,73]. The transport operator F = g—g + 5y can be split

exactly into directional transport operators F,, I, and F, leading to

At
A BT Ve

. At At At At
S g ?ng - 7Fgf — 7FZ§1 + 7AZ+1 (36)

in a general three-dimensional orthogonal coordinate system. Accordingly, the
following factorization is proposed
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The proposed factorization does not degrade the temporal accuracy of the
preconditioned time-integration scheme, since it introduces a second-order er-
ror in time, same order as the one introduced by the temporal discretization
(Egs. 19 and 20).

In the above factorization, the inversion of p"+3/ T+ %AZ“ is computationally
trivial since it is a diagonal matrix. As such, three simpler one-dimensional
inversion problems in the x, y, and z directions can be solved sequentially using
tridiagonal (2"! order spatial discretization schemes) or pentadiagonal (3"
order spatial discretization schemes) matrix inversion algorithms analytically,
in a serial or parallel fashion. This is very important as it keeps the overall
cost of any sub-iteration linear with the number of grid points and linear with
the number of species.

3.4 Summary

A semi-implicit preconditioning strategy is proposed, in combination with an
iterative method, for the time-integration of the stiff chemistry. The proposed
method takes advantage of the iterative structure of the NGA code and, more
precisely, its semi-implicit formulation of the transport terms. In addition, the
method is compatible with the approximate factorization (see Section 3.3),
which is necessary to maintain the performance of the code. Note that this
preconditioning method could be applied as well within any other iterative
algorithm.

The proposed semi-implicit preconditioning method is based on an approxi-
mation of the diagonal of the chemical Jacobian. The hypothesis, which will
be tested in Section 5, is that the smallest chemical timescales are well approx-
imated by this diagonal preconditioner, allowing the use of larger integration
time step sizes. Another assumption that will be tested in Section 5 is that a
good convergence rate of the sub-iterations can be obtained with sufficiently
large time step sizes. This would allow the total number of operations per time
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step to be very similar to that for the explicit time-integration of the chem-
istry. As mentioned in the introduction, other diagonal preconditioners were
found to be associated with a lack of robustness and elemental conservation
in non-iterative time-marching algorithms [78,79] or were argued to lack time-
accuracy [5]. However, the proposed method is iterative and, upon convergence
of the sub-iterations, the fully-implicit formulation is recovered. Therefore, any
issues would be alleviated by the convergence of the sub-iterations.

4 Test cases

The performance of the proposed iterative method will be tested in Section 5
on two flow configurations: a one-dimensional unstretched premixed flame and
a three-dimensional high Karlovitz turbulent premixed flame. These configu-
rations are presented in the following.

4.1 One-dimensional premized flame

The one-dimensional laminar unstretched premixed flame is selected as the
first test case since it is the most canonical configuration (that includes con-
vection, diffusion, and chemistry) and it is well suited for the quantitative
evaluation of the stability and accuracy of a numerical scheme [3,27,33]. The
condition of the present test case corresponds to a n-heptane/air flame with
an equivalence ratio of 0.9 and an unburnt temperature and pressure of 298
K and 1 atm, respectively. N-heptane is used in this study as a representative
of heavy hydrocarbons of relevance to transportation fuels. A reduced finite-
rate chemistry model is used in the present work. The mechanism developed
in Ref. [12] was reduced from 47 species and 290 reactions to 35 species and
217 reactions in an effort to alleviate the computational cost. Since the gas
mixture is slightly lean, species that are only produced under rich conditions
(and their associated reactions), namely CsHs, C5Hg, and all aromatic species
(benzene, naphthalene...) were removed from the mechanism. As the focus
of the present work is placed on the time-integration, the Lewis numbers of
all the species are set to unity for the present simulation (i.e. no differential
diffusion). Under these conditions, the laminar flame speed is S;, = 29 cm/s,
and the flame thickness is Ip = 0.43 mm, with Ip = (T}, — T3,) /(0T /02) max-
It is expected that using different fuels, mixture compositions, and unburnt
conditions will lead to qualitatively similar results. This is discussed in more
details in Section 6.

The computational domain is initialized with a fully-converged solution of a
stationary flame. The flame front is initially located near the center of the
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Fig. 1. Schematic of the computational domain and initial condition.

domain (zg = 5.5 mm) to reduce effects of the boundaries. The left boundary
is set to be a wall, and the right boundary is an open flow. Once the simulation
is started, the flame front moves towards the unburnt gases (left of the domain)
at a speed which corresponds to the laminar flame speed. The length of the 1D
computational domain is approximately 30 times the laminar flame thickness.
The domain is discretized with a uniform grid cell spacing (Az = 18 pm)
except behind the initial flame location (z > 5.5 mm) where it is stretched
with a factor of 1.1 (ratio of the grid cell size to its neighbor). A schematic of
the configuration is shown in Fig. 1.

While arbitrarily high order (for the convective and viscous terms) is available
in the NGA code, the current work relies on second-order spatial discretiza-
tion of the viscous and convective terms of the Navier-Stokes equations. Grid
convergence tests were performed and revealed a 2°¢ order accuracy in space
(not shown). This spatial order of accuracy was found to be independent of
the proposed time-integration scheme. These tests also determined that 24
points across the flame front (Ir) is sufficient to achieve satisfactory grid in-
dependence. In the following, this grid resolution is used for all numerical
tests.

4.2 Three-dimensional turbulent premized flame

The configuration chosen corresponds to the unity Lewis number flame pre-
sented in Ref. [17]. Figure 2 presents a schematic of the flow configuration.
The left and right ends of the domain correspond to an inflow of unburnt
gases and an outflow of burnt gases, respectively. The position of the flame is
statistically steady as an inflow velocity equal to the turbulent flame speed is
used. Turbulent forcing is employed to avoid a fast decay of turbulence due to
viscous dissipation [68]. This forcing is not used at the inlet and the outlet to
avoid negative velocities. Forcing starts at 0.5L after the inlet and is switched
off at a distance of 3L from the end of the domain, with L being the domain
width and height (Fig. 2). Such a distance is found sufficient for the turbulence
to decay without forcing.

The chemical mechanism and the flame unburnt conditions are the same as
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Fig. 2. Schematic of the three-dimensional turbulent premixed flame configuration.

for the one-dimensional premixed flame detailed in Section 4.1. Other impor-
tant parameters of the simulation are listed in Table 1. Note that prior to
this simulation, the flow field is established without any flame; homogeneous
isotropic turbulence is obtained in the forced region. Then, the turbulent pre-
mixed flame is simulated with finite-rate chemistry for several eddy turnover
times. The simulation is performed in parallel using 1920 processors on the
cluster Hopper at the National Energy Research Scientific Computing Center
(NERSC). Fig. 3 provides visual information about the flame simulated.

Domain width and height L [m)]

Domain size

2.33 x 1073
11L x L x L

Grid size 1408 x128 x 128
Spatial resolution Ax [m] 1.82 x 107°
Kolmogorov length scale 7 [m] 9 x 1076
Simulation time [s] 8.5 x 1073
Karlovitz number Ka = “s%lf 98
Reynolds number Re; = :j—;l 190

Table 1

Simulation parameters for the three-dimensional turbulent premixed flame. v’ is
the rms velocity fluctuation, [ is the integral length scale, and v, is the kinematic
viscosity in the unburnt gases.

The simulation is performed with a time step size of At = 5.7 x 1077 s,
which corresponds to a convective CFL condition of 0.8. With the proposed
semi-implicit scheme, the stiffness of the chemical model was found not to
impact the stability of the turbulent reacting flow simulation. More details on
the stability of the numerical framework and the choice of time step size are
provided in the following section.

5 Results

First, a theoretical analysis on the convergence of the sub-iterations for the
species transport equations is presented in this section. Second, this analysis
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Fig. 3. Contours of temperature on a two-dimensional slice of the three-dimensional
turbulent premixed flame.

is further discussed in light of the eigenvalue content of the proposed pre-
condition matrix. Third, the convergence of the sub-iterations is evaluated
numerically and compared to the theoretical analysis. Forth, the performance
of the proposed method in terms of stability is presented both theoretically
and numerically, using the test cases previously introduced. Fifth, since stabil-
ity does not imply accuracy, the numerical accuracy of the proposed method
is presented and its dependence on the time step size and the number of
sub-iterations is discussed. Sixth, the performance of the proposed method
in terms of elemental conservation is presented. In particular, the effects of
the iterative procedure (and the number of sub-iterations used) are assessed.
Finally, the computational efficiency of the method is discussed.

5.1 Theoretical analysis

To simplify the analysis, it is assumed transport is integrated explicitly (i.e.
not modified by the sub-iterations). For the sub-iteration k + 1 within a single
iteration, Eq. 28 and 30 take the form

Jk . (Yk+1 - Yk) — PoYo - kak + At (C + D) : YO + Atﬂz, (38)

where AL
Jr = pel + TAI@- (39)

The superscripts (n and n + 1) have been dropped for clarity. The subscript
0 corresponds to the final solution of the previous iteration. The terms in the
equation can be reorganized as

At (1
(145 (5A) ) e -0 =, (40
P/
1
k
At

+ —Q7.
Pk g
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Expanding (%A)k, (%Q*)k, and pik around Y gives

<1 + A; (;A>O> (Y — Yi) = —Y (41)

+ lplo " la(z( <;>] A Yo)] [p0Y o + At (C+ D) - Yo + At€y)
At (1 o9

> 8Y> (Yk_YO)+O(|Yk_YO|2)-

Subtracting Eq. 41 evaluated at two consecutive sub-iterations, and neglecting
the second-order terms yields

( ( ) > (Ye1 —2Ye +Yi1) = — (Y — Yi1) (42)

l(pY +At(C+ D) Y + AN ® ai, (;)L (Yr =Yy 1)

At (109
+ — ) (p(?Y) (Ye — Y1)

A simpler expression reads

Y —Yr=Ao (Yr—Yi1), (43)
with 1
At a At (109
AO =1- <I + 7 (/OA> 0) <I - 7 (p@Y) TO) ) (44>
where
T, = [(pY—l—At (C+D)- Y+Atﬂ)®£{ <1>] : (45)
0

The convergence of the sub-iterations is assured as long as the absolute val-
ues of all eigenvalues of A are less than unity, ¢.e. the spectral radius of Ay
is less than unity. The opposite implies a divergence (in the linear sense) of
the sub-iterations which is likely to be associated with an unstable simula-
tion. Without surprise, in the limit of At — 0, the spectral radius of Ay goes
to zero and the convergence of the sub-iterations is ensured. For practical
time step sizes, large eigenvalues of Ay can be due to the large magnitude

of the chemical Jacobian (%g—g)o or the matrix T(y. However, it can be easily

shown that the only eigenvalue of Ty is a ratio of densities (density of the
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explicit prediction wvs. initial density) which is of order one and is negligible
compared to the large eigenvalues of the chemical Jacobian (more details in
Section 5.2). Consequently, the matrix T is neglected in the present theoreti-
cal analysis. This simplification will be further justified in the numerical tests
in Section 5.4.2. Therefore, the rest of the theoretical analysis will consider
the following matrix

w3 () (G

which is only a function of the full chemical Jacobian, and the approximate
(diagonal) Jacobian. The convergence of the sub-iterations is then assured as
long as the spectral radius of Aj is less than unity.

Alternatively, one can consider the residuals in the relative species mass frac-
tions instead of the residuals in their absolute values. These relative residuals
are evaluated as follows

Yid - Y = A7 (Y - Y, (47)

where Y™ = G7'Y, with G = diag (Yo1,...,Yon). Yo, is the mass fraction
of species i obtained at the end of the previous iteration. The matrix A{ reads

At (1 - At 1092
" —lAT ey T - _ N
Al =G'ALG =1 <I+-2 (pA)()) (I e <pa >OG>. (48)

Note that both the absolute and the relative value system of equations are
analytically equivalent. In particular, the eigenvalues of A{ are identical to
those of Aj.

5.2 FEigenvalue analysis

It is clear from Eq. 46 that if the approximation of the diagonal of the chemical
Jacobian (Eq. 34), further referred to as the precondition matrix, were to be
equal to the full chemical Jacobian, g—g, the scheme would be, in the linear
sense, unconditionally stable (recall that Ty = 0 is assumed). In all other
cases, the first pertinent analysis to justify the choice of the preconditioner
(Eq. 33) is to evaluate the eigenvalue content of the precondition matrix and
compare it to that of the full chemical Jacobian. To ensure a good convergence
rate of the sub-iterations, the eigenvalue content of the precondition matrix
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should be close to that of the full Jacobian. This assumption is tested in the
following.

More specifically, the eigenvalues of the chemical Jacobian g—g correspond
to the inverse of the chemical timescales (7) present in the system. These
timescales are associated with the rate of change of the species (or a combi-
nation of species) mass fractions in the system in the absence of transport.
The idea of using a preconditioner is to allow the use of a time step larger
than the smallest of these timescales. Consequently, given a time step At, it
is important that the chemical timescales smaller than At be well represented
by the precondition matrix, such that the source terms associated with these
timescales are properly integrated over At. Note that the eigenvalues of the
proposed diagonal precondition matrix correspond to an approximation of the
inverse of the reciprocal species lifetimes.

The species lifetimes obtained for the precondition matrix (Eq. 34) and the
chemical timescales obtained with the full Jacobian are compared in Fig. 4.
These are evaluated with the mixture composition and the temperature (7" =
1615 K) corresponding to the peak rate of heat release in a one-dimensional
flame similar to that presented in Section 4.1. For this a priori analysis, the
one-dimensional flame is computed with FlameMaster [80]. Note that, a pos-
teriori, virtually identical results were obtained when the NGA solution was
considered (Section 4.1). This is not surprising as the precondition matrix and
the Jacobian only depend on the local mixture composition and temperature,
which should not be dependent on the solver used. It is interesting to asso-
ciate species to each of the chemical timescales shown in Fig. 4. However, it is
important to note that not every chemical timescale corresponds to a species
lifetime. The timescales are ordered from the smallest to the largest. They
are then compared, entry by entry, between the preconditioned and the full
Jacobian.

It is well known that because of elemental conservation, ny of the eigenvalues
of the full Jacobian are zero, with n; the number of elements in the chemical
system [4]. Only one of them is zero for the precondition matrix i.e. the one
associated with Ny, as its source term is identically zero. This is to be expected
from the definition of the precondition matrix. Therefore, only the 31 smallest
timescales are shown in Fig. 4.

Although Fig. 4 does not provide direct information on the stability limit,
it can be observed that all the timescales smaller than about 107> s are
well approximated by the precondition matrix. In other words, the diago-
nal matrix represents accurately the smallest chemical timescales in the sys-
tem. As mentioned previously, the proposed method is similar to the Jacobi
method, which is guaranteed to converge in diagonal-dominant problems (but
it can also converge in other cases). It is therefore interesting to assess if
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Fig. 4. Comparison of the chemical timescale (7) of the full chemical Jacobian to
the species lifetime of the preconditioned chemical Jacobian.

at (%g—g)o (Eq. 46) is diagonal dominant for At < 107°

s. Figure 5(a) shows that the matrix is clearly not diagonal dominant for
At = 5 x 1075 s. However, the corresponding normalized matrix introduced in
Eq. 48, 1— %G_l (%%)0 G is close to be diagonal dominant for the same At,
as shown in Fig. 5(b), i.e. all the terms of each row are smaller in magnitude
than the corresponding term on the diagonal. Since both of these matrices
have the same eigenvalue content and the same terms on the diagonal, it be-
comes clear why the precondition matrix approximates adequately the smaller

timescales of the full Jacobian.
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Fig. 5. Relative magnitude of the elements of each row compared to the element on
the respective diagonals. At =5 x 107% s.

The results from Fig. 5(b) suggest that the Jacobi method may be successfully
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applied to such a matrix (it is guaranteed to converge if the matrix is diagonal
dominant). This will be verified in the following sections as the stability and
the convergence rate of the method is analyzed considering the spectral radius
of Aj (or, equivalently, Ay).

5.8 Convergence of the sub-iterations

The one-dimensional flame test case is used to evaluate numerically the con-
vergence of the sub-iterations. The maximum density residual over the whole
domain is investigated as its convergence is controlled by the convergence of
all the chemical species. Figure 6 displays the residual through two complete
time steps for four different time step sizes. As the time step size decreases,
the residuals decrease faster. The rate of convergence of the sub-iterations
is observed to follow an exponential relationship, i.e. Resy ~ r* with r the
convergence rate. The numerical convergence rate r is computed by fitting
an exponential curve to the density residuals. Since density is an analytical
function of the species mass fractions, its convergence rate should tend to-
wards that of the slowest converging species mass fraction. In other words,
this convergence rate should be close to the spectral radius of Aj (Eq. 46).

10’ 10’
T+ At=55-10"0 + At =2.0-1075s
— At =5.0-10"0s |5 “At=2.0-10"s
E 1072?+ Simulation unstable E
&0 ap
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/
/

2 2
Time Step Time Step
(a) At the stability limit (b) Far from the stability limit

Fig. 6. Evolution of the density residual as a function of sub-iterations over two
time steps for the proposed semi-implicit time-integration scheme. The dashed lines
correspond to fitted exponential curves averaged over several time steps.

The numerical and theoretical (spectral radius) convergence rates are com-
pared in Fig. 7. The numerical convergence rates are in relatively good agree-
ment with the theoretical values. This further justifies neglecting the variable
density matrix, Ty, in the present theoretical analysis (Section 5.1). Using the
spectral radius (i.e. the largest eigenvalue) as a measure of the convergence
rate is a worst case scenario, as the projection of the density residuals on the
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associated eigenvector might be identically zero (to machine precision). This
might explain partially better numerical convergence rates than theoretically
predicted.
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Fig. 7. Rate of convergence of the sub-iterations: comparison between theoretical
(largest spectral radius of A{)) and numerical (rate of convergence of the largest
density residuals) results for the one-dimensional flame.

5.4 Stability

The stability of the preconditioned iterative method relies on the stability of
the sub-iterations. By stability, it is meant that the solution remains bounded
in time. Note that stability does not require the sub-iterations to be fully
converged, nor does it imply accuracy. Due to the high non-linearity and the
complexity of the governing equations, the stability condition for the proposed
preconditioned iterative method and its relation to sub-iteration convergence
rate are investigated theoretically (simplified system) and numerically in the
present section.

5.4.1 Theoretical stability

Assuming the residuals of the species mass fractions at each sub-iteration
remain sufficiently small for the linear analysis presented in Section 5.1 to
be valid, then the sub-iterations do not diverge if the spectral radius of Aj
(Eq. 46), is less than 1. In other words, if this spectral radius is less than
1, stability is ensured, independently of the number of sub-iterations used.
However, the accuracy of the solution will be affected by the number of sub-
iterations (discussed in Section 5.5).

25



The spectral radius of Aj is plotted as a function of temperature in Fig. 8(a)

for different values of At. The matrices (%A)O and (%g—g)o are evaluated from

the one-dimensional flame solution, computed with FlameMaster [80]. Note
that the maximum of each curve corresponds to a point in Fig. 7. The spectral
radius is shown to be a strong function of temperature. It is not surprising that
the chemical system is more sensitive to perturbations at higher temperatures
(where the Arrhenius rate constants are larger). It is important to remember
that the stability limit in a reacting flow also depends on the nature of the
transport terms, which have been ignored for the present analysis, as well as
the coupling between the scalar transport and the Navier-Stokes equations.
In particular, the most unstable location may not systematically occur at the
highest temperature in the domain.

For comparison, the matrix corresponding to Aj using an explicit time-integration
of the chemical source term is introduced:

, At (109
O,exp — 7 (,OaY)O . (49)

The spectral radius of A is plotted against temperature in Fig. 8(b) for
different values of At. The (theoretical) stability limit for the explicit scheme
is At = 5.6 x 107! s; whereas it is At = 6.1 x 1075 s for the semi-implicit
scheme. Under the present conditions, it can be clearly observed that the
proposed method has the potential to increase the stability limit by several
orders of magnitude.
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Fig. 8. Spectral radius of Aj and Aj ., as a function of temperature in the one-di-
mensional premixed flame.
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5.4.2  Numerical stability

While the previous section provided a stability criterion through theoretical
analysis of a system of reduced complexity, the stability of the scheme is
now analyzed numerically in this section. Note that, while the theoretical
analysis was done assuming explicit transport, the test cases are performed
with semi-implicit transport (as described in Section 3). It is important to
demonstrate the performance of the proposed preconditioning method within
the algorithmic setting used in practical simulations. For the present tests, the
same stability limits were found for the transport terms treated explicitly and
implicitly. This is not surprising because the convective CFL number is less
than unity for all test cases. It also confirms that the transport terms may be
neglected in the previous theoretical analysis (Section 5.1).

The 1D test case is considered first. For all time step sizes tested, it was
found that converging (as opposed to converged) sub-iterations implied a stable
simulation. In other words, unless the sub-iterations diverge, the simulation
remains stable. As shown in Fig. 6(a), the largest time step size that can
be used for the simulation to be stable is found to be At = 5 x 1075 (with
At = 5.5 x 107° leading to unstable results). This value is very close to the
theoretical stability limit of At = 6.1 x 107% s (Section 5.4.1). Note that the
largest numerically stable time step size using an explicit time-integration of
the chemical source term is At = 2 x 10719 s, also close to the theoretical
stability limit (At = 5.6 x 107! ). These stability limits are summarized in
Table 2.

Numerical Theoretical

Proposed scheme 5 x 107%s 6.1 x 107%s
Explicit scheme 2x1070s 56 x 1075

Table 2

Largest stable time step size for the proposed semi-implicit scheme and the explicit
time-integration of the chemical source terms for the 1D flame test case. Numerical
and theoretical results (see Section 5.4.1) are compared.

These results suggest that the stability limit can be well approximated by the
theory, i.e. the maximum At such that the spectral radius of Ay (Eq. 46) is less
than unity. As such, this should also correspond to the numerical stability limit
for the 3D turbulent premixed flame. However, At = 5x 107 s corresponds to
a convective CFL number of approximately 7, which is too large for the overall
spatio-temporal scheme to be stable. In other words, for the turbulent case,
the largest stable time step size is constrained not by the time-integration of
the chemical source terms but by the convective CFL condition. This allowed
the simulation to be performed with a convective CFL of 0.8 (see Section 4.2),
which corresponds to At = 5.7 x 1077 s.
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To understand why such a large time step size could be used for the turbu-
lent flame simulation, the spectral radius of Aj (Eq. 45) is plotted against
temperature throughout the whole domain of the 3D simulation in Fig. 9. For
reference, the one-dimensional equivalent is added on top of the scatter plot.
This plot suggests that the stability of the chemical system alone (Eq. 38) is
only slightly altered by turbulence.

Spectral radius of AJ,

0 i | i
500 1000 1500 2000

Temperature (K)

Fig. 9. Scatter plot of the spectral radius of A{,, with At =5.7 x 1077 s, as a func-
tion of temperature in the three-dimensional turbulent flame. The one-dimensional
profile is added for comparison.

5.4.3  Summary

It was shown in the present section that the stability limit of the proposed
method is well approximated by the largest At such that the spectral radius
of Aj is less than 1. This stability limit is independent of the number of sub-
iterations used. On the other hand, the number of sub-iterations does affect
accuracy, and it will be discussed in the next section.

An important result is the fact that the stability of the three-dimensional
turbulent flame was constrained by the convective CFL limit, rather the
time-integration of the chemical source terms. This means that the proposed
method has a great potential, in terms of stability, for such flow simulations.
Theoretical estimates of the stability limits for other types of flows, fuels,
conditions, and chemical mechanisms will be discussed in Section 6.1.
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Fig. 10. Temporal accuracy of the method as a function of the time step size for the
one-dimensional, propagating flame. The errors for the various species mass fractions
are evaluated as the absolute difference of their integrated value in temperature
space compared with a reference solution obtained with At =2 x 1078 s.

5.5 Accuracy

In the previous subsection, we established the stability limit(s) of the proposed
scheme. We now investigate the accuracy for a given stable simulation.

5.5.1 Order of accuracy

The order of accuracy (i.e. the power-dependence of the error as the time
step size is reduced) of the proposed method is determined for the 1D (freely
propagating) flame test case. In the absence of chemistry, the algorithm used
in NGA can be formally shown to be second-order accurate if two or more
sub-iterations are used [73]. In practice, four sub-iterations are typically used
(to improve stability and to achieve adequate accuracy of the fractional-
step) [61,68,69]. For the present test case, four sub-iterations are also used
to evaluate the order of accuracy. The impact of the number of sub-iterations
on the absolute magnitude of these errors is discussed in the next sub-section.

Simulations with different time steps are performed and results are presented
in Fig. 10. The errors for various quantities are evaluated as the absolute differ-
ence of their integrated value in temperature space compared with a reference
solution obtained with At = 2 x 1078 s. The species n-C;H;s, OH, CO, and
H>0O are chosen as representatives of reactants, radicals, intermediates, and
products. All of these quantities are found to demonstrate second-order accu-
racy in time, as shown in Fig. 10. It is interesting to note that the expected
order of accuracy is already recovered with only four sub-iterations.
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5.5.2  Magnitude of errors

It is important to distinguish order of accuracy (as the time step size goes to
zero) and absolute magnitude of errors. In order to illustrate the quality of
the solution using various time step sizes, Table 3 compares the laminar flame
speeds, Fig. 11(a) presents the temperature profiles in physical space (shifted
to coincide at 7' = 400 K), and Fig. 11(b) shows the intermediate species
n-C3sH; mass fraction wvs. temperature profiles. The first two quantities are
chosen as they correspond to the two most important quantities associated
with a laminar flame. The n-C3H; mass fraction vs. temperature profile is
chosen as it is the quantity the most sensitive to the time step size (small
reciprocal lifetime where its mass fraction is non-zero). It is clear that, up to
a time step size of At = 2 x 107% s, errors are negligible even with only four
sub-iterations (0.3% error in laminar flame speed and virtually no difference in
the temperature and species profiles). At the stability limit (At =5 x 1079 s),
the solution is deteriorated when only four sub-iterations are used. However,
using a large number of sub-iterations, the solution reaches similar level of
accuracy.

At (s) Q pmax(Ap) St (cm/s)
2x 1077 4 0.42 28.65
2 % 1076 4 0.65 28.57
5x 1076 4 0.92 26.93
5x 1076 200 0.92 28.64

Table 3

Laminar flame speed obtained from simulations with various time step sizes and

number of sub-iterations. pmax(AG) is the theoretical maximum spectral radius of
{ in the flame.

These results demonstrate that, for time step sizes smaller than At = 2 x 1076
s, sufficiently accurate solutions for the 1D flame are obtained with as little
as four sub-iterations. For time step sizes between At = 2 x 107% s and the
stability limit, more sub-iterations are needed to reach sufficient accuracy. This
is a direct consequence of the decreasing convergence rates with increasing
time step sizes, as presented in Fig. 7. There should exist a pair of time step
size/number of sub-iterations such that performance is optimized for a given
level of accuracy. However, since the method is meant to be used with turbulent
flames, and not 1D flames, such optimization would be of limited interest
since the largest time step size allowed by the convective CFL condition in
the turbulent flame is smaller than At = 2 x 107% s. Because the spectral
radius in the turbulent flame is similar to that of the 1D flame (see Fig. 9),
four sub-iterations should be sufficient to obtain accurate solutions. This is
further tested below.
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Fig. 11. Impact of time step size and number of sub-iteration on the accuracy of 1D
propagating flames. When not mentioned, four sub-iterations are used (Q = 4).

As mentioned in the previous section, the turbulent premixed flame simula-
tion was performed with a convective CFL number of 0.8 (At = 5.7 x 1077 s).
In order to evaluate the quality of the solution, a comparative simulation was
performed with a smaller time step size, At = 8 x 107% s (four sub-iterations
are used for both simulations). Note that this comparative simulation was also
run until statistically steady state was reached. While the time step size varies
by a factor of 7 between the two simulations, virtually no differences could
be identified between the simulations. Figure 12 shows a representative com-
parison of joint probability density functions of the species mass fraction ws.
temperature. This type of joint probability density functions is used to evalu-
ate the impact of turbulence on the chemistry [17] and it is important to make
sure that any deviation away from a laminar flame is not due to numerical
artifacts. The results obtained using both time step sizes are virtually identi-
cal, which is consistent with the observations made with the one-dimensional
flame test case.

5.6 Mass conservation

As it can be noted from the presentation of the method in Section 3, the sum of
the species mass fraction is not implicitly recovered. In other words, with the
proposed diagonal preconditioner, the sum of mass fraction is not guaranteed
to remain equal to unity. While element conservation is not ensured with the
proposed scheme using only one sub-iteration, in practice, with the number
of sub-iterations used, elemental mass fractions were found to be adequately
conserved. This can be observed in Fig. 13 for the 3D turbulent premixed
flame, at a CFL of 0.8 with only four sub-iterations being used. Under the
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Fig. 12. Comparison between the joint probability density function of the CoHy
mass fractions vs. temperature obtained with different time step sizes.

assumption of unity Lewis number transport, the elemental mass fractions
(Yo, Ya, Yo) should remain perfectly at their inlet values. Any deviations are
evidence of mass conservation errors. The maximum deviations in the domain
are only about 1% of the inlet values. These maximum deviations are found
to occur in the oxidation layer of the turbulent flame.

10_1 T T T T T
Yy —
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Maximum relative error
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10—3 | | | | |

Simulation time (ms)

Fig. 13. Maximum deviation in the domain from the inlet elemental mass fractions
vs. simulation time. The results shown are for the three-dimensional turbulent flame
with At = 5.7 x 1077 s and four sub-iterations.

Using more sub-iterations leads to better elemental conservation, as shown in
Fig. 14 for the 1D flame test case with At = 2x107% s. In particular, the rate of
convergence of these elemental mass fraction residuals follows the theoretical
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spectral radius of 0.65. Note that each of these simulations were performed
with a different number of sub-iterations () until a constant propagation speed
(flame speed) and a constant flame structure was reached.
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Fig. 14. Maximum deviation in the domain from the inlet elemental mass fractions
vs. number of sub-iterations, (). The results shown are for the one-dimensional,
propagating flame using At = 2 x 1075 s. The theoretical convergence rate is added
for comparison.

5.7  Computational efficiency

As presented in Section 3, the cost per sub-iteration with the proposed semi-
implicit scheme is virtually identical to that using an explicit time-integration
of the chemical source terms. In addition, with the proposed scheme, a num-
ber of four sub-iterations was found to be sufficient in practice to achieve
adequate accuracy and elemental conservation. As previously mentioned, this
number of sub-iterations is typically used for the simulation of non-reacting
flows [61,68,69] and reacting flows with explicit time-integration. Therefore,
the cost per iteration with the proposed scheme is (in practice) similar to that
using an explicit time-integration of the chemical source terms.

Since the proposed scheme does not alter the cost per iteration compared
to an explicit time-integration of the chemical source terms, the increase in
efficiency (speed-up) is equal to the increase in largest stable time step size. For
unsteady flames, the optimal time step size corresponds to the convective CFL
limit (the theoretical limit is unity, but 0.8 is the target within our numerical
framework). While the time step size in the 1D flame simulations was limited
by the chemistry, the convective CFL number was 0.2 (At = 2 x 107 ).
This means that for turbulent flames with wy,y/SLp larger than 4, with tyax
the maximum velocity in the domain and Sp; the laminar flame speed in the
burnt gas (Umax/Srp = 1 for a 1D flame), the time step size will be limited by
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the convective CFL limit. This was the case with the 3D turbulent flame test
case in which Umay/Srp ~ 14. Consequently, the proposed time-integration
method is optimally efficient for such turbulent flames, in the context of the
numerical framework of NGA.

6 Discussion

The proposed preconditioner was shown to exhibit very good performance for
the test cases analyzed, and in particular it allowed the use of a time step
size limited by the convective CFL (3D turbulent flame). In this section, in
light of the results presented previously, the theoretical analysis of the sta-
bility limit using the proposed scheme is extended to various flames, fuels,
unburnt conditions, and kinetic mechanisms. An ignition case is also consid-
ered. Additional validation of the numerical stability is provided for a few
selected cases. A quantification of the accuracy of the solutions obtained with
the proposed method is also presented for these cases. Then, the advantages
of the proposed preconditioner over alternative methods are highlighted. Sub-
sequently, the limitations of the present method are discussed. The objective
of this section is to help one decide if the proposed method is well suited for
a specific unsteady reacting flow simulation.

6.1 FExtension

The theoretical analysis presented in Section 5.1 is general and does not de-
pend on the fuel, the chemical mechanism, the flow configuration, or the un-
burnt conditions. In particular, the eigenvalue analysis (Section 5.2) and the
theoretical stability conditions (Section 5.4.1) can be applied to any reacting
flow. These analyses, which consider a dependence on the local mixture com-
position and the temperature only, were further validated in a one-dimensional
flame configuration (Section 5.4.2). The results were also argued to be inde-
pendent of the transport terms. Finally, it was shown that, even in a highly
turbulent three-dimensional flame, the departure from a one-dimensional flame
solution was not sufficient to significantly influence the stability (both theoret-
ical and numerical). In summary, the theoretical analysis (without transport)
is sufficient to determine the stability and the convergence rate of any laminar
or turbulent reacting flow.

As such, the theoretical results are extended in this section by considering a
wide range of one-dimensional flame and zero-dimensional ignition solutions
(each computed with FlameMaster [80]). First, for premixed flames, the ef-
fects of the fuel, the unburnt conditions, and the chemical mechanism on the
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theoretical stability limits are investigated. Then, the analysis is performed for
non-premixed flamelets with different scalar dissipation rates and a 2D coflow
diffusion flame. Finally, a homogeneous ignition case at constant pressure is
considered.

6.1.1 Premixed flames

The theoretical performance of the proposed semi-implicit method is tested
on a series of one-dimensional unstretched premixed flames.

First, the unburnt conditions are kept fixed and various fuels are considered.
Four additional fuels are tested: Hy combined with the chemical model pre-
sented in Ref. [81] (9 species 52 reactions), CH, with GRI-3.0 [82] (36 species
422 reactions), -CgHg with CaltechMech v2.1 [83] (171 species 1835 reac-
tions), and n-CioHag, also with CaltechMech. The analysis performed in Sec-
tion 5.2 is repeated with these fuels. The species lifetimes at the location of the
peak heat release obtained from the semi-implicit precondition matrix (Eq. 34)
are compared to the chemical timescales obtained from the full chemical Jaco-
bian in Fig. 15. Same as observed in Section 5.2, for all fuels (and mechanisms)
tested, the diagonal Jacobian (precondition matrix) approximates very well al-
most all the timescales smaller than 107° s. Similarly, as presented in Table 4,
the stability limits using the proposed scheme are very close to the one found
in Section 5.4.1.

Second, the same n-C;H;s premixed flame with the unburnt conditions pre-
sented in Section 4.1 is computed using CaltechMech. Again, the stability
limit (Table 4) is only marginally affected by the chemical mechanism.
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Fig. 15. Comparison of the chemical timescale (7) of the full chemical Jacobian to
the species lifetime of the preconditioned chemical Jacobian at the peak rate of heat
release, considering various fuels and chemical mechanisms.

Third, a series of unburnt conditions are used for the n-C;H;¢ premixed flame
(using the mechanism introduced in Section 4.1). As the unburnt conditions
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encountered in practical combustion devices correspond typically to higher
temperature and pressure, both these quantities are increased in this series
of tests. Then, the equivalence ratio, which can significantly vary in a com-
bustion device, is modified in the test cases to cover a wide range centered
around stoichiometry. Table 4 presents the theoretical stability limit for all
these cases. Again, the largest (theoretically) stable time step size vary only
slightly throughout all cases.

Fuel ¢ Py T, Atmax Atmax Equivalent
(atm) (K) (s) (s) convective
explicit semi-implicit ~ CFL
Ho [81] 09 1 208 5.2 x 1078 1.6 x 10-¢ 1.2
CH, [82] 09 1 208 2.7 x 107Y 5.0 x 1076 0.47
n-CrHyg 09 1 208 5.6 x 1071 6.1 x 1076 0.76
+CsHyg [83] 0.9 1 208 23 x 1071 47 x 107 0.45
n-CioHgg [83] 0.9 1 208 2.2x 107™ 4.6 x 1076 0.55
n-C7Hig [83] 0.9 1 208 4.5 x 107 4.6 x 1076 0.58
n-C7Hyg 09 1 400 4.3 x 107 52 x 1076 0.89
n-CrHyg 09 1 600 2.7 x 107" 38 x 107 1.1
n-C7Hig 0.9 2 298 52 x 10711 6.2 x 107¢ 1.3
n-CrHyg 0.9 10 298 5.0 x 107! 6.5 x 1076 3.1
n-C7Hyg 0.7 1 298 2.1 x 10719 9.5 x 1076 0.58
n-CrHyg 1.1 1 298 3.9 x 107" 43 x 107 0.62
n-C7Hyg 1.3 1 208 7.4 x 10711 4.3 x 1076 0.43
Table 4

Theoretical largest stable time step size for the proposed semi-implicit scheme and
the explicit time-integration of the chemical source terms with various unstretched
one-dimensional premixed flames.

An important conclusion can be drawn from the results shown in Table 4:
the stability limit, using the proposed iterative semi-implicit preconditioning
method is only marginally sensitive to the fuel, the unburnt condition, and
the mechanism used. As mentioned in Section 5.7, the target time step size is
the convective CFL limit. An effective CFL number is therefore computed for
each of these 1D premixed flame (see Table 4), assuming 24 grid points per
flame thickness (see Section 4.1) are necessary for accurate simulation of a 1D
laminar flame (umax = Srp). The effective CFL number would be larger for
turbulent flames and would increase with the turbulent intensity. From these
results, it is obvious that even for moderately turbulent flames, the time step
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size would be restricted by the convective CFL, rather than the chemistry.

However, these results relate to the stability limit only, and do not suggest
anything about accuracy. As shown in Section 5.5, the accuracy is a function
of the spectral radius, which is a function of the time step size, and the num-
ber of sub-iterations used. Depending on the flow configuration considered
(turbulent, laminar, strained,...), four sub-iterations may be sufficient for the
solution to be accurate, even at the stability limit. However, the opposite is
also possible. Under such circumstance, either the time step size has to be
decreased or the number of sub-iterations has to be increased. This choice
depends on the spectral radius vs. time step size profile (previously shown in
Fig. 7).

Figure 16 presents such profiles for flames corresponding to each of the chemi-
cal mechanisms used in this section (and presented in Table 4). The first three
mechanisms, although used for different flame conditions, exhibit very simi-
lar profiles. This means that, with these mechanisms, a moderate decrease in
time step size from the stability limit translates in an appreciable decrease in
spectral radius. For the 1D test case analyzed in Section 4.1, a time step size
three times smaller than the theoretical stability limit was shown to provide
sufficient accuracy with only four sub-iterations.
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Fig. 16. Spectral radius of A{, vs. the inverse of the time step size for various
cases presented in Table 4. The red cross symbols correspond to the profile for the
n-C7H;6/air flame with the stiff reaction (Eq. 50) removed from CaltechMech.

Interestingly, the spectral radius profile exhibits a plateau just below the sta-
bility limit over a wide range of time step size with CaltechMech. This means
that, in order to obtain a minimal level of convergence of the sub-iterations,
either a very large number of sub-iterations or a very small time step size
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Fig. 17. Profiles of n-C3H7 mass fraction vs. temperature in the one-dimensional,
n-C7Hy propagating flame (similar to the test case of Section 4.1) with Caltech-
Mech. The solutions from using three different time step sizes, each with 4 sub-it-
erations, are compared.

would be needed. However, this is not what is observed numerically, as shown
in Fig. 17, since accurate solutions are obtained with time step sizes as large
as half the numerical stability limit, still with only four sub-iterations.

This result is better understood by considering the density residuals vs. sub-
iterations for the n-C;H;s flame with CaltechMech, with At = 2 x 107° s,
presented in Fig. 18 (similar to Fig. 6). Their convergence rate is found to be
much closer to the third largest eigenvalue of Aj (0.689), as opposed to its
largest one (i.e. spectral radius), corresponding to 0.997. In other words, the
projection of the species mass fractions residuals on the eigenvectors associated
with the two largest eigenvalues is negligible. This is consistent with the fact
that these two largest eigenvalues are only due to the presence in the chemical
mechanism of the following fast reversible reaction

A1CHy—CsHy = A CoHE—CsHy, (50)

which involves species that have negligible mass fractions in the flame simu-
lated (these species are soot precursors and should not be present in the lean
flames considered in this paper). The high pressure limit rate constant (the
only one available in the literature) was prescribed for this reaction. Such rate
constant is obviously too large, especially for the present atmospheric flames.
The spectral radius vs. time step size profile obtained when this reaction is
removed from the chemical mechanism is shown in Fig 16 (red cross symbols).
The profile is virtually identical to the one obtained with the 35-species mech-
anism introduced in Section 4.1. This mean that the proposed method is also
efficient with a mechanism as large as CaltechMech, which is far larger than
any other mechanism used for the simulation of three-dimensional turbulent
premixed flames [11,16,17,49,84-87].
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Fig. 18. Evolution of the density residual as a function of sub-iterations over two time
steps for the n-CyHjg flame with CaltechMech using the proposed time-integration
scheme with At = 2 x 1079 s. The convergence rates given by the first (red) and
the third (black) largest eigenvalues are shown for comparison. k references to the
sub-iteration index.

6.1.2 Non-premized flames

The theoretical stability limit using the proposed scheme is now evaluated
for a series of (unity Lewis number) non-premixed flamelets [88]. These one-
dimensional flamelets correspond to solutions close to the axis of symmetry of
counter-flow diffusion flames and to local solutions close to the stoichiometric
isosurface of mixture fraction of turbulent flames.

First, two n-C;H;g/air flamelets are considered: one with a small scalar dissi-
pation rate (typically found in laminar co-flow diffusion flames and turbulent
diffusion flames, at moderate Reynolds number) and one with a large scalar
dissipation rate, corresponding to half the dissipation rate leading to extinc-
tion. The results are shown in Table 5. Once again, the stability limits using
the proposed scheme are very similar to the values found for the series of pre-
mixed flames (previous section). Additionally, the dissipation rate does not
seem to have a strong effect on the stability of the scheme.

Second, two CyHy/air flamelets are considered: again, one with a small scalar
dissipation rate, and one with a large dissipation rate. These two flamelets
are used to estimate theoretically the stability limit of a 2D-coflow diffusion
flame. The 2D flame corresponds to an International Sooting Flam Work-
shop target flame (more details in Ref. [89,90]). The ethylene fuel (17.6% by
mass) is diluted with nitrogen (82.4% by mass) (in both the flamelets and
the 2D flame). The steady-state solution for the temperature field is shown
in Fig. 19. The two dissipation rates considered in Table 5 correspond to the
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Fuel X st P 0 Tf To A75'max Atmax

(1/s) (atm) (K) (K) (s) (s)
explicit semi-implicit
n-CrHyg [12] 1 1 400 800 1.4 x 107 3.7 x 107

n-C7Hyg [12) 320 1 400 800 83 x 107! 29 x107°
CoHy [12] 0.025 4 208 298 4.4 x 1071 4.9 x 107

CoHy [12] 138 4 298 298 1.4 x 10719 27 x 1076

Table 5

Theoretical largest stable time step size for the proposed semi-implicit scheme
and the explicit time-integration of the chemical source terms with non-premixed
flamelets. x4 is the scalar dissipation rate at stoichiometry, T’ the temperature on
the fuel side, and 7, the temperature on the oxidizer side. The oxidizer is air and
the chemical mechanism considers 47 species and 290 reactions [12].
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Fig. 19. Contours of temperature (top) and spectral radius of A{, (bottom) from the
two-dimensional coflow laminar flame, obtained with a time step of 4.0 x 107° s.

maximum and minimum values found in the 2D simulation. As expected, the
more restrictive time step size is encountered at the largest dissipation rate.
In contrast, the 2D numerical simulation was found to be stable up to a time
step size of At = 4.0 x 1079 s, which is larger than the theoretical prediction
of At = 2.7 x 107% s. With this "practical” time step, the maximum spec-
tral radius of Aj found in the 2D domain (see Fig. 19) is about 0.97. This
difference can be partially explained by the fact that, in the region of largest
dissipation rates (at the burner exit), the flame is extinguished and does not
compare well with a flamelet.

6.1.3 0D ignition

Although the proposed time-integration scheme was developed primarily for
the simulation of multi-dimensional turbulent flames, it could potentially be
applied to the simulation of flows with ignition events. In order to partially
assess the potential of the method for such flows, a canonical 0D, constant
pressure ignition case is considered. The initial conditions as well as the the-
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oretical stability limits (computed from a FlameMaster solution) are listed in
Table 6. These conditions are meant to be representative of ignition events in
HCCI-like engines [6,91]. All simulations are performed with the CaltechMech
mechanism.

Fuel Cb PO TO Atmax Atmax
(atm) (K)  (s) (s)
explicit semi-implicit

n-C7Hyg [83] 0.7 30 850  1.1x 107'2 3.7 x 1077
Table 6
Theoretical largest stable time step size for the proposed semi-implicit scheme and
the explicit time-integration with a 0D isobaric ignition case. Tj is the initial tem-
perature.

The same numerical simulation is performed with the present semi-implicit
scheme in NGA to evaluate the practical stability limit. The stability limit
identified numerically is At = 5.2 x 10~7 s, which is close to the theoretical
limit. Unfortunately, at such large time step size, using four sub-iterations,
the solution is deteriorated: the ignition delay time is over-predicted and the
burnt temperature is under-predicted. This is also observed at the theoretical
stability limit, as shown in Table 7. Interestingly, with only four sub-iterations
and using a time step size of At =2 x 1077 s, the solution is very close to the
FlameMaster prediction, as seen in Table 7. While only a limited analysis, the
present results show the applicability of the proposed semi-implicit scheme for
ignition events.

Framework At (s) tign (MS) Ty (K)
FlameMaster 1.560 2129
NGA 3.7x 1077 1.703 2002
NGA 2.0x 1077 1.566 2126

Table 7

Comparison of the ignition delay time t;5,, and the burnt temperature obtained with
FlameMaster, and with the proposed framework using two different time step sizes.
Four sub-iterations are used.

6.2 Advantages over other methods

The performance of the proposed preconditioner is compared to that of the
fully-implicit preconditioner, operator-splitting methods, and stiffness removal
through QSSA in the following.
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6.2.1 Fully-implicit method

As mentioned in the introduction, the use of fully-implicit time-integration
of the chemical source terms is known to be prohibitively expensive for the
simulation of turbulent reacting flows [27], as the inversion of the full chemical
Jacobian, %, at every point of the domain and at every time step becomes
very expensive when more than 10-20 species are considered. Another prob-
lem that would arise using a fully-implicit preconditioner with the numerical
framework presented in Section 3 is that the extension to multi-dimensions
using the approximate factorization introduced in Section 3.3 could no longer
be applied, as the fully-implicit chemical Jacobian is not a diagonal matrix.

Such a factorization is necessary for the efficiency of the overall procedure.

The major advantage of fully-implicit time-integration of the chemical source
terms over the proposed semi-implicit scheme is the use of a time step size
not restricted by the chemistry. For steady-state problems, this might be jus-
tified /useful. However, for turbulent reacting flows (such as the one presented
in Section 4.2), the characteristic hydrodynamic timescales of the turbulent
flow (relative to the turbulence and the chemistry) need to be resolved. These
are often sufficiently small that the cost increase for the fully-implicit method
is not justified anymore.

6.2.2  Operator-splitting methods

The preconditioned iterative method integrates simultaneously the chemical,
diffusive, and convective terms at the same effective time level. This guarantees
that the numerical scheme used is free of lagging errors. These errors are of
particular importance in unsteady reacting flows, where chemistry, diffusion,
and convection are closely coupled, especially close to the thin flame fronts [3].

Using operator-split formulations, the chemical source terms are decoupled
from the diffusive and the convective terms in order to be integrated using
stiff ODE solvers. Therefore, the application of these methods for the simula-
tion of reacting flow problems leads typically to integration accuracy degrada-
tion [19,92,93]. This is demonstrated in Fig. 20 for the mass fraction of n-CsHj.
Using Godunov splitting, large numerical errors due to operator-splitting are
observed with At > 5 x 107" s (the ODE solver used is DVODE [40] with
107% and 1072 for the relative and absolute tolerances, respectively [56]). At
this point, the numerical time step size surpasses the diffusion timescales. In
contrast, the proposed preconditioned iterative method does not suffer from
these errors, since the convection, diffusion, and chemistry are all integrated
simultaneously. Note that, while Strang splitting is known to perform gener-
ally better than Godunov splitting, its extension to a low Mach number code
based on spatial and temporal staggering is not trivial. This is the reason
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Fig. 20. n-C3H7 mass fraction of from the 1D (freely propagating) flame solution.
Solutions from using Godunov splitting (GS) are compared, for different time step
sizes, to the solution using the proposed preconditioning method.

why Godunov splitting, easily implementable on a staggered grid, was used
for comparison.

Figure. 21 presents the computational cost per grid point per simulation time
using 1) the proposed preconditioned iterative method, 2) Godunov splitting,
and 3) explicit time-integration of the chemical source terms. For all cases,
four sub-iterations are used. Without surprise, the cost using small time step
sizes (At < 5 x 1078 s) is similar for all methods. For Godunov splitting, it
is computationally as cheap as the explicit method when the chemical source
terms are not stiff, which is the case at small time step sizes. However, using
large time step sizes, the chemical source terms become stiff and the cost
associated with solving the stiff ODEs increases. At large time step sizes, the
cost associated with Godunov splitting increases up to twice larger than that
associated with the proposed method. On the other hand, for the proposed
preconditioned iterative method, as mentioned earlier, the total number of
operations per time step is virtually the same as that associated with an
explicit time-integration of the chemical source terms. In particular, the cost
per iteration does not vary with time step size. As such, the computational
cost per grid point per simulation time is proportional to the inverse of the
time step size. In summary, for the present 1D flame test case, with a time
step of At = 2 x 107 s, the computational cost associated with the proposed
method is smaller than that associated with Godunov splitting, while being
free of lagging errors (see Fig. 20).

In the simulation of turbulent flames, the chemical source terms are zero al-
most everywhere (unburnt/burnt regions in a premixed flame; fuel/oxidizer
streams in a non-premixed flame) except at the flame front. This means that,
if the domain is partitioned in the direction perpendicular to the flame, the
cost of a single time step, using an operator-splitting method, will vary be-
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Fig. 21. Computational cost of 1D stationary flame simulation for different chemical
integration methods. Cost is calculated as cpu time per point (s/pt), per second of
simulation time (s). All cases use four sub-iterations.

tween the different partitions. Unfortunately, a partition cannot advance faster
in time than the others. Therefore, the computational time is dictated by the
slowest partition. For the three-dimensional simulation test case, this made
the simulation impracticable using Godunov splitting. This could be partially
alleviated by considering load balancing [94] at the cost of making the code
more complicated.

6.2.3 Stiffness removal through QSSA

As mentioned in the introduction, a way to remove the stiffness of the species
transport equations (and reduce the number of transport equations) is to put
the species with small chemical timescales in Quasi Steady State (QSS) [22].
Application of this method is particularly interesting for compressible codes,
for which the stability limit is controlled by either chemistry or acoustics [46].
The acoustics timescale is smaller than the convective timescale (subsonic
flows) and may be relatively close to the smallest chemical timescales. As
seen in Fig. 4, it is very likely that only a few species (and their associated
reactions) are responsible for the small chemical timescales. After removal of
these species (and their associated reactions), using QSSA, the stability of the
solver would be limited by the acoustics only.

However, putting the species with the smallest associated timescales in quasi-
steady state may not always be justified. With the quasi steady state assump-
tion, algebraic expressions can be found for these species. In Fig. 22, these
expressions are compared to their true values in the 3D turbulent premixed
flame (see Section 4.2). Several species typically placed in QSS in previous
studies [49,95] are considered. It is obvious that the QSSA is valid for 1-CHa,
but not for n-C3H7; nor 2-C;H;5 in the present turbulent premixed flame. This
can be explained by the fact that the timescales corresponding to these species,
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although very small at high temperature, are very large at low temperatures,
as can be seen in Fig. 23. A way to counter this behavior that has been used in
the literature [13] is to preheat the unburnt mixture to make the flame more
“robust”, 7.e. to make sure that the species responsible for the stiffness of
the system can be put in quasi-steady state. However, this obviously modifies
the nature of the flame simulated. Note that a recently developed dynamic
stiffness removal relies on local, rather than global, QSSA [23]. However, to
the best of the authors’ knowledge, the method has only been applied to the
simulation of ignition problems [6,23].
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Fig. 22. Scatter plots of species mass fractions computed from the algebraic expres-
sion assuming QSS ws. their actual value in the three-dimensional turbulent flame.
A straight line (y = x) is expected for perfect QSS species.
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6.3 Limaitations

A first limitation of the method is that it is only efficient for the simulation
of unsteady reacting flows, in which the interplay between the flow field and
the chemistry has to be captured through adequate temporal resolution (small
time step size). While one might decide to use the present method to reach the
solution of a steady-state problem, as shown in Section 6.1.2 for the 2D-coflow
diffusion flame, the associated cost would be large. In such a case, the use of
a large time step size is desirable to reach the time-independent solution. For
all the examples provided, the largest stable time step size is of the order of
1 x 1075 s, which makes the method inefficient to reach a steady-state flow
solution.

Second, the method behaves poorly when a fast reversible reaction is present
in the chemical mechanism, since this leads to a spectral radius of Aj close
to unity over a wide range of time step sizes (as discussed in Section 6.1.1).
Although such fast reaction was found to be unphysical in CaltechMech (a
better reaction rate should be implemented), it is not clear if it is always
the case. More importantly, for very large mechanisms as those developed
at the Lawrence-Livermore National Laboratories (LLNL) such reactions are
present. It is impractical to identify each of these reactions and assess if they
can or cannot be removed for the specific reacting flow being simulated (as
was done in Section 6.1.1 with CaltechMech). A time-integration method used
with such mechanisms has to be efficient even in the presence of such reactions
(an example can be found in Ref. [56]). This is achieved at the cost of making
the preconditioner more complex (and non-diagonal). Therefore, the proposed
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method is not expected to be efficient for the simulation of reacting flows with
very large chemical mechanisms such as those developed at LLNL. However,
these mechanisms are mainly used for 0D ignition calculations and are too
large to be used for the simulation of turbulent flames.

Third, the temperature equation is integrated explicitly, which may limit the
largest stable time step size in some reacting flow configurations. For the
laminar n-heptane/air flame (Section 4.1), the temperature time scale (related
to heat release) is of the order of 107* s. This temperature time scales goes
down to 107 s for the 30 atm 0D ignition case (section 6.1.3). For turbulent
reacting flows, the convective CFL limit is generally more restrictive than
any of these time scales. Therefore, explicit treatment of the chemistry in
the temperature equation should not affect the performance of the proposed
scheme for the applications it is intended for, i.e. unsteady reacting flows such
as turbulent flames. If the method were to be used to simulate flows in which
the temperature time scale is smaller than the convective CFL limit, then a
similar implicit treatment of the temperature equation as the one proposed
for the species equations may be desirable.

Forth, the proposed approximation of the diagonal of the chemical Jacobian
(Eq. 35) may, in some cases, introduce non-negligible deviation from the exact
diagonal. For species whose consumption rate is mostly due to recombination
reactions, the corresponding term in the approximate diagonal may be up to
twice smaller (in magnitude). For instance, for the n-heptane/air flame tested
with the 35-species mechanism, the reaction OH + OH — O + H,O accounts
for most of the consumption rate of OH. As a consequence, the exact term in
the diagonal of the chemical Jacobian corresponding to OH is about 1.7 times
larger than its approximation. However, when the approximation is replaced
by the exact diagonal of the Jacobian, the increase in efficiency of the method
was found to be negligible. More specifically, the stability limit increases by
only 25%, and the convergence rate is unaffected for time step sizes smaller
than 2 x 107% s. Since computing the exact diagonal requires additional oper-
ations, the proposed implementation is marginally more efficient. Under other
circumstances, for instance in wall/flame interactions, where the importance
of the H recombination reaction has been shown [96], or in hypersonic flows,
replacing the approximate diagonal by the exact diagonal may lead to better
efficiency.

In summary, use of the proposed preconditioner is particularly relevant to
moderately to highly turbulent (premixed or non-premixed) flames (high Karlovitz
numbers for premixed flames) in which the convective CFL limit is more re-
strictive than the largest stable time step size (due to the chemistry) with the
proposed time-integration method.
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7 Conclusion

A semi-implicit preconditioning strategy, applied to an iterative method, is
proposed for the time-integration of the stiff chemistry in the simulation of
unsteady reacting flows, such as turbulent flames. The preconditioner consists
of an approximation of the diagonal of the chemical Jacobian. It is integrated
into the iterative procedure already implemented in the NGA code, in order to
account for the non-linearities of the governing equations. Upon convergence
of the sub-iterations, the fully-implicit Crank-Nicolson method is recovered.
Therefore, the stability of the scheme is dictated by the stability of the sub-
iterations.

The performance of the proposed method was numerically tested on two flow
configurations: a one-dimensional unstretched premixed flame and a three-
dimensional turbulent premixed flame, both with an unburnt mixture of air
and n-heptane. First, the species lifetimes evaluated from the preconditioned
chemical Jacobian represent appropriately the smallest chemical timescales.
Second, a theoretical approximation of the rate of convergence of the sub-
iterations was derived and shown to be in good agreement with numerical
results. Third, the stability limit was found to be well approximated by the
theoretical analysis. It was also shown that the stability limit does not depend
on the number of sub-iterations. Forth, the method was shown to be second-
order accurate in time, even with only four sub-iterations. Increasing the num-
ber of sub-iterations led to a reduction of the magnitude of the errors. With a
time step size as large as a third of the stability limit, four sub-iterations were
shown to be sufficient to achieve acceptable accuracy. Fifth, while other meth-
ods using diagonal preconditioned chemical Jacobians have been shown to lack
elemental conservation or were argued to not be time-accurate [5,78,79], the
proposed method was shown to conserve properly elements over time thanks
to the sub-iterations. Sixth, the computational cost of a single iteration with
the proposed method is similar to that of an explicit time-integration scheme
(since the same number of sub-iterations are used). Therefore, the simula-
tion speed-up achieved with the proposed method corresponds to the increase
in the largest stable time step size. For the three-dimensional turbulent pre-
mixed flame, the simulation could be performed with a convective CFL of 0.8
(optimal, with or without chemistry).

The theoretical analysis for stability and convergence rate is general and is
not limited by the type of fuel, chemical mechanism or flow configuration.
Therefore, it was repeated, in the context of one-dimensional premixed flames,
with several fuels, unburnt conditions, and chemical mechanism. It was also
performed with non-premixed flamelets using different scalar dissipation rates.
The method provided good convergence rates of the sub-iterations close to the
stability limit for all the chemical mechanisms considered. Consequently, the
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proposed preconditioning method showed great potential for the efficient time-
integration of turbulent flames. Although not a primary target, the method
was also shown to work for a homogeneous ignition case.

The proposed semi-implicit preconditioning, in combination with the iter-
ative method, was argued to be far less computationally expensive than a
fully-implicit method and was shown to be as inexpensive or less expensive
than operator-splitting methods, while being more accurate. It was also ob-
served that the QSS assumption may not be used for conventional species in
the turbulent flame presently studied. As such the proposed method is more
suited than alternative methods for the type of low studied, i.e. high Karlovitz
flames.

By extension, it was suggested that the proposed method is suited for reacting
flows in which the convective timescales are of the order of 107 s or less. These
correspond to moderately to highly turbulent (non-premixed or premixed)
flames (high Karlovitz for premixed flames).
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