
ar
X

iv
:2

10
3.

16
06

5v
1 

 [
m

at
h.

N
A

] 
 3

0 
M

ar
 2

02
1

General local energy-preserving integrators for solving

multi-symplectic Hamiltonian PDEs

Yu–Wen Lia, Xinyuan Wua,∗

aDepartment of Mathematics, Nanjing University; State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093,

P.R.China

Abstract

In this paper we propose and investigate a general approach to constructing local energy-preserving algorithms which

can be of arbitrarily high order in time for solving Hamiltonian PDEs. This approach is based on the temporal dis-

cretization using continuous Runge-Kutta-type methods, and the spatial discretization using pseudospectral methods

or Gauss–Legendre collocation methods. The local energy conservation law of our new schemes is analyzed in detail.

The effectiveness of the novel local energy-preserving integrators is demonstrated by coupled nonlinear Schrödinger

equations and 2D nonlinear Schrödinger equations with external fields. Our new schemes are compared with some

classical multi-symplectic and symplectic schemes in numerical experiments. The numerical results show the remark-

able long-term behaviour of our new schemes.
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1. Introduction

Since the multi-symplectic structure was developed by Bridges and Marsden et al. [2, 27] for a class of PDEs,

the construction and analysis of multi-symplectic numerical integrators which conserve the discrete multi-symplectic

structure have become one of the central topics in PDE algorithms. Many multi-symplectic schemes have been pro-

posed such as multi-symplectic RK/PRK/RKN methods, finite volume methods, spectral/ pseudospectral methods,

splitting methods and wavelet collocation methods (see, e.g. [3, 4, 11, 18, 19, 26, 29, 30, 32]). All of these meth-

ods focus on the preservation of some kinds of discrete multi-symplecticity. However, multi-symplectic PDEs have

many other important properties such as the local energy conservation law (ECL) and the local momentum conserva-

tion law (MCL). In general, multi-symplectic integrators can only preserve exactly quadratic conservation laws and

invariants. In the paper [29], Reich firstly proposed two methods that preserve the discrete ECL and MCL respec-

tively. In [31], Wang et al. generalized Reich’s work. In [6, 7, 9], Chen et al., and Cai et al. constructed some local

structure-preserving schemes for special multi-symplectic PDEs. In [14], Gong et al. developed a general approach to

constructing local structure-preserving algorithms. Local energy-preserving algorithms preserve the discrete global en-

ergy under suitable boundary conditions. Thus in the case of multi-symplectic PDEs, they cover the traditional global

energy-preserving algorithms (see, e.g. [8, 13, 16, 21]). However, most of the local and global energy-preserving

methods are based on the discrete gradient for the temporal discretization. Therefore, they can have only second order

accuracy in time. We note that Hairer [17] developed a family of energy-preserving continuous Runge–Kutta–type
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methods of arbitrarily high order for Hamiltonian ODEs. Motivated by Hairer’s work, in this paper, we consider gen-

eral local energy-preserving methods for multi-symplectic Hamiltonian PDEs, and we are hopeful of obtaining new

high-order schemes which exactly preserve the ECL.

Besides, most of the existing local energy-preserving algorithms are based on the spatial discretization using the

implicit midpoint rule. Although the authors in [8, 14] mentioned a class of global energy-preserving schemes based

on the (pseudo) spectral discretization for the spatial derivative, it seems that there is little work investigating the

local energy-preserving property of these schemes in the literature. In this paper, we investigate the preservation

of the discrete ECL for our new schemes which are based on the pseudospectral spatial discretization. Meanwhile,

we also design a class of local energy-preserving schemes based on the general Gauss-Legendre collocation spatial

discretization.

The paper is organized as follows. In Section 2, we briefly introduce multi-symplectic PDEs and energy-preserving

continuous Runge–Kutta methods. In Section 3, we present a general approach to constructing local energy-preserving

schemes. This approach is illustrated by coupled nonlinear Schrödinger equations and 2D nonlinear Schrödinger equa-

tions in Section 4 and 5, respectively. We compare our new schemes with classical multi-symplectic and symplectic

schemes in Section 6 and 7. The last section is concerned with the conclusion.

2. Multi-symplectic PDEs and energy-preserving continuous Runge–Kutta methods

A multi-symplectic PDE with one temporal variable and two spatial variables can be written in the form:

Mzt + Kzx + Lzy = ∇zS (z), z ∈ Rd, (1)

where M, K, and L are skew-symmetric d by d real matrices, S : Rd → R is a smooth scalar-valued function of the

state variable variable z and ∇z is the gradient operator. Three differential 2-forms are defined by

ω =
1

2
dz ∧ Mdz, κ =

1

2
dz ∧ Kdz, τ =

1

2
dz ∧ Ldz.

(1) then has the multi-symplectic conservation law (MSCL):

∂tω + ∂xκ + ∂yτ = 0. (2)

Another important local conservation law is the ECL:

∂tE + ∂xF + ∂yG = 0,

where

E = S (z) −
1

2
z⊺Kzx −

1

2
z⊺Lzy, F =

1

2
z⊺Kzt, G =

1

2
z⊺Lzt.

When L = 0, the equation (1) reduces to the case of one spatial dimension:

Mzt + Kzx = ∇S (z). (3)

Correspondingly, the ECL reduces to:

∂tE + ∂xF = 0,

where

E = S (z) − 1

2
z⊺Kzx, F =

1

2
z⊺Kzt.

Note that the energy density E is related to the gradient of S . If one is interested in constructing schemes which

can preserve the discrete ECL, a natural idea is replacing ∇S by the discrete gradient (DG) ∇̄S . For details of the

discrete gradient, readers are referred to [15, 25].

A limitation of the DG method is that it can only achieve second-order accuracy in general. Therefore, classical

local energy-preserving methods based on the DG cannot reach an order higher than 2 in temporal direction unless the

composition technique is applied, which is not our interest in this paper.

In contrast to the DG method, Hairer’s seminal work overcomes the order barrier. In what follows, we introduce

the approach summarily.
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Consider autonomous ODEs:
{

y′ = f (y), y ∈ Rd,

y(t0) = y0.
(4)

Hairer’s approach can be regarded as a continuous Runge–Kutta method :







































yτ = y0 + h

∫ 1

0

Aτ,σ f (yσ)dσ,

y1 = y0 + h

∫ 1

0

Bσ f (yσ)dσ,

Bσ ≡ 1, Aτ,σ =

s
∑

i=1

1

bi

∫ τ

0

li(α)dαli(σ),

(5)

where h is the stepsize, {li(τ)}si=1 are Lagrange interpolating polynomials based on the s distinct points c1, c2, . . . , cs,

bi =
∫ 1

0
li(τ)dτ for i = 1, 2, . . . , s, and yτ approximates the value of y(t0+τh) for τ ∈ [0, 1]. The continuous RK method

can be expressed in a Buchter tableau as

Cτ Aτ,σ

Bτ

with

τ = Cτ =

∫ 1

0

Aτ,σdσ.

If f (y) = J−1∇H(y), J is a skew-symmetric matrix, then this method preserves the Hamiltonian: H(y1) = H(y0). Let r

be the order of the quadrature formula (bi, ci)
s
i=1, then the order of this continuous method is given by:

{

2s, for r ≥ 2s − 1,

2r − 2s + 2, for r ≤ 2s − 2.
(6)

Moreover, if the quadrature nodes are symmetric, i.e. ci = 1 − cs+1−i for i = 1, 2, . . . , s, then the method (5) is also

symmetric. Clearly, by choosing an s-point Gauss-Legendre quadrature formula, we get a symmetric continuous RK

method of order 2s. Besides, although this method is not symplectic, it is conjugate-symplectic up to at least order

2s+ 2. The proof can be found in [17]. In view of these prominent properties, we select (5) as our elementary method

for the time integration of Hamiltonian PDEs. We denote this method by CRK and call (bi, ci)
s
i=1 as the generating

quadrature fomula in the remainder of this paper.

3. Construction of local energy-preserving algorithms for Hamiltonian PDEs

3.1. Pseudospectral spatial discretization

For simplicity, we first consider the following PDE with one spatial variable:

Mzt + Kzx = ∇zS (z, x). (7)

In the classical multi-symplectic PDE (3), the Hamiltonian S is independent of the variable x. It should be noted that

(7) does not have the MSCL and the MCL, but the local energy conservation law still holds:

∂tE + ∂xF = 0, (8)

where

E = S (z, x) − 1

2
z⊺Kzx, F =

1

2
z⊺Kzt.

Thus local energy-preserving methods can be more widely used than classical multi-symplectic methods. Most of

multi-symplectic methods can be constructed by concatenating two ODE methods in time and space, respectively.
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The temporal method is always symplectic, while the spatial one may be not. However, in our new schemes, we use

the CRK method instead of the symplectic method for the time integration. In this subsection, we consider a class of

convenient methods for the spatial discretization under the periodic boundary condition. They are the Fourier spectral,

the pseudospectral, and the wavelet collocation method (see, e.g. [4, 11, 32]). A common characteristic of the three

methods is the substitution of a skew-symmetric differential matrix D for the operator ∂x . For example, assuming

z(x0, t) = z(x0 + L, t), (7) becomes a system of ODEs in time after the pseudospectral spatial discretization :

M
d

dt
z j + K

N−1
∑

k=0

D jkzk = ∇zS (z j, x j), (9)

for j = 0, 1, . . . ,N − 1, where N is an even integer, x j = x0 + j∆x, j = 0, 1, · · · ,N − 1,∆x = L
N
, z j ≈ z(x j, t), D is a

skew-symmetric matrix whose entries are determined by (see, e.g. [11])

D jk =







π

L
(−1) j+kcot(π

x j − xk

L
), j , k,

0, j = k.

Multiplying both sides of (9) by d
dt

z
⊺

j , we get N semi-discrete ECLs (see, e.g. [10, 23]):

d

dt
E j +

N−1
∑

k=0

D jkF jk = 0, (10)

for j = 0, 1, . . . ,N − 1, where

E j = S (z j, x j) −
1

2
z
⊺

j K

N−1
∑

k=0

D jkzk,

F jk =
1

2
z
⊺

k K
d

dt
z j +

1

2
z
⊺

j K
d

dt
zk.

The term
∑N−1

k=0 D jkF jk can be considered as the discrete ∂xF(z j) :

N−1
∑

k=0

D jkF jk =
1

2
δxz

⊺

j K
d

dt
z j +

1

2
z
⊺

j K
d

dt
δxz j ≈

1

2
∂xz(x j, t)

⊺K
d

dt
z j +

1

2
z
⊺

j K
d

dt
∂xz(x j, t) = ∂xF(z j), (11)

where
∑N−1

k=0 D jkzk = δxz j ≈ ∂xz(x j, t).

If S is independent of the variable x, then N semi-discrete MSCLs (see, e.g. [4, 11]) also hold:

d

dt
ω j +

N−1
∑

k=0

D jkκ jk = 0,

ω j =
1

2
dz j ∧ Mdz j,

κ jk =
1

2
(dz j ∧ Kdzk + dzk ∧ Kdz j),

for j = 0, 1, . . . ,N − 1. Here
∑N−1

k=0 D jkκ jk (the discrete ∂xκ(z j)) can be comprehended in a similar way to (11).

After the temporal discretization using the CRK method (5), the full discrete scheme can be written as follows:



















































zτj = z0
j + ∆t

∫ 1

0

Aτ,σδtz
σ
j dσ,

z1
j = z0

j + ∆t

∫ 1

0

δtz
σ
j dσ,

δxzτj =

N−1
∑

k=0

D jkzτk,

Mδtz
τ
j + Kδxzτj = ∇zS (zτj, x j),

(12)
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for j = 0, 1, . . . ,N−1, where zτj ≈ z(x j, t0+τ∆t), δtz
τ
j ≈ ∂tz(x j, t0+τ∆t) are polynomials in τ. For the energy-preserving

property of the CRK method, we expect this scheme to preserve some discrete ECLs. Firstly, note that bi =
∫ 1

0
li(τ)dτ.

For convenience, we denote
1

bi

∫ 1

0

li(τ) f (τ)dτ

(i.e. the weighted average of a function f with the weight function li(τ)) as 〈 f 〉i in the remainder of our paper.

Obviously, 〈·〉i is a linear operator.

The next theorem shows the N-discrete local energy conservation law of (12).

Theorem 3.1. The scheme (12) exactly conserves the N-discrete local energy conservation law:

E1
j − E0

j

∆t
+

N−1
∑

k=0

D jkF̄ jk = 0, (13)

for j = 0, 1, . . . ,N − 1, where

Eα
j = S (zαj , x j) −

1

2
z
α⊺
j Kδxzαj , α = 0, 1,

F̄ jk =
1

2

s
∑

i=1

bi(〈z j〉⊺i K〈δtzk〉i + 〈zk〉⊺i K〈δtz j〉i).

By summing the identities (13) from j = 0 to N − 1, on noticing that F̄ jk is symmetric with respect to j, k and D jk

is anti-symmetric with respect to j, k, the discrete ECLs lead to the global energy conservation:

∆x

N−1
∑

j=0

E1
j − ∆x

N−1
∑

j=0

E0
j = −∆x∆t

N−1
∑

j=0

N−1
∑

k=0

D jkF̄ jk = 0. (14)

If we evaluate the integrals of F̄ jk by the generating quadrature formula of the CRK method, we have

F̄ jk ≈
1

2

s
∑

i=1

bi(z
ci⊺

j Kδtz
ci

k + z
ci⊺

k Kδtz
ci

j ).

Proof. First of all, note that the discrete differential operator δx is linear, thus it holds that

∂τδxz
τ
j = δx∂τz

τ
j . (15)

It follows from (12) that

∂τz
τ
j = ∆t

∫ 1

0

s
∑

i=1

1

bi

li(τ)li(σ)δtz
σ
j dσ = ∆t

s
∑

i=1

li(τ)〈δtz j〉i. (16)

Then we have
S (z1

j , x j) − S (z0
j , x j)

=

∫ 1

0

∂τz
τ⊺
j ∇zS (zτj, x j)dτ = ∆t

s
∑

i=1

bi〈δtz j〉⊺i 〈∇zS j〉i,
(17)

z1
j Kδxz1

j − z0
j Kδxz

0
j

=

∫ 1

0

∂τ(z
τ⊺
j Kδxzτj)dτ =

∫ 1

0

(∂τz
τ⊺
j Kδxzτj + z

τ⊺
j Kδx∂τz

τ
j)dτ

= ∆t

s
∑

i=1

bi〈δtz j〉⊺i K〈δxz j〉i + ∆t

s
∑

i=1

bi〈z j〉⊺i K〈δxδtz j〉i.

(18)

With (17) and (18), it follows from

a⊺Ma = 0, a⊺Mb = −b⊺Ma
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that, for a, b ∈ Rd, we have

(E1
j − E0

j )/∆t

= (S (z1
j , x j) − S (z

0
j , x j) −

1

2
(z

1⊺
j Kδxz1

j − z
0⊺
j Kδxz

0
j ))/∆t

=

s
∑

i=1

bi〈δtz j〉⊺i 〈Mδtz j + Kδxz j〉i −
1

2

s
∑

i=1

bi〈δtz j〉⊺i K〈δxz j〉i −
1

2

s
∑

i=1

bi〈z j〉⊺i K〈δxδtz j〉i

=
1

2

s
∑

i=1

bi〈δtz j〉⊺i K〈δxz j〉i −
1

2

s
∑

i=1

bi〈z j〉⊺i K〈δxδtz j〉i

=
1

2

N−1
∑

k=0

D jk

s
∑

i=1

bi〈δtz j〉⊺i K〈zk〉i −
1

2

N−1
∑

k=0

D jk

s
∑

i=1

bi〈z j〉⊺i K〈δtzk〉i

= −
N−1
∑

k=0

D jkF̄ jk

(19)

�

Note that a crucial property of the pseudospectral method is replacing the operator ∂x with a linear and skew-

symmetric differential matrix. Fortunately, this property is shared by spectral methods and wavelet collocation meth-

ods, hence our procedure of constructing the local energy-preserving scheme can be applied to them without any

trouble.

Our approach can also be easily generalized to high dimensional problems. For example, we consider the following

equation :

Mzt + Kzx + Lzy = ∇zS (z, x, y). (20)

The ECL of this equation is:

∂tE + ∂xF + ∂yG = 0, (21)

where

E = S (z, x, y) − 1

2
z⊺Kzx −

1

2
z⊺Lzy, F =

1

2
z⊺Kzt, G =

1

2
z⊺Lzt .

Applying a CRK method to t-direction and a pseudospectral method to x and y directions ( under the periodic

boundary condition z(x0, y, t) = z(x0 + L1, y, t), z(x, y0, t) = z(x, y0 + L2, t) ) gives the following full discrete scheme:











































































zτjl = z0
jl + ∆t

∫ 1

0

Aτ,σδtz
σ
jldσ,

z1
jl = z0

jl + ∆t

∫ 1

0

δtz
σ
jldσ,

δxz
τ
jl =

N−1
∑

k=0

(Dx) jkzτkl,

δyz
τ
jl =

M−1
∑

m=0

(Dy)lmzτjm,

Mδtz
τ
jl + Kδxz

τ
jl + Lδyzτjl = ∇zS (zτjl, x j, yl),

(22)

for j = 0, 1, . . . ,N − 1, l = 0, 1, . . . , M − 1, where zτjl ≈ z(x j, yl, t0 + τ∆t), δtz
τ
jl ≈ ∂tz(x j, yl, t0 + τ∆t) are polynomials

in τ, x j = x0 + j∆x, yl = y0 + l∆y,∆x = L1

N
,∆y = L2

M
. Both Dx and Dy are pseudospectral differential matrices related

to x and y directions respectively.

The next theorem presents the discrete local energy conservation laws of (22).

Theorem 3.2. The scheme (22) exactly conserves the NM-discrete local energy conservation law:

E1
jl − E0

jl

∆t
+

N−1
∑

k=0

(Dx) jkF̄ jk,l +

M−1
∑

m=0

(Dy)lmḠ j,lm = 0, (23)
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for j = 0, 1, . . . ,N − 1, l = 0, 1, . . . , M − 1, where

Eα
j = S (zαjl, x j, yl) −

1

2
z
α⊺
jl Kδxzαjl −

1

2
z
α⊺
jl Lδyzαjl, α = 0, 1,

F̄ jk,l =
1

2

s
∑

i=1

bi(〈z jl〉⊺i K〈δtzkl〉i + 〈zkl〉⊺i K〈δtz jl〉i),

Ḡ j,lm =
1

2

s
∑

i=1

bi(〈z jl〉⊺i L〈δtz jm〉i + 〈z jm〉⊺i L〈δtz jl〉i).

Since the proof of Theorem 3.2 is very similar to that of Theorem 3.1, we omit the details here.

Summing the identities (23) over all space grid points, on noticing that F̄ jk,l is symmetric with respect to j, k, and

(Dx) jk is anti-symmetric with respect to j, k, Ḡ j,lm is symmetric with respect to l,m, and (Dy)lm is anti-symmetric with

respect to l,m, again, we obtain the global energy conservation :

∆x∆y

N−1
∑

j=0

M−1
∑

l=0

E1
jl − ∆x∆y

N−1
∑

j=0

M−1
∑

l=0

E0
jl = −∆t∆x∆y

N−1
∑

j=0

M−1
∑

l=0

N−1
∑

k=0

(Dx) jkF̄ jk,l − ∆t∆x∆y

N−1
∑

j=0

M−1
∑

l=0

M−1
∑

m=0

(Dy)lmḠ j,lm = 0. (24)

3.2. Gauss-Legendre collocation spatial discretization

In multi-symplectic algorithms, another class of methods frequently applied to spatial discretization is the Gauss-

Legendre (GL) collocation method. We assume that the Butcher tableau of the GL method is:

c̃1 ã11 . . . ã1r

...
...

. . .
...

c̃r ãr1 · · · ãrr

b̃1 · · · b̃r

(25)

After the spatial discretization using the GL method (25) and the temporal discretization using the CRK, we obtain the

full discrete scheme of (7) :










































































zτn, j = z0
n, j + ∆t

∫ 1

0

Aτ,σδtz
σ
n, jdσ,

z1
n, j = z0

n, j + ∆t

∫ 1

0

δtz
σ
n, jdσ,

zτn, j = zτn + ∆x

r
∑

k=1

ã jkδxzτn,k,

zτn+1 = zτn + ∆x

r
∑

j=1

b̃ jδxzτn, j,

Mδtz
τ
n, j + Kδxz

τ
n, j = ∇zS (zτn, j, xn + c̃ j∆x),

(26)

for j = 1, 2, . . . , r, where zτn ≈ z(xn, t0 + τ∆t), zτn+1 ≈ z(xn + ∆x, t0 + τ∆t), zτn, j ≈ z(xn + c̃ j∆x, t0 + τ∆t), δtz
τ
n, j ≈

∂tz(xn + c̃ j∆x, t0 + τ∆t), δxzτn, j ≈ ∂xz(xn + c̃ j∆x, t0 + τ∆t) are polynomials in τ. This is a local scheme on the box

[xn, xn + ∆x] × [t0, t0 + ∆t]. To show that (26) exactly conserves the discrete ECL, we should make sure that there is

some law of commutation between δt and δx. To this end we introduce the following auxiliary system:

δxzτn, j = δxz0
n, j + ∆t

∫ 1

0

Aτ,σδtδxzσn, jdσ,

δxz1
n, j = δxz0

n, j + ∆t

∫ 1

0

δtδxzσn, jdσ,

δtz
τ
n, j = δtz

τ
n + ∆x

r
∑

k=1

ã jkδxδtz
τ
n,k,

δtz
τ
n+1 = δtz

τ
n + ∆x

r
∑

j=1

b̃ jδxδtz
τ
n, j,

(27)
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for j = 1, 2, . . . , r, where δtδxz
σ
n, j ≈ ∂t∂xz(xn + c̃ j∆x, t0 + σt), δxδtz

σ
n, j ≈ ∂x∂tz(xn + c̃ j∆x, t0 + σt). Then

zτn, j = z0
n, j + ∆t

∫ 1

0

Aτ,σδtz
σ
n, jdσ

= z0
n, j + ∆t

∫ 1

0

Aτ,σ(δtz
σ
n + ∆x

r
∑

k=1

ã jkδxδtz
σ
n,k)dσ

= z0
n, j + zτn − z0

n + ∆t∆x

r
∑

k=1

ã jk

∫ 1

0

Aτ,σδxδtz
σ
n,kdσ.

(28)

Likewise,

zτn, j = zτn + z0
n, j − z0

n + ∆x∆t

r
∑

k=1

ã jk

∫ 1

0

Aτ,σδtδxz
σ
n,kdσ. (29)

(28), (29) lead to
r

∑

k=1

ã jk

∫ 1

0

Aτ,σδxδtz
σ
n,kdσ =

r
∑

k=1

ã jk

∫ 1

0

Aτ,σδtδxz
σ
n,kdσ.

Since the matrix (ã jk)1≤ j, k≤r is invertible, we have

∫ 1

0

Aτ,σδxδtz
σ
n,kdσ =

∫ 1

0

Aτ,σδtδxz
σ
n,kdσ, τ ∈ [0, 1], (30)

for k = 1, 2, . . . , r. Taking derivatives with respect to τ on both sides of (30), we arrive at

∫ 1

0

(

s
∑

i=1

1

bi

li(τ)li(σ))δxδtz
σ
n,kdσ =

∫ 1

0

(

s
∑

i=1

1

bi

li(τ)li(σ))δtδxz
σ
n,kdσ, τ ∈ [0, 1],

for k = 1, 2, . . . , r. Finally, setting τ = c1, . . . , cs, we have the following lemma:

Lemma 3.3. The following discrete commutability between δt and δx holds:

〈δxδtzn, j〉i = 〈δtδxzn, j〉i, (31)

for i = 1, . . . , s, j = 1, 2, . . . , r.

Theorem 3.4. The scheme (26) conserves the following discrete local energy conservation law :

∆x

r
∑

j=1

b̃ j(E
1
n, j − E0

n, j) + ∆t(F̄n+1 − F̄n) = 0, (32)

where

Eα
n, j = S (zαn, j, xn + c̃ j∆x) − 1

2
z
α⊺
n, j Kδxzαn, j, α = 0, 1,

F̄β =
1

2

s
∑

i=1

bi〈zβ〉⊺i K〈δtzβ〉i, β = n, n + 1.

Proof. It follows from the first equation of (26) that,

∂τz
τ
n, j = ∆t

s
∑

i=1

li(τ)〈δtzn, j〉i. (33)

The result in the temporal direction is almost the same as the pseudospectral case :

S (z1
n, j, xn + c̃ j∆x) − S (z0

n, j, xn + c̃ j∆x) = ∆t

s
∑

i=1

bi〈δtzn, j〉⊺i 〈∇S n, j〉i,
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z1
n, jKδxz

1
n, j − z0

n, jKδxz0
n, j = ∆t

s
∑

i=1

bi〈δtzn, j〉⊺i K〈δxzn, j〉i + ∆t

s
∑

i=1

bi〈zn, j〉⊺i K〈δtδxzn, j〉i.

Hence

E1
n, j − E0

n, j

= S (z1
n, j, xn + c̃ j∆x) − S (z0

n, j, xn + c̃ j∆x) − 1

2
(z1

n, jKδxz1
n, j − z0

n, jKδxz0
n, j)

= ∆t

s
∑

i=1

bi〈δtzn, j〉⊺i 〈Mδtzn, j + Kδxzn, j〉i −
1

2
∆t

s
∑

i=1

bi〈δtzn, j〉⊺i K〈δxzn, j〉i −
1

2
∆t

s
∑

i=1

bi〈zn, j〉⊺i K〈δtδxzn, j〉i

=
1

2
∆t

s
∑

i=1

bi〈δtzn, j〉⊺i K〈δxzn, j〉i −
1

2
∆t

s
∑

i=1

bi〈zn, j〉⊺i K〈δtδxzn, j〉i.

(34)

On the other hand,

z
τ⊺
n+1Kδtz

σ
n+1 − zτ⊺n Kδtz

σ
n

= (zτ⊺n + ∆x

r
∑

j=1

b̃ jδxz
τ⊺
n, j)K(δtz

σ
n + ∆x

r
∑

j=1

b̃ jδxδtz
σ
n, j) − zτ⊺n Kδtz

σ
n

= ∆x

r
∑

j=1

b̃ jz
τ⊺
n Kδxδtz

σ
n, j + ∆x

r
∑

j=1

b̃ jδxz
τ⊺
n, jKδtz

σ
n + ∆x2

r
∑

j,k=1

b̃ jb̃kδxz
τ⊺
n, jKδxδtz

σ
n,k

= ∆x

r
∑

j=1

b̃ j(z
τ⊺
n, j − ∆x

r
∑

k=1

ã jkδxz
τ⊺
n,k)Kδxδtz

σ
n, j + ∆x

r
∑

j=1

b̃ jδxz
τ⊺
n, jK(δtz

σ
n, j − ∆x

r
∑

k=1

ã jkδxδtz
σ
n,k)

+ ∆x2

r
∑

j,k=1

b̃ jb̃kδxz
τ⊺
n, jKδxδtz

σ
n,k

= ∆x

r
∑

j=1

b̃ jz
τ⊺
n, jKδxδtz

σ
n, j + ∆x

r
∑

j=1

b̃ jδxz
τ⊺
n, jKδtz

σ
n, j + ∆x2

r
∑

j,k=1

(b̃ jb̃k − b̃ jã jk − b̃kãk j)δxz
τ⊺
n, jKδxδtz

σ
n,k

= ∆x

r
∑

j=1

b̃ jz
τ⊺
n, jKδxδtz

σ
n, j + ∆x

r
∑

j=1

b̃ jδxz
τ⊺
n, jKδtz

σ
n, j.

(35)

It follows from (35) that

F̄n+1 − F̄n

=
1

2

s
∑

i=1

bi(〈zn+1〉⊺i K〈δtzn+1〉i − 〈zn〉⊺i K〈δtzn〉i)

=
1

2
∆x

r
∑

j=1

s
∑

i=1

b̃ jbi(〈zn, j〉⊺i K〈δxδtzn, j〉i + 〈δxzn, j〉⊺i K〈δtzn, j〉i)

(36)

From (34) and (36), using Lemma 3.3, we have

∆x

r
∑

j=1

b̃ j(E
1
n, j − E0

n, j) + ∆t(F̄n+1 − F̄n)

=
1

2
∆t∆x

s
∑

i=1

r
∑

j=1

b̃ jbi(〈δtzn, j〉⊺i K〈δxzn, j〉i − 〈zn, j〉⊺i K〈δtδxzn, j〉i + 〈zn, j〉⊺i K〈δxδtzn, j〉i + 〈δxzn, j〉⊺i K〈δtzn, j〉i)

=
1

2
∆x∆t

r
∑

j=1

s
∑

i=1

b̃ jbi〈zn, j〉⊺i K(〈δxδtzn, j〉i − 〈δtδxzn, j〉i) = 0.

(37)
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�

Assume that the spatial domain is divided equally into N intervals and the corresponding grids are x0, x1, . . . , xN .

By summing the identities (32) from n = 0 to N − 1, we obtain the global energy conservation of the scheme (26)

under the periodic boundary condition :

∆x

N−1
∑

n=0

r
∑

j=1

b̃ jE
1
n, j − ∆x

N−1
∑

n=0

r
∑

j=1

b̃ jE
0
n, j = −∆t

N−1
∑

n=0

(F̄n+1 − F̄n) = 0, (38)

The GL spatial discretization is not restricted to the periodic boundary condition (PBC). Thus the discrete ECL

(32) is superior to the discrete global energy conservation (38). However, discretizing space by high-order GL methods

may lead to singular and massive ODE systems which are expensive to solve (see, e.g. [26, 30]). For this reason, we

will not include the scheme (26) in our numerical experiments in Section 6, 7.

4. Local energy-preserving schemes for coupled nonlinear Schrödinger equations

An important class of multi-symplectic PDEs is the (coupled) nonlinear Schrödinger equation ((C)NLS). A great

number of them have polynomial nonlinear terms, hence we can calculate the integrals exactly in our method (for

example, by symbol calculations). Here we summarily introduce the multi-symplectic structure of the 2-coupled

NLS:











iut + iαux +
1

2
uxx + (|u|2 + β|v|2)u = 0,

ivt − iαvx +
1

2
vxx + (β|u|2 + |v|2)v = 0,

(39)

where u, v are complex variables, i is the imaginary unit. Assuming u = q1 + iq2 and v = q3 + iq4, ∂xqi = 2pi, qi are

real variables for i = 1, 2, 3, 4, we can formulate this equation to a multi-symplectic form (see, e.g. [10]):

(

J1 O

O O

)

zt +

(

J2 I

−I O

)

zx = ∇S (z),

where

J1 =









0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0









, J2 =









0 −α 0 0

α 0 0 0

0 0 0 α

0 0 −α 0









,O =









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, I =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

and

z = (q1, q2, q3, q4, p1, p2, p3, p4)⊺, S = −1

4
(q2

1 + q2
2)2 − 1

4
(q2

3 + q2
4)2 − 1

2
β(q2

1 + q2
2)(q2

3 + q2
4) − (p2

1 + p2
2 + p2

3 + p2
4).

The corresponding energy density E and flux F in the ECL (8) are:

E = S − α(q2 p1 − q1 p2 + q3 p4 − q4 p3) − 1

2

4
∑

i=1

(qi∂x pi − 2p2
i ),

F =
1

2
(α(q2∂tq1 − q1∂tq2 + q3∂tq4 − q4∂tq3) +

4
∑

i=1

(qi∂t pi − pi∂tqi)).

The corresponding MCL of this equation is:

∂tI + ∂xG = 0,

where
I = q2 p1 − q1 p2 + q4 p3 − q3 p4,

G = S −
1

2
(q2∂tq1 − q1∂tq2 + q4∂tq3 − q3∂tq4).
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Integrating the ECL and MCL with respect to the variable x under the PBC leads to the global energy and the momen-

tum conservation:

∫ x0+L

x0

E(x, t)dx =

∫ x0+L

x0

E(x, 0)dx,

∫ x0+L

x0

I(x, t)dx =

∫ x0+L

x0

I(x, 0)dx.

Besides, the global charges of u and v are constant under the PBC:

∫ x0+L

x0

|u(x, t)|2dx =

∫ x0+L

x0

|u(x, 0)|2dx,

∫ x0+L

x0

|v(x, t)|2dx =

∫ x0+L

x0

|v(x, 0)|2dx.

Applying our discrete procedure to the equation (39) gives the following scheme in vector form:















































































































































qτ1 = q0
1 + ∆t

∫ 1

0

Aτ,σ(−αDqσ1 − Dpσ2 − (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ2 )dσ,

qτ2 = q0
2 + ∆t

∫ 1

0

Aτ,σ(−αDqσ2 + Dpσ1 + (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ1 )dσ,

qτ3 = q0
3 + ∆t

∫ 1

0

Aτ,σ(αDqσ3 − Dpσ4 − (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ4 )dσ,

qτ4 = q0
4 + ∆t

∫ 1

0

Aτ,σ(αDqσ4 + Dpσ3 + (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ3 )dσ,

q1
1 = q0

1 + ∆t

∫ 1

0

(−αDqσ1 − Dpσ2 − (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ2 )dσ,

q1
2 = q0

2 + ∆t

∫ 1

0

(−αDqσ2 + Dpσ1,k + (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ1 )dσ,

q1
3 = q0

3 + ∆t

∫ 1

0

(αDqσ3 − Dpσ4 − (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ4 )dσ,

q1
4 = q0

4 + ∆t

∫ 1

0

(αDqσ4 + Dpσ3 + (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ3 )dσ,

δxqσi = Dqσi = 2pσi , i = 1, 2, 3, 4,

(40)

where qa
i = (qa

i,0, q
a
i,1, . . . , q

a
i,N−1)⊺, pa

i = (pa
i,0, pa

i,1, . . . , pa
i,N−1)⊺, a = 0, 1, τ for i = 1, 2, 3, 4, j = 1, 2, . . . ,N − 1. qτi, j, pτi, j

are polynomials in τ. The symbols “·2” and “·” indicate the entrywise square operation and the entrywise multiplication

operation, respectively.

It can be observed that pτi can be eliminated from (40). If the generating quadrature formula has s nodes, then Aτ,σ

is a polynomial of degree s in variable τ, so are qτi, j for i = 1, . . . , 4, j = 0, 1, . . . ,N−1. These polynomials are uniquely

determined by their values at s + 1 points. For convenience, we choose 0, 1
s
, 2

s
, . . . , 1. Then qτi, j can be expressed as

Lagrange interpolating polynomials based on these s+ 1 points. Fixing τ at 1
s
, 2

s
, . . . , s−1

s
, we get a system of algebraic

equations in qc
i, j, c = 0, 1

s
, 2

s
, . . . , 1. The polynomial integrals in this system can be calculated accurately. Solving the

algebraic system by an iteration method, we finally obtain the numerical solution q1
i, j .

For example, if we select the CRK method generated by a 2-point GL quadrature formula, then qσi , pσi are vectors

whose entries are polynomials of degree 2. Thus we have

qσi = q0
i l̃1(σ) + q

1
2

i l̃2(σ) + q1
i l̃3(σ),

where l̃1(σ), l̃2(σ), l̃3(σ) are Lagrange interpolating polynomials based on the nodes 0, 1
2
, 1. Let τ = 1

2
, the first four
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equations of (40) can be written in practical forms :

q
1
2

1 = q0
1 + ∆t

∫ 1

0

A 1
2
,σ(−αDqσ1 − Dpσ2 − (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ2 )dσ,

q
1
2

2 = q0
2 + ∆t

∫ 1

0

A 1
2
,σ(−αDqσ2 + Dpσ1 + (((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ1 )dσ,

q
1
2

3 = q0
3 + ∆t

∫ 1

0

A 1
2
,σ(αDqσ3 − Dpσ4 − (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ4 )dσ,

q
1
2

4 = q0
4 + ∆t

∫ 1

0

A 1
2
,σ(αDqσ4 + Dpσ3 + (β((qσ1 )·2 + (qσ2 )·2) + ((qσ3 )·2 + (qσ4 )·2)) · qσ3 )dσ.

(41)

After integrating the linear and nonlinear terms about σ, (41) becomes an undetermined system of equations in un-

known vectors q
1
2

1 , q
1
2

2 , q
1
2

3 , q
1
2

4 , q
1
1, q

1
2, q

1
3, q

1
4. By combining them with the 5th, 6th, 7th, 8th equations of (40), we obtain

an entirely determined algebraic system about them which can be easily solved by a fixed-point iteration in practical

computations. If the generating quadrature formula has only one node, for example, the implicit midpoint rule, then

qσi = (1 − σ)q0
i + σq1

i . In this particular case, the first four equations are not necessary to be taken into account.

According to Theorem 3.1, the scheme (40) preserves the discrete ECLs:

E1
j − E0

j

∆t
+

N−1
∑

k=0

D jkF̄ jk = 0, (42)

for j = 0, 1, . . . ,N − 1, where

Ea
j = S a

j − α(qa
2, j p

a
1, j − qa

1 pa
2, j + qa

3, j p
a
4, j − qa

4, j p
a
3, j) −

1

2

4
∑

i=1

(qa
i, j

N−1
∑

k=0

D jk pa
i,k − 2(pa

i, j)
2), a = 0, 1,

F̄ jk =
1

2

s
∑

i=1

bi(α(〈q2, j〉i〈δtq1,k〉i − 〈q1, j〉i〈δtq2,k〉i + 〈q3, j〉i〈δtq4,k〉i − 〈q4, j〉i〈δtq3,k〉i) +
4

∑

γ=1

(〈qγ, j〉i〈δt pγ,k〉i − 〈pγ, j〉i〈δtqγ,k〉i)

+ α(〈q2,k〉i〈δtq1, j〉i − 〈q1,k〉i〈δtq2, j〉i + 〈q3,k〉i〈δtq4, j〉i − 〈q4,k〉i〈δtq3, j〉i) +
4

∑

γ=1

(〈qγ,k〉i〈δt pγ, j〉i − 〈pγ,k〉i〈δtqγ, j〉i)).

5. Local energy-preserving schemes for 2D nonlinear Schrödinger equations

Another PDE which we pay attention to is the NLS with two spatial variables:

iψt + α(ψxx + ψyy) + V ′(|ψ|2, x, y)ψ = 0. (43)

The symbol ′ indicates the derivative of V with respect to the first variable. Let ψ = p + iq, p and q are real and

imaginary parts of ψ, respectively. Introducing v = ∂x p,w = ∂xq, a = ∂y p, b = ∂yq, we can formulate this equation to

the compact form (20), where

M =

















0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















, K =

















0 0 −α 0 0 0

0 0 0 −α 0 0

α 0 0 0 0 0

0 α 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















, L =

















0 0 0 0 −α 0

0 0 0 0 0 −α
0 0 0 0 0 0

0 0 0 0 0 0

α 0 0 0 0 0

0 α 0 0 0 0

















,

and

z = (p, q, v,w, a, b)⊺, S =
1

2
V(p2 + q2, x, y) +

α

2
(v2 + w2 + a2 + b2).

According to (21), the ECL of Equation (43) reads

∂tE + ∂xF + ∂yG = 0, (44)
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where

E =
1

2
V(p2 + q2, x, y) +

α

2
(pvx + qwx + pay + qby),

F =
α

2
(−pvt − qwt + vpt + wqt), G =

α

2
(−pat − qbt + apt + bqt).

(43) also has the local charge conservation law:

∂tC + ∂xP + ∂yQ = 0,

where

C =
1

2
(p2 + q2), P = α(−vq + wp),Q = α(−aq + bp).

If V is independent of the variables x, y, then (43) is a multi-symplectic PDE. According to (2), the MSCL is:

∂t(dp ∧ dq) + ∂x(−αdp ∧ dv − αdq ∧ dw) + ∂y(−αdp ∧ da − αdq ∧ db) = 0.

All of these conservation laws lead to corresponding global invariants under the PBC. The full discretized scheme

of (43) in vector form derived from our discrete procedure (22) is:











































































pτ = p0 + ∆t

∫ 1

0

Aτ,σ(−(Dx ⊗ IM)αwσ − (IN ⊗ Dy)αbσ − V
′
((pσ)·2 + (qσ)·2, x ⊗ eM, eN ⊗ y) · qσ)dσ,

qτ = q0 + ∆t

∫ 1

0

Aτ,σ((Dx ⊗ IM)αvσ + (IN ⊗ Dy)αaσ + V
′
((pσ)·2 + (qσ)·2, x ⊗ eM, eN ⊗ y) · pσ)dσ,

p1 = p0 + ∆t

∫ 1

0

(−(Dx ⊗ IM)αwσ − (IN ⊗ Dy)αbσ − V
′
((pσ)·2 + (qσ)·2, x ⊗ eM , eN ⊗ y) · qσ)dσ,

q1 = q0 + ∆t

∫ 1

0

(Dx ⊗ IM)αvσ + (IN ⊗ Dy)αaσ + V
′
((pσ)·2 + (qσ)·2, x ⊗ eM , eN ⊗ y) · pσ)dσ,

δx pσ = (Dx ⊗ IM)pσ = vσ, δxq
σ = (Dx ⊗ IM)qσ = wσ,

δy pσ = (IN ⊗ Dy)pσ = aσ, δyq
σ = (IN ⊗ Dy)qσ = bσ,

(45)

where the entries p jl, q jl of vectors p, q are arranged according to lexicographical order :

( j, l) ≺ (k, l), when j ≺ k, ( j, l) ≺ ( j,m), when l ≺ m,

x = (x0, x1, . . . , xN−1)⊺, y = (y0, y1, . . . , yM−1)⊺, IN , IM, eN , eM are Nth and Mth order identity matrices, N length and

M length identity vectors, respectively. If the potential V is a polynomial in the first variable, then the scheme (45) can

be implemented in a similar way to (40).

By Theorem 3.2, (45) preserves the discrete ECLs:

E1
jl − E0

jl

∆t
+

N−1
∑

k=0

(Dx) jkF̄ jk,l +

M−1
∑

m=0

(Dy)lmḠ j,lm = 0, (46)

for j = 0, 1, . . . ,N − 1, l = 0, 1, . . . , M − 1, where

Ec
jl =

1

2
V((pc

jl)
2 + (qc

jl)
2, x j, yl) +

α

2
(pc

jlδxv
c
jl + qc

jlδxw
c
jl + pc

jlδya
c
jl + qc

jlδyb
c
jl), c = 0, 1,

F̄ jk,l =
α

2

s
∑

i=1

bi(−〈p jl〉i〈δtvkl〉i − 〈q jl〉i〈δtwkl〉i + 〈v jl〉i〈δt pkl〉i + 〈w jl〉i〈δtqkl〉i

+
α

2

s
∑

i=1

bi(−〈pkl〉i〈δtv jl〉i − 〈qkl〉i〈δtw jl〉i + 〈vkl〉i〈δt p jl〉i + 〈wkl〉i〈δtq jl〉i),

Ḡ j,lm =
α

2

s
∑

i=1

bi(−〈p jl〉i〈δta jm〉i − 〈q jl〉i〈δtb jm〉i + 〈a jl〉i〈δt p jm〉i + 〈b jl〉i〈δtq jm〉i)

+
α

2

s
∑

i=1

bi(−〈p jm〉i〈δta jl〉i − 〈q jm〉i〈δtb jl〉i + 〈a jm〉i〈δt p jl〉i + 〈b jm〉i〈δtq jl〉i).



Y. W. Li and X. Wu 14

However, the expressions of Ec
jl, F̄ jk,l, Ḡ j,lm are lengthy and difficult to be calculated. We thus rewrite them as:

Ec
jl =

1

2
V((pc

jl)
2 + (qc

jl)
2, x j, yl) −

α

2
((vc

jl)
2 + (wc

jl)
2 + (ac

jl)
2 + (bc

jl)
2) + Ẽc

jl, c = 0, 1,

F̄ jk,l = α

s
∑

i=1

bi(〈v jl〉i〈δt pkl〉i + 〈w jl〉i〈δtqkl〉i + 〈vkl〉i〈δt p jl〉i + 〈wkl〉i〈δtq jl〉i) + F̃ jk,l,

Ḡ j,lm = α

s
∑

i=1

bi(〈a jl〉i〈δt p jm〉i + 〈b jl〉i〈δtq jm〉i + 〈a jm〉i〈δt p jl〉i + 〈b jm〉i〈δtq jl〉i) + G̃ j,lm,

(47)

where Ẽc
jl, F̃ jk,l G̃ j,lm are the corresponding residuals. Taking derivatives with respect to τ on both sides of

δx pτjl = vτjl = v0
jl + ∆t

∫ 1

0

Aτ,σδtv
σ
jldσ

and setting τ = c1, . . . , cs, we have

〈δxδt p jl〉i = 〈δtv jl〉i,

for i = 1, . . . , s. By using this law of commutation and following the standard proof procedure of Theorem 3.1, the

term involving v jl can be eliminated from Ẽc
jl, F̃ jk,l G̃ j,lm. The terms involving w jl, a jl, b jl can be dealt with in the

same way.

Therefore we arrive at
Ẽ1

jl − Ẽ0
jl

∆t
+

N−1
∑

k=0

(Dx) jkF̃ jk,l +

M−1
∑

m=0

(Dy)lmG̃ j,lm = 0. (48)

Subtracting (48) from (46), we obtain the new discree ECLs of (45)

E1
jl − E0

jl

∆t
+

N−1
∑

k=0

(Dx) jkF̄ jk,l +

M−1
∑

m=0

(Dy)lmḠ j,lm = 0, (49)

for j = 0, 1, . . . ,N − 1, l = 0, 1, . . . , M − 1, where

E jl =
1

2
V(p2

jl + q2
jl, x j, yl) −

α

2
(v2

jl + w2
jl + a2

jl + b2
jl),

F̄ jk,l = α

s
∑

i=1

bi(〈v jl〉i〈δt pkl〉i + 〈w jl〉i〈δtqkl〉i + 〈vkl〉i〈δt p jl〉i + 〈wkl〉i〈δtq jl〉i),

Ḡ j,lm = α

s
∑

i=1

bi(〈a jl〉i〈δt p jm〉i + 〈b jl〉i〈δtq jm〉i + 〈a jm〉i〈δt p jl〉i + 〈b jm〉i〈δtq jl〉i).

(49) can be thought of as a discrete version of

∂t(
1

2
V(p2 + q2, x, y)) + ∂x(vpt + wqt) + ∂y(apt + bqt) = 0,

which is a more common ECL equation (43) than (44).

(49) involve less discrete derivatives than (46), thus can be easily calculated.

6. Numerical experiments for coupled nonlinear Schrödingers equations

If we choose the two-point Gauss-Legendre quadrature formula:

b1 =
1

2
, b2 =

1

2
,

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
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for the CRK method, then

Aτ,σ = τ((4 − 3τ) − 6(1 − τ)σ).

This CRK method is of order four by (6). In this section, we use it for the temporal discretization while the spatial

direction is discretized by the pseudospectral method. The corresponding local energy-preserving method for the

CNLS is denoted by ET4.

Throughout the experiments in this section we always take the periodic boundary condition u(x0, t) = u(x0 +

L, t), v(x0, t) = v(x0 + L, t) and set the initial time t0 = 0. Besides the discrete global energy which has been mentioned

in (14), we define these discrete global quantities as follows:

1. The discrete global charges of u and v at time n∆t:



























CHn
U = ∆x

N−1
∑

j=0

((qn
1, j)

2 + (qn
2, j)

2),

CHn
V = ∆x

N−1
∑

j=0

((qn
3, j)

2 + (qn
4, j)

2).

2. The discrete global momentum at time n∆t:

In = ∆x

N−1
∑

j=0

(qn
2, j p

n
1, j − qn

1, j p
n
2, j + qn

4, j p
n
3, j − qn

3, j p
n
4, j).

The (relative) global energy error (GEEn), global momentum error (GIEn), global charge errors of u (GCEn
U) and

v (GCEn
V ) at time n∆t will be calculated by the following formulas :

GGEn =
En − E0

|E0|
,GIEn =

In − I0

|I0|
,

GCEn
U =

CHn
U −CH0

U

|CH0
U |

,GCEn
V =

CHn
V −CH0

V

|CH0
V |

,

respectively.

Experiment 6.1. We first consider to set the constants α, β = 0. Then the CNLS decompose into two independent

NLSs:










iut +
1

2
uxx + |u|2u = 0,

ivt +
1

2
vxx + |v|2v = 0.

(50)

Given the initial condition:






u(x, 0) = sech(x),

v(x, 0) = sech(x)exp(i
x√
10

),

the analytic expressions of u and v are :











u(x, t) = sech(x)exp(i
t

2
),

v(x, t) = sech(x − t√
10

)exp(i(
x√
10
+

9

20
t)).

(51)

In this experiment, we compute the difference between the numerical solution and the exact solution of u. Since u

decays exponentially away from the point (0, t), we can take the boundary condition u(−30, 0) = u(30, 0), v(−30, 0) =

v(30, 0) with little loss of accuracy on u. We also compare our local energy-preserving method ET4 with a classical

multi-symplectic scheme (MST4) which is obtained by concatenating the two-point Gauss-Legendre symplectic Runge–

Kutta method in time and the pseudospectral method in space. Note that ET4 and MST4 are of the same order. Let

N = 300,∆t = 0.4, 0.8 and set ε = 10−14 as the error tolerance for iteration solutions. The numerical results over the

time interval [0, 1200], which is about 100 multiples of the period of u, are plotted in Figs. 1,. . . ,6.
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Figure 1: Errors obtained by ET4, ∆t = 0.4.
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Figure 2: Errors obtained by MST4, ∆t=0.4.
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Figure 3: Errors obtained by ET4, ∆t=0.8.
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Figure 4: Errors obtained by MST4, ∆t=0.8.
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Figure 5: Maximum global errors of ET4 (left) and MST4 (right) . The blue and red curves are the errors of ET4 and MST4 respectively.

Figs. 1, 3 illustrate that ET4 conserves the discrete global energy exactly (regardless of round-off errors). Although

ET4 cannot preserve discrete global charges, its global charge errors show reasonable oscillation in magnitude 10−10

(∆t = 0.4) and 10−4 (∆t = 0.8), respectively. We attribute this behaviour to the conjugate-symplecticity of the CRK

method.

On the contrary, Figs. 2, 4 show that MST4 conserves global charges exactly (regardless of round-off errors) while

its global energy errors oscillates in magnitude 10−8 (∆t = 0.4) and 10−3 (∆t = 0.8). This is a character of symplectic

integrators.

According to Figs. 1,. . . ,4, MST4 preserves the discrete global momentum better than ET4 in this experiment.

It can be observed from (51) that the amplitudes of u and v are both 1. Fig. 5 shows that ET4 and MST4 both

have excellent long-term behaviours. The relative maximum global errors do not exceed 1.5% (∆t = 0.4) and 25%

(∆t = 0.8) over the time interval [0,1200] .

Here we point out that ET4 and ST4 have the same iteration cost with the same ∆t and ε. In the case ∆t = 0.4,

both of them need 19 iterations per step. This phenomenon also occurs in the following experiments.

Experiment 6.2. We now start to simulate the collision of double solitons with the initial condition:



























u(x, 0) =

2
∑

j=1

√

2a j

1 + β
sech(

√

2a j(x − x j))exp(i(γ j − α)(x − x j),

v(x, 0) =

2
∑

j=1

√

2a j

1 + β
sech(

√

2a j(x − x j))exp(i(γ j + α)(x − x j)).

This is an initial condition resulting in a collision of two separate single solitons. Here we choose x0 = 0, L = 100, α =
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Figure 6: Numerical shapes of u (left) and v (right), obtained by ET4.
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Figure 7: Errors obtained by ET4, ∆t = 0.2, N = 450.

0.5, β = 2
3
, a1 = 1, a2 = 0.8, γ1 = 1.5, γ2 = −1.5, x1 = 20, x2 = 80. Take the temporal stepsize ∆t = 0.2 and spatial

grid number N = 450. The numerical results are shown in Figs. 7, 8.

Obviously, ET4 successfully simulates the collision of two solitons and the effects of boundaries on bisolitons. It

preserves exactly the discrete energy and conserves the discrete charges and momentum very well.

Experiment 6.3. The last experiment on the CNLS is the simulation of the interaction among triple solitons with the

initial condition:


























u(x, 0) =

3
∑

j=1

√

2a j

1 + β
sech(

√

2a j(x − x j))exp(i(γ j − α)(x − x j),

v(x, 0) =

3
∑

j=1

√

2a j

1 + β
sech(

√

2a j(x − x j))exp(i(γ j + α)(x − x j)).

Here we also test another scheme associated with ET4. The only difference between it and ET4 is that we evaluate

the nonlinear integrals in ET4 not by symbol calculation, but by the high-order GL quadrature formula. In the case

of ET4, the polynomials are of degrees 6, so we can calculate them exactly by a 4-point GL formula. To illustrate the
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(a) The shape of bisoliton u (b) The shape of bisoliton v

Figure 8: Numerical shapes of u (left) and v (right), obtained from ET4.

alternative scheme, we evaluate the nonlinear integrals by a 3-point GL formula:

b1 =
5

18
, b2 =

4

9
, b3 =

5

18
,

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
.

For example, the first nonlinear integral of (40) is approximated by

∫ 1

0

(((qσ1 )·2 + (qσ2 )·2) + β((qσ3 )·2 + (qσ4 )·2)) · qσ2 dσ

≈
3

∑

i=1

bi(((q
ci

1 )·2 + (q
ci

2 )·2) + β((q
ci

3 )·2 + (q
ci

4 )·2)) · qci

2 .

For convenience, we denote the scheme by ET4GL6. Setting ∆t = 0.2,N = 360, x0 = 0, L = 80, α = 0.5, β = 2
3
, γ1 =

1.5, γ2 = 0.1, γ3 = −1.2, a1 = 0.75, a2 = 1, a3 = 0.5, x1 = 20, x2 = 40, x3 = 60, we compute it over the time

interval [0,100]. Numerical results are presented in Figs. 9, . . . , 12. The behaviours of ET4, ET4GL6 are very similar

in conserving momentum. Unsurprisingly, ET4 and ST4 preserve exactly the discrete global energy and charges,

respectively. However, ET4GL6 can conserve the discrete energy in magnitude 10−6 , while ST4 only preserves the

energy in magnitude 10−4. So if we give more weight on the discrete energy, ET4GL6 is a favourable scheme. In fact,

when the nonlinear integrals cannot be calculated exactly or have to be integrated in very complicated forms, ETGL6

is a reasonable alternative scheme.

7. Numerical experiments for 2D nonlinear Schrödinger equations

In this section, we apply the CRK method of second-order (i.e. average vector field method) to t-direction and the

pseudospectral method to x and y directions. This scheme is denoted by ET2. To illustrate our method, we will com-

pare it with another prominent traditional scheme which is obtained by the implicit midpoint temporal discretization

and the pseudospectral spatial discretization(ST2). If (43) is linear, our scheme ET2 is the same as ST2. Hence we

will not give numerical examples of 2D linear Schrödinger equations.

The boundary condition is always taken to be periodic:

u(xl, y, t) = u(xr, y, t), u(x, yl, t) = u(x, yr, t). (52)

And the grid numbers of x and y directions are denoted by N and M, respectively.
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(b) Global charge errors of u (upper) and v (lower)

Figure 9: Errors obtained by ET4, ∆t = 0.2, N = 360.
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(b) Global charge errors of u (upper) and v (lower)

Figure 10: Errors obtained by ET4GL6, ∆t = 0.2, N = 360.
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(b) Global charge errors of u (upper) and v (lower)

Figure 11: Errors obtained by ST4, ∆t = 0.2, N = 360.
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(a) (b)

Figure 12: Numerical solitons of u, v, obtained by ET4.

The discrete global charge CH will still be taken into account:

CHn = ∆x∆y

N−1
∑

j=0

M−1
∑

l=0

((pn
jl)

2 + (qn
jl)

2),

where

CHn ≈
∫ xr

xl

∫ yr

yl

(p(x, y, n∆t)2 + q(x, y, n∆t)2)dxdy.

Besides, the residuals in the ECL (49) are defined as:

Rn
jl =

En+1
jl − En

jl

∆t
+

N−1
∑

k=0

(Dx) jkF̄ jk,l +

M−1
∑

m=0

(Dy)lmḠ j,lm,

for j = 0, 1, . . . ,N − 1, l = 0, 1, . . . , M − 1.

In this section, we calculate Rn : the residual with the maximum absolute value at the time level n∆t.

Experiment 7.1. Let α = 1
2
,V(ξ, x, y) = V1(x, y)ξ + 1

2
βξ2, then (43) becomes the Gross–Pitaevskii (GP) equation:

iψt +
1

2
(ψxx + ψyy) + V1(x, y)ψ + β|ψ|2ψ = 0. (53)

This equation is an important mean-field model for the dynamics of a dilute gas Bose-Einstein condensate (BEC) (see,

e.g. [12]). The parameter β determines whether (53) is attractive (β > 0) or repulsive (β < 0).

Note that equation (53) is no longer multi-symplectic, the scheme ST2 is only symplectic in time. We first consider

the attractive case β = 1. The external potential V1 is:

V1(x, y) = −1

2
(x2 + y2) − 2exp(−(x2 + y2)).

The initial condition is given by:

ψ(x, y, 0) =
√

2exp(−1

2
(x2 + y2)).

This IVP has the exact solution (see, e.g. [1]):

ψ(x, y, t) =
√

2exp(−
1

2
(x2 + y2))exp(−it).
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Figure 13: Maximum global errors. The blue curves are the results of ET2, the red curves are the results of ST2.
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Figure 14: Global energy errors of ET2 (left) and ST2 (right), ∆t = 0.05.

For the same reason in the experiment 6.1, we set the spatial domain as xl = −6, xr = 6, yl = −6, yr = 6. The temporal

stepzie is chosen as ∆t = 0.15, 0.1, 0.05, respectively. Fixing the number of spatial grids N = M = 42, we compute the

numerical solution over the time interval [0, 45]. The numerical results of ET2 and ST2 are shown in Figs. 13, . . . , 16.

From the results, we can see that ET2 conserves both the global energy and the ECL exactly while its global

charge errors oscillates in magnitude 10−7. On the other hand, ST2 preserves the global charge accurately while its

global energy errors oscillates in magnitude 10−7 and its maximum residuals in the ECL oscillates in magnitude 10−6.

However, the maximum global errors of ST2 are twice as large as that of ET2 under the three different ∆t.

Experiment 7.2. Let V1(x, y) = − 1
2
(x2 + y2), β = −2. Given the initial condition

ψ(x, y, 0) =
1√
π

exp(−1

2
(x2 + y2)),

we now consider the repulsive GP equation in space [−8, 8] × [−8, 8] (see [22]). Let N = M = 36,∆t = 0.1, we
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Figure 15: Global charge errors of ET2 (left) and ST2 (right), ∆t = 0.05.
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Figure 16: Maximum residuals (R) of ET2 (left) and ST2 (right) in the ECL, ∆t = 0.05.
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Figure 17: Shapes of the solution (left) and the potential V1 (right).
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Figure 18: Errors obtained by ET2.
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Figure 19: The numerical shapes of ψ.

compute the numerical solution over the time interval [0, 200]. The results are plotted in Figs. 18, 19. Obviously, ET2

still show the eminent long-term behaviour dealing with high dimensional problems.

Experiment 7.3. We then consider the 2DNLS with quintic nonlinearity:

iψt + ψxx + ψyy + V1(x, y)ψ + |ψ|4ψ = 0, (54)

where

V1(x, y) = −A4(4A4(x2 + y2) − exp(−A4(x2 + y2)))

is an external field, and A is a constant. Its potential is:

V(ξ, x, y) = V1(x, y)ξ +
1

3
ξ3.

This equation admits the solution:

ψ(x, y, t) = Aexp(−1

4
A4(x2 + y2))exp(−iA4t).

Its period is 2π
A4 . Set A = 1.5, xl = −4, xr = 4, yl = −4, yr = 4,∆t = 0.01,N = M = 42. We integrate (54) over a very

long interval [0,124] which is about 100 multiples of the period. Since the behaviours of ET2 and ST2 in conserving

the global charge and the energy are very similar to those in Experiments 7.1 and 7.2, they are omitted here. The

global errors of ET2 and ST2 in l∞ and 1√
NM

l2 norms are shown in Fig. 20.

Clearly, in the quintic case, our method again wins over the classical symplectic scheme ST2.
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Figure 20: l∞ global errors (left) and 1√
NM

l2 global errors (right). The blue and red curves are obtained by ET2 and ST2 respectively.

8. Conclusions

“For Hamiltonian differential equations there is a long-standing dispute on the question whether in a numerical

simulation it is more important to preserve energy or symplecticity. Many people give more weight on symplec-

ticity, because it is known (by backward error analysis arguments) that symplectic integrators conserve a modified

Hamiltonian” (Quote from Hairer’s paper [17]).

However, due to the complexity of PDEs, the theory on multi-symplectic integrators is still far from being satis-

factory. There are only a few results on some simple box schemes (e.g. the Preissman and the Euler box scheme)

and on special PDEs (e.g. the nonlinear wave equation and the nonlinear Schrödinger equation) based on backward

error analysis (see, e.g. [5, 20, 28]). These theories show that a class of box schemes conserves the modified ECL and

MCL(see, e.g. [20]). Besides, it seems there is no robust theoretical results for the multi-symplectic (pseudo) spectral

scheme. Therefore, the local energy-preserving algorithms may play a much more important role in PDEs than their

counterparts in ODEs.

In this paper, we presented a general local energy-preserving method which can have arbitrarily high order for

solving multi-symplectic Hamiltonian PDEs. In our method, time is discretized by a continuous Runge–Kutta method

and space is discretized by a pseudospectral method or a Gauss-Legendre collocation method. It should be noted that

the local energy conservation law is admitted by more Hamiltonian PDEs than the multi-symplectic conservation law

is. Hence our local energy-preserving methods can be more widely applied to multi-symplectic Hamiltonian PDEs

than multi-symplectic methods in the literature. The numerical results accompanied in this paper are plausible and

promising. In the experiments on CNLSs, our methods and the associated methods behave similarly to the multi-

symplectic methods of the same order. In the experiments on 2DNLSs with external fields, our methods behave better

than symplectic methods in both cubic and quintic nonlinear problems.
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[21] B. Karasözen, G. Simsek, Energy preserving integration of bi-Hamiltonian partial differential equations, TWMS. J. App. Eng. Math. 3 (2013)

75-86.

[22] L. Kong, J. Hong, F. Fu and J. Chen, Symplectic structure-preserving integrators for the two-dimensional Gross-Pitaevskii equation for BEC,

J. Comput. Appl. Math. 235 (2011) 4937-4948.

[23] L. Kong, L. Wang, S. Jiang and Y. Duan, Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations, Sci.

China Math. 56 (2013) 915-932.

[24] S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Kelin-Gordon equation, SIAM J.

Numer. Anal. 32 (1995) 1839-1875.

[25] R. I. Maclachlan, G. R. W Quispel, and N. Robidoux, Geometric Integration Using Dicrete Gradients, Philos. Trans. R. Soc. A 357 (1999)

1021-1046.

[26] R. I. Maclachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM J. Sci. Comput. 36 (2014) A2199-

A2226.

[27] J. E. Marsden, G. P. Patrick, and S. Shkoller, Multi-symplectic, variational integrators, and nonlinear PDEs, Comm. Math. Phys. 4 (1999)

351-395.

[28] B. E. Moore, S. Reich, Backward error analysis for multi-symplectic integration methods, Numerische Mathematik 95 (2003) 625-652.

[29] S. Reich, Multi-Symplectic Runge–Kutta Collocation Methods for Hamiltonian Wave Equation, J. Comput. Phys. 157 (2000) 473-499.

[30] B. N. Ryland, B. I. Maclachlan, J. Franco, On multi-symplecticity of partitioned Runge-Kutta and splitting methods, Int. J. Comput. Math. 84

(2007) 847-869.

[31] Y. Wang, B. Wang, M. Z. Qin, Local structure-preserving algorithms for partial differential equations, Science in China Series A: Mathematics,

51 (2008) 2115-2136.

[32] H. Zhu, S. Song, and Y. Tang, Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm

equation, Comput. Phys. Comm. 182 (2011) 616-627.


	1 Introduction
	2 Multi-symplectic PDEs and energy-preserving continuous Runge–Kutta methods
	3 Construction of local energy-preserving algorithms for Hamiltonian PDEs
	3.1 Pseudospectral spatial discretization
	3.2 Gauss-Legendre collocation spatial discretization

	4 Local energy-preserving schemes for coupled nonlinear Schrödinger equations
	5 Local energy-preserving schemes for 2D nonlinear Schrödinger equations
	6 Numerical experiments for coupled nonlinear Schrödingers equations
	7 Numerical experiments for 2D nonlinear Schrödinger equations
	8 Conclusions

