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Abstract

In this study, we investigate the dispersive properties of smoothed particle
magnetohydrodynamics (SPM) in a strongly magnetized medium by using
linear analysis. In modern SPM, a correction term proportional to the di-
vergence of the magnetic fields is subtracted from the equation of motion
to avoid a numerical instability arising in a strongly magnetized medium.
From the linear analysis, it is found that SPM with the correction term suf-
fer from significant dispersive errors, especially for slow waves propagating
along magnetic fields. The phase velocity for all wave numbers is signifi-
cantly larger than the exact solution and has a peak at a finite wavenumber.
These excessively large dispersive errors occur because magnetic fields con-
tribute an unphysical repulsive force along magnetic fields. The dispersive
errors cannot be reduced, even with a larger smoothing length and smoother
kernel functions such as the Gaussian or quintic spline kernels. We perform
the linear analysis for this problem and find that the dispersive errors can
be removed completely while keeping SPM stable if the correction term is
reduced by half. These findings are confirmed by several simple numerical
experiments.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is an entirely Lagrangian parti-
cle method for simulating fluid flows [1, 2]. This Lagrangian nature offers ma-
jor advantages when SPH is applied to problems with a large, dynamic range
of spatial scales. Furthermore, SPH can easily incorporate other physics such
as self-gravity, radiative transfer, or chemistry. Thus, SPH is widely used in a
variety of astrophysical problems such as formation of large-scale structures,
galaxies, stars, and planets.

Recently, several authors have tried to extend SPH to magnetohydrody-
namics (MHD) because magnetic fields play an important role in a variety of
astrophysical environments. In this study, we call SPH for MHD “smoothed
particle magnetohydrodynamics” (SPM). Price and Monaghan [3] has de-
veloped an SPM method with artificial viscosity and resistivity [also see 4].
Iwasaki and Inutsuka [5] have applied Godunov’s method to SPM. We call
it “GSPM”. Recently, Iwasaki and Inutsuka [6] have modified their original
GSPM formulation, based on their derivation of the equation of motion in
GSPM from an action principle.

Unfortunately, conservative formulations of SPM are known to inevitably
suffer from numerical instability for low β plasma because of negative stress,
where β is the ratio of the gas pressure to the magnetic pressure. This insta-
bility has already been pointed out by Phillips and Monaghan [7] [also see
8]. Among several methods proposed for removing the numerical instability
[7, 8, 3], an approach by Børve, Omang, and Trulsen [9] is widely used in
modern SPM methods [e.g., 4, 5, 6, 10]. A broad discussion of stable SPM
schemes is found in a review by Price [11]. In the approach of Børve, Omang,
and Trulsen [9], a correction term, B(∇·B)/4π, is subtracted from the right-
hand side of the equation of motion. The correction term is essentially zero
if ∇ · B = 0 is satisfied. By a linear analysis of SPM, Børve, Omang, and
Trulsen [12] (hereafter BOT04) found that half of the correction term, or
B(∇ ·B)/8π, is large enough to remove the numerical instability. This was
confirmed by Barnes, Kawata, and Wu [13], who found that half the correc-
tion term provided the least error and minimized the violation of energy and
momentum conservation in a variety of test calculations. Børve, Omang, and
Trulsen [14] have proposed a sophisticated method, wherein the size of the
correction term varies among the SPH particles.

However, it is still unclear how the correction term affects the capability
of SPM to accurately model fluid flows. Guiding the optimal selection of the
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amount of correction in a rigorous manner is important. Balsara [15] have
investigated the linear stability of various SPH formulations, kernel functions,
and ratios of smoothing length to interparticle distance [also see 8, 16]. They
have suggested an optimal range of parameters from obtained dispersion
relations. Although these analyses are valid only for the linear regime and
a regular particle configuration, they provide us with a lot of knowledge for
achieving further improvements to SPM schemes. Pioneering work for SPM
has been done by BOT04, who investigate the dispersive properties of SPM.
They parameterize the size of the correction term with a free parameter ξ
(0 ≤ ξ ≤ 1), and use ξ × B∇ · B/4π as the correction term. They found
that as mentioned above, ξ = 1/2 is large enough to stabilize SPM for low
β plasma, and also suggested that smoother kernels, such as Gaussian or
the quintic spline kernels, reproduce correct phase velocities, while the cubic
spline causes large dispersion errors. However, their study is restricted to
several linear waves in the long-wavelength limit and to the case with ξ = 1/2
although many authors still adopt ξ = 1.

In this study, we investigate detailed dispersive properties of SPM for
low β plasma by changing ξ, the kernel functions, and the ratio of smoothing
length to interparticle distance. From the results, a suggestion of an optimal
choice of the size of the correction term is provided.

The paper is organized as follows: in Section 2, the basic equations of
SPM are reviewed. In Section 3, a dispersion relation is derived from the
basic equations of SPM and its asymptotic behavior in the long- and short-
wavelength limits is discussed. The results of the linear analysis are presented
in Section 4. To confirm the results of the linear analysis, several numerical
experiments are demonstrated in Section 5. Our results are discussed in
Section 6. Section 7 offers a summary.

2. SPM Equations

The basic equations of MHD are given by

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂vµ

∂t
=

1

ρ
∇νT µν − ξ

4πρ
Bµ∇νBν , (2)

and
d

dt

(

Bµ

ρ

)

=
Bν

ρ
∇νvµ, (3)
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where T µν is the stress tensor,

T µν = −
(

P +
B2

8π

)

δµν +
BµBν

4π
, (4)

and d/dt = ∂/∂t+v · ∇ is the Lagrangian time derivative. The second term
on the right-hand side of equation (2) is the correction term introduced to
remove the numerical instability (BOT04). The parameter ξ specifies the
size of the correction term. In this study, ξ is assumed to be constant for
all particles. For simplicity, instead of the energy equation, the isothermal
equation of state is assumed:

P = c2ρ, (5)

where c is the sound speed. In the adiabatic case, the dispersive properties
of SPM are expected to be qualitatively the same as those in the isothermal
case.

In SPH, the density of the a-th particle is evaluated by the following
equation:

ρa =
∑

b

mbW (xa − xb, h), (6)

where the subscripts denote the particle label, mb is the mass of the b-th
particle, W (x, h) is a kernel function, and h is the smoothing length. In the
linear analysis presented in this study, the smoothing length is assumed to
be constant. In the numerical experiments shown in Section 5, a variable
smoothing length is used.

There are several conservative formulations of SPM. Here, we show two
schemes: the standard SPM formulation, the GSPM formulation. The basic
equations of standard SPM [9, 3, 4] are given by

dvµa
dt

=
∑

b

mb

(

T µν
a

Ωaρ2a
∇ν

aWab(ha) +
T µν
b

Ωbρ
2
b

∇ν
aWab(hb)

)

− ξ
Bµ

a

4π

∑

b

mb

(

Bν
a

Ωaρ2a
∇ν

aWab(ha) +
Bν

b

Ωbρ2b
∇ν

aWab(ha)

)

+

(

dvµ

dt

)

diss

,(7)

and

d

dt

(

Bµ

ρ

)

a

=
Bν

a

Ωbρ2a

∑

b

mb (v
µ
a − vµb )∇ν

aWab(ha) +

[

d

dt

(

Bµ

ρ

)

a

]

diss

, (8)
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where Wab(ha) = W (xa − xb, ha), the artificial dissipation terms (viscosity
and resistivity) are denoted by the subscript of “diss”, and Ω denotes the
effect of the variation of the smoothing length. The detailed expression is
described in Price and Monaghan [3].

Iwasaki and Inutsuka [5, 6] implemented GSPM given by

dvµa
dt

=
∑

b

mb

(

(T µν
a )∗

Ωaρ2a
∇ν

aWab(ha) +
(T µν

b )
∗

Ωbρ2b
∇ν

aWab(hb)

)

− ξ
Bµ

a

4π

∑

b

mb

(

Bν
a

Ωaρ2a
∇ν

aWab(ha) +
Bν

b

Ωbρ2b
∇ν

aWab(ha)

)

, (9)

in which the quantities with the asterisks are the results of a Riemann solver.
The evolution equation of Bµ/ρ is the same as that of standard SPM, except
for the artificial resistivity term. In Iwasaki and Inutsuka [6], the resistivity
term is derived from the method of characteristics for Alfvén waves [17].
Note that equations (9) is a simplified version of a rigorous expression which
is found in Iwasaki and Inutsuka [5, 6].

Balsara [15] and Morris [8, 16] have shown that the choice of kernel func-
tions significantly influences on dispersive properties of SPH, and should be
determined by the requirements of accuracy and computational efficiency.
We consider several kernel functions to investigate how they affect the dis-
persive properties of SPM. The first is the Gaussian kernel, which has the
best interpolation accuracy. It is given by

WG(r, h) =

(

1√
πh

)d

e−(r/h)2 , (10)

where d is the number of dimensions. One disadvantage of the Gaussian
kernel is its infinite extent; in actual calculations, the contributions for r >
3.1h are ignored. Also, in the linear analysis, we use a truncated Gaussian
kernel at r = 3.1h that is denoted by WtG. Most works use the cubic spline
kernel [18, 19], which is given by

W4(r, h) =
Cd

hd







1− 3
2
s2 + 3

4
s3 for 0 ≤ s ≤ 1

(2− s)3 /4 for 1 < s ≤ 2
0 otherwise

, (11)

where s = r/h, and C1 = 2/3, C2 = 10/7π, and C3 = 1/π. This kernel
has a great computational advantage, as it has a compact support at r =
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2h. However, the interpolation is inaccurate and leads to relatively large
dispersion errors in sound waves [15]. We also consider the quintic spline
kernel,

W6(r, h) =
Cd

hd















−10s5 + 30s4 − 60s2 + 66 for 0 ≤ s ≤ 1
5s5 − 45s4 + 150s3 − 120s2 + 75s+ 51 for 1 < s ≤ 2
−s5 + 15s4 − 90s3 + 270s2 − 405s+ 243 for 2 < s ≤ 3
0 otherwise

,

(12)
where C1 = 1/120, C2 = 7/478π, and C3 = 1/120π. This kernel is smoother
and more accurate kernel than W4.

3. Linear Analysis

A two-dimensional (2D) rectangular lattice of particles with an interval of
∆x is considered as an unperturbed state. The position of the a-th particle
position is given by xa0 = (∆x)a, where a is the 2D integer vector, a =
(ax, ay) (ax, ay = 0, 1, 2, · · ·). The particle mass m0 and smoothing length h
are assumed to be constant. The following perturbations are considered:

xa = xa0 + δxa (13)

ρa = ρ0 + δρa (14)

va = δva (15)

Ba = B0 + δBa (16)

Pa = P0 + c2δρa, (17)

where the subscript “0” indicates physical variables in the unperturbed state.
For simplicity, the unperturbed magnetic field is assumed to be parallel to
the x-direction, and fluctuations in the z-direction that correspond to Alfvén
wave are not considered, although their propagation can be partly inves-
tigated by fast waves propagating along magnetic fields for low β plasma.
This means that we consider fast and slow modes that oscillate in the (x, y)-
plane. We assume that the perturbations have the following space and time
dependence:

δQa ∝ exp {i (k · xa0 − ωt)} , (18)

where δQa = (δxa, δρa, δva, δBa).
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Substituting equations (13)-(17) into the standard SPM equations (6),
(7), (8), and dxa/dt = va, we obtain a dispersion relation. The artificial
dissipation term is omitted in this analysis. We do not repeat the detailed
derivation of the dispersion relation that was already shown by BOT04. The
dispersion relation is given by

det
(

ω2δµν + Aµν
)

= 0 (19)

where “det” indicates determinant,

Aµν =
2T µη

0

ρ0
(Ψην − φηψν)− 1

ρ0

{

P0φ
µψν +

1

4π

(

B2
0δ

µν − Bµ
0B

ν
0

)

φζψζ

}

,

(20)
T µν
0 is the unperturbed stress tensor modified by the correction term,

T µν
0 = −

(

P0 +
B2

0

8π

)

δµν + (1− ξ)
Bµ

0B
ν
0

4π
, (21)

ψµ, φµ, and Ψµν are given by

ψµ =
∑

b

m0

ρ0

(

1− e−ik·(xa0−xb0)
) ∂Wab,0

∂xµa0
, (22)

φµ =
∑

b

m0

ρ0

(

1 + e−ik·(xa0−xb0)
) ∂Wab,0

∂xµa0
, (23)

and

Ψµν =
∑

b

m0

ρ0

(

1− e−ik·(xa0−xb0)
) ∂2Wab,0

∂xµa0∂x
ν
a0

. (24)

The first term on the right-hand side of equation (20) comes from the per-
turbation of (1/ρ2a + 1/ρ2b)∇νWab, and the second term comes from the per-
turbation of T µν in equation (7).

Note that the dispersion relation derived from the linearized GSPM equa-
tions is identical to equation (19) if the physical quantities with an asterisk
are evaluated at the arithmetic mean between the a- and b-th particles. Thus,
this linear analysis is valid both in standard SPM and GSPM.

Since equation (19) is a quadratic equation in terms of ω2, two modes are
obtained. In this study, the mode with larger (smaller) ω2 is referred to as
the fast (slow) mode. The numerical phase velocities ω/|k| of the fast and
slow modes are denoted by cf,num(k) and cs,num(k), respectively.
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3.1. Asymptotic behaviors

In this section, we investigate the asymptotic behavior of the dispersion
relation in the short- and long-wavelength limits.

3.1.1. Short-wavelength Limit

SPM without the correction term is unstable for low β plasma because
negative diagonal components appear in the stress tensor [8]. The develop-
ment of numerical instability begins with the growth of fluctuations whose
scales are comparable to ∆x. Thus, in this section, we investigate the asymp-
totic behavior in the short-wavelength limit and the size of ξ required to
stabilize SPM. Note that this already has been done by BOT04, who numer-
ically solve the dispersion relation. Here, we show that their conclusion is
reproduced in the following simple analytical manner.

In the discrete system, the largest wavenumber is k = π/∆x where the
unit wavelength is expressed by two particles. A compressible wave propa-
gating along B0 (k = (π/∆x, 0)) is considered. This corresponds to the slow
mode. In this case, we obtain φµ = ψµ = 0 from equations (22) and (23).
From equation (19), the dispersion relation becomes

ω2 = −Axx =
2P0

ρ0

(

1− 1− 2ξ

β

)

∑

b

m0

ρ0

(

1− (−1)ax−bx
) ∂2Wab,0

∂x2a0
, (25)

where β ≡ 8πP0/B
2
0 . The summation in equation (25) is positive in normal

situations [8]. Without the correction term (ξ = 0), one can see that SPM
becomes unstable, since ω2 < 0 if β < 1. To be stable, the following condition
should be satisfied:

ξ > ξmin =
1

2
(1− β) , (26)

where ξmin is the minimum value of ξ needed to ensure stability for a given
β. This linear dependence of ξmin on β is the same as that found numerically
in BOT04 (see their Fig. 7). In the strong magnetic field limit (β → 0),
ξ = 1/2 is large enough to stabilize SPM.

3.1.2. Long-wavelength Limit

In the long-wavelength limit (|k|∆x → 0), summations can be replaced
by integrals in equation (19) [20]. For instance, ψµ is approximated by

ψµ ∼
∫

(

1− e−ik·x
) ∂W (x, h)

∂xµ
d2x = −ikµŴ (k), (27)
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where integration by parts and W → 0 for x → ∞ are used, and Ŵ (k) is
the Fourier transform of W (x, h), given by

Ŵ (k, h) ≡
∫

e−ik·xW (x, h)d2x. (28)

In the similar way, one obtains

φµ ∼ ikµŴ and Ψµν ∼ kµkνŴ . (29)

Using equations (27) and (29), equation (20) becomes

Aµν ∼ 2

ρ0
T µη
0 kηkνŴ

(

1− Ŵ
)

− 1

ρ0

{

P0k
µkν +

1

4π

(

B2
0δ

µν −Bµ
0B

ν
0

)

k2
}

Ŵ 2.

(30)
If the Gaussian kernel is applied, its Fourier transform is also Gaussian,
Ŵ (k, h) = e−h2k2/4. Thus, Ŵ → 1 + O((hk)2) for |k|h→ 0. Using this fact,
the dispersion relation (equation (19)) becomes

ω2 ∼ k2







c2 +
B2

0

4πρ0
±

√

(

c2 +
B2

0

4πρ0

)2

− c2
(B0 · k)2
πρ0k2







. (31)

This dispersion relation holds for both fast and slow waves. Note that equa-
tion (31) does not contain ξ. Thus, waves in the long-wavelength limit are
not affected by the correction term. Ideally, the dispersion relation of SPM
satisfies the correct phase velocity as long as equations (27) and (29) are
valid.

Comparing equations (30) and (20), one can see that the correct phase
velocities come from the second terms on the right-hand sides. The first
term on the right-hand side of equation (30) becomes zero because Ŵ ∼ 1.
In reality, the numerical dispersion relation (19) is expected to deviate from
that in equation (31) because finite discretization errors are introduced in
equations (27) and (29). The first term on the right-hand side of equation
(20) causes larger dispersive errors than the second term. This is because Ψµν

contains the second derivative of the kernel function that has larger errors
(see equation (24)). In particular, the cubic spline kernel leads to large errors
in Ψµν because its second derivative is a broken line. Thus, dispersive errors
mainly come from the first term on the right-hand side of equation (20).
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4. Results

4.1. Phase Velocities in Long-wavelength Limit

In this section, the dispersion relation (19) is solved by considering a
sufficiently small wavenumber (|k| = 10−3π/∆x) and changing the angle θ
between k and B0 in order to investigate whether SPM correctly reproduces
the phase velocities shown in Section 3.1.2.

4.1.1. Fast Mode

Fig. 1 shows the numerical phase velocities of the fast mode as a function
of the angle θ for various values of β, h, and various kernel functions. The
value of ξ is assumed to be 1. The exact solutions are plotted by the gray
lines. For low β plasma, the fast wave at θ = 0 represents the incompressible
pseudo-Alfvén wave whose phase velocity is ca ≡ B0/

√
4πρ0. The phase

velocity increases with θ and gradually changes into a compressible mode.
At θ = π/2, the phase velocity reaches a maximum value of

√

c2 + c2a. In
the upper column of Fig. 1, for h = ∆x, all kernel functions reproduce the
exact solutions within an error of 1% although the Gaussian kernel provides
slightly worse results. For h = 1.2∆x, the results for the Gaussian kernel
are almost identical to the exact solution (see the lower column of Fig. 1).
Only the results obtained with W4 suffer from relatively large errors. The
results for ξ = 1/2 are not shown, because it is confirmed that the numerical
dispersion relations do not much depend on ξ.

It is found that SPM can reproduce the phase velocity of the fast mode
reasonably well regardless of ξ. This behavior can be qualitatively understood
from the one-dimensional dispersion relation for kx = 0 (θ = π/2) given by

ω2 =
(

c2 + 2c2a
)

(Ψyy − φyψy) +
(

c2 + c2a
)

φyψy. (32)

As mentioned in Section 3.1.2, the correct phase velocity
(

√

c2 + c2a

)

comes

from the second term on the right-hand side of equation (32) and the dis-
persion errors arise mainly from the first term. To obtain the correct phase
velocity, the first term on the right-hand side of equation (32) should be
negligible compared with the second term. We can see that the coefficient
of (Ψyy − φyψy) in equation (32) is comparable to that of φyψy. Thus, as
long as |(Ψyy−φyψy)/(φyψy)| ≪ 1 is satisfied, the numerical phase velocities
agree with the exact values within sufficiently small errors. For θ 6= π/2, a
term proportional to ξ appears in the first term on the right-hand side of
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equation (32). Also in this case, the effect of the first term can be neglected,
as the phase velocity of the fast mode is comparable to ca. That is why the
numerical phase velocities agree with the exact phase velocities reasonably
well and do not depend much on ξ for all θ.

4.1.2. Slow Mode

The slow mode exhibits completely different dispersion properties than
the fast mode. Fig. 2 shows the numerical phase velocities of the slow mode
as a function of the angle θ for various values of β and h, and various kernel
functions, with ξ = 1. At θ = 0, the slow mode corresponds to the sound wave
propagating in the direction parallel to B0. The phase velocity decreases with
θ and gradually becomes the incompressible mode. At θ = π/2, the phase
velocity becomes zero. First, we focus on the cases with h = ∆x shown in the
upper panels of Fig. 2. The results with W4 are significantly underestimated
for β = 0.1 and leads to a numerical instability at β = 0.01. Even for the
smoother kernels (WG, WtG, W6), the dispersion errors are significantly large
and becomes worse for smaller β. Although only W6 provides a better result
for β = 0.1, the stronger magnetic field (β = 0.01) makes the results worse.
From the lower left panel in Fig. 2, for β = 0.1, larger h (h = 1.2∆x)
improves the results with the smoother kernels while the result with W4 does
not improve. Also, in the case with larger h, for the stronger magnetic field
(β = 0.01), the dispersion errors become worse except for WG. In summary,
the dispersion errors of the slow mode are large and becomes significant as β
decreases. A larger smoothing length makes the errors lower with every kernel
except for the cubic spline, although large errors still remain for sufficiently
low β. Thus, larger smoothing length cannot be an ultimate solution.

Fig. 3 is the same as Fig. 2 but setting ξ = 1/2. All kernels can
provide the correct phase velocities for all cases although the results with W4

have relatively large errors. BOT04 have already investigated the dispersion
properties for ξ = 1/2, and their results are consistent with ours.

Figs. 2 and 3 reveal that SPM with ξ = 1 exhibits significantly large
dispersive errors that disappear if ξ = 1/2 is used. This behavior can be
qualitatively understood from the simple one-dimensional dispersion relation
for ky = 0 (θ = 0) given by

ω2 =
{

2c2 + c2a(2ξ − 1)
}

(Ψxx − φxψx) + c2φxψx. (33)

To obtain the correct phase velocity, c, the first term on the right-hand side
of equation (33) should be negligible when compared with the second term.
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Figure 1: Phase velocity of the fast mode versus the angle between k and B0 for (β, h) =
(0.1,∆x), (0.01,∆x), (0.1, 1.2∆x), and (0.01, 1.2∆x). The results with ξ = 1 and ξ = 1/2
are almost identical, and so only those with ξ = 1 are presented. The red, green, blue,
and orange lines correspond to the results using the Gaussian, truncated Gaussian, cubic
spline, and quintic spline kernels. In each panel, the exact solutions are shown by the gray
line.
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Figure 2: Phase velocity of the slow mode versus the angle between k and B0 for
(β, h) = (0.1,∆x), (0.01,∆x), (0.1, 1.2∆x), and (0.01, 1.2∆x). The red, green, blue, and
orange lines correspond to the results using the Gaussian, truncated Gaussian, cubic spline,
and quintic spline kernels. In each panel, the exact solutions are shown by the gray line.
All results are taken at ξ = 1.
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Figure 4: Color maps of the phase velocities of the fast mode in the (kx∆x/π, ky∆x/π)
plane for (a)ξ = 1 and (b)ξ = 1/2. The Gaussian kernel is considered. The parameters β =
0.1 and h = 1.2∆x are used. In each panel, the color shows the numerical phase velocity
normalized by the exact phase velocity depending on θ. The gray region corresponds to
the unstable region.

However, in contrast to the fast mode case, the coefficient of (Ψxx − φxψx)
in equation (33) is much larger than that of φxψx for low β (ca ≫ c). Thus,
the first term can be important even if |(Ψxx − φxψx)/(φxψx)| is sufficiently
small. Note that the contribution of the magnetic field disappears only at
ξ = 1/2 in the first term of equation (33), and the dispersion relation is
reduced to that without a magnetic field. That is why the errors are mostly
eliminated for ξ = 1/2, as shown in Fig. 3.

These findings in the long-wavelength limit suggest that the best choice
for ξ is 1/2, as SPM with ξ = 1 suffers from significant errors.

4.2. Dispersion Relation

In this section, the overall dispersive properties of SPM are investigated.
Figs. 4a and 4b show color maps of the numerical phase velocities of the
fast mode in the (kx∆x/π, ky∆x/π) plane for ξ = 1 and 1/2, respectively.
The smoothing length is assumed to be h = 1.2∆x, and the plasma β value
is fixed to be β = 0.1. Here, we focus on the results with the Gaussian
kernel. It is confirmed that the qualitative properties do not depend on the
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Figure 5: Color maps of the phase velocities of the slow mode in the (kx∆x/π, ky∆x/π)
plane for (a)ξ = 1 and (b)ξ = 1/2. The Gaussian kernel is considered. The parameters β =
0.1 and h = 1.2∆x are used. In each panel, the color shows the numerical phase velocity
normalized by the exact phase velocity depending on θ. The gray region corresponds to
the unstable region.

kernel functions. In Fig. 4, the numerical phase velocities are divided by
the corresponding exact solutions depending on θ. In both panels in Fig. 4,
cf,num/cf(θ) has peaks at the origin and monotonically decreases with |k| at
all θ, where cf is the exact phase velocity of the fast mode. The difference
between the results with ξ = 1 and 1/2 is found only in the region where
|k|∆x/π > 0.5 and θ ∼ 0. For ξ = 1/2, cf,num/cf declines more rapidly than
it does for ξ = 1. This behavior will be explained later. Thus, the dispersion
relation of the fast mode does not depend much on the value of ξ. This is
consistent with the findings in Section 4.1.1.

Next, the dispersion relations of the slow mode are investigated. Fig. 5
is the same as Fig. 4 but for the slow mode. First, the result with ξ = 1,
as shown in Fig. 5a, is investigated. Fig. 5a shows that cs,num/c exhibits
anomalous features, although cs,num can reproduce the correct phase velocities
in the long-wavelength limits for the Gaussian kernel (see the lower left panel
in Fig. 2). cs,num/cs increases from the origin with |k| especially in the
direction parallel to B0 (θ ∼ 0). Around |k|∆x/π ∼ 0.4, cs,num/cs reaches
a maximum whose value is ∼ 2.5 times larger than the exact solution. For
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larger |k| (|k|∆x/π > 0.4), cs,num decreases with |k|.
These anomalous features of the dispersion relation for ξ = 1 completely

disappear at ξ = 1/2, as shown in Fig. 5b where cs,num/cs monotonically
decreases with |k| from the center.

Fig. 5 reveals that the phase velocities around θ = 0 strongly depend
on ξ. To see this more clearly, the phase velocities at θ = 0 and θ = 0.05
are plotted in Fig. 6 as a function of |k|. Fig. 6a shows the results with
ξ = 1. First, we focus on the case where θ = 0, shown by the solid lines.
As mentioned above, the numerical phase velocities agree with the exact
values for both the fast and slow modes. From k = 0, cf,num decreases with
k while cs,num increases. At k∆x/π ∼ 0.4, the two branches have the same
phase velocity. Beyond this point, it can be clearly seen that the fast mode
branch smoothly connects with the slow mode branch. This happens simply
because larger (smaller) ω2 is referred to as the fast (slow) mode in this
study, regardless of its eigenfunction. The “real” fast (slow) mode should
be an incompressible (compressible) mode at θ = 0. By investigating the
corresponding eigenfunctions, it is confirmed that the “real” fast and slow
modes intersect at k∆x/π ∼ 0.4. This means that the slow mode changes
into an incompressible mode and the fast mode changes into a compressible
mode beyond the intersection point. The dashed line in Fig. 6 indicates the
results with θ = 0.05. We can see the mode exchange between the fast and
slow branches around k∆x/π ∼ 0.4. From the eigenfunctions, it is confirmed
that the fast (slow) branch is changed into a compressible (incompressible)
mode by the mode exchange. Fig. 6a indicates that the phase velocity of
the compressible mode (the “real” slow mode) is supersonic (> cs) for all
wavenumbers.

Fig. 7 shows the β-dependence of the maximum phase velocity of the
compressible mode for ξ = 1 and θ = 0. As shown in Fig. 6a, the “real” slow
mode has an off-center peak. From Fig. 7, we can see that the maximum
phase velocity increases with decreasing β. The maximum phase velocity for
low β is well fitted by ca/2 shown by the dashed line Fig. 7. This dependence
clearly indicates that the enhancement of the phase speed of the compressible
wave comes from the magnetic fields.

Fig. 6b shows the results for ξ = 1/2. The phase velocity of the slow
mode monotonically decreases with k. Also for ξ = 1/2, the mode exchange
occurs at larger k. From Figs.6a and 6b, the extended feature around θ ∼ 0
in cf,num in Fig. 4a corresponds to a compressible mode with a large phase
velocity (> cs) created by mode exchange.
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5. Numerical Experiments

Fig. 6 reveals that the dispersion relation is abnormal if ξ = 1 is used.
In Section 4.2, it is found that the compressible waves at short-wavelength
propagate with supersonic velocities. In this section, to test this dispersive
property, three simple test calculations are demonstrated.

5.1. Propagation of an Isolated Wave

Fist, test of the propagation of an isolated wave is performed. This is
a severe test for the propagation of linear waves because an isolated wave
is composed of many linear waves with different wavelengths. Thus, if the
sound speed numerically has a k-dependence, the shape of an isolated wave is
expected to change during its propagation. In other words, the deformation
of an isolated wave clearly shows the dispersion errors.

In the unperturbed state, the particles are distributed in a rectangular
lattice in the domain of [−2, 2] × [−1, 1]. The density and pressure are as-
sumed to be 1. A uniform magnetic field is introduced in the x-direction,
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and its strength is set such that β is 0.1. A velocity perturbation given by
δv = 0.01 exp(−(x/3h)2) is added. The two isolated waves propagate out-
ward from the origin. As the sound wave does not have dispersion, the two
isolated waves should keep their shape with the sound speed (c = 1) as they
propagate. Cha and Whitworth [21] did the same test calculation without
magnetic fields.

Fig. 8a shows a snapshot of the velocity perturbation at t = 0.6 for ξ = 1.
Only the isolated wave propagating rightward is plotted. The gray lines
indicate the exact solution. The colors indicate the difference of the kernel
functions. For ξ = 1, with all kernel functions, the isolated waves break
into smaller waves that propagates at supersonic velocities. This dispersive
property is consistent with the results of linear analysis. The results with
W6 are almost identical to that with WtG. The isolated wave with W4 shows
a larger speed, as expected in Fig. 5. On the other hand, for ξ = 1/2, there
is no destruction of the isolated wave, and the results agree with the exact
solution quite well, although the result with W4 shows a slightly larger phase
velocity. This is explained by the linear analysis (see the lower left panel of
Fig. 3). These findings suggest that the optimal choice for ξ is 1/2. Otherwise
SPM provides completely incorrect results for the wave propagation.

5.2. Colliding Flow Test

The linear analysis is valid only for the linear waves. In this test, we con-
sider a colliding flow test that involves shock waves. We investigate whether
the dispersive errors affect the shock structures or not. The computational
domain is −1 < x < 1, −0.0625 < y < 0.0625, and the periodic bound-
ary condition is imposed in the y-direction. Initially, the density is uni-
form, and the gas moves toward x = 0 from both directions with a velocity
±3.75. The corresponding Mach number is 4. The initial magnetic field is

B =
(

√

8π/β, 0
)

. As the magnetic field is parallel to the x-direction, it

should not affect the gas dynamics. The truncated Gaussian kernel is used.
We consider two cases: β = 0.1 and 0.01. In the exact solution, two shock
waves propagates outward from x = 0. In this test, we investigate how the
strong parallel magnetic field numerically affects the gas motion. The initial
particle distribution is set to be a random distribution that is relaxed until
the density dispersion is sufficiently small. In this test, a Riemann solver is
used to capture shock waves. The hyperbolic divergence cleaning method
[22, 6] is also used.
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Fig. 9a shows the results with ξ = 1 and ξ = 1/2 for β = 0.1. The black
line indicates the exact solution. Both cases agree with the exact solution
quite well. This is because the shock jump condition is determined only
by mass and momentum conservation laws, regardless of their dispersive
properties. For the stronger magnetic field case (β = 0.01), the effect of
the dispersive errors is shown in Fig. 9b. For ξ = 1/2, the density of the
shocked gas can reproduce the exact solution reasonably well within an error
of 2%. This small error occurs due to the perpendicular magnetic field By

numerically generated at the shock front. It works as an additional pressure,
leading to the smaller density jump. For ξ = 1, the density profile is quite
different from the exact solution. The shock fronts broaden and small waves
propagate toward the upstream with a supersonic velocity larger than the
converging velocity 3.75. This can be understand by Fig. 7. For β = 0.01,
the maximum phase velocity of the compressible wave is ∼ ca/2 ∼ 7, which
is larger than the converging velocity. Thus, waves can propagate toward
upstream against the converging flow.

From this converging flow test, it is found that given β, there is a mini-
mum shock speed below which waves with short wavelengths propagate up-
stream and disturb the preshock gas. The minimum shock speed corresponds
to the maximum phase velocity of the compressible wave, or ca/2 derived from
the linear analysis (see Fig. 7). In other words, if the Alfvén Mach number
is smaller than 0.5, the dispersive errors are serious.

5.3. Hydrostatic Equilibrium Under An External Gravity

The dispersion errors originate from the fact that a parallel magnetic field
numerically works as an additional repulsive force. This indicates that the er-
rors can be important not only for waves but also for hydrostatic structures.
Thus, in this test, we investigate whether SPM reproduces a hydrostatic
structure under an external gravity, gx = −2 tanh(x). As the initial condi-
tion, we consider a uniform static gas with a uniform magnetic field in the
x-direction. The amplitude of the magnetic field is

√

8π/β. The calculation
domain is −2 < x < 2 and −1/4 < y < 1/4. The truncated Gaussian kernel
is used. A periodic boundary condition is imposed in the y-direction, and the
wall boundary condition is imposed in the x-direction. The initial particle
configuration is set to be a settled random distribution. Because of the exter-
nal gravity, the plasma accumulates toward the midplane (x = 0). Finally,
the density profile is expected to relax to the hydrostatic equilibrium profile,
ρeq(x, y) = 1/ cosh(x)2. To avoid an undesirable oscillation in the relaxation
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Figure 9: Density profiles at t = 0.2 for (a)β = 0.1 and (b)β = 0.01. Each point
corresponds to an SPH particle. In each panel, the red and blue lines corresponds to the
results with ξ = 1 and ξ = 1/2, respectively. The green lines indicate the exact solution.

phase, we add a small drag force, −0.005v/∆t, to the equation of motion.
If the maximum velocity becomes smaller than 0.001, the calculations are
terminated.

The upper panel of Fig. 10a shows the obtained density profiles for
β = 0.1. The lower panel of Fig. 10a indicates the fractional residual,
ρ(x)/ρeq(x)− 1. The result with ξ = 1/2 agrees with the hydrostatic profile
within sufficiently small error. The small deviation around x = ±2 comes
from the boundary condition. Also for ξ = 1, SPM reproduces the hydro-
static profile reasonably well, although the density in the central region is
underestimated and the low density tails are overestimated. However, this
tendency becomes prominent for β = 0.01, as shown in Fig. 10b. The density
profile with ξ = 1 exhibits a more extended profile than ρeq(y). On the other
hand, even for β = 0.01, SPM with ξ = 1/2 can produce the correct profile.
From the test, it is found that the hydrostatic profiles along the magnetic
fields are broadened by the artificial repulsive force if ξ = 1 is used.
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6. Discussion

6.1. Stability Against Particle Disorder

The test calculations demonstrated in Section 5 show that SPM with
ξ = 1/2 removes dispersion errors. However, in a realistic situation where a
blast wave propagates in a strongly magnetized medium, Tricco and Price [10]
(hereafter TP12) found that SPM with ξ < 1 produces numerical fluctuations
behind the slow shocks and at the contact discontinuity. They found that a
value of ξ = 1 leads to stable results. This is because the repulsive force is
weaker for SPM with smaller ξ , leading to the particle disorder.

To investigate the stability against the particle disorder in SPM with
ξ = 1/2, we perform the same blast wave test as in TP12. The total particle
number is 512 × 512. Fig. 11a and 11b show the density maps at t = 0.03
for ξ = 1 and ξ = 1/2, respectively. The truncated Gaussian kernel is used.
One can see that the result with ξ = 1/2 is quite similar to that with ξ = 1.
As shown in Section 5.2, SPM can treat shock waves even for ξ = 1 as long
as the Alfvén Mach number is larger than 0.5. Thus, it is difficult to identify
the dispersion errors in this test.

Note that the significant particle disorder found by TP12 does not appear
in Fig. 11b. Although this discrepancy may come from the difference of
treatment of the numerical dissipations between GSPM and their scheme,
the exact reason is still uncertain. However, also in the GSPM, the result
with ξ = 1 is smoother than that with ξ = 1/2. Thus, it is possible that
GSPM with ξ = 1/2 suffers from the serious particle disorder in more extreme
situations. The best choice of ξ depends on situations from the point of view
of accuracy and stability. As shown in the linear analysis, the dispersive
errors are serious in slow waves propagating along magnetic fields. Thus,
for example, to simulate a sub-Alfvénic turbulence in low β plasma, a value
of ξ = 1/2 should be adopted. On the other hand, in dynamical situations
where strong shock waves are important such as the blast wave test, the
dispersive errors are not serious if the Alfvén Mach number is larger than 0.5
(see Section 5.2). In these cases, a value of ξ = 1 is acceptable.

6.2. Comparison with Other SPM Formulation

Besides the approach by Børve, Omang, and Trulsen [9], Morris [16] pro-
posed the following formulation;

dvµa
dt

= −
∑

b

mb

(

Pa +
1
8π
B2

a

Ωaρ2a
∇ν

aWab(ha) +
Pb +

1
8π
B2

b

Ωbρ
2
b

∇ν
aWab(hb)

)
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Figure 11: Density maps of the blast wave test at t = 0.03 for (a)ξ = 1 and (b)ξ = 1/2.
The truncated Gaussian kernel is used. A value of ξ = 1/2 is used.

+
1

4π

∑

b

mb

(

Bµ
bB

ν
b − Bµ

aB
ν
a

ρaρb

) ∇ν
aWab(ha) +∇ν

aWab(hb)

2
. (34)

In his formulation, the conservative form is used in the isotropic part of
the stress tensor while the non-conservative form is used in the remaining
part. Thanks to the non-conservative term, his formulation is free from the
numerical instability. In this section, we compare the dispersion relations
between the Morris formulation (SPMMorris) and the conservative form with
the correction term (SPMcorr). Linearizing equation (34), one obtains the
following dispersion relation;

det
(

ω2δµν + Aµν
)

= 0, (35)

where

Aµν =
2

ρ0

(

P0 +
B2

0

8π

)

(φµψν −Ψµν)− φµ

ρ0

[

P0ψ
ν +

1

4π

(

B2
0ψ

ν − Bη
0ψ

ηBν
0

)

]

+
Bη

0ψ
η

4π

(

Bζ
0ψ

ζδµν −Bµ
0ψ

ν
)

. (36)
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Fig. 12 shows the color map of the numerical phase velocities of the slow
mode using SPMMorris in the (kx∆x/π, ky∆x/π) plane. The smoothing length
is assumed to be h = 1.2∆x, and the plasma β value is fixed to be β =
0.1. The Gaussian kernel is considered. One can see that the behavior of
cs,num is quite similar to that in SPMcorr with ξ = 1 (see Fig. 5a). The
dispersion relations have an off-center peak of cs,num around θ ∼ 0. Thus, the
SPM formulation by Morris [16] also suffers from the dispersive errors. This
behavior can be qualitatively understood from equation (36). The first term
on the right-hand side of equation (36) that leads to most of the dispersive
errors becomes large compared with other terms for low β plasma. Note that
in SPMcorr the corresponding term proportional to (φµψν −Ψµν) is negligible
if ξ = 1/2 is used.

7. Summary

In this study, we have investigated the dispersive properties of SPM with
a correction term introduced to remove numerical instability in a strongly
magnetized medium [9]. The size of the correction term is parametrized by
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ξ (see equation (2)). The findings in this study are summarized as follows:

• As numerically found by Børve, Omang, and Trulsen [12], the minimum
value of ξ for removing the numerical instability is analytically derived
as a function of the plasma β value in Section 3.1.1.

• For the fast modes, it is found that SPM can reproduce correct phase
velocities regardless of ξ. The dispersion properties are similar to those
without magnetic fields.

• The phase velocities of the slow modes is shown to significantly de-
pend on ξ. For ξ = 1, which is used in most schemes, it is found that
SPM suffers from significant dispersion errors with all kernel functions.
The dispersion errors become worse for a lower value of β. In the
long-wavelength limit (λ/2π = 103∆x/π), the numerical phase veloci-
ties are largely different from the exact values especially for the cubic
spline kernel. A larger smoothing length and a smoother kernel func-
tions are not ultimate solution if β is sufficiently small (see Fig. 2).
The dispersion relations have an off-center peak of the phase velocities
around |k|∆x/π ∼ 0.4 and θ ∼ 0, where θ is the angle between k and
B0. Furthermore, the phase velocities are supersonic for all wavenum-
bers above the Nyquist wavenumber π/∆x (see Fig. 5). The reason for
this anomalous behavior is that a parallel magnetic field numerically
works as an additional repulsive force and the phase velocities of the
slow wave become supersonic. This fact can be understood by examin-
ing the dispersion relation with respect to the slow wave propagating
along a magnetic field.

On the other hand, for ξ = 1/2, the dispersion errors found for ξ = 1
completely disappear. This can be understood analytically from the
dispersion relation.

• To confirm the findings of the linear analysis, several simple numerical
experiments are demonstrated. For the tests of linear isolated waves
and hydrostatic equilibrium, SPM with ξ = 1 leads to unphysical re-
sults while the exact solutions can be reproduced for ξ = 1/2. On the
other hand, SPM with ξ = 1 can treat the parallel shock waves if Alfvén
Mach number is larger than 0.5. This is because the shock condition is
determined only by the conservation properties and slow waves cannot
propagate toward upstream. If the shock speeds are smaller, waves
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propagate upstream against the flow and cause disturbances. These
results are consistent with the linear analysis.

This study clearly shows that corrected SPM with ξ = 1 over-stabilizes
the numerical instability and significantly modifies the dispersion properties
of the slow modes. To eliminate such dispersion errors, we suggests that
ξ = 1/2 is the best choice. These abnormal dispersion properties have not
been found in the previous works, (e.g., the blast wave tests used to test the
capability of schemes for low β) because, as shown in Section 5.2, SPM can
treat shock waves even for ξ = 1 as long as the shock speed is large. Thus, it
is difficult to identify the dispersion errors found in this study from the blast
wave test. The errors can be serious; for instance, in sub-Alfvénic turbulence
for low β plasma, the phase velocity of the waves propagating along magnetic
fields may be significantly overestimated.

The linear analysis and the numerical experiments suggest that the best
choice of ξ is 1/2 from the point of view of accuracy. However, as discussed in
Section 6.1, SPM with ξ = 1/2 tends to less stable against particle disorder
because of the small repulsive force. In dynamical environments where strong
shock waves are important, a value of ξ = 1 is acceptable if the Alfvén Mach
number is larger than 0.5.
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