
HAL Id: hal-02874687
https://hal.science/hal-02874687

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A high-order time formulation of the RBC schemes for
unsteady compressible Euler equations

Alain Lerat

To cite this version:
Alain Lerat. A high-order time formulation of the RBC schemes for unsteady compressible Euler
equations. Journal of Computational Physics, 2015, 303, pp.251-268. �10.1016/j.jcp.2015.09.045�.
�hal-02874687�

https://hal.science/hal-02874687
https://hal.archives-ouvertes.fr


A high-order time formulation of the RBC schemes
for unsteady compressible Euler equations

A. Lerat

DynFluid Lab., Arts et Metiers ParisTech, 151 Boulevard de l’Hopital, 75013 Paris, France

Abstract

Residual-Based Compact (RBC) schemes can approximate the compressible Euler equations with a high
space-accuracy on a very compact stencil. For instance on a 2-D Cartesian mesh, the 5th and 7th-order
accuracy can be reached on a 5x5-point stencil. The time integration of the RBC schemes uses a fully
implicit method of 2nd-order accuracy (Gear method) usually solved by a dual-time approach. This method
is efficient for computing compressible flows in slow unsteady regimes, but for quick unsteady flows, it may
be costly and not accurate enough. A new time-formulation is proposed in the present paper. Unusually,
in a RBC scheme the time derivative occurs, through linear discrete operators due to compactness, not
only in the main residual but also in the other two residuals (in 2-D) involved in the numerical dissipation.
To extract the time derivative, a space-factorization method which preserves the high accuracy in space is
developed for reducing the algebra to the direct solution of simple linear systems on the mesh lines. Then a
time-integration of high accuracy is selected for the RBC schemes by comparing the efficiency of four classes
of explicit methods. The new time-formulation is validated for the diagonal advection of a Gaussian shape,
the rotation of a hump, the advection of a vortex for a long time and the interaction of a vortex with a
shock.
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1. Introduction

Most numerical schemes for compressible flow simulations on a structured mesh are based on a directional
approach in which space derivatives are approximated independently direction by direction. In contrast,
residual-based compact (RBC) schemes are constructed from the complete residual r containing all the
terms in the governing equations including the time derivative. In such a scheme, the numerical dissipation
as well as the consistent part is expressed only in terms of approximations of r. More precisely, the numerical
dissipation involves space first-derivatives of r. Several approximations of r are used in a RBC scheme. All
are compact and deduced from Pade fractions of discrete operators after eliminating the denominators. On
a Cartesian mesh, RBC schemes can approximate a hyperbolic system of conservation laws in d-dimension
with a 5th or 7th-order accuracy on a 5d-point stencil. For these odd accuracy-orders, the leading error (of
order 5 or 7) is dissipative and dominates the dispersive error (of order 6 or 8), which is a favorable feature
for robustness. Description and analysis of the RBC schemes can be found in [1–6]. A related approach
developed on unstructured meshes concerns the residual-distribution schemes of Abgrall, Deconinck and
Ricchiuto [7–10] for which the residuals are distributed to the nodes of triangles or tetrahedrons.

The RBC schemes have been developed so far with a time-formulation based on the Gear method. The
resulting method is efficient for computing compressible flows in steady and slow unsteady regimes. However,
it requires an iterative method to advance the solution (dual-time approach or Newton sub-iterations) and
its time accuracy is limited to order 2, which is not sufficient for some applications. This is the reason why
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we investigate a new time-formulation of high accuracy. A specific issue is that a RBC scheme contains
the time derivative ∂w/∂t at several places through linear discrete operators due to compactness. In d-
dimension, ∂w/∂t occurs d times in the numerical dissipation and once in the consistent part of the scheme.
We first assess a simplification of estimating the time derivatives in dissipation from a previous step. Then
we investigate a rigorous extraction of the time derivative. Using a method of space factorization with
correction, we extract ∂w/∂t by solving simple linear algebraic systems on the mesh lines, while preserving
the high order in space. Finally we discuss the choice of a high-order time-integration. We compare the
efficiency of four classes of time approximation: the Adams-Bashforth methods, the extrapolated Backward
Differential Formulas, explicit combinations of Adams-Bashforth and Adams-Moulton methods (ABM) and
the Runge-Kutta methods. The computing time depends on two crucial factors: i) the number of calculations
of flux balance and extraction of ∂w/∂t and ii) the magnitude of the maximal time-step allowed for stability.
For a long time-integration at fourth order of a two-dimensional Euler problem, the ABM method is found
to be the least expensive in CPU-time.
The paper is organized as follows. Section 2 reminds the concept of residual-based scheme and the compact
space-approximation for solving a hyperbolic system of conservation laws. RBC schemes of order 3, 5 and
7 are presented. Section 3 describes the new time-formulation of the RBC schemes. Section 4 validates the
new formulation on several test-problems: the diagonal advection of a Gaussian shape, the rotation of a
hump, the advection of a vortex for a long time and the interaction of a shock with a vortex. Conclusions
are drawn and further work is planned in Section 5.

2. RBC space approximation

2.1. Concept of residual-based scheme

Consider the hyperbolic system of conservation laws:

∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0 (1)

where t is the time, x and y are Cartesian space coordinates, w is the state vector and f = f(w), g = g(w)
are flux components depending smoothly on w. The Jacobian matrices of the flux are denoted A = df/dw
and B = dg/dw.
System (1) is approximated in space on a uniform mesh (xj = jδx, yk = kδy) with steps δx and δy of the
same order of magnitude, say O(h), using a residual-based-compact (RBC) scheme. Such a scheme is a
compact discrete form of

∂w

∂t
+

∂f

∂x
+

∂g

∂y
=

δx

2

∂

∂x

[
Φ1(

∂w

∂t
+

∂f

∂x
+

∂g

∂y
)

]
+

δy

2

∂

∂y

[
Φ2(

∂w

∂t
+

∂f

∂x
+

∂g

∂y
)

]
(2)

where Φ1 and Φ2 are matrices depending only on the eigensystems of the Jacobian matrices A and B and
on the step ratio δx/δy. They use no tuning parameters or limiters. More precisely, let TA (respectively
TB) be a matrix the columns of which are the right eigenvectors of A (resp. B) and let a(i) (resp. b(i)) be
the eigenvalues of A (resp. B), matrices Φ1 and Φ2 are defined as

Φ1 = TADiag[φ
(i)
1 ]T−1

A , Φ2 = TBDiag[φ
(i)
2 ]T−1

B

with

φ
(i)
1 = sgn(a(i))φ(i), φ

(i)
2 = sgn(b(i))ψ(i)

φ(i) = min

(
1,

δy|a(i)|
δx m(B)

)
, ψ(i) = min

(
1,

δx|b(i)|
δy m(A)

)

where Diag[d(i)] denotes a diagonal matrix with diagonal entries d(i) and m(A) = min
i
|a(i)|, m(B) = min

i
|b(i)|.

Equation (2) can also be written as

r =
1

2
[δx

∂

∂x
(Φ1r) + δy

∂

∂y
(Φ2r)] (3)



with the exact residual

r =
∂w

∂t
+

∂f

∂x
+

∂g

∂y

To describe the space approximation of (3), we introduce basic discrete operators over one mesh interval in
each space direction:

(δ1v)j+ 1
2 ,k

= vj+1,k − vj,k (δ2v)j,k+ 1
2
= vj,k+1 − vj,k

(μ1v)j+ 1
2 ,k

=
1

2
(vj+1,k + vj,k) (μ2v)j,k+ 1

2
=

1

2
(vj,k+1 + vj,k)

where j and k are integers or half integers. All these discrete operators commute. For instance:(
δ1μ1f

δx

)
j,k

=

(
μ1δ1f

δx

)
j,k

=
fj+1,k − fj−1,k

2δx

(δ21f)j,k = (δ1 (δ1f))j,k = fj+1,k − 2fj,k + fj−1,k

Using different compact centered approximations r̃j,k, (r̃1)j+ 1
2 ,k

and (r̃2)j,k+ 1
2
in Eq.(3), we obtain the

residual-based compact scheme:

r̃j,k =
1

2
[δ1(Φ1r̃1) + δ2(Φ2r̃2)]j,k (4)

The right-hand side of (4) is a numerical dissipation. Despite appearance, this dissipation is not simply of
order one because (r̃1) and (r̃2) approximate the exact residual r = 0. Clearly, if r̃j,k approximates r at
order 2p and (r̃1)j+ 1

2 ,k
, (r̃2)j,k+ 1

2
approximate r at order 2p − 2, then the scheme (4) is accurate at order

2p−1 in space and denoted as RBC2p−1. In such a scheme, the dissipation error (of order 2p−1) dominates
the dispersive error (of order 2p), which is a good feature for robustness.
More details on the numerical dissipation and the choice of the matrices (Φ1)j+ 1

2 ,k
and (Φ2)j,k+ 1

2
can be

found in [1, 3, 5]. Spectral properties of the scheme are described in [6].

2.2. General form of the residuals for a RBC scheme on a 5× 5-point-stencil

Compact schemes for compressible flows have been mainly developed as centered approximations in space
(see [11–14] for instance) relying on the use of artificial viscosities, numerical filters or limiters for shock
capturing. Upwind compact schemes have also been proposed in [15, 16]. The present RBC scheme uses
three compact centered-approximations of the residual and relies only on its internal numerical dissipation.
On a 5x5-point stencil, the main residual, i.e. the left-hand side of (4), takes the general compact form (see
[3–5]):

r̃ = (I + b̄δ21 + c̄δ41)(I + b̄δ22 + c̄δ42)
∂w

∂t
+ (I + b̄δ22 + c̄δ42)(I + āδ21)

δ1μ1f

δx
+ (I + b̄δ21 + c̄δ41)(I + āδ22)

δ2μ2g

δy
(5)

where I is the identity operator and the subscripts j, k are omitted. This residual depends on the three
scalar coefficients ā, b̄ and c̄. It is at least second-order accurate, but can be much more accurate with a
suitable choice of the coefficients. Namely, r̃ is accurate
- at least at fourth-order iff:

b̄− ā =
1

6
(6)

- at least at sixth-order iff in addition:
1

6
b̄− c̄ =

1

30
(7)

- at eighth-order iff in addition:
1

30
b̄− 1

6
c̄ =

1

140
(8)



To obtain a RBC scheme on a 5x5-point stencil, the residuals in the dissipation (r̃1)j+ 1
2 ,k

and (r̃2)j,k+ 1
2

should use no more than 4x5 and 5x4 points, respectively. Their general forms are:

r̃1 =(I + bδ22 + cδ42)

[
(I + aμδ21)μ1

∂w

∂t
+ (I + aδδ21)

δ1f

δx

]
+ (I + aμδ21)(I + aδ22)

δ2μ2μ1g

δy

r̃2 =(I + bδ21 + cδ41)

[
(I + aμδ22)μ2

∂w

∂t
+ (I + aδδ22)

δ2g

δy

]
+ (I + aμδ22)(I + aδ21)

δ1μ1μ2f

δx
.

(9)

Residuals r̃1 and r̃2 depend on the five scalar coefficients a, b, c, aμ and aδ. They are accurate at least at
second-order and
- at least at fourth-order iff:

b− a =
1

6
, aδ − aμ =

1

12
(10)

- at sixth-order iff in addition:
1

6
b− c =

1

30
, aμ =

1

10
(11)

2.3. Choice of the scheme coefficients

- By satisfying condition (6) only, we obtain r̃ = O(h4), r̃1 = O(h2), r̃2 = O(h2) and the scheme (4) is
third-order accurate. This can be achieved on a 3x3-point stencil by cancelling ā and c̄ in the main residual
(5) and a, c, aμ and aδ in the residuals in the dissipation (9), the latter using 2x3 and 3x2 points only.
Therefore, the third-order schemes on a 3x3-point stencil are defined by:

ā = 0, b̄ =
1

6
, c̄ = 0, a = 0, c = 0, aμ = 0, aδ = 0 (12)

and b is free.
- By satisfying conditions (6), (7) and (10), we obtain r̃ = O(h6), r̃1 = O(h4), r̃2 = O(h4) and the scheme

is fifth-order accurate. This cannot be achieved on a 3x3-point stencil, but it is possible to get fifth-order
schemes for which the operators acting on the time-derivative ∂w/∂t involve 3 points only in each space
direction. This is done by cancelling c̄, c and aμ, which gives:

ā =
1

30
, b̄ =

1

5
, c̄ = 0, a = b− 1

6
, c = 0, aμ = 0, aδ =

1

12
(13)

where b is free. Such schemes with 3-point operators on ∂w/∂t will be interesting for our new time-
formulation.

- By satisfying conditions (6), (7), (8), (10) and (11), we obtain r̃ = O(h8), r̃1 = O(h6), r̃2 = O(h6) and
the scheme is seventh-order accurate with coefficients:

ā =
5

42
, b̄ =

2

7
, c̄ =

1

70
, a = 6c+

1

30
, b = 6c+

1

5
, aμ =

1

10
, aδ =

11

60
(14)

where c is free.

2.4. Schemes satisfying the χ criterion

The effective dissipation induced by the numerical dissipation term

d̃ =
1

2
[δ1(Φ1r̃1) + δ2(Φ2r̃2)] (15)

has been identified and analyzed in [5]. For any RBC2p−1 scheme, a Taylor expansion of (15) gives:

d̃ = (−1)p−1κ

{
∂

∂x

[
Φ1(δx

2p−1 ∂
2p−1f

∂x2p−1
+ χδxδy2p−2 ∂

2p−1g

∂x2p−1
)

]
+

∂

∂y

[
Φ2(χδx

2p−2δy
∂2p−1f

∂x2p−1
+ δy2p−1 ∂

2p−1g

∂x2p−1
)

]}
+O(h2p+1)

(16)



where κ > 0 and χ are two constant coefficients depending on the scheme. Note that (16) does not contain
time derivatives since they have been replaced by space derivatives using the exact system (1).
For the third-order schemes on a 3x3-point stencil, coefficients κ and χ are:

κ =
1

24
, χ = 12(b− 1

6
)

For fifth-order schemes, they are:

κ =
1

24
(
1

10
− aμ), χ =

1

2κ

(
b

6
− c− 1

30

)

In particular, for the fifth-order schemes with 3-point operators on ∂w/∂t:

κ =
1

240
, χ = 20(b− 1

5
)

For seventh-order schemes, we have:

κ =
1

5600
, χ =

280

3

(
c− 1

70

)

It has been proved in [5] that any RBC2p−1 scheme should meet the χ -criterion for the differential oper-
ator in (16) to be dissipative for a general multidimensional problem. This criterion simply requires that
χ = 0. In other words, crossed derivatives are present in the right-hand side of the continuous formulation
(2), but no crossed derivative should appear in the differential operator (16) induced by the discretization.
The stabilizing effect of the χ-criterion on skew waves has been confirmed by numerical experiments [5].
Taking into account the χ-criterion, we obtain b = 1/6 in (12), b = 1/5 in (13), c = 1/70 in (14) and thus
a unique scheme for each odd order of accuracy. The residuals of the corresponding schemes are listed below.

- Residuals for the RBC3 scheme:

r̃ = (I +
1

6
δ21)(I +

1

6
δ22)

∂w

∂t
+ (I +

1

6
δ22)

δ1μ1f

δx
+ (I +

1

6
δ21)

δ2μ2g

δy
(17)

r̃1 =(I +
1

6
δ22)

(
μ1

∂w

∂t
+

δ1f

δx

)
+

δ2μ2μ1g

δy

r̃2 =(I +
1

6
δ21)

(
μ2

∂w

∂t
+

δ2g

δy

)
+

δ1μ1μ2f

δx

(18)

- Residuals for the RBC5 scheme:

r̃ = (I +
1

5
δ21)(I +

1

5
δ22)

∂w

∂t
+ (I +

1

5
δ22)(I +

1

30
δ21)

δ1μ1f

δx
+ (I +

1

5
δ21)(I +

1

30
δ22)

δ2μ2g

δy
(19)

r̃1 = (I +
1

5
δ22)

[
μ1

∂w

∂t
+ (I +

1

12
δ21)

δ1f

δx

]
+ (I +

1

30
δ22)

δ2μ2μ1g

δy

r̃2 = (I +
1

5
δ21)

[
μ2

∂w

∂t
+ (I +

1

12
δ22)

δ2g

δy

]
+ (I +

1

30
δ21)

δ1μ1μ2f

δx

(20)

- Residuals for the RBC7 scheme:

r̃ =(I +
2

7
δ21 +

1

70
δ41)(I +

2

7
δ22 +

1

70
δ42)

∂w

∂t

+ (I +
2

7
δ22 +

1

70
δ42)(I +

5

42
δ21)

δ1μ1f

δx
+ (I +

2

7
δ21 +

1

70
δ41)(I +

5

42
δ22)

δ2μ2g

δy

(21)



r̃1 =(I +
2

7
δ22 +

1

70
δ42)

[
(I +

1

10
δ21)μ1

∂w

∂t
+ (I +

11

60
δ21)

δ1f

δx

]
+ (I +

1

10
δ21)(I +

5

42
δ22)

δ2μ2μ1g

δy

r̃2 =(I +
2

7
δ21 +

1

70
δ41)

[
(I +

1

10
δ22)μ2

∂w

∂t
+ (I +

11

60
δ22)

δ2g

δy

]
+ (I +

1

10
δ22)(I +

5

42
δ21)

δ1μ1μ2f

δx

(22)

For later comparison with a second-order scheme, we also mention the RBC2 scheme for which the eight
scheme-coefficients ā, b̄, c̄, a, b, c, aμ, aδ are null.

- Residuals for the RBC2 scheme:

r̃ =
∂w

∂t
+

δ1μ1f

δx
+

δ2μ2g

δy
(23)

r̃1 =μ1
∂w

∂t
+

δ1f

δx
+

δ2μ2μ1g

δy

r̃2 =μ2
∂w

∂t
+

δ2g

δy
+

δ1μ1μ2f

δx

(24)

Note this second-order scheme does not belong to the above class of RBC2p−1 schemes. In RBC2, the
residuals r̃, r̃1, r̃2 are three approximations of order 2 of the exact residual, so that the dispersive error (of
order 2) dominates the dissipative error (of order 3) contrary to the situation for the RBC2p−1 schemes.

3. High order time-approximation for the RBC schemes

3.1. Current time-approximation

Let us first introduce the time formulation in the one-dimensional case. For the hyperbolic system:

∂w

∂t
+

∂f

∂x
= 0 (25)

the general 5-point RBC scheme reads:

(I + b̄δ21 + c̄δ41)
∂w

∂t
+ (I + āδ21)

δ1μ1f

δx
=

1

2
δ1

{
Φ1[(I + aμδ21)μ1

∂w

∂t
+ (I + aδδ21)

δ1f

δx
]

}
(26)

A peculiarity of the RBC schemes is the multiple occurrence of the time derivative in the scheme (∂w/∂t
occurs d + 1 times in d-dimension). Besides, due to compactness, discrete spatial-operators are applied to
each time-derivative. In previous applications of the RBC schemes to unsteady problems (see [17, 4, 5, 18]
for instance), the time formulation was based on the classical Gear method, that is all the terms of the
scheme were taken at the new level t = (n+ 1)Δt and the time derivative was approximated everywhere by

(
∂w

∂t
)n+1 =

1

2Δt

(
3wn+1 − 4wn + wn−1

)
+O(Δt2)

This 3 time-level method is A-stable. However such a fully implicit treatment requires an iterative method. 
A dual-time stepping procedure was chosen in [4]. In dual time, it uses a first-order implicit scheme of 
Roe-Harten type with a large CFL number. At each dual-time iteration, this scheme is solved using a single 
iteration of an alternate-line symmetric Gauss-Seidel relaxation. This method is efficient for slow unsteady 
problems. For quick unsteady evolutions, it is costly and not accurate enough. Of course, the accuracy 
order could be increased by adding new time-levels in the above derivative approximation, which leads to 
the general implicit Backward-Differentiation Formulas (iBDF ), but A-stability cannot be preserved beyond 
order 2. Thus, we rather investigate the use of an explicit method of high accuracy.



3.2. Shifting the time-derivative in the numerical dissipation

To construct an explicit time-stepping scheme, an attractive idea is to shift backward the time discretiza-
tion of ∂w/∂t in the numerical dissipation. This idea has been proposed and developed for second-order
residual-distribution schemes on an unstructured mesh by Ricchiuto and Abgrall in [19], using a Runge-Kutta
method. To apply this approach to the RBC scheme (26), we first rewrite it as

D1
∂w

∂t
= H0 +M1

∂w

∂t
(27)

where D1 and M1 denote the linear operators:

D1 = I + b̄δ21 + c̄δ41 , M1 =
1

2
δ1[(Φ1(I + aμδ21)μ1 . ]

and H0 is the steady flux balance:

H0 = H0(w) = −(I + ā δ21)
δ1μ1f

δx
+

1

2
δ1[Φ1(I + aδ δ21)

δ1f

δx
]

The numerical dissipation of the RBC scheme is entirely in the right-hand side of (27) through the second
term of H0 and the unsteady term M1 ∂w/∂t. The Runge-Kutta method of order 2 with a shifted time-
derivative in the numerical dissipation can be written as
RK2sd: ⎧⎪⎨

⎪⎩
D1

w(1)−wn

Δt = Hn
0

D1
wn+1−wn

Δt = 1
2 (H

n
0 +H

(1)
0 ) +M1

w(1)−wn

Δt

(28)

Similarly, the Runge-Kutta method of order 3 with a shifted time-derivative in the numerical dissipation is
RK3sd: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D1
w(1)−wn

Δt = Hn
0

D1
w(2)−wn

Δt/2 = 1
2 (H

n
0 +H

(1)
0 ) +M1

w(1)−wn

Δt

D1
wn+1−wn

Δt = 1
3

[
1
2 (H

n
0 +H

(1)
0 ) + 2H

(2)
0

]
+M1

w(2)−wn

Δt/2

(29)

where Hn
0 = H0(w

n), H
(p)
0 = H0(w

(p)), p = 1, 2. Note that the predictors w(1) and w(2) are defined at
t = (n+ 1)Δt and (n+ 1

2 )Δt, respectively.
It has been proved in [19] that RK2sd with a second-order spatial discretization is overall of order 2 and
similarly RK3sd with a third-order spatial discretization is overall of order 3. This can be understood by
noting that M1 ≈ δx

2
∂
∂x (Φ1 .) = O(δx).

Used with the present RBC scheme, these RKqsd methods only requires the solution of q simple linear
systems (tridiagonal for RBC3 and RBC5 or pentadiagonal for RBC7) for each component of w. For a
two-dimensional problem, D1 in (28) or (29) is replaced by D1D2, which comes to solve the linear systems
on each mesh lines of the 2-D mesh.
Unfortunately, our numerical experiments show that this approach (as well as several variants of it) fails
when the time-accuracy order is greater than 2, for stability reasons -see Section 4-.

3.3. Direct extraction of the time-derivative

We now consider a direct extraction of the continuous time derivative ∂w/∂t = [(∂w/∂t)j ] from the
linear system (27) rewritten as:

Λ1
∂w

∂t
= H0 (30)

where
Λ1 = D1 −M1



and D1, M1 and H0 are still defined as above. To find the time derivative, we have now to solve a block-
tridiagonal system for RBC3 and RBC5 and a block-pentadiagonal system for RBC7. The block structure
is due to the matrix Φ1 in the numerical dissipation, so that the blocks have the same size as the Jacobian
matrix A = df/dw. System (30) is well-conditioned and can be easily solved by a direct method.

Let us extend this direct approach to the two-dimensional system (1). We have to extract the time
derivative from the linear algebraic system:

Λ
∂w

∂t
= H0 (31)

where Λ denotes the linear operator:

Λ = D1D2 −D2M1 −D1M2

with

D1 = I + b̄δ21 + c̄δ41 , M1 =
1

2
δ1[(Φ1(I + aμδ21)μ1 . ]

D2 = I + b̄δ22 + c̄δ42 , M2 =
1

2
δ2[(Φ2(I + aμδ22)μ2 . ]

and H0 is the steady flux balance:

H0 = −r̃0 +
1

2
[δ1(Φ1r̃

0
1) + δ2(Φ2r̃

0
2)] (32)

r̃0, r̃01 and r̃02 being the general residuals defined by (5) and (9) in which ∂w/∂t = 0.
However, the algebraic structure of Λ is more complicated than in one dimension. To simplify the problem,
we attempt a dimensional factorization of Λ:

Λ = Λ1Λ2 − Λc

where
Λ1 = D1 −M1, Λ2 = D2 −M2, Λc = M1M2

As D1 and D2, the one-dimensional operators Λ1 and Λ2 are locally O(1), but since M1 = O(δx) and
M2 = O(δy), the corrective operator Λc is locally O(δxδy) = O(h2). Thus, contrary to common practice in
the eighties when second order methods were used, we cannot neglect Λc and achieve a standard approximate-
factorization.
Let us rewrite the linear system (31) in the form:

Λ1Λ2
∂w

∂t
= H0 + Λc

∂w

∂t
(33)

It can be solved approximately in a few iterations as:

Λ1Λ2
∂w

∂t

(m+1)

= H0 + Λc
∂w

∂t

(m)

, m = 0, 1, ...,mf (34)

starting from

∂w

∂t

(0)

= 0 (35)

Eq. (34) can be split into: ⎧⎪⎨
⎪⎩

Λ1
∂w̃
∂t = H0 + Λc

∂w
∂t

(m)

Λ2
∂w
∂t

(m+1)
= ∂w̃

∂t

(36)



Thus, we have only to solve simple linear systems (block-tridiagonal for RBC3 and RBC5 or block-
pentadiagonal for RBC7) in each space direction. Let us now determine the required number of iterations
mf . By substracting (33) to (34) , we get:

Λ1Λ2(
∂w

∂t

(m+1)

− ∂w

∂t
) = Λc(

∂w

∂t

(m)

− ∂w

∂t
)

and therefore

∂w

∂t

(m+1)

− ∂w

∂t
= (Λ1Λ2)

−1Λc(
∂w

∂t

(m)

− ∂w

∂t
) =

[
(Λ1Λ2)

−1Λc

]m+1
(
∂w

∂t

(0)

− ∂w

∂t
)

Taking into account (35), we obtain the local error of the iterative procedure after mf iterations:

∂w

∂t

(mf+1)

− ∂w

∂t
= − [

(Λ1Λ2)
−1Λc

]mf+1 ∂w

∂t
= O(h2mf+2) (37)

We can conclude that for mf = 0 (standard approximate factorization), the space accuracy is limited to
2nd order. For mf = 1 (one iteration), it is limited to 4th order, which is quite sufficient for RBC3. For
mf = 2 (resp. mf = 3), it is limited to 6th order (resp. 8th order), which is quite sufficient for RBC5

(resp. RBC7). So, very few iterations (a number known in advance for a given space-accuracy) over 1-D
linear systems garantee the high accuracy in space. It is worth noting than MacCormack [20] studied in
2001 the approximate factorization technique for second-order methods applied to fluid flows. He noticed
that factorization errors cause a reduction in convergence speed and the necessity of using time steps much
smaller than that required to follow the time evolution of unsteady flows, particularly viscous flows or those
converging to steady-state solutions. So he proposed a modified approximate factorization involving an
iterative method having some similarity with the present approach. Although the iterations in (36) are
intended to garantee the high space-accuracy, we have checked that they also improve the stability of the
method, especially the first iteration.

3.4. Choice of a high order time-integration

After the direct extraction of the time derivative at time t, we advance the numerical solution by solving
an ordinary differential equation (ODE) of the form:

∂w

∂t
= H(w) (38)

For the present RBC schemes, the main cost per time step comes from the calculation of H = Λ−1H0 as
the solution of the problem (36). So we are interested in ODE methods requiring few evaluations of H
per time-step. We first consider the class of linear multistep methods. A possible candidate is the Adams-
Bashforth method of order q (ABq) since it only requires a single evaluation of H per time step, for any
order q. Adams-Bashforth methods of third and fourth accuracy-order are recalled below.
- AB3 method:

wn+1 = wn +
Δt

12
(23Hn − 16Hn−1 + 5Hn−2) (39)

- AB4 method:

wn+1 = wn +
Δt

24
(55Hn − 59Hn−1 + 37Hn−2 − 9Hn−3) (40)

where wn = (wj
n) denotes the numerical solution at time level tn = nΔt and Hn = H(wn). The ABq 

method involves q + 1 time levels.
Still in the class of linear multistep methods, Hundsdorfer, Ruuth and Spiteri [21] have proved that the 
explicit -or extrapolated- Backward Differentiation Formulas (eBDF ) of order 3 and 4 have better bound-
edness and TVB properties than AB methods of the same order, which allows the use of greater time-steps.



So we also consider:
- eBDF3 method:

wn+1 =
1

11
(18wn − 9wn−1 + 2wn−2) +

6Δt

11
(3Hn − 3Hn−1 +Hn−2) (41)

- eBDF4 method:

wn+1 =
1

25
(48wn − 36wn−1 + 16wn−2 − 3wn−3) +

Δt

25
(48Hn − 72Hn−1 + 48Hn−2 − 12Hn−3) (42)

Note that eBDFq involves the same number of time level as ABq. However in eBDFq, the time levels apply
not only to H but also to w, which increases the memory requirements.
An improvement of the Adams-Bashforth method is to combine it with its implicit version, i.e. the Adams-
Moulton method (AM), in order to get an explicit predictor-corrector method called Adams-Bashforth-
Moulton (ABM). More precisely, in the ABMq method, the predictor step is ABq−1 and the corrector
step is a modified AMq in which the flux balance Hn+1 is computed from the state w̃n+1 obtained at the
predictor step -see e.g. [22]-. At order 3 and 4, this method can be written as:
- ABM3 method: ⎧⎨

⎩
w̃n+1 = wn + Δt

2 (3Hn −Hn−1)

wn+1 = wn + Δt
12 (5H̃

n+1 + 8Hn −Hn−1)
(43)

- ABM4 method: ⎧⎨
⎩

w̃n+1 = wn + Δt
12 (23H

n − 16Hn−1 + 5Hn−2)

wn+1 = wn + Δt
24 (9H̃

n+1 + 19Hn − 5Hn−1 +Hn−2)
(44)

where H̃n+1 = H(w̃n+1). Note that ABMq requires two evaluations of H per time-step (Hn and H̃n+1) for
any order q, but uses one time-level less than ABq or eBDFq.
Finally we consider the most used methods in high-accurate flow simulations, that is the Runge-Kutta
methods (RKq). We recall below the RK2 method (coinciding with ABM2), the RK3 method of Shu and
Osher and a classical RK4 method.
- RK2 = ABM2 method: ⎧⎨

⎩
w̃(1) = wn +Δt Hn

wn+1 = wn + Δt
2 (Hn + H̃(1))

(45)

- RK3 method: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃(1) = wn +Δt Hn

w̃(2) = wn + Δt
4 (Hn + H̃(1))

wn+1 = wn + Δt
6 (Hn + H̃(1) + 4H̃(2))

(46)

- RK4 method: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃(1) = wn + Δt
2 Hn

w̃(2) = wn + Δt
2 H̃(1)

w̃(3) = wn +ΔtH̃(2)

wn+1 = wn + Δt
6 (Hn + 2H̃(1) + 2H̃(2) + H̃(3))

(47)

where H̃ (r) = H(w̃(r)). The drawback of the RKq method is to compute H as many times as the time-
accuracy order q, which can be rather costly as q increases. In return, they are known to have 
greater



stability limits than linear multistep methods.
The above four ODE-methods of order 4 (AB4, eBDF4, ABM4, RK4) applied to the RBC5 scheme have
been compared for a long-time integration of a 2-D Euler problem: the vortex advection described in Section
4.3. The multistep methods are started by computing the first time-iterations with RK4. The four ODE-
methods use (36) with mf = 2 to compute the flux-balance H a number of times between 1 and 4. They
also have quite different time-step limits for stability. Using the maximal time-step for each method, the
CPU time for reaching the physical time t=100 is given in Table 1 on a single processor Intel-X5680 (year
2010) for a non-optimized code written for all the RBC schemes of the general form (4)-(5)-(9). Note that
concerning the accuracy at t=100, the results given by the four ODE-methods are very close (practically
the same L2-error). The ABM4 time-integration is the cheapest: its CPU-time is 25% lower than eBDF4

and RK4 and more than 3 times lower than AB4. On the other hand, RK4 is the least memory-consuming.
Noting that the advantage in CPU time of ABM over RK will grow up with more complicated flux-balance
H (like that of the compressible Navier-Stokes equations), we choose here to retain the quickest method,
i.e. the ABM time-integration.

RBC5 −AB4 RBC5 − eBDF4 RBC5 −ABM4 RBC5 −RK4

H computations per time step 1 1 2 4

Δt (maximal value) 0.0032 0.008 0.020 0.032

CPU time (sec.) for t = 100 286.5 114.3 91.4 114.5

Table 1: Computational cost on Intel-X5680 of several time-integrations for a 2-D Euler problem (vortex advection
during a long time on a 50x50 mesh with periodicity conditions)

4. Numerical validations for 2-D problems

The new time-formulation of the RBC schemes has been applied to several two-dimensional problems
governed by a linear hyperbolic equation with constant or variable coefficients and the compressible Euler
equations. We focuss the validation of the time-formulation on the RBC2, RBC3 and RBC5 spatial schemes
which are especially cheap since they only require the solution of block-tridiagonal systems. Let us point out
that all the validations have been made without any correction of the formulas given above. In particular,
there is no limiter, no entropy correction, no filtering or other additive.

4.1. Diagonal advection of a Gaussian

Consider the diagonal advection of an axisymmetric Gaussian shape in a square domain:{
wt + wx + wy = 0

w(x, y, 0) = exp(−75 r2), (x, y) ∈ [−1, 1]2
(48)

with r2 = (x − xc)
2 + (y − yc)2 and Dirichlet boundary conditions on left and bottom sides. The Gaussian 

is initially centered at xc = yc = −0.5 and moves diagonally at speed 
√
2. This problem is solved until time 

t = 1 on a uniform Cartesian mesh.
We first consider the approach of shifting the time-derivative in the numerical dissipation presented in 
Section 3.2. A solution is computed by the RBC2 − RK2sd scheme on a 80x80 mesh with Δt = 1/400 
(maximal time-step for stability). Fig.1 shows the w-isolines at times t = 0, t = 0.5 and  t = 1, together 
with the Gaussian profiles at the initial and final times. On the same mesh, we have not been able to run 
the RBC3 − RK3sd scheme, even with very small time-steps. Using RBC3 − RK2sd, we have obtained the 
solution plotted on Fig.2 with Δt = 1/3200.
Now we test the direct extraction of the time derivative. Solutions computed on a 80x80 mesh with Δt =



1/100 by the scheme RBC2−ABM2 without iteration (mf = 0) and with one iteration (mf = 1) are shown
on Fig.3-4. Although second-order accuracy is ensured without iteration, iterating once gives a better
solution which is really that of the original formulation. As a matter of fact, if the term Λc = M1M2 is not
corrected, the scheme is no longer residual-based. The third-order solution given by RBC3−ABM3(mf = 1)
on a the same mesh with Δt = 1/180 is shown on Fig.5. For the RBC3 spatial-scheme, the direct extraction
technique is 9 times faster in CPU-time and 11 times more accurate in L2 norm than the simplified technique
using a time shifting in the dissipation (RBC3 − RK2sd). The direct extraction using the RBC5 − ABM4

(mf = 2) on the same mesh with Δt = 1/200 produces the very accurate solution shown on Fig.6. Note
that the solution given by RBC5 −ABM4 with mf = 1 is very close to that of Fig.6 at the present scale.
Let us point out that if the factorization error is not corrected at all, i.e. no iteration is done (mf = 0),
the schemes RBC3 −ABM3 and RBC5 −ABM4 cannot be run, even with very small time-steps. With one
iteration, RBC5 becomes theoretically accurate at order 4 only. To determine the actual levels of accuracy,
we present on the left side of Fig.7 the L2-errors with respect to the C∞ exact-solution, versus h = δx = δy
on a series of meshes (40x40, 80x80, 160x160, 320x320). These errors have been computed at time t = 1 in
the square [0, 1]2 for RBC2 − ABM2, RBC3 − ABM3 with mf = 1 and RBC5 − ABM4 with mf = 1 and
mf = 2. The slopes in the log-log scale are in perfect agreement with the theory: as predicted in Section 3,
mf = 2 iterations are enough to ensure negligible space-factorization error, while setting mf = 1 limits the
order to four. The right side of Fig.7 shows the effect of the time-integration order on RBC5 with mf = 2:
replacing ABM4 by ABM3 reduces the global error-order from 4.97 to 3.39.
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Figure 1: Diagonal advection of a Gaussian by RBC2 − RK2sd scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 2: Diagonal advection of a Gaussian by RBC3 − RK2sd scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 3: Diagonal advection of a Gaussian by RBC2−ABM2(mf = 0) scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 4: Diagonal advection of a Gaussian by RBC2−ABM2(mf = 1) scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 5: Diagonal advection of a Gaussian by RBC3−ABM3(mf = 1) scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 6: Diagonal advection of a Gaussian by RBC5−ABM4(mf = 2) scheme on a 80x80 mesh. Left: isolines (from
w = −0.05 to w = 1.05, Δw = 0.1) at t = 0, 0.5, 1. Right: x-profiles with mesh points at t = 0 (y = −0.5) and
t = 1 (y = 0.5).
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Figure 7: L2 errors for the diagonal advection of a Gaussian on a series of meshes (40x40, 80x80, 160x160, 320x320).
Left: RBC2−ABM2(mf = 1), RBC3−ABM3(mf = 1) andRBC5−ABM4(mf = 1, 2). Right: RBC5−ABM3(mf =
2) and RBC5 −ABM4(mf = 2).

4.2. Rotation of a hump

Consider the rotation of an axisymmetric hump in a square domain:{
wt − 2πy wx + 2πx wy = 0

(49)w(x, y, 0) = w0(x, y), (x, y) ∈ [−1, 1]2 



where

w0(x, y) =

{
cos2(2πr) for r ≤ 0.25
0 for r > 0.25

with r2 = (x − xc)
2 + (y − yc)

2 and w = 0 as boundary condition. The hump is initially centered at
xc = −0.5, yc = 0. It turns counterclockwise making one revolution during a time unit.
Calculations are made on a 80x80 regular-mesh during the first revolution. The hump is initially discretized
over 20 cells in x and y-direction. For the shifting of the time-derivative in dissipation or its direct extraction
and for the various accuracy-orders, the numerical results lead to conclusions quite similar to those obtained
for the problem of diagonal advection. Here we just present two numerical results regarding the direct
extraction approach. Fig.8 shows the solution given by the RBC2 − ABM2(mf = 1) scheme which has
significant errors at time t = 1. In contrast, the solution obtained with the RBC5−ABM4(mf = 2) scheme
in the same conditions seems perfect as shown on Fig.9.
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Figure 8: Rotation of a hump by RBC2 − ABM2(mf = 1) scheme on a 80x80 mesh. Left: isolines (from w = −0.05
to w = 1.05, Δw = 0.1) at t = 0, 0.25, 0.5, 0.75, 1. Right: x-profile on the axis y = 0 at t = 0 (symbols) and at
t = 1 (line).
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Figure 9: Rotation of a hump by RBC5 − ABM4(mf = 2) scheme on a 80x80 mesh. Left: isolines (from w = −0.05
to w = 1.05, Δw = 0.1) at t = 0, 0.25, 0.5, 0.75, 1. Right: x-profile on the axis y = 0 at t = 0 (symbols) and at
t = 1 (line).

4.3. Advection of a vortex during a long time

Consider now the Euler equations and an homentropic vortex initially located at the origin (x = y = 0)
and advected in the x-direction. The initial velocity components u, v and the absolute temperature T are
defined in non-dimensional form as:

u = u0 − Γ

2π
y exp

(
1− r2

2

)
v =

Γ

2π
x exp

(
1− r2

2

)

T = 1− (γ − 1)Γ2

8γπ2
exp

(
1− r2

)
with r2 = x2 + y2, the advection speed u0 = 0.5 and the vortex strength Γ = 5. The thermodynamic 
equation of state is the ideal law p = ρT , with constant specific heats of ratio γ = 1.4. The uniformity of 
entropy gives ρ = T 1/γ−1. The computational domain is [−5, 5]2. Periodic boundary conditions are applied 
in both directions. Calculations are made until time t = 100, after which the vortex has traveled a distance 
of 50. All calculations use a 50x50 regular-mesh so that the vortex is discretized over about 20 cells in x 
and y-direction.
The simplified technique using a time-shifting in dissipation behaves similarly as for scalar problems. For 
the RBC2 − RK2sd scheme with Δt = 1/100 (maximal time-step), Fig.10 shows the w-isobar lines at times 
t = 0  and  t = 100, together with a pressure cut on y = 0 at the initial and final times. The RBC3 − RK2sd 
scheme works with Δt = 1/400 at most and produces the results shown on Fig.11. The RBC3 − RK3sd 
scheme is unstable.
Concerning the direct extraction of the time derivative, RBC2 −ABM2(mf =  1) can be run with Δt = 1/20, 
RBC3 −ABM3(mf = 1) with Δt = 1/40 and RBC5 −ABM4(mf = 1) with Δt = 1/50. In order to compare 
these three schemes for the same time-step, we present their solutions at time t = 100 with Δt = 1/50. 
The solution given by the second-order scheme is shown on Fig.12. The second-order phase error is mainly 
responsible for the poor result. A better solution can be obtained by the third-order scheme. It is presented 
on Fig.13. Nevertheless, the third-order dissipation remains too high for an acceptable outcome at time 100. 
Again increasing order, we obtain a good result on Fig.14 with the fifth-order scheme.
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Figure 10: Advection of a vortex by RBC2−RK2sd scheme on a 50x50 mesh with periodicity conditions. Left: isobar
lines (from p = 0.4 to p = 0.95, Δp = 0.05) at t = 0, 100. Right: pressure cut on the axis y = 0 at t = 0 (symbols)
and at t = 100 (line).
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Figure 11: Advection of a vortex by RBC3−RK2sd scheme on a 50x50 mesh with periodicity conditions. Left: isobar
lines (from p = 0.4 to p = 0.95, Δp = 0.05) at t = 0, 100. Right: pressure cut on the axis y = 0 at t = 0 (symbols)
and at t = 100 (line).
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Figure 12: Advection of a vortex by RBC2 − ABM2(mf = 1) scheme on a 50x50 mesh with periodicity conditions.
Left: isobar lines (from p = 0.4 to p = 0.95, Δp = 0.05) at t = 0, 100. Right: pressure cut on the axis y = 0 at t = 0
(symbols) and at t = 100 (line).
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Figure 13: Advection of a vortex by RBC3 − ABM3(mf = 1) scheme on a 50x50 mesh with periodicity conditions.
Left: isolines (from p = 0.4 to p = 0.95, Δp = 0.05) at t = 0, 100. Right: pressure cut on the axis y = 0 at t = 0
(symbols) and at t = 100 (line).
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Figure 14: Advection of a vortex by RBC5 − ABM4(mf = 2) scheme on a 50x50 mesh with periodicity conditions.
Left: isolines (from p = 0.4 to p = 0.95, Δp = 0.05) at t = 0, 100. Right: pressure cut on the axis y = 0 at t = 0
(symbols) and at t = 100 (line).

4.4. Shock-vortex interaction

Finally, we consider a moving homentropic vortex interacting with a steady shock. This problem was
proposed by Jiang and Shu [23]. The space domain is here [0, 1]2 (it was [0, 2]× [0, 1] in the paper [23]). The
vortex is initially located at (xc = 0.25, yc = 0.5) and advected in the x-direction. The shock is positioned at
x = 0.5 and normal to the x-axis. Its upstream Mach number is M0 = 1.1. The initial velocity components
u, v and the absolute temperature T are defined upstream the shock in non-dimensional form as:

u = u0 + εY exp[α(1−R2)] v = −εX exp[α(1−R2)]

T = 1− (γ − 1)ε2

4αγ
exp[2α(1−R2)]

with

X =
x− xc

rc
, Y =

y − yc
rc

, R2 = X2 + Y 2

where ε = 0.3 (vortex strength), α = 0.204 (decay-rate control), rc = 0.05 (radius of maximun vortex-
strength) and u0 = M0

√
γ. The gas law is p = ρT , with γ = 1.4. Downstream the initial shock, the flow is 

uniform at the subsonic conditions behind the steady normal shock.
On the boundary the following conditions are applied: supersonic inflow on left side, subsonic outflow on 
right side and solid wall on lateral sides. Calculations are made on a 124x124 regular-mesh (contrary to 
[23] there is no x-refinement around the shock) until the time t = 0.35 with a time-step Δt = 0.35/700. 
Results obtained by the RBC2 − ABM2(mf = 1) scheme are shown on Fig.15. Fig.16 and 17 show the 
solutions given by the RBC3 − ABM3(mf = 1) and the RBC5 − ABM4(mf = 2) schemes in the same 
conditions. Due to the short vortex-excursion in this problem, the 3rd-order scheme produces a result close 
to the 5th-order one. These RBC solutions are in good agreement with the WENO5 solution by Jiang and 
Shu [23] and the RBC solutions published with Corre and Falissard in [4] using a time-formulation based 
on the Gear method solved by the dual-time stepping procedure. Unlike the WENO5 solution, the present 
results display some small oscillations (no kind of correction of the basic scheme), but the shock wave is 
spread over only two mesh-cells. Regarding the shock capturing, we note that the best results are obtained 
by RBC3 − ABM3(mf = 1). This is confirmed on Fig.18 by calculations with RBC3 − ABM3(mf = 1)



and RBC5 − ABM4(mf = 2) on a finer grid (248x248 mesh with Δt = 0.35/1400). Additional studies are
needed to improve these shock-capturing properties.
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Figure 15: Shock-vortex interaction by RBC2 −ABM2(mf = 1) scheme on a 124x124 mesh. Left: isobar lines (from
p = 0.79 to p = 1.61, Δp = 0.02) at t = 0. Right: isobar lines at t = 0.35.
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Figure 16: Shock-vortex interaction by RBC3 −ABM3(mf = 1) scheme on a 124x124 mesh. Left: isobar lines (from
p = 0.79 to p = 1.61, Δp = 0.02) at t = 0.35. Right: pressure cut on y = 0.5 at t = 0. and at t = 0.35 (line with
mesh points).
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Figure 17: Shock-vortex interaction by RBC5 −ABM4(mf = 2) scheme on a 124x124 mesh. Left: isobar lines (from
p = 0.79 to p = 1.61, Δp = 0.02) at t = 0.35. Right: pressure cut on y = 0.5 at t = 0. and at t = 0.35 (line with
mesh points).
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Figure 18: Shock-vortex interaction on a 248x248 mesh. Isobar lines (from p = 0.79 to p = 1.61, Δp = 0.02) at
t = 0.35. Left: RBC3 −ABM3(mf = 1) scheme. Right: RBC5 −ABM4(mf = 2) scheme.

5. Conclusion

A new time-formulation for the residual-based compact schemes has been proposed in two-dimension. It 
is based on a space factorization of the terms containing the time-derivative without loss of spatial accuracy. 
The linear systems to be solved on the mesh lines for getting the time-derivative are block-tridiagonal for 
RBC3 and RBC5 and block-pentadiagonal for RBC7. They are independent in a given direction and could



therefore be fully parallelized in each direction. Numerical tests have shown the efficiency of the RBC5

scheme associated with the ABM4 time-integration.
Extension of the new time-formulation to three-dimension and to the compressible Navier-Stokes equations
will be considered in a future study. First numerical results on the diagonal advection in a cubic domain
of a Gaussian field with spherical symmetry show that the present space-factorization can be extended
in 3-D without stability problem. Concerning the calculation of shock waves, it is planned to extend to
the multidimensional case the correction inside a shock structure proposed for the one-dimensional Euler
equations in [24] and inspired by an analysis of discrete shocks of high-order RBC schemes applied to a
scalar conservation law with a convex flux [25].
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