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Abstract

This article presents a fast solver for the dense “frontal” matrices that arise from the
multifrontal sparse elimination process of 3D elliptic PDEs. The solver relies on the fact
that these matrices can be efficiently represented as a hierarchically off-diagonal low-rank
(HODLR) matrix. To construct the low-rank approximation of the off-diagonal blocks,
we propose a new pseudo-skeleton scheme, the boundary distance low-rank approximation,
that picks rows and columns based on the location of their corresponding vertices in the
sparse matrix graph. We compare this new low-rank approximation method to the adaptive
cross approximation (ACA) algorithm and show that it achieves betters speedup specially
for unstructured meshes. Using the HODLR direct solver as a preconditioner (with a low
tolerance) to the GMRES iterative scheme, we can reach machine accuracy much faster
than a conventional LU solver. Numerical benchmarks are provided for frontal matrices
arising from 3D finite element problems corresponding to a wide range of applications.

Keywords: Fast direct solvers, Iterative solvers, Numerical linear algebra, Hierarchically
off-diagonal low-rank matrices, multifrontal elimination, Adaptive cross approximation.

1. Introduction

In many engineering applications, solving large finite element systems is of great signif-
icance. Consider the system

Ax = b

arising from the finite element discretization of an elliptic PDE, where A ∈ RN×N is a sparse
matrix with a symmetric pattern. In many practical applications, the matrix A might be
ill-conditioned and thus, challenging for iterative methods. On the other hand, conventional
direct solver algorithms, while being robust in handling ill-conditioned matrices, are com-
putationally expensive (O(N1.5) for 2D meshes and O(N2) for 3D meshes). Since one of
the main bottlenecks in the direct multifrontal solve process is the high computational cost
of solving dense frontal matrices, we mainly focus on solving these matrices in this article.
Our goal is to build an iterative solver, which utilizes a fast direct solver as a preconditioner
for the dense frontal matrices. The direct solver in this scheme acts as a highly accurate
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pre-conditioner. This approach combines the advantages of the iterative and direct solve
algorithms, i.e., it is fast, accurate and robust in handling ill-conditioned matrices.

To be consistent with our previous work, we adopt the notations used in [3]. We should
also mention that ‘n’ refers to the size of dense matrices and ‘N ’ refers to the size of sparse
matrices (e.g., number of degrees of freedom in a finite-element mesh).

In the next section, we review the previous literature on both dense structured solvers
and sparse multifrontal solvers. We then introduce a hierarchical off-diagonal low-rank
(from now on abbreviated as HODLR) direct solver in Section 4. In Section 5, we introduce
the boundary distance low-rank (BDLR) algorithm as a robust low-rank approximation
scheme for representing the off-diagonal blocks of the frontal matrices. Section 6 discusses
the application of the iterative solver with a fast HODLR direct solver preconditioner to the
sparse multifrontal solve process and demonstrates the solver for a variety of 3D meshes.
We also show an application in combination with the FETI-DP method [20], which is a
family of domain decomposition algorithms to accelerate finite-element analysis on parallel
computers. We present the results and numerical benchmarks in Section 7.

2. Previous Work

2.1. Fast Direct Solvers for Dense Hierarchical Matrices

Hierarchical matrices are data sparse representation of a certain class of dense matri-
ces. This representation relies on the fact that these matrices can be sub-divided into
a hierarchy of smaller block matrices, and certain sub-blocks (based on the admissibil-
ity criterion) can be efficiently represented as a low-rank matrix. We refer the readers
to [27, 31, 26, 28, 11, 14, 12] for more details. These matrices were introduced in the con-
text of integral equations [27, 31, 60, 41] arising out of elliptic partial differential equations
and potential theory. Subsequently, it has also been observed that dense fill-ins in finite
element matrices [58], radial basis function interpolation [3], kernel density estimation in
machine learning, covariance structure in statistic models [15], Bayesian inversion [3, 5, 6],
Kalman filtering [43], and Gaussian processes [4], can also be efficiently represented as
data-sparse hierarchical matrices. Broadly speaking, these matrices can be grouped into
two general categories based on the admissibility criterion: (i) Strong admissibility: sub-
block that correspond to the interaction between well-separated clusters are low-rank; (ii)
Weak admissibility: sub-block corresponding to non-overlapping interactions are low-rank.
Ambikasaran [1] provides a detailed description of these different hierarchical structures.

We review some of the previously developed structured dense solvers for hierarchical
matrices and discuss them in relation to our work. Hackbusch [27, 26] introduced the
concept of H-matrices, which are the most general class of hierarchical matrices with the
strong admissibility criterion [27, 26, 28, 30, 29, 31, 32, 8, 9, 11]. Contrary to the HODLR
matrix structure, in which the off-diagonal blocks are low-rank, in H-matrices, the off-
diagonal blocks are further decomposed into low-rank and full-rank blocks. Thus, the rank
can be kept small. In HODLR, we make a single low-rank approximation for the off-diagonal
blocks and the rank is larger as a result. Hence, the HODLR structure makes for a much
simpler representation and is often used because of its simplicity compared to the H-matrix
structure. Hackbusch [26] suggests a recursive block low-rank factorization scheme for H-
matrices. This method is based on the idea that all the dense matrix algebra (matrix
multiplication and matrix addition) can be replaced by H-matrix algebra. As a result, the
inverse of an H-matrix can also be approximated as an H-matrix itself. This results in a
computational complexity of O(n log2(n)) for an H-matrix factorization.
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We note that the approach in this paper is based on the Woodbury matrix identity. It
is therefore different from the algorithm in Hackbusch [26] for example. The latter is based
on a block LU factorization, while the Woodbury identity reduces the global solve to block
diagonal solves followed by a correction update.

The HODLR matrix structure is the most general off-diagonal low-rank structure with
weak admissibility. Solvers for this matrix class have a computational cost of O(n log2 n).
In an HODLR matrix, the off-diagonal low-rank bases do not have a nested structure across
different levels [3]. The HSS matrix is an HODLR matrix but, in addition, has a nested off-
diagonal low-rank structure. Solvers for the HSS matrices have an O(n) complexity [59, 13].

Martinsson and Rokhlin [49] discuss an O(n) direct solver for boundary integral equa-
tions based on the HSS structure. Their method is based on the fact that for a matrix of
rank r, there exists a well-conditioned column operation, which leaves r columns unchanged
and sets the remaining columns to zero. Using this idea, they derive a two-sided compressed
factorization of the inverse of the HSS matrix. Their generic algorithm requires O(n2) op-
erations to construct the inverse. However, they accelerate their algorithm to O(n logκ(n))
when applied to two-dimensional contour integral equations.

Chandrasekaran et al. [14] present a fast O(n) direct solver for HSS matrices. In their
article, they construct an implicit ULV H factorization of an HSS matrix, where U and V are
unitary matrices, L is a lower triangular matrix and H is the transpose conjugate operator.
Their method is based on the Woodbury matrix identity and the fact that for a low-rank
representation of the form UBV H , where U and V are thin matrices with r columns, there
exists a unitary transformation Q, in which only the last r rows of QU are nonzero. They
use this observation to recursively solve the linear system of equations. Since this method
requires constructing an HSS tree, the authors suggest an algorithm that uses the SVD or
the rank revealing QR decomposition, recursively, to construct the HSS tree in O(n2) time.

Gillman et al. [24] discuss an O(n) algorithm for directly solving integral equations
in one-dimensional domains. The algorithm relies on applying the Sherman-Morrison-
Woodbury formula (see for example [3]) recursively to an HSS tree structure to achieve
O(r2n) solve complexity, where r is the rank of the off diagonal blocks in the HSS ma-
trix. They also describe an O(r2n) algorithm for constructing an HSS representation of the
matrix resulting from a Nyström discretization of a boundary integral equation.

Ho and Greengard [36] present a fast direct solver for HSS matrices. They use the in-
terpolative decomposition (ID) (see for example [16]) algorithm with random sampling to
obtain the low-rank representations of the off-diagonal blocks. The computational complex-
ity of the low-rank approximation algorithm is O(mn log r + r2n) for a matrix K ∈ Rm×n.
After obtaining the hierarchical matrix representation of the original dense matrix, new
variables and equations are introduced into the system of equations. Finally, all equations
are assembled into an extended sparse matrix and a conventional sparse solver is used to
factorize the sparse matrix. This method has a computational complexity of O(n) for both
the pre-computation and solution phases for boundary integral equations in 2D, while in
3D, these phases cost O(n1.5) and O(n log(n)) respectively.

Kong et al. [40] have developed an O(n2) dense solver for HODLR matrices. Similar
to [49], they accelerate their algorithm to O(n log2(n)), when applied to boundary integral
equations. Their method uses the Sherman-Morrison-Woodbury formula to construct a
one-sided hierarchical factorization of the inverse of these matrices, in which each factor is
a block diagonal matrix. The low-rank approximation scheme in their paper is based on
the rank revealing QR algorithm. The authors use the pivoted Gram-Schmidt algorithm
to obtain r orthogonal basis vectors for the low-rank matrix in question. For a matrix
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K ∈ Rm×n with rank r, this low-rank approximation scheme requires O(mnr) operations.
Then, they use a randomized algorithm from [55] to accelerate their low-rank approximation
scheme. This accelerated low-rank approximation algorithm costs O(mn log(l+ lnr)) in the
general case where r < l < min(m,n).

Ambikasaran and Darve [3] present an O(n log2(n)) solver for HODLR matrices and an
O(n log(n)) solver for p-HSS matrices. This approach differs from the approach mentioned
in [40] in the fact that, while [40] constructs the inverse, [3] constructs a factorization of the
matrix. Each factor in this factorization scheme is a block diagonal matrix with each block
being a low-rank perturbation of the identity matrix. The authors then use the Sherman-
Morrison-Woodbury formula to invert each block in the block diagonal factors. The article
uses the Chebyshev low-rank approximation scheme to factorize the off-diagonal blocks.

As mentioned above, solvers for the HSS matrix structure have the lowest computational
complexity — O(r2n), r being the rank of approximation — among other hierarchically off-
diagonal low-rank matrix structures. While the HSS structure is attractive, the nested
structure makes it more complicated and more difficult to work with, compared to the
simpler HODLR structure. Furthermore, the off-diagonal rank increases from root to leaves
in the HSS tree, whereas the off-diagonal ranks at each level are independent from each
other in the HODLR structure. This often leads to lower average off-diagonal rank in the
HODLR structure compared to HSS.

A point worth mentioning is that the solver discussed in the current article relies on
purely algebraic technique (instead of analytic or geometry based techniques) to construct
the low-rank approximation of the off-diagonal blocks. Analytic low-rank approximation
techniques like the Chebyshev low-rank approximation, multipole expansions, etc., are only
applicable when the matrix definition involves an analytical kernel function. In this article,
we propose a boundary distance low-rank approximation (from now on abbreviated as
BDLR), which relies on the underlying sparse matrix graph to choose the desired rows and
columns in constructing a low-rank representation. We also compare with the adaptive cross
approximation algorithm [51] (from now on abbreviated as ACA), which is also a purely
algebraic scheme to construct low-rank approximations of the off-diagonal blocks.

Due to its black-box nature, the solver can handle a wide range of dense matrices
arising from boundary integral equations, covariance matrices in statistics, frontal matrices
arising in the context of finite-element matrices, etc. Table 1 summarizes the dense solver
algorithms mentioned above.

2.2. Fast Direct Solvers for Sparse Matrices

As mentioned in Section 2.1, we are interested in accelerating the direct solve process
for finite-element matrices. In this article, we focus on the finite-element discretization of
elliptic PDEs. One common way of factorizing such matrices is using the sparse Cholesky
factorization. The efficiency of this algorithm strongly depends on the ordering of mesh
nodes [54]. Sparse Cholesky factorization takes O(N2) flops in 2D with a typical row-wise
or column-wise mesh ordering, where N is the number of degrees of freedom [58]. The most
efficient method for solving such matrices is the multifrontal method with nested dissec-
tion [22], which takes O(N1.5) flops for two-dimensional and O(N2) for three dimensional
meshes [54].

The multifrontal method was originally introduced by Duff & Reid [19], George [22] and
Liu [45], as an extension to the frontal method of Irons [38]. In this algorithm, the overall
factorization is done by factorizing smaller dense frontal matrices [44]. For each node or
super-node in the elimination tree, the frontal matrix is obtained using an update process
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Article Matrix Class Factorization Application

Hackbusch [27, 26] H Recursive block factoriza-
tion of the matrix

BEM integral operators

Martinsson and
Rokhlin [49]

HSS Two sided compressed factor-
ization of the inverse

2D boundary integral equations

Chandrasekaran
et al. [14]

HSS ULV H factorization of the
matrix

Radial basis function matrices

Gillman et al. [24] HSS Data sparse factorization of
the inverse

1D integral equations with
Nyström discretization

Ho and Green-
gard [36]

HSS Factorization of the extended
sparse system

2D and 3D boundary integral
equations

Kong et al. [40] HODLR One sided hierarchical factor-
ization of the inverse

Boundary integral equations

Ambikasaran and
Darve [3]

HODLR,
p-HSS

Block-diagonal factorization
of the matrix

Interpolation using radial basis
functions

This article HODLR Recursive block LU factoriza-
tion of the matrix

Finite-element matrices

Table 1: Summary of fast dense structured solvers.

called the “extend-add” process, which involves updates from the previously eliminated
nodes.

Martinsson [47] uses a spiral elimination approach along with HSS compression of Schur
complements to achieve O(N log2N) time complexity. This approach is not based on the
multifrontal method and requires a mesh that can be partitioned into concentric annuli.

Gillman et al. [23] proposed an accelerated nested dissection algorithm for obtaining
the Dirichlet-to-Neumann operator associated with a 2D elliptic boundary value problem.
The authors approximate the Schur complements that appear in the elimination process as
hierarchically block separable (HBS) matrices, a structure similar to HSS matrices. Using
this matrix structure, they are able to obtain the Dirichlet-to-Neumann operator with a
cost of O(N) compared to O(N1.5) of the conventional multifrontal method with nested
dissection.

There have been some recent efforts to reduce the computational cost of the multifrontal
method with nested dissection. Xia et al. [58] observed that frontal and update matrices in
the multifrontal elimination process can be approximated with hierarchically semi-separable
(HSS) matrices. The authors develop a structured extend-add process to facilitate the
formation of the frontal matrices using the HSS structure. Next, they perform a structured
dense Cholesky factorization on the obtained frontal matrix. The authors use the algorithm
in [13] to compute the explicit factorizations of HSS matrices. Using this procedure, they
are able to achieve nearly linear time complexity for 2D meshes. However, only regular well
shaped meshes in 2D are considered in the article. Schmitz et al. [54] extend the approach
of [58] to a more general setting of unstructured and adaptive grids in 2D.

Xia [56] introduced an efficient multifrontal factorization for general sparse matrices.
The author approximates the frontal matrices using the HSS structure and introduces the
concept of reduced HSS matrices that reduce the computational cost of operation on HSS
matrices. For simplicity, this approach keeps the update matrices as dense matrices which
leads to high memory consumption for large sparse matrices. Xia [57] introduces a new
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algorithm that overcomes this deficiency by randomization. That is, instead of passing dense
update matrices along the elimination tree, this approach passes a skinny randomized matrix
vector product. In addition to saving memory, this approach only requires skinny extend
adds (extend adds on all rows and only a subset of columns) which leads to improvements in
efficiency. This method is based on the work of Martinsson [48] which provides an algorithm
for constructing HSS matrices using randomized matrix vector products.

Amestoy et al. [7] introduce a new low-rank matrix format called the Block Low-Rank
(BLR) structure, a flat, non-hierarchical block matrix structure, for representing frontal
matrices obtained in the multifrontal elimination process. The authors show that BLR is
a good alternative to hierarchical structures like H and HSS matrices in terms of storage
costs, flop count and parallelization for representing frontal matrices. The article demon-
strates that the BLR format reduces the flop count and storage requirements for factorizing
frontal matrices arising from a variety of large matrices coming from different physics ap-
plications. However, there is no discussion of the extend-add operations for BLR matrices.
Furthermore, the article does not demonstrate a full multifrontal solver based on the BLR
frontal matrix representation.

The approach presented here is based on the multifrontal method [44]. It does not
require constructing and maintaining HSS trees and can be applied to any mesh structure.
Our method is based on the observation that the frontal matrices obtained during the
multifrontal elimination process have an HODLR structure. This observation was also
made by [58].

In order to factorize (eliminate) these frontal matrices, we present a dense HODLR
structured solver. If the rank r is O(1) (that is function of ε only), the algorithm has a
computational cost of O(r2n log2 n) for an n × n frontal matrix. When solving 3D PDEs,
we typically have that r ∈ O(n1/2). In that case, the computational cost is O(r2n), where
r is the largest rank found, at the top of the tree. This cost is, in fact, slightly favorable
compared to what is reported for HSS in [57] (see Table 4.3, p. 219), at least asymptotically
for n→∞. The log2 n factor disappears because the rank is bounded by a geometric series
associated with the rank.

We will benchmark the structured elimination (solve) process for frontal matrices cor-
responding to separators at various levels of the sparse elimination tree, for many different
types of sparse matrices. It is worth mentioning that contrary to previous works which have
mainly benchmarked matrices in the University of Florida Sparse Matrix Collections [17], we
focus on frontal matrices arising from large and complicated mesh structures. These matri-
ces are often very ill-conditioned and cannot be solved using traditional iterative techniques
like GMRES [52] with diagonal preconditioning. Our benchmarks show that obtaining a
good preconditioner for unstructured meshes is significantly harder compared to structured
meshes. Furthermore, solving 3D problems is an order of magnitude more difficult than 2D
problems as the off-diagonal rank is significantly higher in 3D. Hence, this article mainly
focuses on 3D meshes.

Table 2 shows a summary of various fast sparse matrix solvers in the literature.

3. An Iterative Solver with Direct Solver Preconditioning

In this paper, we investigate using a fast HODLR direct solver as a preconditioner to
the GMRES [52] iterative scheme. In this case, we use a relatively low accuracy for the
direct solver.
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Article Methodology Test Cases & Application

Martinsson [47] HSS compression and spiral elimination Meshes that can be partitioned into
concentric annuli

Gillman et al. [23] Approximating Schur complements as
HBS matrices and using HBS algebra.

2D elliptic boundary value problems
discretized using a 5 point stencil on
a regular square grid.

Xia et al. [58] HSS approximation of frontal matrices
and structured extend-add

2D structured meshes

Schmitz et al. [54] Modified [58] to accommodate adaptive
and unstructured grids

2D adaptive and unstructured
meshes that roughly follow the
pattern of a regular mesh

Xia [56] Introduction of reduced HSS matrices that
reduce the operation cost on HSS matri-
ces. For simplifications, the update matri-
ces are kept as dense matrices.

Helmholtz Equation in 2D and Uni-
versity of Florida Sparse Matrix
Collections [17]

Xia [57] HSS compression using randomization
techniques in [48]. Passing randomized
matrix vector products instead of dense
update matrices and performing skinny
extend-add operations.

Helmholtz Equation in 2D and Uni-
versity of Florida Sparse Matrix
Collections [17]

Amestoy et al. [7] BLR format for representing frontal ma-
trices. No discussion of BLR extend-add
process.

Large matrices coming from differ-
ent physics applications

Table 2: Summary of fast sparse direct solvers.

We will show that this approach is much faster than both a conventional LU solver and
a high accuracy direct HODLR solver. We should also mention that this preconditioning
method can be applied to any iterative solver (conjugate gradient (CG) [35], etc..).

4. A Fast Direct Solver for HODLR Matrices

One bottleneck of sparse solvers is the factorization of the dense frontal matrices that
appear during the multifrontal elimination process. To accelerate the factorization of dense
frontal matrices, we approximate them as HODLR matrices. As mentioned in Section 2.1,
HODLR matrices can be factorized in O(n log2 n) which is a significant improvement over
conventional dense factorizations which typically scale as O(n3).

4.1. HODLR Matrices

A HODLR matrix has low-rank off-diagonal blocks at multiple levels. As described in
[3], a 2-level HODLR matrix, K ∈ Rn×n, can be written as shown in Equation (2):

K =

[
K

(1)
1 U

(1)
1 (V

(1)
1,2 )T

U
(1)
2 (V

(1)
2,1 )T K

(1)
2

]
(1)

=


[

K
(2)
1 U

(2)
1 (V

(2)
1,2 )T

U
(2)
2 (V

(2)
2,1 )T K

(2)
2

]
U

(1)
1 (V

(1)
1,2 )T

U
(1)
2 (V

(1)
2,1 )T

[
K

(2)
3 (U

(2)
3 )T (V

(2)
3,4 )T

U
(2)
4 (V

(1)
4,3 )T K

(2)
4

]
 (2)
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where for a p-level HODLR matrix, K
(p)
i ∈ Rn/2p×n/2p , U

(p)
2i−1, U

(p)
2i , V

(p)
2i−1,2i, V

(p)
2i,2i−1 ∈

Rn/2p×r and r � n. Further nested compression of the off-diagonal blocks will lead to
HSS structures [3].

4.2. Solver Derivation and Algorithm

Contrary to the method introduced by Hackbusch [27] which utilizes sequential block
LU factorization, the HODLR direct solve algorithm presented in this section is based
on the Woodbury matrix identity (see for example [33, 3]). Although we do not use the
formula explicitly, we perform the exact same operations. Looking at Equation (4), our
method assumes that both diagonal blocks are nonsingular and factorizes them indepen-
dently. However, Hackbusch [27] only assumes that top diagonal block is invertible and
factorizes the top diagonal block first. He then constructs the remaining Schur complement
and continues on with the factorization. In comparing the two methods, one can see that
because of the independent factorization of the diagonal blocks, the method presented in
this section is better suited to parallel implementations.

Consider the following linear equation:

Kx = F (3)

where K ∈ Rn×n is an HODLR matrix and x, F ∈ Rn×s. Now let’s write K as a one-level
HODLR matrix and rewrite Equation (3) :

K =

[
K

(1)
1 U

(1)
1 V

(1)
1,2

T

U
(1)
2 V

(1)
2,1

T K
(1)
2

][
x
(1)
1

x
(1)
2

]
=

[
F1

F2

]
(4)

where x
(1)
i , F

(1)
i ∈ R(n

2
×s). We now introduce two new variables y

(1)
1 and y

(1)
2 :

y
(1)
1 = V

(1)
2,1

Tx
(1)
1 (5)

y
(1)
2 = V

(1)
1,2

Tx
(1)
2 (6)

Rearranging (4), we have:
K

(1)
1 0 0 U

(1)
1

0 K
(1)
2 U

(1)
2 0

−V (1)
2,1

T 0 I 0

0 −V (1)
1,2

T 0 I


︸ ︷︷ ︸

K̂


x
(1)
1

x
(1)
2

y
(1)
1

y
(1)
2


︸ ︷︷ ︸

x̂

=


F1

F2

0
0


︸ ︷︷ ︸
F̂

(7)

We now factorize the top diagonal block of K̂ which consists of K
(1)
1 and K

(1)
2 . Since this

subblock of K̂ is a block diagonal matrix, this means that we only need to factorize K
(1)
1 and

K
(1)
2 . After eliminating the top off diagonal block, we are left with the Schur complement:

S(1) =

[
I V

(1)
2,1

T (K
(1)
1 )−1U

(1)
1

V
(1)
1,2

T (K
(1)
2 )−1U

(1)
2 I

]
(8)

All we have to do now, is to solve the Schur complement:

S(1)

[
y
(1)
1

y
(1)
2

]
=

V (1)
2,1

T
(K

(1)
1 )−1F1

V
(1)
1,2

T
(K

(1)
2 )−1F2

 (9)
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At this point, we can write x
(1)
1 and x

(1)
2 in terms of (K

(1)
1 )−1 and (K

(1)
2 )−1:[

x
(1)
1

x
(1)
2

]
=

[
(K

(1)
1 )−1 0

0 (K
(1)
2 )−1

][
F1 − U (1)

1 y
(1)
2

F2 − U (1)
2 y

(1)
1

]
(10)

Since, both K
(1)
1 and K

(1)
2 are HODLR matrices, we can apply the same procedure

for factorizing them. Thus, we have arrived at a recursive algorithm for solving (7). The
factorization step corresponds to the computation and storage of all the terms that are
independent of the right hand side (i.e., the Schur complements at all levels).

4.3. Algorithm Summary

We now summarize the recursive HODLR direct solver algorithm. For a matrix such as
K ∈ Rn×n, we have to carry out the following procedure at each recursion level (p) for all
1 ≤ i ≤ 2p:

4.3.1. Factorize

1. Find the low-rank approximation of the off-diagonal blocks (U
(p)
2i−1, U

(p)
2i , V

(p)
2i−1,2i,

V
(p)
2i,2i−1).

2. Define Z0
1 = 0. For each level p, starting at the top level (p = 0), let:[

Z
(p+1)
2i−1

Z
(p+1)
2i

]
=

[
U

(p+1)
2i−1 Z

(p)
iU

(p+1)
2i

]
(11)

In the equation above, on the right-hand side, we are vertically concatenating two
matrices to form a matrix at level p+ 1.

3. Recursively solve the following equations:[
d
(p+1)
2i−1 c

(p+1)
2i−1

]
= (K

(p+1)
2i−1 )−1Z

(p+1)
2i−1 (12)[

d
(p+1)
2i c

(p+1)
2i

]
= (K

(p+1)
2i )−1Z

(p+1)
2i (13)

where d(p+1) and c(p+1) correspond to the U (p+1) and Z(p) portion of the right hand
sides respectively.

4. Obtain S
(p)
i , using Equations (8) and (9):

S
(p)
i =

[
I (V

(p+1)
2i,2i−1)

Td
(p+1)
2i−1

(V
(p+1)
2i−1,2i)

Td
(p+1)
2i I

]
(14)

5. Obtain d
(p)
i , c

(p)
i for p ≥ 1 using:

[
d
(p)
i c

(p)
i

]
=

I − [ 0 d
(p+1)
2i−1

d
(p+1)
2i 0

]
(S

(p)
i )−1

V (p+1)
2i,2i−1

T
0

0 V
(p+1)
2i−1,2i

T

[c(p+1)
2i−1

c
(p+1)
2i

]
(15)
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4.3.2. Solve

1. Define z01 = F . For each level p, starting at the top level (p = 0), let:[
z
(p+1)
2i−1

z
(p+1)
2i

]
= zpi (16)

2. Recursively solve the following equations:

x
(p+1)
2i−1 = (K

(p+1)
2i−1 )−1z

(p+1)
2i−1 (17)

x
(p+1)
2i = (K

(p+1)
2i )−1z

(p+1)
2i (18)

3. Obtain x
(p)
i for p ≥ 0 using:

x
(p)
i =

I − [ 0 d
(p+1)
2i−1

d
(p+1)
2i 0

]
(S

(p)
i )−1

V (p+1)
2i,2i−1

T
0

0 V
(p+1)
2i−1,2i

T

[x(p+1)
2i−1

x
(p+1)
2i

]
(19)

Note that (S
(p)
i )−1 was previously computed and this step is therefore only a series

of matrix-matrix products. Hence, the computational cost is small compared to the
previous factorization.

4.4. Solver Computational Cost

Assuming we use a fast (O(n)) low-rank approximation scheme, the cost of constructing
and storing an HODLR matrix is O(nr log(n)) [3], where r is the rank of approximation.
Looking at the procedure described in Section 4.3, we can write the following:

C(p)(r, s, n) = 2C(p+1)
(
r, s+ r,

n

2

)
+O(nr2) +O(nsr) (20)

where C(p)(r, s, n) is the computational cost associated with solving an n×n HODLR matrix
at level p with s right hand sides and off-diagonal blocks of rank r. Equation (20) suggests
that the cost of solving a HODLR matrix at level p with s right hand sides is made up
of three contributions. The first contribution is associated with solving the two diagonal
blocks at the lower level (p+ 1) with s+ r right hand sides. The second contribution comes
from constructing the Schur complement S(p) (Equation (8)) and the third contribution is
the cost of constructing the right hand side of Equation (9). Writing Equation (20) as a
sum, we have:

C(0)(r, s, n) =

log(n
r )∑

p=1

O(pnr2 + nsr) (21)

If the off-diagonal rank is constant throughout various levels in the HODLR tree, the
computational cost of the algorithm is O(r2n log2(n)) according to Equation (21).

However, in many practical cases, the rank decays from root to leaves in the HODLR

tree. Assume we can approximate r as O(n
1/2
p ) where np is the size of a block at level

p. Then, we have: rp = O( r1
2p/2

), where r1 is the rank at the top level. According to
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Equation (20), the total computational cost involves two sums:

log(n
r )∑

p=1

r2p = O(r21)

log(n
r )∑

p=1

rp

p∑
q=2

(s+ rq) = O(

log(n
r )∑

p=1

rp(s+ r1)) = O(r1(s+ r1))

Note in particular that the second sum is O(r21) instead of O(r2 log2 n). Finally:

C(0)(r, s, n) = O(nr2) (22)

This result shows that in cases where the off-diagonal rank is decreasing, HODLR solvers
can become very efficient and can compete with HSS solvers.

5. Low-Rank Approximation Schemes

In this section, we discuss the various low-rank approximations schemes used for ob-
taining a low-rank representation of the off-diagonal blocks of the HODLR matrices in
consideration. Although a variety of low-rank approximation algorithms (SVD, rank re-
vealing LU, rank revealing QR, randomized algorithms, etc) are available, we require a
scheme that has a computational cost of O(rn) where r is the rank of approximation and n
is the size of the matrix. In the context of this work, we cannot use randomized SVD meth-
ods since no fast matrix-vector product algorithm applies in our benchmark settings. This
limits our choices to methods like Chebyshev, partial pivoting ACA (Section 5.1) and the
pseudo-skeleton low-rank approximation algorithm (Section 5.3). Each of these methods
has certain drawbacks:

• The Chebyshev low-rank approximation algorithm is only suited to cases dealing with
interaction of points via smooth kernels.

• The partial pivoting ACA algorithm works well when the leverage score of the ma-
trix [46] is uniform. That is, all rows and columns have fairly the same importance
when constructing the low-rank approximation. However, in cases where certain rows
or columns play a special role and are critical to include in the low-rank approxima-
tion, ACA might fail to properly identify them, resulting in an inaccurate low-rank
approximation.

• The accuracy of the pseudo-skeleton low-rank approximation scheme strongly depends
on the method used for selecting rows and columns.

In order to construct a fast and robust low-rank approximation scheme, we introduce a
method for selecting rows and columns in the pseudo-skeleton low-rank approximation al-
gorithm. We call this new method the boundary distance low-rank approximation scheme
(BDLR).
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5.1. ACA Low-Rank Approximation

We use the ACA algorithm with partial pivoting as described by Rjasanow [51]. This
algorithm is an algebraic low-rank approximation scheme and works on any dense matrix
without any prior knowledge of the matrix. Both full pivoting and partial pivoting ACA
search the matrix or the remaining Schur complement for the largest entry and use this
entry as the pivot. The full pivoting algorithm, similar to rank revealing LU, scans all the
matrix entries. Partial pivoting ACA avoids this expensive search by looking at the largest
entry in a single row/column at each step. The partial pivoting ACA algorithm has a cost
of O(r(m+ n)), for a matrix A ∈ Rm×n [51], where r is the rank of approximation.

5.2. Randomized Algorithms

Randomized algorithms as described by [53, 34, 18, 21] arrive at a low-rank approxima-
tion of matrix A by forming a lower dimensional matrix Y obtained from sampling rows
and/or columns of the original matrix or by applying random projections to matrix A. They
then obtain the orthonormal basis Q for the range of Y and approximate A as:

A ≈ QQTA (23)

For a matrix of size n × n, and without a fast matrix-vector product, these methods have
a computational cost of O(n2). Otherwise, the cost can be brought down to O(n) or
O(n log n).

5.3. Pseudo-Skeleton and Boundary Distance Low-Rank Approximation

In order to construct a fast and accurate solver, we need an accurate and robust method
to construct low-rank approximations. As we will show, BDLR is very robust and leads
to accurate low-rank approximations. It works well in problems where the matrix can
be related to a Green’s function. (This is true for all linear PDE problems. Note that
the Green’s function needs to be smooth, with a singularity at the origin). In that case,
large entries correspond to points close in space, which we associate as a simplification to
nodes in the graph that are connected by few edges. Although this is a simple heuristic,
it worked very well in our examples and allowed us to efficiently form accurate low-rank
approximations.

The BDLR algorithm is a row and column selection algorithm in the pseudo-skeleton
low-rank approximation scheme. The pseudo-skeleton algorithm allows us to construct a
low-rank approximation of a matrix by choosing a subset of rows and columns of that
matrix. As mentioned in [25], for a low-rank matrix A, if we pick a set of row indices
(i ∈ I = {i1, ..., ir}) and a set of column indices (j ∈ J = {j1, ..., jr}) and define matrices C
and R such that :

R = A(I, :) (24)

C = A(:, J) (25)

Then, we can approximate A to be :

A ≈ CÂ−1R (26)

where Â = A(I, J). If Â is not a square matrix or rank deficient, the Moore-Penrose
pseudoinverse is needed for Â−1. In order to achieve a certain accuracy, one can increase
the number of chosen rows and columns until the desired accuracy is reached. To monitor
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the error in the scheme, we pick rows and columns that are not in the set of rows and columns
already chosen for low-rank approximation. We then monitor the relative Frobenius norm
error on these rows and columns and increase the rank of the approximation until the
relative Frobenius norm error falls below a certain tolerance.

For a rank r pseudo-skeleton low-rank approximation, the inversion of Â has a compu-
tational cost of O(r3). Monitoring the error has a computational cost of O(mr + nr − r2)
for A ∈ Rm×n. Thus, this method has an asymptotic complexity of O(nr).

As mentioned in Section 1, we are predominantly interested in solving dense frontal
matrices arising from the multifrontal elimination process of sparse finite-element matrices.
In this case, every frontal matrix has a corresponding sparse matrix, which is a diagonal sub-
block of the original finite-element matrix. This sparse matrix describes a graph that has
rows and columns of the dense matrix as its vertices and the edges in this graph correspond
to nonzero entries in the sparse matrix and describe the connection between these points.
We use this graph in constructing the low-rank approximation of the off-diagonal blocks.

Entries in dense matrix blocks that correspond to FEM or BEM applications can be
related to the inverse of a Green’s function. The Green’s function is large at short distances
and then decays smoothly. We have a similar behavior for our dense blocks. Hence, we want
to identify row/column pairs corresponding to large entries. These correspond to nodes in
the graph that are close, that is connected by few edges. Therefore we use the distance
between a row vertex in the graph and the column vertex set (e.g., if the vertex corresponds
to a row, we consider the distance to the set of vertices associated with the columns, and
vice versa) as a good criterion to determine whether to pick a row/column or not.

For a set of row (column) vertices, we define the boundary vertices as the subset of
vertices for which there exists an edge in the interaction graph connecting them to a vertex
in the column (row) set. Figure 1(a) shows an example of a matrix which corresponds to the
interactions of a set of row points with a set of column points. In this particular example,
the blue vertices are the boundary vertices. That is, they are the vertices closest to the
boundary between the row and column set of points.

Now that we have defined the boundary nodes, we can designate an index d for every
vertex in the row (column) set. This index is defined as the distance of a vertex to the
vertices in the boundary set. In order to construct the low-rank approximation, we choose
rows and columns based on their d index value. That is, we first choose rows (columns)
that are in the boundary set (d = 0). We then add rows (columns) with a distance of one to
the boundary (d = 1). For example, in Figure 1(a), the green nodes are labeled (d = 1) as
they are separated from the blue boundary nodes (d = 0) with only one edge. We continue
adding points based on the d index, until we reach the desired accuracy. Figure 1(b) shows
that the BDLR algorithm approximates the interaction of a set of row and column nodes
with the interaction of the ones that are closest to the boundary (interaction of blue nodes).

As mentioned above, calculating the pseudo skeleton low-rank approximation requires
us to calculate the pseudoinverse of Â. For the BDLR algorithm, instead of using the SVD
for calculating the pseudoinverse (Â−1), we use a full pivoting LU factorization, which is
slightly cheaper:

Â = P−1LUQ−1 (27)

where P and Q are permutation matrices. Let r be the rank of Â. Define R̃ and C̃ as:

C̃ = (CQ)(:, 1 : r)(U(1 : r, 1 : r))−1 (28)

R̃ = (L(1 : r, 1 : r))−1(PR)(1 : r, :) (29)
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where C and R are the subset of columns and rows we have picked using the BDLR scheme.
We then have:

A ≈ C̃ R̃ (30)

(U(1 : r, 1 : r))−1 and (L(1 : r, 1 : r))−1 correspond to lower-triangular solves. The inverse
matrices are not explicitly computed.

d=0d=1d=2 d=0 d=1 d=2

Row Set Column Set

Column Set

R
ow

S
et

(a) Full Matrix Representation

d=0d=1d=2 d=0 d=1 d=2

Row Set Column Set

Column Set

R
ow

S
et

(b) Low-Rank Matrix Representation

Figure 1: Classification of vertices based on distance from the other set.

6. Application for Multifrontal Solve Process

In this section, we demonstrate how our fast dense solver algorithm can be applied
to a sparse multifrontal solve process. We will not explain the multifrontal algorithm in
detail. For a detailed review of the multifrontal method see [44]. We applied our fast
solver as described in Section 3 to a variety of 3D finite-element problems. We investigate
frontal matrices at various levels of the sparse matrix elimination tree corresponding to the
elasticity equation. We use SCOTCH [50] to do the reordering in the sparse multifrontal
solver. Our goal is to apply our fast dense solver to the dense frontal matrices obtained
in the multifrontal elimination process of a sparse finite-element matrix, and speed up the
multifrontal algorithm to approximately O(N4/3). The results shown in this paper can
be viewed as a proof of concept of this idea. We should also mention that the approach
presented in this article is fully general. We use SCOTCH [50], (which can partition any
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graph) to obtain the separators and the resulting separators can always be handled by our
algorithm, without any change.

6.1. Elasticity Equation for a 3D Beam and a Cylinder Head Geometry

We consider the 3D Navier-Cauchy elastostatics equations with a beam geometry (fig-
ure 2(a)):

(λ+ µ)∇(∇ · u) + µ∇2u + F = 0 (31)

where u is the displacement vector and λ and µ are Lamé parameters. For the beam geom-
etry, we use 10-node tetrahedral elements (see for example Section 10.2 of this document3)
to discretize the above equation. For the cylinder head geometry, the mesh is composed of
8-node hexahedral, 6-node pentahedral and 4-node tetrahedral solid elements, and also 3-
node shell elements. Figures 2(a) and 2(b) show a sample beam and cylinder head geometry
respectively. As can be seen, the meshes are unstructured for both geometries.

(a) Beam (b) Cylinder Head

Figure 2: 3D unstructured mesh for the beam and cylinder head geometries. .

6.2. FETI-DP Solver for a 3D Elasticity Problem

Domain decomposition (DD) methods solve a problem by splitting it into several subdo-
mains. Local problems are solved on each subdomain and a global linear system is used to
couple these local solutions into a global solution for the entire problem [10]. FETI meth-
ods [20, 42] are a family of domain decomposition algorithms with Lagrange multipliers
that have been developed for the fast sequential and parallel iterative solution of large-scale
systems of equations arising from the finite-element discretization of partial differential
equations [20].

In this article, we consider two sparse local FETI-DP matrices arising from the finite-
element discretization of an elasticity problem in three dimensions. The first matrix cor-
responds to solving the elasticity equation with a structured mesh in three dimensions
(figure 3(a)) while the second matrix corresponds to solving the same problem using the

3http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch10.d/AFEM.Ch10.pdf
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(a) Structured Mesh (b) Unstructured Mesh

Figure 3: FETI-DP benchmark meshes. Figure (a) shows a structured and figure (b) shows an unstructured
3D FETI-DP mesh.

geometry of an engine in an unstructured mesh (figure 3(b)). Both matrices correspond
to the stiffness matrix of one subdomain of a linear elastic 3D solid finite element model
(Equation (31)) of their respective geometry. The discretization for the cube geometry uses
8-node (trilinear) hexahedral elements (see for example Section 11.3 of this online docu-
ment4) while the discretization for the engine geometry uses 10-node tetrahedral elements
(see for example Section 10.2 of this document5).

7. Numerical Benchmarks

In this section we show some numerical results and benchmarks of our code. As our
code uses the Eigen C++ library for matrix manipulations, we use the Eigen direct solvers
as benchmark references.

7.1. Elasticity Equation for a 3D Beam and a Cylinder Head Geometry

We apply our solvers to frontal matrices arising from the multifrontal elimination of 3D
elastostatics sparse matrices (Figures 2(a), 2(b)). We compare the fast BDLR direct solver
and the ACA direct solver as preconditioners to the GMRES iterative scheme. Because of
the particular geometry of the beam mesh, all frontal matrices are relatively small (≤ 2K)
for this particular case.

As can be seen in Figure 5, the singular values of a sample frontal matrix off-diagonal
block decay rapidly and the block is in fact low-rank. Figures 4(a) and 4(b) show the
distance of row (column) index of each pivot obtained in the full pivoting LU factorization
from the boundary between the row and column sets of vertices in the interaction graph for
the beam problem. As we expected, larger pivots correspond to rows and columns that are
closer to the boundary. Figures 6(a) and 6(b) compares the relative error in approximating
the top off-diagonal block using SVD versus the BDLR approximation for the beam and

4http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch11.d/AFEM.Ch11.pdf
5http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch10.d/AFEM.Ch10.pdf

16

http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch11.d/AFEM.Ch11.pdf
http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch10.d/AFEM.Ch10.pdf


cylinder head geometry respectively. That is, each point (x,y) in this plot represents the
relative error in approximation (y) if we wanted a rank (x) approximation using one of
the low-rank approximation algorithms. Needless to say, this corresponds to choosing the
top singular values in the SVD decomposition and choosing rows and columns that are
closest to the boundary in the BDLR approximation. As can be seen in the plot, the curves
associated with the BDLR scheme have a tolerance (ε). This means that after the LU
factorization of Â (see Section 5.3), we only keep rows and columns corresponding to pivots
that are larger than ε times the magnitude of the largest pivot. We use this convention for
all BDLR approximations in this paper. We can observe that as we decrease ε, we obtain
a more accurate low-rank representation via the BDLR algorithm for the beam geometry.
For the more complicated cylinder head geometry, we see that in order to obtain a good
approximation for low values of ε, more rows and columns need to be included in the
low-rank approximation which corresponds to a higher depth parameter (d) in the BDLR
scheme.

Figures 7(a) and 7(b) show a level by level timing of the factorization, solve and low-
rank approximation of the BDLR solver applied to sample frontal matrices corresponding
to the beam and cylinder head geometries respectively. As can be seen, the off-diagonal
rank decays from root to leaf which confirms our assumptions in Section 4.4. Figures 8(a)
and 8(b) show a detailed convergence analysis and comparison between the BDLR and ACA
solvers as preconditioners to the GMRES iterative scheme.

7.2. FETI-DP Solver for a 3D Elasticity Problem

We apply the BDLR and ACA direct solver preconditioner to frontal matrices arising
from the multifrontal elimination of local matrices in a FETI-DP solver. We considered
two different classes of problems. One corresponds to solving the elasticity equation (Equa-
tion (31)) in a cube geometry with a structured mesh. The other corresponds to solving
the same equation in an engine geometry with an unstructured mesh.

Figures 4(c) and 4(d) show that the largest pivot values of a sample off-diagonal block
of a frontal matrix arising from the cube geometry correspond to rows and columns that
are closer to the boundary. Figures 4(e) and 4(f) show that for the unstructured engine
mesh, although most large pivots correspond to rows and columns near the boundary, there
are some important rows and columns that are not included in the points closest to the
boundary.

Figures 6(c) show that the error in the BDLR method is comparable to the SVD (op-
timal) algorithm for the structured cube problem. Figure 6(d) shows that similar to Fig-
ure 6(b), we need to include more points (rows and columns), in order to achieve an accurate
low-rank approximation for ε = 10−10. In other words, if there are insufficient rows and
columns in the BDLR approximation, the matrix Â (see Section 5.3) becomes low-rank and
results in a LU factorization with vey small pivots. These small pivots are the cause of the
large relative error as they become very large when inverted.

Figures 8(c) and 8(d) show the convergence rate of various BDLR and ACA direct
solver preconditioners for a sample frontal matrix arising from the cube and engine mesh
respectively.

7.3. Summary

Table 3 summarizes the solver timings for various frontal matrices that we benchmarked.
As can be seen, the iterative solve scheme with both a fast BDLR and ACA direct solver
preconditioner can reach near machine accuracy much faster than a conventional LU solver
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in almost all cases. Furthermore, both BDLR and ACA achieve a relatively good speedup
for all cases. However, for very large cases (1.5M structured cube and 2.3M unstructured
cylinder head), one can observe that BDLR achieves higher speedup compared to ACA.
One important point to note, is that convergence of both BDLR and ACA depends on the
chosen parameters. For ACA, one can get better results by decreasing the tolerance. For
BDLR, in order to achieve a given tolerance, one has to increase the depth parameter (d).
It is possible for BDLR not to converge for a certain tolerance and a depth parameter. This
is because the depth and accuracy are related. In particular, the efficiency of the method is
sometimes found to degrade if we reduce ε too much without increasing d sufficiently. This
corresponds to the fact that we are trying to get a more accurate low-rank approximation
but the pool of sample points is not sufficiently large to provide the desired accuracy. In
that case, reducing ε may, in fact, lead to a degradation in the preconditioner, rather than
an improvement.

An important advantage of the BDLR algorithm is that the rows and columns required
for constructing the low-rank approximation are known a priori based on the structure
of the separator graph. As we will demonstrate in a future article, this will allow us to
significantly accelerate the extend-add process and allows us to avoid constructing large
dense frontal and update matrices as we will only keep track of rows and columns required
by the BDLR algorithm.

Matrix Mesh
Level

Matrix Size ACA BDLR
LU

Speed-up

Type Type Sparse Dense
1e-1 1e-3 1e-5 1e-1 1e-3 1e-5

ACA BDLR
T I T I T I T I T I T I

FETI Local
Cube

1st 1.5M 23K 1.32e2 223 2.85e2 72 7.82e2 15 1.12e2 34 2.90e2 13 6.71e2 7 7.29e2 5.52 6.51
1st

400K

7.5K 6.99e0 141 1.78e1 20 4.29e1 3 8.32e0 23 2.28e1 9 4.77e1 7 2.38e1 3.40 2.86
2nd 5.2K 2.29e0 77 6.91e0 19 1.51e2 3 3.23e0 17 9.03e0 7 1.83e1 6 8.53e0 3.72 2.64
2nd 5.0K 2.50e0 74 7.82e0 19 1.68e1 2 3.38e0 17 9.75e0 6 2.06e1 4 7.40e0 2.96 2.18
3rd 2.0K 2.77e-1 45 6.15e-1 9 1.21e0 3 3.33e-1 12 7.86e-1 5 1.44e0 4 5.41e-1 1.95 1.62
3rd 2.8K 4.34e-1 61 1.40e1 13 2.89e1 3 7.17e-1 15 1.76e0 7 3.72e0 11 1.31e0 3.01 1.83
3rd 2.2K 2.22e-1 29 5.84e-1 7 1.07e0 2 2.91e-1 10 6.47e-1 5 1.12e0 4 6.92e-1 3.11 2.37
3rd 2.5K 3.95e-1 41 1.09e1 7 2.61e0 2 5.74e-1 13 1.33e0 5 2.65e0 4 1.00e0 2.53 1.74
4th 2.5K 4.65e-1 57 1.90e0 13 3.90e0 2 8.83e-1 13 2.58e0 6 4.77e0 5 1.00e0 2.15 1.13
4th 2.2K 3.06e-1 35 1.24e0 7 2.46e0 2 6.06e-1 12 1.60e0 5 3.23e0 4 6.52e-1 2.04 1.07

Engine
6th

400K
3.8K 5.27e0 601 6.05e0 268 4.20e0 16 2.00e0 157 2.88e0 24 3.92e0 30 3.24e0 0.77 1.62

9th 2.8K 1.31e0 248 4.17e-1 26 7.25e-1 3 5.43e-1 80 4.04e-1 22 6.56e-1 15 1.42e0 3.41 3.51
13th 2.5K 1.34e0 248 4.14e-1 26 7.24e-1 3 3.93e-1 54 4.91e-1 18 8.37e-1 17 9.60e-1 2.31 2.44

Stiffness
Beam

1st

300K

1.9K x x 5.67e-1 13 9.57e-1 4 5.14e-1 63 8.95e-1 14 1.60e0 7 4.38e-1 0.77 0.85
2nd 1.9K 1.31e0 358 5.45e-1 7 9.44e-1 2 4.09e-1 30 8.37e-1 10 1.36e0 4 4.50e-1 0.83 1.10
2nd 1.9K x x 4.88e-1 10 9.28e-1 4 4.46e-1 60 7.84e-1 14 1.40e0 5 4.21e-1 0.86 0.94
3rd 1.9K 6.67e-1 185 4.44e-1 6 9.02e-1 2 3.16e-1 27 8.17e-1 10 1.44e0 4 4.03e-1 0.91 1.27
3rd 1.9K 1.19e0 369 4.64e-1 8 9.76e-1 2 3.84e-1 29 7.64e-1 11 1.48e0 4 4.57e-1 0.98 1.19

CHead
5th 2.3M 24K 3.84e2 829 x x 1.50e2 22 x x 8.27e1 125 9.50e1 103 8.25e2 5.5 9.98
2nd

330K
4.8K 4.69e0 265 3.81e0 24 1.07e1 3 2.45e0 112 2.97e0 92 4.54e0 94 6.56e0 1.72 2.68

4th 2.6K 4.61e-1 88 9.85e-1 22 3.17e0 5 4.16e-1 26 1.03e0 18 1.74e0 17 1.06e0 2.30 2.54

Table 3: Summary of solver speed for various benchmark cases. All timings are measured in seconds. The
GMRES accuracy and maximum number of iterations was set to 10−10 and 1000 respectively for all cases.
The letters ‘x’ depicts that the solver did not converge within 1000 iterations. All LU timings are obtained
using Eigen’s [39] partial pivoting LU solver. Level indicates the level of the dense frontal matrix in the
sparse elimination tree. ‘T’ and ‘I’ refer to the total solve time and the number of iterations in the iterative
solver respectively. Iterative solver times depicts total solve time for the iterative solver with a fast direct
BDLR (ACA) solver preconditioner (low-rank computation, direct solve, iteration, etc). For BDLR, we used
a depth of 1, 3 and 5 for tolerances 10−1, 10−3 and 10−5 respectively. For the 4.8K and 23K cylinder head
matrices, the results on the last BDLR column were obtained using a tolerance of 10−4 and a depth of 10.
We have calculated the speedups by comparing the runtime of the conventional LU solver to the lowest
runtime for each case.

8. Conclusion and Future Work

To reach our final goal of constructing a fast multifrontal solver, we need to improve the
slow dense solves for the frontal matrices, which we demonstrate through various bench-
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(b) Col Distance (Unstructured Beam)
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(c) Row Distance (Structured Cube)
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Figure 4: Row (column) distance versus pivot size for a variety of off-diagonal blocks of sample frontal
matrices. Row (column) distance is the distance corresponding to the row (column) index of a pivot from
the boundary as defined in Figure 1(a). This graph shows that large pivots are near the boundary interface,
whereas the pivot size decays as we move away. This justifies heuristically our approach with BDLR. a,b) An
off diagonal block of an unstructured beam geometry frontal matrix of size 0.95K. c,d) An off diagonal block
of an structured cube geometry frontal matrix of size 3.75K. e,f) An off diagonal block of an unstructured
engine geometry frontal matrix of size 1.9K.
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Figure 5: Singular value decay for a variety of sample off-diagonal blocks of frontal matrices. The beam,
cylinder head, cube and engine geometries correspond to blocks of size 0.95K, 1.3K, 3.75K and 1.9K respec-
tively.

marks using the HODLR solver. Using block low-rank structures like the HODLR structure
significantly reduces the memory consumption of a multifrontal sparse solver. In practice,
this is currently one of the main bottlenecks on existing hardware.

One of the major challenges in constructing a fast direct sparse solver is the need for
a low-rank approximation scheme that works for algebraic Schur complements, as found
in multifrontal solvers. We have addressed this issue by introducing the BDLR low-rank
approximation scheme which, as we have shown, is a very robust algorithm when applied to
such matrices. The major advantage of BDLR over ACA is the fact that it allows us to only
keep track of certain rows an columns in the multifrontal extend-add process. As we will
show in a follow-up paper, this significantly improves the runtime and memory consumption
of the solve process.

One of the drawbacks of this method is that it relies on off-diagonal blocks being low-
rank, which may not be true asymptotically as N → ∞ for points distributed on a 2D or
3D manifold. More precisely, in 2D, the rank stays fairly constant but in 3D, there is a slow
growth like n1/2 where n is the size of the dense matrix or front. However, the HODLR
scheme has a computational cost of O(r2n log2 n) with a relatively small constant in front
of r2n log2 n. As a result, even if the rank r increases, the method stays competitive.

A major advantage of the mentioned direct solve algorithm is its parallel scalability.
Since we make two independent recursive calls on each of the diagonal blocks, this method
will scale very well. As a result, despite its somewhat higher number of flops (compared to
an optimal O(n) method), the algorithm may run faster on large-scale parallel computers
where communication and concurrency are key.

We estimate that the direct solver presented here starts being faster as soon as the
rank r is r ∼ 0.4n compared to an (2/3)n3 LU factorization algorithm. Recent work by
Ambikasaran and Darve [2] has overcome the growth of rank in all dimensions by requiring
a compression of well-separated clusters only. It is also worth mentioning that Ho and
Ying [37] attempt to reduce the rank, when using interpolative decompositions to build low-
rank approximations, with a scheme that, in essence, is able to reduce the dimensionality
of the problem in a recursive manner.
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Figure 6: BDLR error vs SVD error for a variety of sample frontal matrix off-diagonal blocks. BDLR
accuracy is used to truncate the pivots and number of points is the size of the block for full pivoting in the
pseudo-skeleton approach (size of Â in Equation (27)). a) An off diagonal block of an unstructured beam
geometry frontal matrix of size 0.95K. b) An off diagonal block of an unstructured cylinder head geometry
frontal matrix of size 1.3K. c) An off diagonal block of an structured cube geometry frontal matrix of size
3.75K. d) An off diagonal block of an unstructured engine geometry frontal matrix of size 1.9K.
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Figure 7: Off-diagonal rank and level by level timings for various frontal matrices. The off-diagonal ranks
correspond to a BDLR low-rank approximation scheme with depth of 1 and tolerance of 10−1. The left axis
corresponds to runtimes for various stages in the solve process as a function of HODLR level. The right
axis shows the off-diagonal rank versus HODLR level. a) A frontal matrix corresponding to an unstructured
beam geometry of size 1.9K. b) A frontal matrix corresponding to an unstructured cylinder head mesh of
size 2.6K. c) A frontal matrix corresponding to a structured cube mesh of size 7.5K. d) A frontal matrix
corresponding to an unstructured engine mesh of size 3.8K.
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Figure 8: Convergence analysis for BDLR and ACA preconditioners with the GMRES iterative scheme for
a variety of frontal matrices. The curve labeled ‘Diag’ corresponds to GMRES with diagonal precondition-
ing. a) A frontal matrix corresponding to an unstructured beam mesh of size 1.9K. b) A frontal matrix
corresponding to an unstructured cylinder head mesh of size 2.6K. c) A frontal matrix corresponding to a
structured cube mesh of size 7.5K. d) A frontal matrix corresponding to an unstructured engine mesh of size
3.8K.
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