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WELL-CONDITIONED FRACTIONAL COLLOCATION METHODS USING

FRACTIONAL BIRKHOFF INTERPOLATION BASIS

YUJIAN JIAO1, LI-LIAN WANG2∗ AND CAN HUANG3

Abstract. The purpose of this paper is twofold. Firstly, we provide explicit and compact formu-
las for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral
differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points.
We show that in the Caputo case, it suffices to compute F-PSDM of order µ ∈ (0, 1) to com-
pute that of any order k + µ with integer k ≥ 0, while in the modified RL case, it is only
necessary to evaluate a fractional integral matrix of order µ ∈ (0, 1). Secondly, we introduce
suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial
basis functions with remarkable properties: (i) the matrix generated from the new basis yields
the exact inverse of F-PSDM at “interior” JGL points; (ii) the matrix of the highest fractional
derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear
system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of
the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation
schemes using the new basis can solved by an iterative solver within a few iterations. Notably,
the inverse can be computed in a very stable manner, so this offers optimal preconditioners for
usual fractional collocation methods for fractional differential equations (FDEs). It is also note-
worthy that the choice of certain special JGL points with parameters related to the order of the
equations can ease the implementation. We highlight that the use of the Bateman’s fractional
integral formulas and fast transforms between Jacobi polynomials with different parameters, are
essential for our algorithm development.

1. Introduction

Fractional differential equations have been found more realistic in modelling a variety of physical

phenomena, engineering processes, biological systems and financial products, such as anomalous

diffusion and non-exponential relaxation patterns, viscoelastic materials and among others. Typ-

ically, such scenarios involve long-range temporal cumulative memory effects and/or long-range

spatial interactions that can be more accurately described by fractional-order models (see, e.g.,

[38, 36, 24, 12, 13] and the references therein).

2000 Mathematics Subject Classification. 65N35, 65E05, 65M70, 41A05, 41A10, 41A25.
Key words and phrases. Fractional differential equations, Caputo fractional derivative, (modified) Riemann-

Liouville fractional derivative, fractional Birkhoff interpolation, interpolation basis polynomials, well-conditioned
collocation methods.

1Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China, and Scientific Com-
puting Key Laboratory of Shanghai Universities. This author is supported in part by NSFC grants (No. 11171227
and No. 11371123), Natural Science Foundation of Shanghai (No.13ZR1429800), and the State Scholarship Fund of
China (No. 201308310188).

2∗(Corresponding author: lilian@ntu.edu.sg) Division of Mathematical Sciences, School of Physical and Math-
ematical Sciences, Nanyang Technological University, 637371, Singapore. The research of this author is partially
supported by Singapore MOE AcRF Tier 1 Grant (RG 15/12), Singapore MOE AcRF Tier 2 Grant (MOE 2013-
T2-1-095, ARC 44/13) and Singapore A∗STAR-SERC-PSF Grant (122-PSF-007).

3School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling & High Per-
formance Scientific Computing, Xiamen University, Fujian 361005, China. The research of this author is supported
by National Natural Science Foundation of China under Grant 11401500.

The first and last authors thank the hospitality of the Division of Mathematical Sciences, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore, for hosting their visit.

1

http://arxiv.org/abs/1503.07632v2


2 Y. JIAO, L. WANG & C. HUANG

One challenge in numerical solutions of FDEs resides in that the underlying fractional integral

and derivative operators are global in nature. Indeed, it is not surprising to see the finite dif-

ference/finite element methods based on “local operations” leads to full and dense matrices (cf.

[35, 32, 40, 34, 15, 16, 42, 22] and the references therein), which are expensive to compute and

invert. It is therefore of importance to construct fast solvers by carefully analysing the structures of

the matrices (see, e.g., [44, 31]). This should be in marked contrast with the situations when they

are applied to differential equations of integer order derivatives. In this aspect, the spectral method

using global basis functions appears to be well-suited for non-local problems. However, only limited

efforts have been devoted to this very promising approach (see, e.g., [29, 30, 28, 49, 48, 9]), when

compared with a large volume of literature on finite difference and finite element methods.

Another more distinctive challenge in solving FDEs lies in that the intrinsic singular kernels

of the fractional integral and derivative operators induce singular solutions and/or data. Just to

mention a simple FDE involving RL fractional derivatives order µ ∈ (0, 1):
(

R
−1D

µ
x u

)
(x) = 1 for

x ∈ (−1, 1), such that u(−1) = 0, whose solution behaves like u(x) ∼ (1+x)µ. Accordingly, it only

has a limited regularity in a usual Sobolev space, so the naive polynomial approximation has a poor

convergence rate. Zayernouri and Karniadakis [49] proposed to approximate such singular solutions

by Jacobi poly-fractonomials (JPFs), which were derived from eigenfunctions of a fractional Sturm-

Liouville operator. Chen, Shen and Wang [9] modified the generalised Jacobi functions (GJFs)

introduced earlier in Guo, Shen and Wang [19], and rigorously derived the approximation results in

weighted Sobolev spaces involving fractional derivatives. The JPFs turned out to be special cases

of GJFs, and the GJF Petrov-spectral-Galerkin methods could achieve truly spectral convergence

for some prototypical FDEs. We also refer to [45] for interesting attempts to characterise the

regularity of solutions to some special FDEs by Besov spaces. It is also noteworthy that the

analysis of spectral-Galerkin approximation in [29, 30] was under the function spaces and notion

in [16], and in [22], the finite-element method was analyzed for the case with smooth source term

but singular solution.

It is known that by pre-computing the pseudospectral differentiation matrices (PSDMs), the

collocation method enjoys a “plug-and-play” function with simply replacing derivatives by PSDMs,

so it has remarkable advantages in dealing with variable coefficients and nonlinear PDEs . However,

the practicers are usually plagued with the dense, ill-conditioned linear systems, when compared

with properly designed spectral-Galerkin approaches (see, e.g., [8, 39]). The “local” finite-element

preconditioners (see, e.g., [25]) and “global” integration preconditioners (see, e.g., [11, 18, 20, 14,

46, 47]) were developed to overcome the ill-conditioning of the linear systems. When it comes

to FDEs, it is advantageous to use collocation methods, as the Galerkin approaches usually lead

to full dense matrices as well. Recently, the development of collocation methods for FDEs has

attracted much attention (see, e.g., [28, 50, 43, 17]). It was numerically testified in [28, 50] that

for both Lagrange polynomial-based and JPF-based collocation methods, the condition number of

the Caputo F-PSDM of order µ behaves like O(N2µ) which is consistent with the integer-order

case. However, it seems very difficult to construct preconditioners from finite difference and finite

elements as they own involve full and dense matrices and suffer from ill-conditioning.

The main purpose of this paper is to construct integration preconditioners and new basis func-

tions for well-conditioned fractional collocation methods from some suitably defined fractional

Birkhoff polynomial interpolation problems. In [46], optimal integration preconditioners were de-

vised for PSDMs of integer order, which allows for stable implementation of collocation schemes

even for thousands of collocation points. Following the spirit of [46], we introduce suitable frac-

tional Birkhoff interpolation problems at general JGL points with respect to both Caputo and

(modified) Riemann-Liouville fractional derivatives (note: the RL fractional derivative is modified
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by removing the singular factor so that it is well defined at every collocation point). As we will see,

the extension is nontrivial and much more involved than the integer-order derivative case. Here,

we restrict our attention to the polynomial approximation, though the ideas and techniques can be

extended to JPF- and GJF-type basis functions. On the other hand, using a suitable mapping, we

can transform the FDE (e.g., the aforementioned example) and approximate the smooth solution

of the transformed equation, which is alternative to the direct use of JPF or GJF approximation

to achieve spectral accuracy for certain special FDEs.

We highlight the main contributions of this paper in order.

• From the fractional Birkhoff interpolation, we derive new interpolation basis polynomials

with remarkable properties:

(i) It provides a stable way to compute the exact inverse of Caputo and (modified)

Riemann-Liouville fractional PSDMs associated with “interior” JGL points. This

offers integral preconditioners for fractional collocation schemes using Lagrange inter-

polation basis polynomials.

(ii) Using the new basis, the matrix of the highest fractional derivative in a collocation

scheme is identity, and the F-PSDMs are not involved. More importantly, the resulted

linear systems can be solved by an iterative method converging within a few iterations

even for a very large number of collocation points.

• We propose a compact and systematic way to compute Caputo and (modified) Riemann-

Liouville F-PSDMs of any order at JGL points. In fact, we can show that the computation

of F-PSDM of order k + µ with k ∈ N and µ ∈ (0, 1) boils down to evaluating (i) F-

PSDM of order µ in the Caputo case, and (ii) a modified fractional integral matrix of

order µ in the Riemann-Liouville case. Using the Bateman’s fractional integral formulas

and the connection problem, i.e., the transform between Jacobi polynomials with different

parameters, we obtain the explicit formulas of these matrices.

The rest of the paper is organised as follows. The next section is for some preparations. In Sec-

tion 3, we present algorithms for computing Caputo and (modified) Riemann-Louville F-PSDMs.

In Sections 4-5, we introduce fractional Birkhoff polynomial interpolation and compute new basis

functions. Then we are able to stably compute the inverse of F-PSDMs at “interior” JGL points

and construct well-conditioned collocation schemes. The final section is for numerical results and

concluding remarks.

2. Preliminaries

In this section, we make necessary preparations for subsequent discussions. More precisely, we

first recall the definitions of fractional integrals and derivatives. We then collect some important

properties of Jacobi polynomials and the related Jacobi-Gauss-Lobatto interpolation. We also

highlight in this section the transform between Jacobi polynomials with different parameters,

which is related to the so-called connection problem.

2.1. Fractional integrals and derivatives. Let N and R be the sets of positive integers and

real numbers, respectively, and denote by

N0 := {0} ∪ N, R
+ :=

{
a ∈ R : a > 0

}
, R

+
0 := {0} ∪ R

+. (2.1)

The definitions of fractional integrals and fractional derivatives in the Caputo and Riemann-

Liouville sense can be found from many resources (see, e.g., [38, 12]): For ρ ∈ R
+, the left-sided
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and right-sided fractional integrals of order ρ are defined by

(aI
ρ
xu)(x) =

1

Γ(ρ)

∫ x

a

u(y)

(x − y)1−ρ
dy, (xI

ρ
b u)(x) =

1

Γ(ρ)

∫ b

x

u(y)

(y − x)1−ρ
dy, (2.2)

for x ∈ (a, b), respectively, where Γ(·) is the Gamma function.

Denote the ordinary derivative by Dk = dk/dxk (with k ∈ N). In general, the fractional

integral and ordinary derivative operators are not commutable, leading to two types of fractional

derivatives: For µ ∈ (k − 1, k) with k ∈ N, the left-sided Caputo fractional derivative of order µ is

defined by
(
C
aD

µ
x u

)
(x) = aI

k−µ
x

(
Dku

)
(x) =

1

Γ(k − µ)

∫ x

a

u(k)(y)

(x− y)µ−k+1
dy, (2.3)

and the left-sided Riemann-Liouville fractional derivative of order µ defined by

(
R
aD

µ
x u

)
(x) = Dk

(
aI

k−µ
x u

)
(x) =

1

Γ(k − µ)

dk

dxk

∫ x

a

u(y)

(x− y)µ−k+1
dy. (2.4)

Note that if µ = k ∈ N, we have C
aD

k
x = R

aD
k
x = Dk.

Remark 2.1. Similarly, one can define the right-sided Caputo and Riemann-Liouville derivatives:
(
C
xD

µ
b u

)
(x) = (−1)kxI

k−µ
b

(
Dku

)
(x),

(
R
xD

µ
b u

)
(x) = (−1)kDk

(
xI

k−µ
b u

)
(x). (2.5)

With a change of variables:

x = b+ a− t, u(x) = v(a+ b− x), x, t ∈ (a, b),

one finds

(tI
ρ
b v)(t) = (aI

ρ
xu)(x), x, t ∈ (a, b), (2.6)

and likewise for the fractional derivatives. In view of this, we restrict our discussions to the left-

sided fractional integrals and derivatives. �

Recall that for µ ∈ (k − 1, k) with k ∈ N,

(
R
aD

µ
x u

)
(x) =

(
C
aD

µ
x u

)
(x) +

k−1∑

j=0

u(j)(a)

Γ(1 + j − µ)
(x− a)j−µ (2.7)

(see, e.g., [38, 12]), which implies
(
R
aD

µ
x u

)
(x) =

(
C
aD

µ
x u

)
(x), if u(j)(a) = 0, j = 0, · · · , k − 1. (2.8)

Moreover, there holds (see, e.g., [12, Thm. 2.14]):

R
aD

µ
x aI

µ
x u(x) = u(x) a.e. in (a, b), µ ∈ R

+. (2.9)

In addition, we have the explicit formulas (see, e.g., [12, P. 49]): for real η > −1 and µ ∈ R
+,

aI
µ
x (x− a)η =

Γ(η + 1)

Γ(η + µ+ 1)
(x − a)η+µ, (2.10)

and for µ ∈ (k − 1, k) with k ∈ N,

C
aD

µ
x (x− a)η =





0, if η ∈ {0, 1, · · · , k − 1},

Γ(η + 1)

Γ(η − µ+ 1)
(x− a)η−µ, if η > k − 1, η ∈ R.

(2.11)

Similarly, for µ ∈ (k − 1, k) with k ∈ N, and real η > −1, we have (cf. [38, P. 72])

R
aD

µ
x (x− a)η =

Γ(η + 1)

Γ(η − µ+ 1)
(x− a)η−µ. (2.12)
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Hereafter, we restrict our attention to the interval Λ := (−1, 1), and simply denote

Iµ− := −1I
µ
x ,

CDµ
− := −1

CDµ
x ,

RDµ
− = −1

RDµ
x , x ∈ Λ. (2.13)

Apparently, the formulas and results can be extended to the general interval (a, b) straightforwardly.

2.2. Jacobi polynomials and Jacobi-Gauss-Lobatto interpolation. Throughout this paper,

the notation and normalization of Jacobi polynomials are in accordance with Szegö [41].

For α, β ∈ R, the Jacobi polynomials are defined by the hypergeometric function (cf. Szegö [41,

(4.21.2)]):

P (α,β)
n (x) =

Γ(n+ α+ 1)

n!Γ(α+ 1)
2F1

(
− n, n+ α+ β + 1;α+ 1;

1− x

2

)
, x ∈ Λ, n ∈ N, (2.14)

and P
(α,β)
0 (x) ≡ 1. Note that P

(α,β)
n (x) is always a polynomial in x for all α, β ∈ R, but not always

of degree n. A reduction of the degree of P
(α,β)
n (x) occurs if and only if

m := −(n+ α+ β) ∈ N and 1 ≤ m ≤ n (2.15)

(cf. [41, P. 64] and [7]). Note that for α, β ∈ R, there hold

P (α,β)
n (x) = (−1)nP (β,α)

n (−x); P (α,β)
n (1) =

Γ(n+ α+ 1)

n!Γ(α+ 1)
. (2.16)

For α, β > −1, the classical Jacobi polynomials are orthogonal with respect to the Jacobi weight

function: ω(α,β)(x) = (1− x)α(1 + x)β , namely,

∫ 1

−1

P (α,β)
n (x)P

(α,β)
n′ (x)ω(α,β)(x) dx = γ(α,β)n δnn′ , (2.17)

where δnn′ is the Dirac Delta symbol, and

γ(α,β)n =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n! Γ(n+ α+ β + 1)
. (2.18)

However, the orthogonality does not carry over to the general case with α or β ≤ −1 (see, e.g.,

[27] and [26, Ch. 3]).

The following formulas derived from Bateman fractional integral formulas of Jacobi polynomials

[4] (also see [2, P. 313], [41, P. 96] and [9]) are dispensable for the algorithm development.

Theorem 2.1. Let ρ, s ∈ R
+, n ∈ N0 and x ∈ Λ. Then for α ∈ R and β > −1, we have

Iρ−
{
(1 + x)βP (α,β)

n (x)
}
=

Γ(n+ β + 1)

Γ(n+ β + ρ+ 1)
(1 + x)β+ρP (α−ρ,β+ρ)

n (x), (2.19)

and

RDs
−

{
(1 + x)β+sP (α−s,β+s)

n (x)
}
=

Γ(n+ β + s+ 1)

Γ(n+ β + 1)
(1 + x)βP (α,β)

n (x). (2.20)

As direct consequences of Theorem 2.1, we have the following important special cases.

Corollary 2.1. For α ∈ R, ρ ∈ R
+, n ∈ N0 and x ∈ Λ,

Iρ−
{
P (α,0)
n (x)

}
=

n!

Γ(n+ ρ+ 1)
(1 + x)ρP (α−ρ,ρ)

n (x); (2.21)

RDρ
−

{
(1 + x)ρP (α,ρ)

n (x)
}
=

Γ(n+ ρ+ 1)

n!
P (α+ρ,0)
n (x). (2.22)
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In particular, for ρ ∈ R
+, n ∈ N0 and x ∈ Λ,

Iρ−
{
Pn(x)

}
=

n!

Γ(n+ ρ+ 1)
(1 + x)ρP (−ρ,ρ)

n (x); (2.23)

RDρ
−

{
(1 + x)ρP (−ρ,ρ)

n (x)
}
=

Γ(n+ ρ+ 1)

n!
Pn(x). (2.24)

Remark 2.2. Remarkably, the formulas (2.23)-(2.24) link up the Legendre polynomials with the

non-polynomials (1+x)ρP
(−ρ,ρ)
n (x). They are referred to as the generalised Jacobi functions [19, 9],

and as the Jacobi poly-fractonomials [49] when 0 < ρ < 1. �

For α, β > −1, let
{
xj := x

(α,β)
N,j , ωj := ω

(α,β)
N,j

}N

j=0
be the set of Jacobi-Gauss-Lobatto (JGL)

quadrature nodes and weights, where the nodes are zeros of (1 − x2)DP
(α,β)
N (x). Hereafter, we

assume that {xj} are arranged in ascending order so that x0 = −1 and xN = 1. Moreover, to

alleviate the burden of heavy notation, we sometimes drop the parameters α, β in the notation,

whenever it is clear from the context.

The JGL quadrature enjoys the exactness (see, e.g., [39, Ch. 3]):
∫ 1

−1

φ(x)ω(α,β)(x) dx =
N∑

j=0

φ(xj)ωj , ∀φ ∈ P2N−1, (2.25)

where PN is the set of all polynomials of degree at most N. Let INu be the JGL Lagrange

polynomial interplant of u ∈ C(Λ̄) defined by

(
INu

)
(x) =

N∑

j=0

u(xj)hj(x) ∈ PN , (2.26)

where the interpolating basis polynomials {hj}
N
j=0 can be expressed by

hj(x) =

N∑

n=0

tnjP
(α,β)
n (x), 0 ≤ j ≤ N, where tnj :=

ωj

γ̃
(α,β)
n

P (α,β)
n (xj), (2.27)

with

γ̃(α,β)n = γ(α,β)n , 0 ≤ n ≤ N − 1; γ̃
(α,β)
N =

(
2 +

α+ β + 1

N

)
γ
(α,β)
N . (2.28)

2.3. Transform between Jacobi polynomials with different parameters. Our efficient com-

putation of fractional differentiation matrices and their inverses, relies on the transform between

Jacobi expansions with different parameters. It is evident that for α, β, a, b > −1,

PN = span
{
P (α,β)
n : 0 ≤ n ≤ N

}
= span

{
P

(a,b)
l : 0 ≤ l ≤ N

}
.

Given the Jacobi expansion coefficients {û
(α,β)
n } of u ∈ PN , find the coefficients {û

(a,b)
l } such that

u(x) =

N∑

n=0

û(α,β)n P (α,β)
n (x) =

N∑

l=0

û
(a,b)
l P

(a,b)
l (x). (2.29)

This defines a connection problem (cf. [3]) resolved by the transform:

û(a,b) = (α,β)C(a,b) û(α,β), (2.30)

where û(α,β) and û(a,b) are column-(N+1) vectors of the coefficients, and (α,β)C(a,b) is the connec-

tion matrix of the transform from
{
P

(α,β)
n

}
to

{
P

(a,b)
l

}
. One finds from the orthogonality (2.17)

and (2.29) that the entries of (α,β)C(a,b), i.e., the connection coefficients, are given by

(α,β)C
(a,b)
ln :=

1

γ
(a,b)
l

∫ 1

−1

P
(a,b)
l (x)P (α,β)

n (x)ω(a,b)(x)dx. (2.31)
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Some remarks are in order.

• By the orthogonality (2.17), we have (α,β)C
(a,b)
ln = 0 for n < l, so the connection matrix is

an upper triangular matrix. Therefore, (2.30) yields

û
(a,b)
l =

N∑

n=l

(α,β)C
(a,b)
ln û(α,β)n , 0 ≤ l ≤ N. (2.32)

• In fact, we have the explicit formula of the connection coefficient (cf. [2, P. 357])

(α,β)C
(a,b)
ln = (2l + a+ b+ 1)

Γ(n+ α+ 1)

Γ(n+ α+ β + 1)

Γ(l + a+ b + 1)

Γ(l + a+ 1)
×

n−l∑

m=0

(−1)mΓ(n+ l +m+ α+ β + 1)Γ(m+ l + a+ 1)

m!(n− l −m)!Γ(l +m+ α+ 1)Γ(m+ 2l+ a+ b+ 2)
.

(2.33)

This exact formula is less useful in computation, as even in the Chebyshev-to-Legendre

case, significant effort has to be made to analyze their behaviors and take care of the

cancellations, when N is large (cf. [1, 6]). One can actually compute the connection

coefficients by using the Jacobi-Gauss quadrature with (N + 1) nodes and with respect to

the weight function ω(a,b).

• In general, it requiresO(N2) operations to carry out the matrix-vector product in (2.30). In

practice, several techniques have been proposed to speed up the transforms (see, e.g., [1, 37,

5, 21] and the monograph [23] and the references therein). In particular, through exploiting

the remarkable property that the columns of the connection matrix are eigenvectors of a

certain structured quasi-separable matrix, fast and stable algorithms can be developed

(cf. [23, 5] and the references therein). The interesting work [21] fully used the low-rank

property of the connection matrix, and proposed fast algorithms based on rank structured

matrix approximation.

3. Fractional pseudospectral differentiation

In this section, we extend the pseudospectral differentiation (PSD) process of integer order

derivatives to the fractional context, and present efficient algorithms for computing the fractional

pseudospectral differentiation matrix (F-PSDM). We show that

(i) in the Caputo case, it suffices to evaluate Caputo F-PSDM of order µ ∈ (0, 1) to compute

F-PSDM of any order (see Theorem 3.1);

(ii) in the Riemann-Liouville case, it is necessary to modify the fractional derivative operator

in order to absorb the singular fractional factor (see (3.8)), and the computation of the

modified F-PSDM of any order boils down to computing a modified fractional integral

matrix of order µ ∈ (0, 1) (see Theorem 3.3).

3.1. Fractional pseudospectral differentiation process. It is known that the pseudospectral

differentiation process is the heart of a collocation/pseudospectral method for PDEs (see, e.g.,

[8, 39]). Typically, for any u ∈ PN , the differentiation Dku is carried out via (2.26) in an exact

manner, that is,

Dku(x) =

N∑

j=0

u(xj)D
khj(x), k ∈ N. (3.1)
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It is straightforward to extend this to the fractional pseudospectral differentiation. More precisely,

for any u ∈ PN ,

(Dµu)(x) =
N∑

j=0

u(xj)D
µhj(x), Dµ := CDµ

−,
RDµ

−, µ ∈ R
+. (3.2)

However, in distinct contrast to (3.1), we haveDµu,Dµhj 6∈ PN , if µ 6∈ N. To provide some insights

into this, we introduce the space:

F
(ν)
N :=

{
(1 + x)νφ : ∀φ ∈ PN

}
, ν ∈ R, (3.3)

and show the following properties.

Lemma 3.1. For µ ∈ (k − 1, k) with k ∈ N, and for any u ∈ PN , we have

CDµ
−u ∈ F

(k−µ)
N−k , RDµ

−u ∈ F
(−µ)
N , (3.4)

and
CDµ

−u→ 0, RDµ
−u→ ∞ as x→ −1. (3.5)

Proof. It is clear that

Dku ∈ PN−k = span
{
Pn : 0 ≤ n ≤ N − k

}
.

Thus, we derive from the definition (2.3) and (2.23) with ρ = k − µ that

CDµ
−u = Ik−µ

− (Dku) = (1 + x)k−µφ, for some φ ∈ PN−k. (3.6)

Similarly, in the Riemann-Liouville case, we deduce from (2.23) that Ik−µ
− u ∈ F

(k−µ)
N . Then by the

definition (2.4), we obtain from a direct calculation that

RDµ
−u = Dk(Ik−µ

− u) = (1 + x)−µψ, for some ψ ∈ PN . (3.7)

Thus, (3.4) is verified, from which (3.5) follows immediately. �

Remark 3.1. This implication of Lemma 3.1 is that

(i) if a FDE has a smooth solution, the source term might have a singular behaviour;

(ii) conversely, for a FDE with smooth inputs, the solution might possess singularity.

To achieve spectrally accurate approximation for some prototype FDEs pertaining to the latter

case, the recent works [49, 9] proposed to approximate the singular solutions by using Jacobi

polyfractonomials and general Jacobi functions, i.e., the basis of F
(ν)
N . �

Observe from (3.5) that the Riemann-Liouville fractional derivative of any polynomial tends

to infinity as x0 → −1. This brings about some inconvenience for the computation of the related

F-PSDM and implementation of the collocation scheme. This inspires us to multiply both sides

of (3.2) by the singular factor (1 + x)µ, leading to the modified Riemann-Liouville fractional

pseudospectral differentiation:

(
RD̂µ

−u
)
(x) =

N∑

j=0

u(xj)
(
RD̂µ

−hj
)
(x) where RD̂µ

− := (1 + x)µRDµ. (3.8)

With such a modification, we can recover the Riemann-Liouville fractional derivative values at

xi 6= −1 by (
RDµ

−u
)
(xi) = (1 + xi)

−µ
(
RD̂µ

−u
)
(xi), 1 ≤ i ≤ N. (3.9)

Correspondingly, we can define the modified factional integral and state some important properties

as follows.



FRACTIONAL COLLOCATION METHODS 9

Lemma 3.2. Let u ∈ PN and {hj} be the Lagrange interpolating basis polynomials at JGL points

as before, and define

Îµ− = (1 + x)−µIµ−,
RD̂µ

− := (1 + x)µ RDµ
−, ∀µ ∈ R

+. (3.10)

Then we have

Îµ−u,
RD̂µ

−u ∈ PN , 0PN = span
{
Îµ−hj : 1 ≤ j ≤ N

}
, (3.11)

where 0PN = {φ ∈ PN : φ(−1) = 0}.

Proof. It is clear that by (3.7), RD̂µ
−u ∈ PN , and by (2.23) and (3.10),

Îµ−
{
Pn(x)

}
=

n!

Γ(n+ µ+ 1)
P (−µ,µ)
n (x), µ ∈ R

+. (3.12)

Note that for any real µ > 0, P
(−µ,µ)
n (x) is a polynomial of degree n (cf. [41, P. 64]). Thus, we

have

PN = span
{
Îµ−Pn : 0 ≤ n ≤ N

}
= span

{
Îµ−hj : 0 ≤ j ≤ N

}
, (3.13)

and Îµ−u ∈ PN .

We now show (Îµ−hj)(−1) = 0 for 1 ≤ j ≤ N. It is clear that
{
(1 + x)P

(µ,1)
n

}N−1

n=0
forms a basis

of 0PN , and by (2.19) with α = µ and β = 1,

Îµ−
{
(1 + x)P (µ,1)

n (x)
}
=

(n+ 1)!

Γ(n+ µ+ 2)
(1 + x)P (0,1+µ)

n (x). (3.14)

Since hj ∈ 0PN , the identity (3.14) implies (Îµ−hj)(−1) = 0 for 1 ≤ j ≤ N. �

3.2. Caputo fractional pseudospectral differentiation matrices. As before, we use boldface

uppercase (resp. lowercase) letters to denote matrices (resp. vectors), and simply denote the entries

of a matrix A by Aij . Introduce the Caputo F-PSDM of order µ :

CD(µ) ∈ R
(N+1)×(N+1), CD

(µ)
ij = CDµ

−hj(xi). (3.15)

In particular, for µ = k ∈ N, we denote D(k) = CD(k) and D = D(1).

Remarkably, the higher order Caputo fractional PSDM at JGL points can be computed by using

the following recursive relation.

Theorem 3.1. Let µ ∈ (0, 1). Then we have

CD(k+µ) = CD(µ)D(k) = CD(µ)Dk, k ∈ N, (3.16)

where Dk stands for the product of k copies of the first-order PSDM at JGL points.

Proof. For any u ∈ PN , we have

u′(x) =

N∑

l=0

u(xl)h
′
l(x). (3.17)

Taking u = h′j in (3.17), leads to

h′′j (x) =
N∑

l=0

h′j(xl)h
′
l(x), (3.18)

which, together with the definition (2.3), implies

CD1+µ
− hj(x) = I1−µ

− h′′j (x) =

N∑

l=0

h′j(xl)I
1−µ
− h′l(x) =

N∑

l=0

h′j(xl)
CDµ

−hl(x). (3.19)

Taking x = xi in the above, we obtain the matrix identity:

CD(1+µ) = CD(µ)D, µ ∈ (0, 1). (3.20)
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This leads to (3.16) with k = 1. Taking u = h
(k)
j (x) in (3.17), we can derive the first identity in

(3.16) in the same fashion.

Using the property (see [39, Thm. 3.10]):

D(k) = Dk, k ∈ N, (3.21)

we obtain the second identity in (3.16). �

It is seen from Theorem 3.1 that the computation of Caputo F-PSDM of any order at JGL points

boils down to computing the first-order usual PSDM D (whose explicit formula can be found in

e.g., [39]), and the Caputo F-PSDM CD(µ) with µ ∈ (0, 1). We present the formulas below.

Theorem 3.2. Let
{
xj = x

(α,β)
N,j

}N

j=0
with α, β > −1 and x0 = −1 be the JGL points, and

let
{
ωj = ω

(α,β)
N,j

}N

j=0
be the corresponding quadrature weights. Then the entries of CD(µ) with

µ ∈ (0, 1) can be computed by

CD
(µ)
ij = (1 + xi)

1−µ
N∑

l=1

(l − 1)!

Γ(l + 1− µ)
slj P

(µ−1,1−µ)
l−1 (xi) , (3.22)

for 0 ≤ i, j ≤ N, where

slj =
1

2

N∑

n=l−1

(n+ α+ β + 1)(α+1,β+1)C
(0,0)
l−1,n−1 tnj , tnj :=

ωj

γ̃
(α,β)
n

P (α,β)
n (xj), (3.23)

{
(α+1,β+1)C

(0,0)
l−1,n−1

}
are the Jacobi-to-Legendre connection coefficients, and {γ̃

(α,β)
n } are defined

in (2.28). In particular, for α = β = 0, we can alternatively compute the coefficients {slj} by

slj =
1

γl−1

{
δjN + (−1)lδj0 − ωjP

′
l−1(xj)

}
, γl−1 =

2

2l − 1
. (3.24)

To avoid the distraction from the main results, we provide the derivation of the formulas in

Appendix A.

Remark 3.2. We see that in the Legendre case, we can bypass the connection problem. It

is noteworthy that in [28], the Caputo F-PSDM of order µ > 0 was computed largely by the

derivative formula of Pn and some recurrence relation of Iρ−Pn built upon three-term recurrence

formula of Legendre polynomials. As shown above, the use of the compact, explicit formula (2.23)

leads to much concise representation and stable computation. �

3.3. Modified Riemann-Liouville fractional pseudospectral differentiation matrices. In-

troduce the matrices:

RD̂
(µ)
, Î

(µ)
∈ R

(N+1)×(N+1) where RD̂
(µ)

ij =
(
RD̂

(µ)
− hj

)
(xi), Î

(µ)

ij =
(
Îµ−hj

)
(xi). (3.25)

We can show the following important property similar to Theorem 3.1.

Theorem 3.3. Let {hj} be the JGL interpolating basis polynomials. Then for µ ∈ (k − 1, k) with

k ∈ N, we have

RD̂
(µ)

= D̆
(k)

Î
(k−µ)

, (3.26)

where the entries of D̆
(k)

are given by

D̆
(k)

ij = (1 + x)µDk
{
(1 + x)k−µhj(x)

}∣∣
x=xi

, 0 ≤ i, j ≤ N. (3.27)
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Proof. By (3.11), we can write that for any u ∈ PN ,

(Îk−µ
− u)(x) =

N∑

l=0

(Îk−µ
− u)(xl)hl(x), (3.28)

Multiplying both sides by (1 + x)k−µ, and using (3.10), we find

(Ik−µ
− u)(x) =

N∑

l=0

(Îk−µ
− u)(xl)(1 + x)k−µhl(x), (3.29)

which implies

(
RD

(µ)
− u

)
(x) = Dk(Ik−µ

− u)(x) =

N∑

l=0

(Îk−µ
− u)(xl)D

k
{
(1 + x)k−µhl(x)

}
, (3.30)

for x ∈ (−1, 1]. To remove the singularity at x = −1, we multiply both sides of (3.30) by (1+ x)µ,

and reformulate the resulted identity by the modified operator in (3.8), leading to

(
RD̂

(µ)
− u

)
(x) =

N∑

l=0

(Îk−µ
− u)(xl)

{
(1 + x)µDk

{
(1 + x)k−µhl(x)

}}
. (3.31)

Taking u = hj and x = xi in the above equation yields (3.26). �

Observe from (3.26) that it suffices to compute the modified fractional integral matrix Î
(k−µ)

with k − µ ∈ (0, 1), since D̆
(k)

can be expressed in terms of the PSDM of integer order, e.g., for

k = 1,

D̆
(1)

= (1− µ)IN+1 +ΛD, Λ = diag
(
(1 + x0), · · · , (1 + xN )

)
, (3.32)

where IN+1 is an identity matrix.

Theorem 3.4. Let
{
xj = x

(α,β)
N,j

}N

j=0
with α, β > −1 and x0 = −1 be the JGL points, and let

{
ωj = ω

(α,β)
N,j

}N

j=0
be the corresponding quadrature weights. Then the entries of Î

(µ)
with µ ∈ (0, 1)

can be computed by

Î
(µ)

ij =

N∑

l=0

l!

Γ(l + µ+ 1)
ŝljP

(−µ,µ)
l (xi), 0 ≤ i, j ≤ N, (3.33)

where

ŝlj =

N∑

n=l

(α,β)C
(0,0)
ln tnj , tnj :=

ωj

γ̃
(α,β)
n

P (α,β)
n (xj), (3.34)

with
{
(α,β)C

(0,0)
ln

}
being the Jacobi-to-Legendre connection coefficients, and γ̃

(α,β)
n defined in (2.28).

In particular, if α = β = 0, we have ŝlj = tlj .

Proof. It is essential to use the explicit formulas in Corollary 2.1. Accordingly, we expand the

JGL Lagrange interpolating basis polynomials {hj} in terms of Legendre polynomials, and resort

to the connection problem to transform between the bases as before. Equating (2.27) and the new

expansion leads to

hj(x) =
N∑

n=0

tnjP
(α,β)
n (x) =

N∑

l=0

ŝljPl(x), 0 ≤ j ≤ N, (3.35)
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which defines a connection problem. Thus by (2.32),

ŝlj =

N∑

n=0

(α,β)C
(0,0)
ln tnj =

N∑

n=l

(α,β)C
(0,0)
ln tnj , (3.36)

where we used the property: (α,β)C
(0,0)
ln = 0 if n < l. Then it follows from (3.12) immediately that

for µ ∈ (0, 1),

Î
(µ)

ij =
(
Îµ−hj

)
(xi) =

N∑

l=0

l! ŝlj
Γ(l + µ+ 1)

P
(−µ,µ)
l (xi), 0 ≤ i, j ≤ N. (3.37)

This leads to the desired formulas.

In the Legendre case, it is clear that the expansions in (3.35) are identical, so we have ŝlj =

tlj . �

We conclude this section by providing some numerical study of (discrete) eigenvalues of F-

PSDMs. Observe from (3.5) that the first row of CD(µ) is entirely zero, so CD(µ) is always singular.

We therefore remove the “boundary” row/column, and define

CD
(µ)
in :=





(
CD

(µ)
ij

)
1≤i,j≤N

, if µ ∈ (0, 1),

(
CD

(µ)
ij

)
1≤i,j≤N−1

, if µ ∈ (1, 2),
where CD

(µ)
ij =

(
CDµ

−hj
)
(xi), (3.38)

which is invertible and allows for incorporating boundary condition(s). Similarly, we define

RD̂
(µ)

in :=





(
RD̂

(µ)

ij

)
1≤i,j≤N

, if µ ∈ (0, 1),

(
RD̂

(µ)

ij

)
1≤i,j≤N−1

, if µ ∈ (1, 2),

where RD̂
(µ)

ij =
(
RD̂µ

−hj
)
(xi). (3.39)

In Figure 3.1, we illustrate the smallest and largest eigenvalues (in modulus) of these matrices.

Observe that in both cases, the largest eigenvalue grows like O(N2µ), while the smallest one remains

a constant in the Caputo case, and mildly decays with respect to N in the modified RL case.
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Figure 3.1. Maximum and minimum (in modulus) eigenvalues of F-PSDM with
µ = 1.5. Left: Caputo. Right: modified Riemann-Liouville.
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4. Caputo fractional Birkhoff interpolation and inverse F-PSDM

As already mentioned, the condition number of the collocation system of a FDE of order µ

grows like O(N2µ), so its solution suffers from severe round-off errors, and it also becomes rather

prohibitive to solve the linear system by an iterative method. Following the spirit of [10, 46], we in-

troduce the Caputo fractional Birkhoff interpolation that generates a new interpolating polynomial

basis with remarkable properties:

(i) It provides a stable way to invert the Caputo F-PSDM in (3.38), leading to optimal frac-

tional integration preconditioners for the ill-conditioned collocation schemes.

(ii) It offers a basis for constructing well-conditioned collocation schemes.

4.1. Caputo fractional Birkhoff interpolation. Let
{
xj = x

(α,β)
N,j

}N

j=0
(with x0 = −1 and

xN = 1) be the JGL points as before. Consider the following two interpolating problems:

(i) For µ ∈ (0, 1), the Caputo fractional Birkhoff interpolation is to find p ∈ PN such that

CDµ
− p(xj) =

CDµ
−u(xj), 1 ≤ j ≤ N ; p(−1) = u(−1), (4.1)

for any u ∈ C[−1, 1] satisfying CDµ
−u ∈ C(−1, 1].

(ii) For µ ∈ (1, 2), the Caputo fractional Birkhoff interpolation is to find p ∈ PN such that

CDµ
− p(xj) =

CDµ
−u(xj), 1 ≤ j ≤ N − 1; p(±1) = u(±1), (4.2)

for any u ∈ C[−1, 1] satisfying CDµ
−u ∈ C(−1, 1).

Remark 4.1. The usual Birkhoff interpolation is comprehensively studied in e.g., the monograph

[33]. Typically, a polynomial Birkhoff interpolation requires at least one point at which the function

and the derivative values are not interpolated consecutively. For example, consider a three-point

interpolation problem: find p ∈ P2 such that

p(−1) = u(−1), p′(0) = u′(0), p(1) = u(1).

It defines a Birkhoff interpolation problem, since the function value at x = 0 is not interpolated,

as opposite to the Hermite interpolation. Due to the involvement of Caputo fractional derivatives,

we call (4.1) and (4.2) the Caputo fractional Birkhoff interpolation problems. �

As with the Lagrange interpolation, we search for a nodal basis to represent the interpolating

polynomial p. More precisely, we look for Qµ
j ∈ PN such that

(i) for µ ∈ (0, 1),

CDµ
−Q

µ
j (xi) = δij , 1 ≤ i ≤ N ; Qµ

j (−1) = 0, 1 ≤ j ≤ N, (4.3)

with Qµ
0 = 1;

(ii) for µ ∈ (1, 2),

CDµ
−Q

µ
j (xi) = δij , 1 ≤ i ≤ N − 1; Qµ

j (±1) = 0, 1 ≤ j ≤ N − 1, (4.4)

with Qµ
0 (x) = (1− x)/2 and Qµ

N (x) = (1 + x)/2.

Then, we can express the Caputo fractional Birkhoff interpolating polynomial p of (4.1) and (4.2),

respectively, as

p(x) = u(−1) +
N∑

j=1

CDµ
−u(xj)Q

µ
j (x), µ ∈ (0, 1), (4.5)

and

p(x) =
1− x

2
u(−1) +

N−1∑

j=1

CDµ
−u(xj)Q

µ
j (x) +

1 + x

2
u(1), µ ∈ (1, 2). (4.6)
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Therefore, {Qµ
j } are dubbed as the Caputo fractional Birkhoff interpolating basis polynomials of

order µ.

Introduce the matrices

Q(µ) =





(
Q

(µ)
lj

)
1≤l,j≤N

, if µ ∈ (0, 1),
(
Q

(µ)
lj

)
1≤l,j≤N−1

, if µ ∈ (1, 2),
where Q

(µ)
lj = Qµ

j (xl). (4.7)

Remarkably, the matrix Q(µ) is the inverse of CD
(µ)
in defined in (3.38).

Theorem 4.1. For µ ∈ (k − 1, k) with k = 1, 2, we have

Q(µ) CD
(µ)
in = CD

(µ)
in Q(µ) = IN+1−k, (4.8)

where IN+1−k is the identity matrix of order N + 1− k.

Proof. We just prove (4.8) with µ ∈ (0, 1), as the case µ ∈ (1, 2) can be shown in a similar fashion.

Since Qµ
j ∈ PN and Qµ

j (−1) = 0 for 1 ≤ j ≤ N, we can write

Qµ
j (x) =

N∑

l=0

Qµ
j (xl)hl(x) =

N∑

l=1

Qµ
j (xl)hl(x), 1 ≤ j ≤ N,

where {hl} are the Lagrange interpolating basis polynomials associated with JGL points. Thus,

CDµ
−Q

µ
j (x) =

N∑

l=1

Qµ
j (xl)

CDµ
− hl(x).

Taking x = xi for 1 ≤ i ≤ N in the above equation, we obtain (4.8) with µ ∈ (0, 1) from (4.3)

straightforwardly. �

4.2. Computing the new basis {Qµ
j }. The following property plays a crucial role in computing

the new basis {Qµ
j }, which follows from Lemma 3.1.

Lemma 4.1. Let {xj}
N
j=0 be the JGL points with x0 = −1 and xN = 1. Then for µ ∈ (k − 1, k)

with k = 1, 2, we have

DkQµ
j (x) =

RDk−µ
−

{( 1 + x

1 + xj

)k−µ

~j(x)
}
, 1 ≤ j ≤ N + 1− k, (4.9)

where {~j}
N+1−k
j=1 are the Lagrange-Gauss interpolating basis polynomials associated with the JGL

points {xj}
N+1−k
j=1 , that is,

~j ∈ PN−k, ~j(xi) = δij for 1 ≤ i, j ≤ N + 1− k. (4.10)

Proof. Since Qµ
j ∈ PN , we obtain from Lemma 3.1 that CDµ

−Q
µ
j ∈ F

(k−µ)
N−k . Noting that {~j}

N+1−k
j=1

forms a basis of PN−k, so by (3.3),

CDµ
−Q

µ
j (x) =

N+1−k∑

l=1

clj (1 + x)k−µ
~l(x), 1 ≤ j ≤ N + 1− k.

Letting x = xi and using the interpolating conditions, we find that clj = (1 + xl)
µ−kδlj . Thus, we

obtain
CDµ

−Q
µ
j (x) =

( 1 + x

1 + xj

)k−µ

~j(x), 1 ≤ j ≤ N + 1− k. (4.11)

By the definition (2.3), we have CDµ
− = Ik−µ

− Dk, so using (2.9), we obtain (4.9) from (4.11)

immediately. �
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With the aid of (4.9), we are able to derive the explicit formulas for computing the new basis.

We provide the derivation in Appendix B.

Theorem 4.2. Let
{
xj = x

(α,β)
N,j , ωj = ω

(α,β)
N,j

}N

j=0
with (α, β > −1 and x0 = −xN = −1) be the

JGL quadrature nodes and weights. Then {Qµ
j } can be computed by

(i) For µ ∈ (0, 1),

Qµ
j (x) =

1

(1 + xj)1−µ

N−1∑

l=0

Γ(l − µ+ 2)

l!
ξ̆lj

∫ x

−1

Pl(x)dx, 1 ≤ j ≤ N, (4.12)

where

ξ̆lj =

N−1∑

n=l

(α,β)C
(µ−1,1−µ)
ln ξnj , (4.13)

ξnj =
1

γ
(α,β)
n

{
−

cj
β + 1

P
(α,β)
N (−1)

P
(α,β)
N (xj)

P (α,β)
n (−1)ω0 + P (α,β)

n (xj)ωj

}
, (4.14)

with cj = 1 for 1 ≤ j ≤ N − 1, and cN = α+ 1.

(ii) For µ ∈ (1, 2),

Qµ
j (x) =

1

(1 + xj)2−µ

N−2∑

l=0

Γ(l − µ+ 3)

l!
ξ̆lj Φl(x), 1 ≤ j ≤ N − 1, (4.15)

where

ξ̆lj =
N−2∑

n=l

(α,β)C
(µ−2,2−µ)
ln ξnj , (4.16)

ξnj =
1

γ
(α,β)
n

{
(xj − 1)P

(α,β)
N (−1)

2(β + 1)P
(α,β)
N (xj)

P (α,β)
n (−1)ω0

−
(1 + xj)P

(α,β)
N (1)

2(α+ 1)P
(α,β)
N (xj)

P (α,β)
n (1)ωN + P (α,β)

n (xj)ωj

}
, (4.17)

and

Φl(x) :=
1 + x

2

∫ 1

−1

(t− 1)Pl(t) dt+

∫ x

−1

(x− t)Pl(t) dt. (4.18)

Here,
{
(α,β)C

(µ−k,k−µ)
ln

}
are the connection coefficients as defined in (2.31).

Remark 4.2. Observe from (4.13) and (4.16) that if we take (α, β) = (µ− k, k−µ) with k = 1, 2,

we have ξ̆lj = ξlj , so (4.12) and (4.15) have the simplest form. Thus, it is preferable to choose

these special parameters. �

5. Modifed RL fractional Birkhoff interpolation and inverse F-PSDM

We introduce in this section the fractional Birkhoff interpolation involving modified Riemann-

Liouville (RL) fractional derivatives which offers new polynomial bases for well-conditioned col-

location methods for solving FDEs with Riemann-Liouville fractional derivatives. Moreover, we

are able to stably compute the inverse matrix of RD̂
(µ)

in defined in (3.39). However, this process

appears more involved than the Caputo case in particular for µ ∈ (1, 2).
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5.1. Modified Riemann-Liouville fractional Birkhoff interpolation. Like the Caputo case,

we consider the modified Riemann-Liouville fractional Birkhoff interpolating problems (i)-(ii) as

defined in (4.1)-(4.2) with RD̂
µ

− in place of CD
µ
−. Similarly, we look for the interpolating basis

polynomials {Q̂µ
j }

N
j=0 ⊆ PN such that

(i) for µ ∈ (0, 1),

RD̂µ
− Q̂

µ
0 (xi) = 0, 1 ≤ i ≤ N ; Q̂µ

0 (−1) = 1,

RD̂µ
− Q̂

µ
j (xi) = δij , 1 ≤ i ≤ N, Q̂µ

j (−1) = 0, 1 ≤ j ≤ N ;
(5.1)

(ii) for µ ∈ (1, 2),

RD̂µ
− Q̂

µ
0 (xi) = 0, 1 ≤ i ≤ N − 1; Q̂µ

0 (−1) = 1, Q̂µ
0 (1) = 0,

RD̂µ
− Q̂

µ
j (xi) = δij , 1 ≤ i ≤ N − 1, Q̂µ

j (±1) = 0, 1 ≤ j ≤ N − 1,

RD̂µ
− Q̂

µ
N(xi) = 0, 1 ≤ i ≤ N − 1; Q̂µ

N(−1) = 0, Q̂µ
N (1) = 1.

(5.2)

Then for any u ∈ PN , we can write

u(x) = u(−1)Q̂µ
0 (x) +

N∑

j=1

RD̂µ
−u(xj) Q̂

µ
j (x) (for µ ∈ (0, 1))

= u(−1)Q̂µ
0 (x) +

N−1∑

j=1

RD̂µ
−u(xj) Q̂

µ
j (x) + u(1)Q̂µ

N(x) (for µ ∈ (1, 2)).

(5.3)

Introduce the matrices generated from the new basis:

Q̂
(µ)

=





(
Q̂

(µ)

lj

)
1≤l,j≤N

, if µ ∈ (0, 1),

(
Q̂

(µ)

lj

)
1≤l,j≤N−1

, if µ ∈ (1, 2),
where Q̂

(µ)

lj = Q̂µ
j (xl). (5.4)

Like Theorem 4.1, we can claim that Q̂
(µ)

is the inverse of RD̂
(µ)

in . As the proof of the theorem

below is very similar to that of Theorem 4.1, we omit it.

Theorem 5.1. For µ ∈ (k − 1, k) with k = 1, 2, we have

Q̂
(µ)RD̂

(µ)

in = RD̂
(µ)

in Q̂
(µ)

= IN+1−k, (5.5)

where IN+1−k is the identity matrix of order N + 1− k.

5.2. Computing the new basis
{
Q̂µ

j

}N

j=0
. The following lemma is very useful for the computa-

tion, whose proof is provided in Appendix C.

Lemma 5.1. Let µ ∈ (k − 1, k) with k = 1, 2. Then for any f ∈ 0PN , the fractional equation

RD̂µ
−u(x) = f(x), u(−1) = 0, (5.6)

has a unique solution u ∈ 0PN of the form

u(x) = Iµ−
{
(1 + x)−µf(x)

}
. (5.7)

In particular, for any u ∈ PN , we have

RD̂µ
−u(−1) = 0 if and only if u(−1) = 0. (5.8)

For clarity of presentation, we deal with two cases: (i) µ ∈ (0, 1) and (ii) µ ∈ (1, 2), separately.
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5.2.1.
{
Q̂µ

j

}N

j=0
with µ ∈ (0, 1). Using the properties (3.11) and (5.8), we obtain from the interpo-

lating conditions in (5.1) that
(
RD̂µ

− Q̂
µ
j

)
(x) = hj(x), 1 ≤ j ≤ N ;

(
RD̂µ

− Q̂
µ
0

)
(x) = ξh0(x), (5.9)

where {hj} are the JGL interpolating basis polynomials defined in (2.27), and ξ is a constant to

be determined by Q̂µ
0 (−1) = 1. Note that thanks to (5.8), the condition Q̂µ

j (−1) = 0 is built-in, as

hj(−1) = 0 for 1 ≤ j ≤ N. We summarise below the explicit representation of the new basis. Once

again, we put the proof in Appendix D.

Theorem 5.2. Let
{
xj = x

(α,β)
N,j , ωj = ω

(α,β)
N,j

}N

j=0
(with α, β > −1 and x0 = −1) be the JGL

quadrature points and weights. Then
{
Q̂µ

j

}N

j=0
with µ ∈ (0, 1) can be computed by

Q̂µ
j (x) = ζj

N∑

l=0

Γ(l − µ+ 1)

l!
t̂lj Pl(x) with t̂lj =

N∑

n=l

(α,β)C
(µ,−µ)
ln tnj , (5.10)

where ζ0 = 1/Γ(1−µ), ζj = 1 for 1 ≤ j ≤ N,
{
(α,β)C

(µ,−µ)
ln

}
are the connection coefficients defined

in Subsection 2.3, and

tnj =
ωj

γ̃
(α,β)
n

P (α,β)
n (xj), (5.11)

with γ̃
(α,β)
n being defined in (2.28).

Remark 5.1. If (α, β) = (µ,−µ) with µ ∈ (0, 1), we have t̂lj = tlj , so Q̂µ
j has the simplest

form. �

5.2.2.
{
Q̂µ

j

}N

j=0
with µ ∈ (1, 2). It is essential to derive the identities like (5.9). Indeed, using

(3.11) and (5.8), we obtain from the interpolating conditions in (5.2) that
(
RD̂µ

− Q̂
µ
0

)
(x) = (τ0 + κ0 x)ĥ0(x), Q̂µ

0 (−1) = 1, Q̂µ
0 (1) = 0; (5.12)

(
RD̂µ

− Q̂
µ
j

)
(x) =

x+ τj
xj + τj

ĥj(x), Q̂µ
j (1) = 0, 1 ≤ j ≤ N − 1; (5.13)

(
RD̂µ

− Q̂
µ
N

)
(x) = τN (1 + x) ĥ0(x), Q̂µ

N(1) = 1, (5.14)

where {ĥj}
N−1
j=0 are the Lagrange interpolating basis polynomials at JGL points {xj}

N−1
j=0 , that is,

ĥj(x) ∈ PN−1, ĥj(xi) = δij , 0 ≤ i, j ≤ N − 1. (5.15)

In (5.12)-(5.14), {τj}
N
j=0 and κ0 are constants to be determined by the corresponding conditions

at x = ±1, e.g., Q̂µ
j (1) = 0 in (5.13). It is noteworthy that thanks to (5.8), the interpolating

condition: Q̂µ
j (−1) = 0 is built in

(
RD̂µ

− Q̂
µ
j

)
(−1) = 0 for 1 ≤ j ≤ N.

In what follows, we shall use the three-term recurrence relation of Jacobi polynomials (cf. [39,

(3.110)]):

xP
(µ,1−µ)
l (x) = al+1P

(µ,1−µ)
l+1 (x) + blP

(µ,1−µ)
l (x) + cl−1P

(µ,1−µ)
l−1 (x), l ≥ 0, (5.16)

where c−1 = 0, µ ∈ (1, 2), and

al+1 =
l + 2

2l + 3
, bl =

1− 2µ

(2l + 1)(2l+ 3)
, cl−1 =

(l + µ)(l − µ+ 1)

(l + 1)(2l + 1)
. (5.17)

As before, it is necessary to expand {ĥj} in terms of Jacobi polynomials with different parameters

by using the notion of connection problems, so as to use compact and closed-form formulas to

compute the new basis. We state below the connections of three expansions, and postpone the

derivations in Appendix E.
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Lemma 5.2. Let
{
xj = x

(α,β)
N,j , ωj = ω

(α,β)
N,j

}N

j=0
(with α, β > −1 and x0 = −xN = −1) be the JGL

quadrature nodes and weights, and let {ĥj}
N−1
j=0 be the Lagrange interpolating basis polynomials

associated with {xj}
N−1
j=0 defined in (5.15). Then for µ ∈ (1, 2), we have

ĥj(x) =

N−1∑

n=0

̺nj P
(α,β)
n (x) =

N−1∑

l=0

˜̺lj P
(µ,1−µ)
l (x)

= ˆ̺0j +

N−2∑

l=0

ˆ̺l+1,j (1 + x)P
(µ,1−µ)
l (x), 0 ≤ j ≤ N − 1,

(5.18)

where ˆ̺00 = 1 and ˆ̺0j = 0 for 1 ≤ j ≤ N − 1. Moreover, the coefficients can be computed by

̺n0 =
1

γ
(α,β)
n

{
P (α,β)
n (−1)ω0 −

β + 1

α+ 1

P
(α,β)
N (1)

P
(α,β)
N (−1)

P (α,β)
n (1)ωN

}
, (5.19)

̺nj =
1

γ
(α,β)
n

{
P (α,β)
n (xj)ωj −

1

α+ 1

P
(α,β)
N (1)

P
(α,β)
N (xj)

P (α,β)
n (1)ωN

}
, 1 ≤ j ≤ N − 1, (5.20)

˜̺lj =

N−1∑

n=l

(α,β)C
(µ,1−µ)
ln ̺nj , 0 ≤ l, j ≤ N − 1, (5.21)

and by the backward recurrence relation:

ˆ̺ij =
1

ai
˜̺ij −

bi + 1

ai
ˆ̺i+1,j −

ci
ai

ˆ̺i+2,j , i = N − 3, N − 2, · · · , 1,

ˆ̺N−1,j =
1

aN−1
˜̺N−1,j , ˆ̺N−2,j =

1

aN−2
˜̺N−2,j −

bN−2 + 1

aN−2
ˆ̺N−1,j,

(5.22)

where {ai, bi, ci} are given in (5.17).

With the above preparations, we are ready to derive the explicit formulas of the new basis{
Q̂µ

j

}N

j=0
with µ ∈ (1, 2). We refer to Appedix F for the derivation.

Theorem 5.3. Let
{
˜̺lj , ˆ̺lj

}
be the coefficients defined in Lemma 5.2, and denote

dµl :=
Γ(l + 2− µ)

(l + 1)!
, ϕl(x) := (1 + x)P

(0,1)
l (x). (5.23)

Then
{
Q̂µ

j

}N

j=0
at JGL points with µ ∈ (1, 2) can be computed by

(i) for j = 0,

Q̂µ
0 (x) =1 +

(
τ0 −

1

Γ(1− µ)

)N−1∑

l=0

dµl ˜̺l0 ϕl(x) +
1

Γ(1− µ)

N−2∑

l=0

dµl ˆ̺l+1,0 ϕl(x),

where τ0 −
1

Γ(1 − µ)
= −

{
1

2
+

1

Γ(1− µ)

N−2∑

l=0

dµl ˆ̺l+1,0

}/N−1∑

l=0

dµl ˜̺l0;

(5.24)

(ii) for j = N,

Q̂µ
N (x) =

1

2

N−1∑

l=0

dµl ˜̺l0 ϕl(x)

/N−1∑

l=0

dµl ˜̺l0 ; (5.25)
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(ii) for 1 ≤ j ≤ N − 1,

Q̂µ
j (x) =

τj
xj + τj

N−2∑

l=0

dµl ˆ̺l+1,j ϕl(x) +
1

xj + τj

×

N−2∑

l=0

dµl ˆ̺l+1,j

{
l+ 2− µ

l + 2
al+1ϕl+1(x) + blϕl(x) +

l + 1

l+ 1− µ
cl−1ϕl−1(x)

}
,

(5.26)

where {al, bl, cl} (with c−1 = 0) are defined in (5.17), and

τj = −1 + µΓ(2− µ)ˆ̺1j

/N−2∑

l=0

dµl ˆ̺l+1,j . (5.27)

Remark 5.2. We see from (5.21) that if (α, β) = (µ, 1 − µ) with µ ∈ (1, 2), the connections

coefficients are not involved, so Q̂µ
j has simpler form. �

6. Well-conditioned collocation schemes and numerical results

In this section, we apply the tools developed in previous sections to construct well-conditioned

collocation schemes for initial-valued or boundary-valued FDEs, and provide ample numerical

results to show the accuracy and stability of the methods.

6.1. Initial-valued Caputo FDEs. To fix the idea, we first consider the Caputo FDE of order

µ ∈ (0, 1) :
CDµ

−u(x) + λ(x)u(x) = f(x), x ∈ (−1, 1]; u(−1) = u−, (6.1)

where λ, f are given continuous functions, and u− is a given constant. The collocation scheme is

to find uN ∈ PN such that

CDµ
−uN (xj) + λ(xj)uN (xj) = f(xj), 1 ≤ j ≤ N ; uN(−1) = u−. (6.2)

The corresponding linear system under the Lagrange basis polynomials {hj} (L-COL) becomes

(
CD

(µ)
in +Λ

)
u = f , (6.3)

where CD
(µ)
in is defined as in (3.38), Λ = diag(λ(x1), · · · , λ(xN )), and

u =
(
uN(x1), · · · , uN(xN )

)t
, f =

(
f(x1)− u−

CDµ
−h0(x1), · · · , f(xN )− u−

CDµ
−h0(xN )

)t
. (6.4)

The collocation system under the Birkhoff interpolation basis polynomials {Qµ
j } in (4.3) (B-

COL) becomes
(
IN +ΛQ(µ)

)
v = g, (6.5)

where

uN (x) = u− +
N∑

i=1

vjQ
µ
j (x), v =

(
v1, · · · , vN

)t
, (6.6)

and g =
(
f(x1) − u−λ(x1), · · · , f(xN ) − u−λ(xN )

)t
. It is noteworthy that different from (6.3),

the unknowns of (6.5) are not the approximation of u at the collocation points, but of the Caputo

fractional derivative values in view of (4.5).

Thanks to Theorem 4.1, we can precondition (6.3) and obtain the PL-COL system:
(
IN +Q(µ)Λ

)
u = Q(µ)f . (6.7)
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In the computation, we take λ(x) = 2 + sin(25x) and u(x) = Eµ,1(−2(1 + x)µ) with µ = 0.8 in

(6.1), where the Mittag-Leffler function is defined by

Eα,β(z) =

∞∑

n=0

zn

Γ(nα+ β)
. (6.8)

In view of Remark 4.2, we choose the JGL points with (α, β) = (µ − 1, 1 − µ) = (−0.2, 0.2). We

compare the condition numbers, number of iterations (using BiCGSTAB in Matlab) and conver-

gence behaviour (in discrete L2-norm on fine equally-spaced grids) of three schemes (see Figure

6.1). Observe from Figure 6.1 (left) that the condition number of usual L-COL divided by N2µ

behaves like a constant, while that of PL-COL and B-COL remains a constant even for N up to

2000. As a result, the latter two schemes only require about 8 iterations to converge, while the

usual L-COL scheme requires much more iterations with a degradation of accuracy as depicted in

Figure 6.1 (middle). We record the convergence history of three methods in Figure 6.1 (right), and

observe that two new schemes are stable even for very large N.
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Figure 6.1. Comparison of condition numbers (left), iteration numbers against
errors (middle), and errors against N at convergence in log-log scale (right) for
(6.1).

6.2. Boundary-valued Caputo FDEs. We now turn to the boundary value problem:

CDµ
−u(x) + λ1(x)

CDν
−u(x) + λ2(x)u(x) = f(x), x ∈ (−1, 1);

u(−1) = u−, u(1) = u+, 0 < ν < µ, µ ∈ (1, 2),
(6.9)

where λ1, λ2 and f are given continuous functions, and u± are given constants.

With a pre-computation of the Caputo fractional differentiation matrices of order µ and ν in

Subsection 3.2, we can formulate the L-COL scheme as (6.3) straightforwardly. The counterpart

of (6.5) i.e., the B-COL scheme, can be formulated as follows: find (cf. (4.6))

uN (x) = u∗N (x) +

N−1∑

j=1

vj Q
µ
j (x), µ ∈ (1, 2); u∗N (x) :=

1− x

2
u− +

1 + x

2
u+, (6.10)

such that
(
IN−1 +Λ1Q̄

(ν)
+Λ2Q

(µ)
)
v = g, (6.11)
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Figure 6.2. Comparison of condition numbers (left), iteration numbers against
errors (middle), and errors against N at convergence in log-log scale (right) for
(6.9).

where Λi = diag(λi(x1), · · · , λi(xN−1)), i = 1, 2, Q̄
(ν)
ij = CDν

−Q
µ
j (xi), 1 ≤ i, j ≤ N − 1, and

g =
(
f(x1)− q∗(x1), · · · , f(xN−1)− q∗(xN−1)

)t
with q∗ = λ1

CDν
−u

∗
N +λ2 u

∗
N . Note that the entries

of Q̄
(ν)

can be evaluated by Theorem 2.1, (2.7) and (4.15)-(4.18). Here, we omit the details.

Remark 6.1. If λ1 = 0 and λ2 is a constant, we can follow [46, Proposition 3.5] to justify the

coefficient matrix of (6.11) is well-conditioned. Indeed, thanks to Theorem 4.1, the eigenvalues σ

of IN−1 − λ2Q
(µ) satisfy

1 + λ2λ
−1
max ≤ σ ≤ 1 + λ2λ

−1
min,

where λmax and λmin are respectively the largest and smallest eigenvalues of CD
(µ)
in . Since λmin =

O(1) (see Figure 3.1 (right)), the condition number of IN−1 − λ2Q
(µ) is independent of N. �

Like (6.7), we can precondition the L-COL scheme by Q(µ) which leads to the PL-COL system.

In the following comparison, we set µ = 1.9, ν = 0.7 and (α, β) = (−0.1, 0.1) (cf. Remark 4.2),

and take

λ1(x) = 2 + sin(4πx), λ2(x) = 2 + cosx, (6.12)

and

u(x) = e1+x + (1 + x)6+4/7 − 2(1 + x)5+4/7, (6.13)

where we can use the formula

CDµ
−e

1+x = (1 + x)k−µE1,k+1−µ(1 + x), µ ∈ (k − 1, k), k = 1, 2,

to work out f(x).

Once again, we observe from Figure 6.2 that the new schemes: B-COL and PL-COL are well-

conditioned, attain the expected convergence order about 10 iterations, and lead to stable compu-

tation for large N.

6.3. Riemann-Liouville FDEs. Consider the Riemann-Liouville version of (6.9):

RDµ
−u(x) + λ1(x)

RDν
−u(x) + λ2(x)u(x) = f(x), x ∈ (−1, 1);

u(−1) = u−, u(1) = u+, 0 < ν < µ, µ ∈ (1, 2),
(6.14)

where λ1, λ2 and f are given continuous functions, and u± are given constants.
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For a better treatment of the singularity, we consider the modified Riemann-Liouville fractional

collocation scheme: find uN ∈ PN such that
RD̂µ

−uN(xj) + λ̂1(xj)
RD̂ν

−uN(xj) + λ̂2(xj)uN (xj) = f̂(xj), 1 ≤ j ≤ N ;

uN (−1) = u−, uN (1) = u+, 0 < ν < µ, µ ∈ (1, 2),
(6.15)

where λ̂1 = (1 + x)µ−νλ1, λ̂2 = (1 + x)µλ2, and f̂ = (1 + x)µf.

Here, we just focus on the collocation system using the new basis in (5.3), that is,

uN(x) = u−Q̂
µ
0 (x) + u+Q̂

µ
N(x) +

N−1∑

j=1

vj Q̂
µ
j (x), µ ∈ (1, 2). (6.16)

Then one can write down the B-COL system in a fashion very similar to (6.11) with only a change of

basis. Correspondingly, we denote the matrix of the linear system byA := IN−1+Λ1Q̃
(ν)

+Λ2Q̂
(µ)
.

We first show that the B-COL scheme enjoys spectral accuracy (i.e., exponential convergence),

when the underlying solution is sufficiently smooth. For this purpose, we take

u(x) = e−(1+x) −
1− x

2
− e−2 1 + x

2
, (6.17)

and λ1, λ2 to be the same as in (6.12). In Figure 6.3, we plot discrete L2-errors for various pairs

of (µ, ν) of the B-COL schemes for both Caputo and Riemann-Liouville fractional boundary value

problems (BVPs) (6.9) and (6.14) under the same setting. We observe the exponential decay (i.e.,

O(e−cN ) for some c > 0) of the errors. Both schemes take about 10 iterations to converge, while

much more iterations are needed and severe round-off errors are induced if one uses the standard

L-COL approach.
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Figure 6.3. Errors against N of the B-COL schemes for Caputo fractional BVP
(6.9) (left) and Riemann-Liouville fractional BVP (6.14) (right) with various µ, ν,
where λ1, λ2 are given in (6.12), and the exact solution u is given in (6.17).

We further test the new B-COL method on (6.14) with smooth coefficients but large derivative:

λ1(x) = 1 + e−1000x2

, λ2(x) = 1 + e−1000(x+0.2)2 , (6.18)

and with the exact solution having finite regularity in the usual Sobolev space:

u(x) = Eµ,1

(
− (1 + x)µ/2

)
+

1− Eµ,1(−2µ−1)

2
(1 + x)− 1. (6.19)
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We tabulate in Table 6.1 the discrete L2-errors, number of iterations and the second smallest and

largest eigenvalues (in modulus). Once again, the scheme converges within a few iterations even

for very large N. In fact, as we observed from Figure 3.1 (right), the smallest eigenvalue of RD̂
(µ)

in

in (3.39) still mildly depends on N. As a result, the condition number of A grows mildly with

respect to N. However, it is interesting to find that the eigenvalues in modulus of A (denoted by

{|σj |}
N−1
j=1 which are arranged in ascending order) are concentrated in the sense that

O(1) = |σ2| ≤ |σj | ≤ |σN−2| = O(1), 2 ≤ j ≤ N − 2. (6.20)

Thanks to this remarkable property, the iterative solver for the modified Riemann-Liouville system

is actually as fast as the previous Caputo system where the coefficient matrix is well-conditioned.

Table 6.1. Errors, number of iterations and concentration of eigenvalues of A

N
µ = 1.5, ν = 0.6 µ = 1.9, ν = 0.7

|σ2| |σN−2| Iters Errors |σ2| |σN−2| Iters Errors
8 0.7 1.0 7 8.58e-03 0.4 1.0 6 2.66e-03
16 0.6 1.1 12 2.03e-03 0.2 1.7 8 3.69e-04
32 0.6 1.2 12 5.39e-04 0.2 3.0 8 5.49e-05
64 0.6 1.3 12 1.31e-04 0.1 5.0 8 7.46e-06
128 0.6 1.5 12 3.24e-05 0.1 7.4 8 1.06e-06
256 0.6 1.6 12 8.08e-06 0.1 9.9 8 1.53e-07
512 0.6 1.7 13 2.02e-06 0.1 12.7 8 2.21e-08
1024 0.6 1.7 13 5.04e-07 0.1 21.1 8 3.69e-09

6.4. Concluding remarks. In this paper, we provided an explicit and compact means for comput-

ing Caputo and modified Riemann-Liouville F-PSDMs of any order, and introduced new fractional

collocation schemes using fractional Birkhoff interpolation basis functions. We showed that the

new approaches significantly outperformed the standard collocation approximation using Lagrange

interpolation basis.

As a final remark, we point out two topics worthy of future investigation along this line, which we

wish to explore in forthcoming papers. The first is to analyze the fractional Birkhoff interpolation

errors and understand the approximability of the new interpolation basis functions from theoretical

perspective. The second is to extend the idea and techniques in this paper to study the fractional

collocation methods using the nodal basis
{
(1+x)µhj(x)/(1+xj)

µ
}
(see [50], i.e., the counterpart

of Jacobi poly-fractonomials [49] and generalised Jacobi functions [46]).

Appendix A. Proof of Theorem 3.2

We expand {h′j} in terms of Legendre polynomials, and look for {slj} such that

h′j(x) =
1

2

N∑

n=1

(n+ α+ β + 1)tnjP
(α+1,β+1)
n−1 (x) =

N∑

l=1

sljPl−1(x), 0 ≤ j ≤ N, (A.1)

where {tnj} are given in (2.27) and we used the derivative formula (cf. [41]):

DP (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x), n ≥ 1. (A.2)

By (2.29)-(2.32), we find that

slj =
1

2

N∑

n=1

(n+α+β+1)(α+1,β+1)C
(0,0)
l−1,n−1 tnj =

1

2

N∑

n=l−1

(n+α+β+1)(α+1,β+1)C
(0,0)
l−1,n−1 tnj , (A.3)
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for 1 ≤ l ≤ N and 0 ≤ j ≤ N. In view of (A.1), we can use the first formula in (2.23) to derive

CD
(µ)
ij :=

(
CDµ

−hj
)
(xi) = I1−µ

− h′j(xi) =

N∑

l=1

sljI
1−µ
− Pl−1(xi)

= (1 + xi)
1−µ

N∑

l=1

(l − 1)!

Γ(l + 1− µ)
slj P

(µ−1,1−µ)
l−1 (xi) .

(A.4)

This ends the derivation of (3.22)-(3.23).

We now derive (3.24) for the LGL case. Using the orthogonality of Legendre polynomials,

integration by parts and the exactness of LGL quadrature (cf. (2.25)), we obtain from (A.1) that

slj =
1

γl−1

∫ 1

−1

h′j(x)Pl−1(x) dx =
1

γl−1

{
hj(x)Pl−1(x)

∣∣1
−1

−

N∑

i=0

hj(xi)P
′
l−1(xi)ωi

}

=
1

γl−1

{
δjN + (−1)lδj0 − ωjP

′
l−1(xj)

}
,

(A.5)

where we used the properties: hj(xi) = δij and Pl−1(±1) = (±1)l−1.

Appendix B. Proof of Theorem 4.2

Since ~j ∈ PN−k, we can write

~j(x) =

N−k∑

n=0

ξnjP
(α,β)
n (x) =

N−k∑

l=0

ξ̆ljP
(µ−k,k−µ)
l (x), 1 ≤ j ≤ N + 1− k. (B.1)

As before, if one can work out {ξnj}, then by (2.29)-(2.32),

ξ̆lj =
N−k∑

n=l

(α,β)C
(µ−k,k−µ)
ln ξnj . (B.2)

As to be shown later, inserting (B.1) into (4.9), we can derive from (2.24) with ρ = k − µ the

desired formulas. Thus, it remains to find {ξnj} in (B.1). We proceed separately for two cases.

(i) For µ ∈ (0, 1), we obtain from the orthogonality (2.17), the exactness of JGL quadrature

(2.25), and the interpolating condition (4.10) that

ξnj =
1

γ
(α,β)
n

∫ 1

−1

~j(x)P
(α,β)
n (x)ω(α,β)(x)dx =

1

γ
(α,β)
n

N∑

i=0

~j(xi)P
(α,β)
n (xi)ωi

=
1

γ
(α,β)
n

{
~j(−1)P (α,β)

n (−1)ω0 + P (α,β)
n (xj)ωj

}
, 1 ≤ j ≤ N.

(B.3)

Now, we evaluate ~j(−1). Since {~j} are associated with the interpolating points {xj}
N
j=1, which

are zeros of (1− x)DP
(α,β)
N (x), we have the representation:

~j(x) =
(1− x)DP

(α,β)
N (x)

(x− xj)D
{
(1− x)DP

(α,β)
N (x)

}∣∣
x=xj

, 1 ≤ j ≤ N. (B.4)

Recall the Sturm-Liouville equation of Jacobi polynomials (cf. [41, (4.2.1)]):

− (1− x2)D2P
(α,β)
N (x) =

{
β − α− (α+ β + 2)x

}
DP

(α,β)
N (x) + λ

(α,β)
N P

(α,β)
N (x), (B.5)

where λ
(α,β)
N = N(N + α+ β + 1). It follows from (B.5) that

2(β + 1)DP
(α,β)
N (−1) = −λ

(α,β)
N P

(α,β)
N (−1), 2(α+ 1)DP

(α,β)
N (1) = λ

(α,β)
N P

(α,β)
N (1),

− (1− x2j )D
2P

(α,β)
N (xj) = λ

(α,β)
N P

(α,β)
N (xj), 1 ≤ j ≤ N − 1.

(B.6)
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Using the property: (1 − xj)DP
(α,β)
N (xj) = 0 and (B.6), we compute from (B.4) that

~j(−1) = −
cj

β + 1

P
(α,β)
N (−1)

P
(α,β)
N (xj)

, 1 ≤ j ≤ N, (B.7)

where cj = 1 for 1 ≤ j ≤ N − 1, and cN = α+ 1. Substituting (B.7) into (B.3) yields (4.14).

Inserting (B.1) into (4.9), we derive from (2.24) with ρ = 1− µ that

DQµ
j (x) =

1

(1 + xj)1−µ

N−1∑

l=0

Γ(l − µ+ 2)

l!
ξ̆lj Pl(x), 1 ≤ j ≤ N. (B.8)

In view of Qµ
j (−1) = 0, a direct integration of (B.8) leads to (4.12).

(ii) For µ ∈ (1, 2), (B.3) reads

ξnj =
1

γ
(α,β)
n

{
~j(−1)P (α,β)

n (−1)ω0 + ~j(1)P
(α,β)
n (1)ωN + P (α,β)

n (xj)ωj

}
, 1 ≤ j ≤ N − 1. (B.9)

We need to evaluate ~j(±1). Note that in this case, {~j} are associated with the interior JGL

points {xj}
N−1
j=1 , which are zeros of DP

(α,β)
N (x), so we have

~j(x) =
DP

(α,β)
N (x)

(x− xj)D2P
(α,β)
N (xj)

, 1 ≤ j ≤ N − 1. (B.10)

Thus using (B.5)-(B.6) leads to

~j(−1) = −
1− xj
2(β + 1)

P
(α,β)
N (−1)

P
(α,β)
N (xj)

, ~j(1) = −
1 + xj
2(α+ 1)

P
(α,β)
N (1)

P
(α,β)
N (xj)

. (B.11)

Substituting (B.11) into (B.9) yields (4.17).

Similar to case (i), inserting (B.1) into (4.9), we derive from (2.24) with ρ = 2− µ that

D2Qµ
j (x) =

1

(1 + xj)2−µ

N−2∑

l=0

Γ(l − µ+ 3)

l!
ξ̆lj Pl(x). (B.12)

Solving this equation with the boundary conditions: Qµ
j (±1) = 0, we obtain Φl in (4.18) and the

desired formula (4.15).

Appendix C. Proof of Lemma 5.1

We carry out the proof by directly verifying that u(x) in (5.7) is the desired polynomial solution.

It is evident that for any f ∈ 0PN , we can write

f(x) =

N−1∑

n=0

f̂n (1 + x)P (µ,1−µ)
n (x), (C.1)

where the coefficients {f̂n} are uniquely determined. Using (2.19) with ρ = µ, α = µ and β = 1−µ,

leads to

u(x) = Iµ−
{
(1 + x)−µf(x)

}
=

N−1∑

n=0

Γ(n+ 2− µ)

(n+ 1)!
f̂n (1 + x)P (0,1)

n (x), (C.2)
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which implies u ∈ 0PN . Recall that
RD̂µ

− = (1+x)µRDµ
−. Thus, acting

RD̂µ
− on both sides of (C.2),

we obtain from (2.20) and (C.1) immediately that

RD̂µ
−u(x) =

N−1∑

n=0

Γ(n+ 2− µ)

(n+ 1)!
f̂n

RD̂µ
−

{
(1 + x)P (0,1)

n (x)
}

=

N−1∑

n=0

f̂n (1 + x)P (µ,1−µ)
n (x) = f(x).

(C.3)

Therefore, u(x) in (5.7) verifies (5.6). The uniqueness follows from RD̂µ
−u(x) = 0 implying u(x) = 0.

We now turn to (5.8). The above verification shows that if f(−1) = 0, i.e., RD̂ρ
−u(−1) = 0,

then u(−1) = 0. Hence, it suffices to show if u(−1) = 0, then RD̂ρ
−u(−1) = 0. For this purpose, we

expand

u(x) =
N−1∑

n=0

ûn (1 + x)P (0,1)
n (x), (C.4)

where {ûn} can be uniquely determined. Like the derivation of (C.3), acting RD̂µ
− and using (2.20),

we obtain

RD̂µ
−u(x) =

N−1∑

n=0

(n+ 1)!

Γ(n+ 2− µ)
ûn (1 + x)P (µ,1−µ)

n (x), (C.5)

which implies RD̂ρ
−u(−1) = 0.

Appendix D. Proof of Theorem 5.2

We intend to use the compact identity deduced from (2.20), that is,

RD̂µ
−

{
Pn(x)

}
=

n!

Γ(n− µ+ 1)
P (µ,−µ)
n (x), n ≥ 0, µ ∈ (0, 1). (D.1)

This inspires us to expand {hj} (resp. Q̂µ
j ) in terms of {P

(µ,−µ)
l } (resp. {Pl}). Following (3.35)-

(3.36), we have

hj(x) =

N∑

l=0

t̂ljP
(µ,−µ)
l (x), t̂lj =

N∑

n=l

(α,β)C
(µ,−µ)
ln tnj , (D.2)

and

Q̂µ
j (x) =

N∑

l=0

q̂ljPl(x), 0 ≤ j ≤ N. (D.3)

Inserting (D.2)-(D.3) into (5.9), we obtain from (D.1) immediately that for 0 ≤ l ≤ N,

q̂lj =
Γ(l − µ+ 1)

l!
t̂lj , 1 ≤ j ≤ N, q̂l0 =

Γ(l − µ+ 1)

l!
ξ t̂l0. (D.4)

Thus, it remains to determine the constant ξ. Setting Q̃µ
0 (x) = Q̂µ

0 (x) − 1, we have Q̃µ
0 (−1) = 0.

Using (5.8), the formula (2.12), and definition (3.10), we obtain from (5.9) that

0 =
(
RD̂µ

− Q̃
µ
0

)
(−1) = ξ −

(
RD̂µ

− 1
)∣∣

x=1
= ξ −

1

Γ(1− µ)
, so ξ =

1

Γ(1 − µ)
. (D.5)

This ends the proof.
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Appendix E. Proof of Lemma 5.2

We first derive the coefficients in (5.19)-(5.20). By the orthogonality (2.17), the exactness of

JGL quadrature (2.25), and the interpolating condition (5.15), we have

̺nj =
1

γ
(α,β)
n

∫ 1

−1

ĥj(x)P
(α,β)
n (x)ω(α,β)(x)dx =

1

γ
(α,β)
n

N∑

i=0

ĥj(xi)P
(α,β)
n (xi)ωi

=
1

γ
(α,β)
n

{
P (α,β)
n (xj)ωj + ĥj(1)P

(α,β)
n (1)ωN

}
, 0 ≤ n, j ≤ N − 1.

(E.1)

Since {ĥj} are associated with the JGL points {xj}
N−1
j=0 , which are zeros of (1 + x)DP

(α,β)
N (x), we

have the representation:

ĥj(x) =
(1 + x)DP

(α,β)
N (x)

(x− xj)D
{
(1 + x)DP

(α,β)
N (x)

}∣∣
x=xj

, 0 ≤ j ≤ N − 1. (E.2)

A direct calculation using (B.6) leads to

ĥ0(1) = −
β + 1

α+ 1

P
(α,β)
N (1)

P
(α,β)
N (−1)

, ĥj(1) = −
1

α+ 1

P
(α,β)
N (1)

P
(α,β)
N (xj)

, 1 ≤ j ≤ N − 1. (E.3)

Thus, we obtain (5.19)-(5.20) by inserting them into (E.1).

Thanks to

ĥj(x) =

N−1∑

n=0

̺nj P
(α,β)
n (x) =

N−1∑

l=0

˜̺lj P
(µ,1−µ)
l (x), 0 ≤ j ≤ N − 1, (E.4)

we solve the connection problem and obtain from (2.32)-(2.31) the formula (5.21).

It remains to derive (5.22). Applying the three-term recurrence relation (5.16) to the last

expansion in (5.18), we obtain the connection

T ˆ̺j = ˜̺j , ˆ̺j = (ˆ̺0j , · · · , ˆ̺N−1,j)
t, ˜̺j = (˜̺0j , · · · , ˜̺N−1,j)

t, (E.5)

where T is an upper triangular matrix with only nonzero entries on diagonal and two upper

diagonals:

T 00 = 1, T ii = ai; T i,i+1 = bi + 1; T i,i+2 = ci. (E.6)

Solving the linear system by backward substitution leads to (5.22).

Appendix F. Proof of Theorem 5.3

We first use Lemma 5.1 to solve (5.12)-(5.14) and find the expressions of the constants therein.

It’s more convenient to reformulate (5.12) as: find Q̂µ
0 (x) = Q̆µ

0 (x) + 1 such that

(
RD̂µ

− Q̆
µ
0

)
(x) =

(
τ0 −

1

Γ(1− µ)

)
(1 + x)ĥ0(x) +

1

Γ(1− µ)

(
ĥ0(x) − 1), Q̆µ

0 (1) = −1, (F.1)

where we used (2.12), (3.8) and (5.8) to derive

RD̂µ
−1 =

1

Γ(1− µ)
, κ0 = τ0 −

1

Γ(1− µ)
. (F.2)

Using Lemma 5.1 and (2.10), we obtain

Q̆µ
0 (x) =

(
τ0 −

1

Γ(1− µ)

)
Iµ−

{
(1 + x)1−µĥ0(x)

}
+

1

Γ(1− µ)
Iµ−

{
(1 + x)−µ(ĥ0(x)− 1)

}
. (F.3)
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As Q̆µ
0 (1) = −1, we have

Γ(1 − µ) τ0 = 1−
Iµ−

{
(1 + x)−µ(ĥ0(x)− 1)

}∣∣
x=1

+ Γ(1− µ)

Iµ−
{
(1 + x)1−µĥ0(x)

}∣∣
x=1

. (F.4)

Following the same argument, we derive

Q̂µ
N(x) = τN Iµ−

{
(1 + x)1−µĥ0(x)

}
, τN =

1

Iµ−
{
(1 + x)1−µĥ0(x)

}∣∣
x=1

, (F.5)

and for 1 ≤ j ≤ N − 1,

Q̂µ
j (x) =

1

xj + τj

(
τjI

µ
−

{
(1 + x)−µĥj(x)

}
+ Iµ−

{
(1 + x)−µxĥj(x)

})
, (F.6)

τj = −
Iµ−

{
(1 + x)−µxĥj(x)

}∣∣
x=1

Iµ−
{
(1 + x)−µĥj(x)

}∣∣
x=1

. (F.7)

We now evaluate fractional integrals of ĥj . Using the last two expansions with j = 0 in (5.18),

and the identity (2.19) with ρ = µ, α = µ and β = 1− µ, we obtain

Iµ−
{
(1 + x)1−µĥ0(x)

}
=

N−1∑

l=0

Γ(l + 2− µ)

(l + 1)!
˜̺l0 (1 + x)P

(0,1)
l (x),

Iµ−
{
(1 + x)−µ(ĥ0(x) − 1)

}
=

N−2∑

l=0

Γ(l + 2− µ)

(l + 1)!
ˆ̺l+1,0 (1 + x)P

(0,1)
l (x).

(F.8)

Noting that P
(0,1)
n (1) = 1 (cf. [41]), we obtain from (F.4) and (F.8) the value of τ0 in (5.24), and

the expression of Q̂µ
0 (x) follows from (F.3) immediately.

Similarly, we obtain from (F.5) and (F.8) the expression of Q̂µ
N (x) in (5.25).

We now turn to Q̂µ
j (x) with 1 ≤ j ≤ N − 1. Once again, using (2.19) (with ρ = µ, α = µ and

β = 1− µ) and (5.18), leads to

Iµ−
{
(1 + x)−µĥj(x)

}
= (1 + x)

N−2∑

l=0

Γ(l + 2− µ)

(l + 1)!
ˆ̺l+1,j P

(0,1)
l (x),

Iµ−
{
(1 + x)−µĥj(x)

}∣∣
x=1

= 2

N−2∑

l=0

Γ(l + 2− µ)

(l + 1)!
ˆ̺l+1,j ,

(F.9)

where we used P
(0,1)
l (1) = 1. Moreover, by (2.19), (5.18) and (5.16)-(5.17),

Iµ−
{
(1 + x)−µxĥj(x)

}
=

N−2∑

l=0

ˆ̺l+1,j I
µ
−

{
(1 + x)1−µxP

(µ,1−µ)
l (x)

}
= (1 + x)×

N−2∑

l=0

Γ(l + 2− µ)

(l + 1)!
ˆ̺l+1,j

{
l + 2− µ

l + 2
al+1P

(0,1)
l+1 + blP

(0,1)
l +

l+ 1

l + 1− µ
cl−1P

(0,1)
l−1

}
(x),

(F.10)

where c−1 = 0. Using the property: P
(0,1)
l−1 (1) = 1 and (5.17), we find from a direct calculation and

(F.9) that

Iµ−
{
(1 + x)−µxĥj(x)

}∣∣
x=1

= 2(1− µ)Γ(2− µ)ˆ̺1j + 2

N−2∑

l=1

Γ(l + 2− µ)

(l + 1)!
ˆ̺l+1,j

= Iµ−
{
(1 + x)−µĥj(x)

}∣∣
x=1

− 2µΓ(2− µ)ˆ̺1j .

(F.11)

Inserting (F.9)-(F.11) into (F.6)-(F.7), we derive the forumlas (5.26)-(5.27).
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