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Abstract

A novel numerical algorithm for the simulation of transient combustion problems at low Mach
and moderately high Reynolds numbers is presented. These problems are often characterized
by the existence of a large disparity of length and time scales, resulting in the development of
directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts.
This makes local anisotropic adaptive techniques quite advantageous computationally. In this
work we propose a local anisotropic refinement algorithm using, for the spatial discretization,
unstructured triangular elements in a finite element framework. For the time integration,
the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-
Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian
(SL) interpolation. The good performance of the numerical algorithm is illustrated by solving
a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed
methane-air flame/vortex interaction with simplified transport and chemistry description (Test
I) is considered. Results are found to be in excellent agreement with those in the literature,
proving the superior performance of the SLG scheme when compared with the classical SL
technique, and the advantage of using anisotropic adaptation instead of uniform meshes or
isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-
premixed hydrogen-air flame/vortex interactions (Test IT) using a more complex combustion
model which involves state-of-the-art transport and chemical kinetics. In addition to the
analysis of the numerical features, this second example allows us to perform a satisfactory
comparison with experimental visualizations taken from the literature.

Keywords: Lagrange-Galerkin schemes, finite element method, anisotropic refinement,
transient combustion problems, flame/vortex interaction.

1. Introduction

The analysis of reactive flows is a well-established field of research with a major impact
in modern society [1]. This topic covers, in particular, the combustion of fossil fuels, which
still produce over 85% of the world energy supply, a figure that is expected to grow in the
next several decades in spite of the recent advances accomplished in electricity generation from
renewable energy sources.
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To understand and quantify combustion processes, a well-posed mathematical model that
translates the physics of the problem into equations is required. Although the conservation
equations that govern chemically reactive flows are known since the mid-twentieth century,
still today a comprehensive and general solution to those equations would be nothing short of
a stupendous feat: to the built-in mathematical complexity of the Navier-Stokes equations,
which describe by themselves such complex phenomena as turbulent flows [2], one should add
the difficulties arising from the convection-diffusion-reaction equations describing energy and
species mass conservation [3], in which the non-linear effects associated with convection and
(to a lesser extent) diffusion are intertwined with the strong temperature dependence of the
chemical reaction rates.

A paramount complication to the integration of the combustion equations stems from the
large disparity of scales associated with the different terms that appear in the system [4]. The
theoretical handling of such an arduous problem involves the use of asymptotic analysis and
perturbation theory, an approach that has proved to be of invaluable help in ascertaining
the qualitative behavior of combustion processes [5]. Nevertheless, the accuracy required to
replicate experimental results and to acquire a thorough grasp of the phenomena at hand
might only be attainable by means of numerical methods. The advent of numerical simulations
and their application to the understanding and interpretation of combustion phenomena took
place several decades ago, with the rise of digital computers and the development of reliable
numerical methods that could efficiently handle the non-linearities inherent to convection,
diffusion, and finite-rate chemical kinetics models [6].

In the current investigation we address the disparity of spatial scales found in transient
combustion problems by means of an adaptive algorithm that generates locally refined meshes
in which the evolving solution meets a prescribed accuracy. Although in computational fluid
mechanics (and, more specifically, in numerical combustion [7]) finite difference and finite volume
techniques have been historically more common [6, 8-11], the numerical method presented
herein is based on a conforming finite element discretization. The reason for this lies in the
ability of the proposed method to work with unstructured meshes, while its Galerkin character
allows for an a posteriori error estimator that constitutes the base for error control and local
mesh refinement. Alternative approaches for the numerical integration of combustion problems
have also been proposed, including for instance spectral methods [12], projection methods [13],
extended Lattice-Boltzmann methods [14], and wavelet-based techniques [15].

A key element to any adaptive finite element scheme is the way in which the a posteriori
error indicator of the error incurred by the numerical integration of the equations is computed.
Among the different available strategies, duality based techniques [16] stand out for their
efficiency and reliability to produce “goal oriented adaptation”, having been applied quite
satisfactorily to steady laminar combustion problems [17-22]. However, the development of
an efficient, time-marching adaptive algorithm that uses this methodology in such complex
problems is still a hard challenge and a topic of active research [23, 24]. In time-dependent
problems, more heuristic a posteriori error analysis, based on residuals of the governing equations
or on jumps of the gradients of the solution between adjacent elements, have proved quite
successful in combustion problems [25-27]. Error indicators were first developed for isotropic
adaptation, where only the size of the element must be defined to accommodate for triangles
as close to equilateral as possible [28]. This is a common feature to the literature cited so far;
however, for the kind of problems we are interested in, anisotropic adaptation offers a decisive
advantage in solving the smallest scales of the flow and capturing its directional features, such
as slender jets, boundary layers, mixing layers, or flame fronts (see, e.g., [29] for an overview of
anisotropic mesh adaptation applied to CFD computations, or [30] for anisotropic adaptation
applied to high Reynolds number flows with economical CPU and storage resources). Thus,
when anisotropic mesh refinement is employed, the computed error indicator must not only
provide the size of the elements, but also their shape and orientation so as to define the optimal
triangulation.



A feature that distinguishes the numerical methods employed in combustion problems is
the treatment of the convective terms. The majority of the works concerned with the finite
element simulation of combustion problems [17-27] consider an Eulerian description of the
flow and use a Galerkin discretization along with streamline-diffusion upwinding terms to
avoid spurious oscillations in the convection dominated region. In contrast, we propose here a
mixed Lagrangian-Eulerian (also referred to as semi-Lagrangian) formulation that discretizes
the convection operator explicitly following the trajectories of the fluid particles backwards
in time (Lagrangian stage), whereas the diffusion-reaction terms define a parabolic problem
which is solved in a fixed mesh (Eulerian stage). In addition to handling the convective terms
in a numerically stable way, the semi-Lagrangian formulation has the ability to decouple the
Navier-Stokes equations from the energy and species mass conservation equations. It translates
the former into a linear Stokes problem (which involves velocity and pressure) and the latter
into a parabolic problem (which involves the thermodynamic variables, e.g., temperature and
species mass fractions). To the best of our knowledge, the application of semi-Lagrangian
schemes is quite novel in combustion problems [31, 32].

A crucial point in semi-Lagrangian schemes is how to find the numerical solution of the
displaced “feet of the characteristics” (or departure points) at the previous instant of time in
the finite element space at hand. In this regard, a variety of procedures ensue: the “classical”
semi-Lagrangian scheme, firstly developed in a finite difference context and later extended
to a finite element framework by Allievi and Bermejo [33], is based on interpolation on the
moved nodes of the mesh. This classical scheme has been used efficiently in local adaptive mesh
refinement with both isotropic [31] and anisotropic [34] adaptation. The aim of this work is to
improve the accuracy of this approach while also proposing a scheme that is more consistent
with the methodology of finite elements: a variant of the Lagrange-Galerkin technique [35]
(previously named Characteristic-Galerkin method in [36]) based on a Galerkin projection
method. This alternative form that we term “semi-Lagrange-Galerkin” scheme [37] (or modified
Lagrange-Galerkin method [38]), has been used with great success in isotropic uniform fixed
meshes, providing a better accuracy than the classical semi-Lagrangian interpolation technique
at a similar computational cost. In this work, we extend this technique to a local adaptive
refinement framework with meshes composed of anisotropic elements.

Summarizing, in the present work we present a novel local anisotropic adaptive algorithm
for the solution of transient combustion problems at low Mach and moderately high Reynolds
numbers. We extend our method initially proposed in [34] for convection dominated equations
to a complex multivariate problem, making use of the more accurate semi-Lagrange-Galerkin
scheme to integrate the conservation equations in an anisotropic finite element framework. The
structure of the paper is as follows. In Section 2 we present the numerical discretization of the
combustion equations via semi-Lagrangian schemes, outlining the Lagrangian and Eulerian
stages, as well as the traits of the anisotropic refinement algorithm when combustion processes
are involved. In Section 3 we carry out a series of numerical experiments to demonstrate
the capabilities of the numerical method in a classical benchmark combustion problem: the
flame/vortex interaction. First, we consider a two-dimensional planar configuration featuring the
interaction of a laminar premixed methane-air flame with a vortex pair; and then, we integrate
a more realistic combustion model for non-premixed hydrogen-air flame/vortex interactions in a
two-dimensional axisymmetric configuration, which enables the comparison with experimental
visualizations found in the literature. Finally, some conclusions and an overview of future work
are presented in Section 4.

2. Discretization of the combustion equations

The solution of a given combustion problem involves the integration of the conservation
equations for chemically reacting flows with I chemical species involved in the model. These
include the Navier-Stokes equations (mass and momentum conservation equations) coupled



with the conservation equations for energy and species mass fractions. In the low Mach number
limit [7], these equations may be written as:

%+U~Vp:fpV~u,
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In the above system of equations u = {uq,...,uq} is the fluid velocity (where d = 2, 3 denotes

the spatial dimension of the problem), p is the hydrodynamic pressure (accounting both for
the spatial pressure variations and the isotropic component of the stress tensor), Y; is the
mass fraction of species i, and T is the fluid temperature. In addition, p is the density, u
the dynamic viscosity, ¢, the specific heat at constant pressure, Dy the thermal diffusivity,
and pg the thermodynamic pressure (which is spatially uniform in low Mach number flows,
and thus remains constant in open vessels). Regarding the chemical species, h; is the specific
mass enthalpy, c,; the specific heat at constant pressure, and j; the mass diffusion flux of
species 4, while r; stands for the net mass of species i produced per unit volume and unit
time by the chemical reactions. Hence, we have d + 1 + I conservation equations for the
d+ 1+ I unknowns {u,...,uq,p,T,Y1,...,Yr_1}, with an additional set of state equations
and constitutive relations that provide the remaining variables as functions of the previous
unknowns. The above equations must also be supplied with an appropriate set of initial and
boundary conditions to define a well posed mathematical problem.

As can be noticed from (1), any of the conservation equations can be written as a generic
convection-reaction-diffusion problem for the scalar variable ¢(x,t) according to:

%+u.vczF(c7t) i Qx[0,1];
c(x,0) =%(x) in @

Beloga =0 t>0;

where the right-hand side F' (c, t) represents a generic function that may depend on the unknown,
vector-valued variable c(x,t) as well as on its spatial derivatives, thereby representing the
diffusion and reaction terms of the combustion equations; besides, B is a boundary operator,
and Q C R? is a bounded domain with sufficiently smooth boundary 9.

To integrate the above system of equations we make use of a time-marching algorithm: first
we divide the time interval [0, ¢¢] into N; subintervals each of the same size At = t,, —t,,_1, such
that N;At = ty. Then, at each subinterval I,, = (¢,_1, t,], we build a regular, unstructured
triangulation of the domain T} = {K; C RY 1 < j < NE,}, with NE, the number of
elements in the mesh, a value that may possibly change from one time subinterval to another.
Associated with this triangulation, we define the conforming finite element space V;* composed
of continuous, piecewise polynomials of order < m on each element K € T}, so that the discrete
solution ¢} (x) (short notation for ¢y (x,t,)) at instant ¢,, may be written as:

Nh,
) = enlox ) = Y Cll (), 3)

where N7* denotes the number of mesh nodes in the triangulation T}, {¢?'} represents the set
of basis functions of V;* satistying ¢ (x;) = d;; (with d;; the Kronecker delta), and C}* is the
value of the function at the mesh node x;, C7" = cj(x;).



As previously discussed, the convection term is a well known source of numerical problems,
particularly at high Reynolds numbers. We handle this term using a semi-Lagrangian scheme
(in a classical or modified version, as we shall see). This scheme integrates (2) backwards in
time at each time subinterval I,, along the characteristic curves X(x,t,;t) of the material
derivative operator; here, X(x,t,;t) is the position at time ¢ of the fluid particle (moving with
velocity u(x,t)) which reaches the spatial point x at time t,. Thus, the partial differential
equation in (2) can be rewritten as:

Ocn(X(x,tn;t), 1)

5 = F(c, (X (X,tn;t),t),t) in Qx (th_1,tn], (4)

where we note that the discrete numerical solution ¢y (x,t,) of (2) at time ¢, is equal to the
numerical solution ¢y, (X(X, tn;t,),t,) of (4) since, by definition, X(x,t,;t,) = x. Following
(4), the numerical calculation of ¢, (x,t,) at instant ¢,, involves two stages: the first one, or
Lagrangian stage, computes the initial solution czfl(X(x,tn;tn,l)) belonging to the finite
element space V}'; the second one, or Eulerian stage, integrates a coupled reaction-diffusion
problem along the characteristic curves, whose solution is to be found also in V.

A major advantage of semi-Lagrangian schemes is their ability to decouple the Navier-Stokes
equations from the energy and species mass conservation equations, translating the former into
a Stokes problem and the latter into purely parabolic equations [31], the particulars of which
are to be discussed below.

2.1. The Lagrangian stage: computation of ¢p(X,tn—1)

Two main difficulties arise in the calculation of ¢} (X(x, t,;tn—1)): first, how to compute
the departure points of the characteristic curves X(x;,t,;t,_1) (or X"~!(x;) in abbreviated
form), for general points x; in the triangulation; second, and most important, how to build, in
the finite element space V;* in which we search for a solution of (4), the best approximation
et (x) = en(X,th—1) € V;* to the actual function ¢! (X(x,tn;t,—1)), since the latter does
not belong to V.

An approach to the first problem would be to compute numerically the characteristic curves
of a given point x; by means, for instance, of an explicit, second-order Runge-Kutta scheme:

dX(Xi, tn; t)

dt
X(Xi7 tn; tn) = X

= up (X(Xivtn;t)at)v tnfl §t<tn;

(5)

where an explicit, linear (extrapolation) approximation to uy (x,t) is constructed using the
previously computed velocities uZﬁl(x) € Vf:“l and uZﬁQ(x) € fo*z at times t,,_1 and t,,_o,
respectively:

t—tn1 2

725 +O(At )7 tho1 <t <ty (6)
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this provides a consistent second-order accuracy for the calculation of X (x;,t,;tn—1), as shown
in [33].

Once the departure points of the characteristic curves are known, it is possible to build
¢r 1 (x) as a good approximation to the actual function ¢}~ (X(x,t,;t,_1)) in the current
finite element space V;'; to this end, we write E}fl(x) € V) as a linear combination of the

functions {¢!'} forming a basis of the finite element space V};*, according to:

n
Ny,

atx) =) O el (), (7)

i=1

where C7 ! is the set of unknown, nodal values of T} to be determined.



As previously discussed, there are different approaches to build this approximation in a
finite element framework: the classical semi-Lagrangian method [33] computes the departure
points X(x;, t;tn—1) for the nodal mesh points x; of the current triangulation by interpolation;
in contrast, the Lagrange-Galerkin method [35] uses an L2-projection scheme that, as will be
shown below, produces better results than the classical interpolatory formulation. A variant
of the Lagrange-Galerkin scheme, termed “semi-Lagrange-Galerkin” [37], has proved to be as
accurate, and more efficient in terms of CPU time, than the pure Lagrange-Galerkin method.
Below we give a brief description of both schemes, exploring afterwards the applicability of the
semi-Lagrange-Galerkin technique in an anisotropic adaptive framework.

2.1.1. Classical semi-Lagrangian method
This method computes the value of C’?_ =c, !(x;) via a standard Lagrange interpolation
with polynomials of degree m, equal to the order of the finite element space V}"*, for all nodal

points {x; fV:’?l of the current mesh T};. We start by computing the characteristic curves X" 1(x;)
associated with the nodal points x;; since the function cZﬁl(x) belongs to V,:’fl, we have to find
the mesh element Kx, € T~ " in which the departure point X"~ (x;) is located, via the search-
locate algorithm presented in [45]. After that, we select the values {CR", Cr ..., CR '} of
the nv mesh nodal points of Kx, € Tz_l which surround the departure point X"~!(x;), noting
that nv = (m + 1)(m + 2)/2 for triangles, and nv = (m + 1)(m + 2)(m + 3)/6 for tetrahedra.
Finally, the value of 6’?_1 is computed by interpolation with polynomials of degree m as:

Nn 1
Tt = 1 (X0 x,)) chl (X" (x0) (3)

3

—1 VT . . - . . _
where {ap;L ! ;2 s the set of basis functions of Vi ! defined for the triangulation T, Lat

the previous instant of time ¢,,_1.

2.1.2. Semi-Lagrange-Galerkin method
The next scheme considered is the semi-Lagrange-Galerkin method, in which the set of
values {C'~'} is obtained minimizing the following error in the L?-norm:

min{/ﬂ[cg V(X (X by te1)) — &N (x )]QdQ}. (9)

The solution to this minimization problem is the Galerkin L2-projection of 0271 (X”’l(x))
onto the finite element space V', which is obtained solving the following systems of linear
equations:

Ny

ij,;égkl = /QCZ_1 (X"il(x)) @?(x) ds; (10)

where m;; = [, i ()@} (x) d are the components of the mass matrix of the finite element
space V). To compute the integral in the right-hand side of (10), we consider the contribution
of each triangle belonging to the current triangulation K € T} and then we make use of
quadrature rules. As it is, ¢} (x) can be easily evaluated at the quadrature points x, of K,

via a linear mapping x, = F(X,) between the reference triangle K and the current triangle
K. However, according to the Lagrange-Galerkin formulation of [35], it would be necessary to
compute the feet of the characteristic curves for all quadrature points X" ~!(x,) of element K
in order to evaluate cj (X" 1(xg)), a process that is computationally expensive.

As an alternative, we propose here to use the cheaper semi-Lagrange-Galerkin method,
which approximately computes X"~ 1(Xg) without loss of accuracy in the discretization. We

define an isoparametric transformation FK* from the reference element K onto the transported



m-triangle K* whose nodes are the nv feet of the characteristic curves of the nodes of element
K {X"~!(x;)}.",, so that X"~!(x,) is approximated by X; according to:

Ny

X" (xg) = Xy = FR (%) = D X" (x0)i(Ry), (11)

i=1

where {®;}1Y; is the set of basis functions of the reference triangle K ; see Fig. 1 for details.

Figure 1: Representation of the mapping F : K — K and the isoparametric transformation ﬁ}é* K S K+
adopted in the the semi-Lagrange-Galerkin method for quadratic finite elements m = 2.

The transformation ﬁ}é* of (11) has order m, the same order of the finite element space V}"
where the solution of the problem is computed. Therefore, this approximation X"~ !(x,) =
x,+0 (hmH) provides an error that is consistent with the space discretization. In addition, to

generate the isoparametric transformation ﬁ}é* for all elements K we just need to compute the

characteristic curves for all nodal points {xz}f\;’% of the current mesh T}, the same requirement
found in the classical semi-Lagrangian methodology. Hence, the proposed procedure just entails
the resolution of a positive definite system of linear equations with a well-conditioned mass
matrix, a very cheap procedure from a computational point of view. For reference purposes, in
the numerical experiments presented below we use N PG = 16 Gaussian quadrature points for
2D configurations.

2.2. The Eulerian stage: computation of cp(x,t,)

After the Lagrangian stage, one must find the solution of the partial differential equation
(4) in the finite element space V}'. Let ¢, (x,t) € V;* be the numerical solution of the problem:

W:F(éh(m),ﬂ i QX (tn_1,tnl,
@ (x) = PP (N (X (X, tnst-1)))  in Q (12)

Bej(x)]aa = 0,

representing our approximation to the actual function ¢ (x,t) of the generic problem (2) at
time t,,, with ¢, (x,t,) = cp(x,t,). In this problem, P} (cz_l(X(x,tn;tn_l))) denotes the
interpolation (classical semi-Lagrangian) or projection (semi-Lagrange-Galerkin) operator over
Vi employed in the Lagrangian stage.



For the spatial discretization of (12), we use a Galerkin finite element formulation along
with a second order temporal scheme O (AtQ) to be consistent with the computation of the
characteristic curves for the convection operator discussed above. Below, we particularize (2)
to the conservation equations involved in all combustion problems (1): energy, species mass
fractions, and Navier-Stokes equations.

2.2.1. Temporal discretization of the energy and species mass conservation equations

One way of attacking the systems arising from the energy and species mass conservation
equations would be to use an implicit BDF (Backward Differentiation Formula) of second
order, thus benefiting from the unconditional stability of such schemes to take large time
steps in the integration process. However, there is a major drawback to this approach, namely
that for realistic combustion models, both the diffusion and reaction terms of (1) depend on
the local thermodynamic state of the mixture, and they do so in a non-linear way. To make
this point clear, let us remember that the unknown variables of the energy and species mass
conservation equations are the I —1 species mass fractions plus a single state variable (usually the
temperature), that we may collect in the vector-valued variable ¢y, (x,t) = {Y1n, ..., Y(7—1)n, Th}
composed of I scalar variables. Thus, we may write I diffusion-reaction differential equations
of the form:

8(_!}L (X, t)

ot

where the right-hand side F (¢, (x,t),t) is a generic vector-valued function that may depend on
the set of variables cj, in a highly nonlinear way due to the variation of the molecular transport
coefficients with temperature and, particularly, to the strong temperature dependence of the
chemical reaction rates. Therefore, an implicit discretization of the above system of equations
(13) would eventually lead to a fully-coupled, non-linear system of equations that involves all
the thermodynamic variables, so that, e.g., a Newton iteration should be employed to linearize
the problem, often resulting in poorly conditioned matrices that require computationally
expensive solvers. On the other hand, an explicit discretization of such terms avoids the coupled
non-linear equations. However, the extreme stiffness of the reaction terms, which are often
strongly dependent on temperature, poses a stability limit to the size of the time step At
(according to the Courant-Friedrich-Levy (CFL) criterion), which may completely destroy the
efficiency of such schemes.

To overcome the drawbacks of both methodologies, we propose to use an explicit method
that improves the stability region of the temporal scheme by adding stages in a dynamic way.
This temporal scheme takes the name of Runge-Kutta-Chebyshev scheme, and was developed
initially for pure parabolic equations [46]. A version of that algorithm was first introduced in a
local isotropic adaptive framework by Bermejo and Carpio [31] to solve convection-diffusion-
reaction equations using classical semi-Lagrangian schemes. The algorithm proposed in this
work consists of a second-order explicit Runge-Kutta-Chebyshev scheme (EX-RKC) with a
variable number of stages r that depends on the stiffness of the system, so that it can be
adaptively changed in time as the solution to the combustion problem evolves. The two first
stages of the scheme are used to achieve second-order convergence in time, whereas additional
stages are employed to increase the region of absolute stability. In this type of schemes, the
stability region is a narrow strip along the negative real axis of the complex plane, with the
real stability boundary being proportional to r2; this quadratic dependency is derived from the
Chebyshev polynomial of the first kind. Correspondingly, the number of stages r is defined in
terms of the spectral radius p(Jg) of the Jacobian matrix Jg built from the right-hand side
term F(C) (%), tn_1) = {F1 (€} tn1), F2 (€] tn1), ..., Fr(e) 1 ta_1)} of (12), that is:

= F(en(x,t),t) in Qx (tat,tal, (13)

— 1+ Int
r=itin 0.653

1+ At ”(JF)] , (14)

where Int[ ] is the integer part operator.



The spectral radius p(Jg) takes into account the diffusion and reaction terms embedded in
the right-hand side F(c,t). At first sight, it would seem that the most relevant contribution
to p(Jr) would be that of the reaction terms; however, the local refinement of the highly-stiff
reaction zones tends to balance out both contributions. For systems in which the number of
stages is kept below a maximum, r < rpax (€.8., Tmax =~ 100 for typical combustion problems),
the EX-RKC scheme is very efficient; exceeding the maximum number of stages would mean
that highly non-linear chemical reactions are taking place at the flame and, appropriately,
smaller elements are being produced by the adaptive procedure. This could be interpreted as
an indication of the inability of the method to solve in an effective way the system of equations
with the current time step size At; that would mean At is mainly ruled by the diffusive-reactive
step more than by the convective step. Consequently, and although not considered in this work,
an adaptation procedure for the time step At could be devised by ensuring that, at all times,
the algorithm does not go beyond a fixed maximum number of stages rpax. The EX-RKC

scheme is detailed in [46], and it is also outlined here for completeness.
I

——
The calculation of the numerical solution cj(x) € (Vh")I =V x...x V' of (12) by an

EX-RKC scheme with r stages using at initial condition ¢}~ '(x) € (Vh”)l foralli=1,...,1
may be written as:

Wi =&t (x),
W), = W) + i AtF,
for j=2tor
j 0 j—1 i-2, -~ 1 = A0 (15)

W; = (1-— i — V]')Wh +u; Wy + Wy o+ /.LjAtF] + ’}/jAtF ,
end
¢, (x) = Wh,

where WO, ... 'WT are internal scalar variables belonging to (V)', and F¥ = F(W* ¢, ; +
a,At). Besides, the coeflicients appearing in (15) are given analytically by:
2 17 (wo)
= — = 1 —_ T
Sz WoT it iE W= gy
T (wo)
j = 2<j<r), byp=b=bs, a; =1-0b;T;(wo)
ij’wo bj ~ 2bjw1 ~ ~
1 =brwy, p;= 5 y V=T = 0= Tl
Jj— Jj—2 j—1
T} (wo) Qs a2
— J ] < = = — = O
= gy BSISTh = y T Gy

with Tj(z) the Chebyshev polynomial of the first kind and degree j. Finally, we obtain
the numerical solution c}(x) € (V}Z‘)I for quadratic (m = 2) finite elements for all the
thermodynamic variables (temperature and species mass fractions). To do that, we derive
the weak formulation of the equations (15), which eventually leads to an uncoupled, well-
conditioned linear system of equations, one for each variable and for each of the stages of the
scheme. We also note that the EX-RKC method was extended to advection-diffusion-reaction
problems in [47]; such algorithm is also adequate for a purely Eulerian description of the flow
using a stabilized, finite element formulation instead of the mixed Lagrangian-Eulerian scheme
proposed in this work.



2.2.2. Temporal discretization of the Navier-Stokes equations
If one considers the flow of a viscous fluid with variable density at the low-Mach number
limit, the governing Navier-Stokes equations can be written in the general form (12) as follows:

ou t
% = —Vpn(x,t) + V- {p[VUn(x,t) + VUi (x,8)] } in QX (th_1,tn), (17
while also satisfying the continuity equation:
Op B 1 (0p ~ 1Dp  Dlog(p)
6t+uh Vp=—-pV-u,, or V- -u= p<8t+uth> oDt D (18)

From (17), the only unknowns are the velocity Uy (x, t) and the (hydrodynamic) pressure py, (x, t);
the fluid properties p and p are available since they are functions of the thermodynamic state
of the mixture given by the integration of the above energy and species mass conservation
equations at time ¢,,. We now use the second-order accurate BDF formula to discretize (17)-(18)
in time [38], resulting in the following Stokes problem:

o 3 (x) — 4t~ (%) + W, % (x)

= —Vpp(x) + V- {u" [Vup(x) + VuZT(x)} I8

2A¢
v.up = Dlosto) )
4 Dt |’
with @) ?(x) calculated from u}~?(X(x,t,;t,_2)) using the same algorithm employed for
=n—1
u, (%)

Our Galerkin discretization of the Stokes problem (19) uses Taylor-Hood finite elements,
quadratric m = 2 for the velocity and linear m = 1 for the pressure, to satisfy the Ladyzenskaja-
Babuska-Brezzi condition. Finally, the linear systems of equations arising from the spatial
discretization are solved by a preconditioned conjugate gradient Uzawa algorithm developed by
Dean and Glowinski [48].

2.8. Local anisotropic refinement algorithm

As already discussed, the large disparity of scales that characterizes practical combustion
problems makes imperative the use of an efficient, adaptive, numerical method to properly
capture the inner structure of the reacting mixing layers (in non-premixed systems) or the
time evolution of the flame fronts (in premixed, or partially premixed, combustion). Here, we
outline the anisotropic mesh refinement algorithm developed in [34], to exploit the strongly
directional features exhibited by chemically reacting flows at moderately high Reynolds numbers.
Accordingly, we refer the reader to that paper for details concerning the a priori and a posteriori
error analysis. The key idea is to adapt the computational domain to the particularities of
the solution at each time step. For that purpose, we first compute the numerical solution of
our combustion problem; then, we evaluate a certain indicator of the error incurred by the
spatial discretization; finally, we build an optimal mesh with the smallest possible number of
elements that still satisfies a given tolerance for the error indicator n™ < Tol. An all-important
component of the adaptation process is the so-called metric tensor, and entity which, by itself,
contains the information required to define the shape, size and orientation of each mesh element
in the “optimal” triangulation. Although there are several strategies to define such tensor
based on some error indicators (see for example [49], [50]), in this work we follow the guidelines
presented in [34] for convection dominated equations using semi-Lagrangian schemes.

Since combustion problems are typically multivariable process, the definition of the metric
tensor proposed in [34] must be carried out separately for each scalar variable, taking then the
intersection of all the resulting metric tensors. To this end, we define a set of variables

¢ = {ﬂlcl(xv t)v B ﬂici(xvt)a s 7ﬂNCN(Xa t)} (20)
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which will allow us to refine the mesh, where ¢ is a N selection of the unknown variables of
our problem {T,Yy,...,Yr_1,u1,...,uq}. Moreover, «; is a normalizing constant associated
with the variable ¢;(x,t) to balance the contribution of each variable in the global error. We
define the global error in the L?-norm at the final instant of time ¢ as:

N
eia(ty) =) Biela(eiy) with epa(cif) = lleilty) = cin(tp)l o) Yei€ o (21)

Typically, 8; = (maxyx {cin(x, t)}}t_l, that is, the inverse of the mean value in time of the
maximum value in space for each variable, though the actual values must be defined for each
problem (see Sections 3.1 and 3.2 for two illustrative examples).

Consequently, the metric tensor defined for each variable is given by:

; i e =1 i \T

Mje = K[/ Ri (Si)  (Ri) (22)
where the matrix R% = {ri’K7 . ,rﬁl’K} with r%,K ), k& = Onm (the Kronecker delta), the
stretching factors matrix Sy, = diag{s] x,..., sy} and the scalar [K"| define, respectively,

the orientation, the shape and the size of the optimal (triangular, d = 2, or tetrahedral, d = 3)
element associated with the variable cf}, (x) at time t,. To calculate this set of parameters
according to [34], we need to define for each variable ¢}, (x), its Hessian matrix tensor H;x (cl},)
as well as an a posteriori error indicator 7} for each element in the current triangulation
K € T}. The evaluation of the Hessian matrix can be carried out using the numerical solution
¢ (x) and taking the weak formulation of each of the derivatives appearing in Hg (c}}, (x)), as
explained in [51]. As a posteriori error indicator we evaluate the local or truncated error in the
L%norm between ¢/ '(X"~1(x)) and ¢}, ' (x). This is the error incurred in the Lagrangian
stage or, equivalently, the error incurred by the information transfer process when moving from
one mesh T} ™" to the next triangulation T?:

1/2
n n— n— —n— 2
it =0: ([l o) e o) a) (23)
whereas the total error is computed as:

1/2

Nt = <ZN: (77?)2> " with 7" = (ZKGTZ (n?K)2> - (24)

i=1
A linear analysis, presented in [34], shows that the optimal orientation and shape of the

element K can be computed from the eigenvector-eigenvalue pair {l; x, ¢; i } of the Hessian
matrix H;x(cf;) as:

J 1/d
' -1
s}»K = (Hj—l |gj7K> ’gd+1—j7K

It is important to note that the previous result was derived in a linear finite element framework;
however, in convection dominated combustion problems we usually observe strongly anisotropic
features with exponential behaviour, such as reacting mixing layers or premixed flame fronts,
and the shape and the orientation derived from the Hessian works quite well independently of
the order of the finite element space. Let us also point out that higher-order finite elements in
anisotropic mesh adaptation is still a topic of intensive research, pioneered by Houston and
coworkers for unstructured triangular meshes [52-54]. From the a posteriori error indicator
nie of (23), we can compute the new size of the element |K*| so as to have as few elements as
possible, while still satisfying n* = (ZKeTZ (n%%)?)Y/? < Tol /N. From [34]:

, r;K :ld+17j,K, fOI‘ ] = 1,...,d. (25)

) 1/(2a)
(TOZ/N) (nZnK)—W(Qa-‘rl) 7 (26)

ZKeTZ (77?[()2/(2&-"_1)

K| = |K|
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with | K| the current size of the element and o = (m + 1)/d (m the order of the finite element
space).

Next, we define a metric intersection procedure to deal with the set of metrics { M, ..., MY}
defined in (22) for the set of variables ¢ of (20), in order to obtain a single metric at a given
element K € T}. Following [51] along with [50], we state the following

Proposition 1. If A and B are two metric tensors, its intersection is formed by the eigenvectors
P =1{Py,..., P} of the matriz. A—* B which simultaneously diagonalizes both quadratics forms:
diag{ai,...,aq} = PTAP and diag{by,...,bs} = PTBP. Hence, the intersection of A and B
is AN B = Pdiag{max(ay,by),..., max(aq, by)} PT.

For more than two metrics, the problem is harder to deal with, since the intersection operator
is not commutative. In this paper, we proceed in an iterative way, first applying the intersection
operator to a pair of metrics, and subsequently intersecting the result of the previous step with
the next metric. The final metric, M?(pt, is then normalized with the minimum value of the

optimal size of the current element across all metrics, that is, min(| K|, |[K?2|,...,|K"]), such
that -1
det | MP*| = min (|K|,|K?|,...,|[KN]) . (27)

Note that, for isotropic adaptation, the metric is given by the identity tensor normalized in a
similar manner. Finally, the metric tensor is passed on to an anisotropic mesh generator, such
as BAMG [55] for 2D triangular meshes. For reference purposes, the local adaptive anisotropic
procedure for combustion problems described in this section is summarized in Algorithm 1.

Algorithm 1: Local adaptive anisotropic algorithm for combustion problems.

Data: Combustion equations (1) with initial condition ¢®(x) = {T°,Y?,..., Y ;,u’}; spatial
domain §2; temporal domain [0, ¢s]; time step size At and spatial tolerance T'ol.
Result: Numerical solution ¢y, (x) = {7}, Y1}, ..., Y{7_1)p, Up } € (Ve
compute c), (x) from c”(x) by Galerkin L?-projection and define TY, so that n° < Tol.
set T}, =TV, t1 = At.
while ¢, < T do
repeat
apply Lagrangian stage: compute (:Z*l(x) € (Vh")Hd by classical semi-Lagrangian
scheme (8) or semi-Lagrange-Galerkin scheme (10).
6 apply Eulerian stage: compute solution cj (x) on current triangulation T} .

U o W ON =

e solve diffusion-reaction equations for the temperature and species mass fraction
variables {Y7},,...,Y(7_1),, T’} via an EX-RKC scheme (15).

e solve Stokes problem (19) to obtain the velocity uj at time ¢,.
7 compute metric tensor M;j{pt to make local anisotropic adaptation.

e compute Hessian and spatial local error indicator n;* by means of (23)
for each variable i = 1,2,..., N defined in ¢ (20).

e compute Metric tensor Mk for each variable i = 1,2,..., N (22).

e compute intersection of elemental metrics Mp* = My (- MR
with Proposition 1 and (27).

compute optimal triangulation T{*" from optimal metric M with BAMG [55].

set Ty = T as triangulation for next iteration.
10 until (n™ < Tol);

11 set ’]I‘Z+1 = ']I“;'Lpt, and tp41 = t, + At.

12 end
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3. Numerical examples: Flame/vortex interaction

Although several approaches have been employed for the simulation of low Mach number
reacting flows, a well-established benchmark configuration for the analysis and validation of
time-dependent numerical codes still does not exist [12]. Unlike other fields (e.g., compressible
flow) where the governing equations are crystal clear, in the combustion community there is
not a common approach regarding the modeling of molecular transport and chemical reaction
terms, which has precluded the establishment of such a benchmark problem. As a result, we
decided to tackle one canonical example that has been extensively studied both experimentally
and numerically over the years: the interaction of a flame with a vortex. From the physical
point of view, the flame/vortex interaction constitutes a well-defined system of intermediate
complexity between steady laminar flames and turbulent flames, which offers fundamental
understanding of processes involving the coupling between fluid dynamics and combustion.
From the mathematical point of view, the capturing of a very thin flame sheet evolving in
time due to the interaction with a vortex is a useful benchmark configuration to evaluate
the efficiency of any time-dependent numerical method in an anisotropic adaptive framework.
Moreover, we shall consider the two kind of flames found in combustion devices: premixed and
non-premixed (i.e., diffusion) flames.

The first test (Test I) corresponds to a planar 2D configuration featuring the interaction of
a vortex pair with a laminar premixed flame, described with simplified transport and chemistry
descriptions; this problem has been studied by many authors (see for instance [8, 10, 39, 40]
and references therein). The purpose here is to compare our numerical results with those of the
references, showing the enhanced accuracy of the semi-Lagrange-Galerkin scheme (using an L>-
projection) compared with the classical semi-Lagrangian scheme (which employs interpolation).
Further, with this model we thoroughly assess the performance and convergence rate of the
proposed adaptive numerical algorithm, for uniform, isotropic and anisotropic meshes.

The second test (Test IT) corresponds to a 2D-axisymmetric configuration featuring the
head-on interaction of a laminar vortex ring with a counterflow diffusion flame established
between two opposed streams of fuel and air. This configuration has captured the interest
of experimental and numerical researchers alike [12, 41-44]. In that problem, we present a
moderately complex model for the description of nitrogen-diluted hydrogen-air non-premixed
flame/vortex interactions which, in addition to the analysis of the numerical features of
the proposed algorithm, allows us to perform a qualitatively comparison with experimental
visualizations found in the literature.

3.1. Test I: Planar premized flame/vortex interaction

In this test, we study the time evolution of a laminar premixed flame that is perturbed by a
vortex pair in a planar 2D configuration. We consider that the flame is initially located at the
middle of the computational domain, separating a fresh reactive mixture at room temperature
and pressure from a burnt mixture of combustion products at the adiabatic flame temperature.
The fresh mixture is perturbed by two counter-rotating vortices that interact head-on with the
flame, causing its elongation and distortion due to the local strain induced by the vortices. For
this test, we take as main reference the work by Lessani et al. [10], using the same combustion
model and fluid properties.

3.1.1. Test I: Governing equations

For a firmer grasp of the physical processes involved in the flame/vortex interaction, the
conservation equations must be written in non-dimensional form; in what follows, primes are
used to denote dimensional quantities, while non-primed quantities are dimensionless. We
consider as reference values the fluid properties p, g, 0, D7y evaluated at the fresh mixture.
For the sake of simplicity, the reactive mixture is assumed to be diluted in inert gases (as for
the example the Nitrogen of the air), meaning that the mixture molecular weight and transport

13



properties are those of the inert species. Then, the dimensionless mixture molecular weight
and specific heat at constant pressure can be assumed to be constant: W =1, and ¢, = 1. As
reference velocity we use the propagation velocity of the planar premixed flame ug, and as
reference length we take the characteristic flame thickness L = D/ /uj.

The chemical model consists of a simple one-step overall reaction

R (reactants) — P (products) + (@) (heat)

with Arrhenius kinetics, which in dimensionless form can be written as:
S
mgr = 173 pYrexp(—T,/T), (28)
0

where T, is the dimensionless activation temperature, B’ is the pre-exponential factor and
YR is the normalized reactant mass fraction (unity in the fresh mixture and zero in the burnt
gases).

The assumption that the inert species are dominant implies that Fick’s law can be used to
define the species mass diffusion flux; further assuming that the diffusivity of the reactants
is equal to the thermal diffusivity (unity Lewis number), we can write the non-dimensional
diffusion flux as:

Jr = —pDrVYR.

With all these considerations, the general conservation equations combustion problems at low
Mach number (1) can be written for Test I in the non-dimensional form:

dp

E+V~(pu):0,
ou B Prg T
p(at—ku Vu) = Vp+P60V {p[Vu+ (Vu)']},

(29)

19)4 1 .
P (atR + UVYR) = Pieov - (pDrVYR) — 1R,

oT 1
l T) =—V-(pDrVT) + Ah%ni
/J<at +uVv ) PeOV (pDrVT) + Ahprivg,

where AhOR denotes the non-dimensional heat release per unit mass of reactant, with the
adiabatic temperature given by Ty = 1 + Ah%, and

T/

uy L
Pey = 220 d Pry=
€0 D/TO an To

o
Pf)D/To ’

are the Peclet and Prandtl numbers, respectively.

For the system of equations (29) to be consistent, we must add an state equations for p and
two constitutive relations for p and pD7p in terms of the unknowns of the problem. On the one
hand, we assume that the mixture is a perfect gas, so that for a constant molecular weight and
at the low Mach number limit, p depends only on temperature. On the other hand, a simplified
power law is used to define the dynamic viscosity and thermal diffusivity. Hence, we have:

p= 1 and p=pDp=T"".
T
Following Lessani et al. [10], in the numerical study to be presented below we have chosen
the model parameters so as to approximate those of the stoichiometric methane/air flame at
normal conditions: uf = 0.416ms~!, L{ = D4 /uy = 5.45x 1075 m, T, = 30, B’ = 7x 106571,
and AhY, = 6.4 (hence Ty = 7.4). With this choice of parameters, both the Peclet and the
Prandtl number take values very close to unity, i.e., Peyg = 1.0 and Pry = 0.7.

14



Boundary conditions. For the numerical solution of Test I we use a rectangular domain in the
(z, y) plane of size [0,100] x [0,200]. At the bottom of the domain, we impose inflow boundary
conditions with the variables taking the reference values of the fresh mixture, namely T =1,
Yr =1, and u = (ug,uy) = (0,1). At the top of the domain, we impose outflow boundary
conditions, with null momentum, heat, and mass diffusion fluxes. Finally, at the lateral walls
we impose null heat and mass diffusion fluxes, along with a free-slip boundary condition for
the velocity.

aty=0 at y =200 at =0 and = 100
P
(tt, uy) = (0, 1), —p+ ITZO,L [Vu + (Vu)T]> ‘e, =0, Uy = 0,
0 _
YR:L 3YR/8y:O, 8YR/8x—O,
(30)

Initial condition. For the temporal integration, we take a time interval from ¢ = 0 to t; = 25.
To define the initial condition, we consider the steady, one-dimensional, laminar premixed
flame located in the middle of the domain at y = 100 along the x direction. We find the steady
solution (denoted by a subscript s) by integrating the conservation equations (29) until the
final steady state is reached, using the boundary conditions (30) along with an initial profile
for all the variables involved consisting of two different uniform states. One way to check
the validity of the solution is to verify that it satisfies the following relations between the
variables of the steady, one-dimensional, premixed flame [7]: u,s(y) = Ts(y) (a first integral of
the continuity equation yields psu,s = 1), and Ts(y) = 1 + Ah%(1 — Yrs(y)). Moreover, since
the problem is translation-invariant, we include as additional condition so that at y = 100 the
mass fraction of the reactant takes the value Ygs = 0.78, as in [10]. As a result, the initial
condition is determined by T'(x,0) = Ts, Yr(x,0) = Ygs, with the velocity consisting of the
superposition of the initial steady velocity (ugs,uys) = (0, Ts) with the velocity field generated
by two linear vortices, one rotating in the counterclockwise sense located at (x1,y1) = (37.5,75)
and the other rotating clockwise at (z2,y2) = (62.5,75). Hence,

r , .
e = =5 [ 12— ) — e 2y = o)
U(X7 0) - r —r2/2 —r2/2

wy = T+ 25 |72 —a0) = e 52 (@ — )]

where I' = 70 represents the dimensionless vortex strength, R = 4 is the dimensionless vortex
radius, and r; = /(v — 7;)2 + (y — y;)2 measures the local distance to the core of vortex i.

3.1.2. Test I: Numerical results

The numerical solution for Test I is retrieved using a small time step size At =5-1073 so
as to make time discretization errors negligible. For the mesh adaptation procedure, we take a
tolerance T'ol to create a metric tensor using the set of variables

¢ ={Yr,T/7,us/10,u,/10} (31)

according to section 2.3. Then, in order to evaluate the performance and capabilities of the
numerical algorithm, we compute the solution using first a uniform mesh and then isotropic
and anisotropically adapted meshes, employing both the classical semi-Lagrangian scheme and
the new semi-Lagrange-Galerkin algorithm.

First, we compare the results of our simulation with those by Lessani et al. [10]. To that
end, we consider the numerical solution obtained using the proposed local anisotropic adaptive
algorithm and the semi-Lagrange-Galerkin scheme, with a tolerance T'ol = 4 - 10~2. In Figure
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2 we show the evolution of the distorted premixed flame through the isolines of temperature
at different instants of time. To highlight the adaptation process, and taking advantage of
the symmetry of the simulation, the left panel in each subplot displays the adaptive mesh,
whereas the right panel shows isolines of vorticity. This Figure compares very favorably with
Figure 12 of reference [10]. Initially the vortices are far from the flame front, which remains
virtually unperturbed, but as they come closer the flame starts to be significantly stretched

and distorted, eventually developing a cusp-like shape at later times.

180

t=10

160

140

120

100

80

60

t=15

=120

A
s

S
s
GRS

SO
S5

Vi

S,
<

>

5
<
#V'

(VAY

o
=

7
e

A

%

K]

KT

7

NCK]
7.

AVAY

57

%,

AVAVAN
AV
SDES
VAN
\7

AN

0 20 40 60 80 1000

60 80 1000 20 40 60 80 10

Figure 2: Isolines of temperature and vorticity for Test I. In the left panel of the figures we can see a detail of

the adapted anisotropic meshes.

Figure 3 shows profiles of density, p = 1/T, reactant mass fraction, Y, and y-velocity
component, u,, along the centerline at time ¢ = 25. As can be seen, our results are in excellent
agreement with those Lessani et al. [10], which have also been plotted for comparative purposes;
in that work, the most refined mesh consisted of 262144 elements. In contrast, here we just
need tolerances Tol < 4 -1072 to achieve convergence, producing meshes with an average
number of elements NE < 2500. In particular, the time evolution of the number of elements
NE, is shown in Figure 4 for four different tolerances: the number of elements is maximum at
the start of the simulation, which coincides with the maximum strength of the vortices at ¢t = 0;
after that, the vortices grow weaker as fluid viscosity takes on, and the number of elements
required to achieve the same degree of accuracy decreases. At time ¢ ~ 12.5 the vortices start

their interactions with the flame and the number of elements grows again.

Next, we investigate the performance of the proposed algorithm and its convergence rate.
First, we focus on the spatial capabilities of the adaptive procedure, comparing the solution
provided by a fixed, uniform mesh, with those obtained using isotropic and anisotropically
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Figure 3: Profiles of density, p = 1/T, reactant mass fraction, Yy, (left panel) and y-velocity component, u,,
(right panel) for Test I at = 50 at time ¢t = 25.
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Figure 4: Evolution of the number of elements for the anisotropic adaptive algorithm N E,, for different tolerances
in Test I.

adapted meshes. Second, we show the enhanced accuracy of the semi-Lagrange-Galerkin
scheme (with L2-projection) compared with the classical semi-Lagrangian scheme (which uses
interpolation). Thus, we start by measuring the global error at the end of the numerical
integration (¢ = t7) in the L?-norm ezz2(ts) for the set of variables defined in (31), using the
definition of (21):

1/2
1 1 1
cralty) = { b (T + V) + oebotinn) + pebelwn)} - @2

This global error is computed considering as the “exact” (i.e., reference) solution a numerical
solution computed with the small time step size At = 51073 and a very small tolerance
Tol = 1-1073, using the more accurate semi-Lagrange-Galerkin scheme in an anisotropic
adaptation procedure. The results are collected in Table 1, where for each numerical simulation,
we have included its tolerance, the average number of elements N E and the global error ez (t 7).

Table 1: Average number of elements NE and global L2-error ej2(ty) for different numerical simulations of

Test 1.
Semi-Lagrangian (SL) scheme

Anisotropic adapted mesh ‘ Isotropic adapted mesh ‘ Uniform fixed mesh
Tol NE erz2(ty) Tol NE erz2(ty) NE erz2(ty)
2-1072  294.103 4.456 2-102  3.05-103 1.840 4.20- 103 11.91
1-1072  4.25-10° 2.246 1-1072  4.50-10% 0.845 9.18 - 103 5.215
5-1073  6.32-103 0.993 5-1073  6.96-103 0.435 | 2.04-10% 0.990
2.1073  1.11-10% 0.351 2-1073  1.26-10% 0.238 4.54-10% 0.402

Semi-Lagrangian-Galerkin (SLG) scheme

Anisotropic adapted mesh ‘ Isotropic adapted mesh ‘ Uniform fixed mesh
Tol NE er2(ty) Tol NE er2(ty) NE er2(ty)
8-1072 1.42-103 0.276 8-1072 1.38-103 0.491 | 4.20-103 7.845
4-1072  1.93-103 0.090 4-1072  1.94-103 0.241 9.18 - 103 1.611
2-1072  2.74-108 0.045 2-1072 282103 0.088 2.04 - 10* 0.496
1-1072  4.04-103 0.021 1-1072  4.32-103 0.027 | 4.54-10% 0.081

From Table 1, we may state the following properties concerning the classical semi-Lagrangian
(SL) and the semi-Lagrange-Galerkin (SLG) schemes: for a uniform mesh, the SLG scheme
shows better accuracy than the SL method, but only by a factor of two; if we focus our attention
on isotropic refinement for both SL and SLG schemes, one notices that, for the same degree of
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mesh refinement, attained using approximately the same tolerance (e.g. Tol = 21072 and
Tol =1-1072), the SLG scheme is roughly 30 times as accurate as the LG method, whereas for
anisotropic refinement the increased accuracy offered by the SLG technique achieves a factor
of order 100; further, we observe how the adaptive procedure and the resulting metric tensor
are efficient in the sense that, when the spatial tolerance is halved, the global error is divided
approximately by a factor of 2; finally, a global comparison of the adaptive mesh refinement
techniques shows that the anisotropic method is roughly twice as accurate as the isotropic
procedure when the SLG scheme is used, and provides much better accuracy (~ 400x) than a
uniform mesh. However, for the classical SL scheme the advantages are not as sharply defined:
indeed, anisotropic adaptation improves the accuracy obtained using a uniform mesh, but it
seems to achieve a slightly lower accuracy when compared with isotropic adaptation. After an
in-depth study of this phenomenon, we lean towards the hypothesis that the culprit is the highly
diffusive character of the SL scheme when applied to the computation of the velocity field;
this, along with adaptive refinement techniques and frequently changing meshes, transfers the
numerical error of solving the Navier-Stokes equations to the remaining conservation equations,
thus damaging the overall accuracy of the method.

We may alternatively arrive at the same conclusions by inspecting Figure 5, where we plot
the average number of elements NE against the global error ey (t £); as a consequence, we
can compute the convergence rate of the global error with the average number of elements
er2(ty) o< NE . The theoretical L%-error given by the a priori error analysis for smooth
solutions is o = (m + 1)/d, (d = 2,3); in our case with d = 2 and quadratic finite elements
m = 2, a = 1.5. The estimated convergence rate & using linear regression is also displayed
in Figure 5. As can be observed, the SLG scheme using the projection technique gives much
lower errors than the classical approach, as well as a better convergence rate (superconvergence
effect & ~ 2.5). Further, we notice the advantages of using anisotropic adaptation instead of a
fixed, uniform mesh. However, the benefits of anisotropic versus isotropic refinement are not as
clear-cut in this example, due to the lack of strong anisotropic features of the flow (there is no
dramatic stretching of the flame produced by the vortex, see Figure 2). To highlight the mildly
anisotropic character of this test, let us note that the maximum streaching factor achieved
throughout these simulations is max(sx) ~ 8. Accordingly, and to make clear the benefits of
anisotropic mesh refinement, we study next a situation where the flame stretches to a much
higher extent than in this reference case.

SL scheme SLG scheme

102

er2(ty) o— Anisotropic adap. erz(ty) —oe— Anisotropic adap.
—a— Isotropic adap. —a— Isotrop adap.
101 — 192 10’
er2 x NE —#— Uniform mesh —+*—Uniform mesh
100F er2 o NE Y. 10%F ———2.54
er2 x NE ——2.14
ez x NE
———143
10— ez x NE E 107 \\\
I —=—2.41 J—
10-2 ) NFE 10-2L_cr2 X NE ) NE
103 104 1( 103 104 10°

Figure 5: Convergence in the L2-norm of the global error for Test I. Classical Semi-Lagrangian (SL) (left) and
semi-Lagrange-Galerkin (SLG) (right) schemes for uniform, isotropic and anisotropic adapted meshes.

3.1.3. Test I: Numerical results with stronger anisotropy

The setup of this example is identical to that of Test I, with the same conservation equations
(29), but now using a characteristic length L{ = 16.35 - 1075 m, three times larger than in the
previous example. This translates into a threefold increase in the Peclet number, now Pey = 3,
and a more vigorous chemical reaction according to (28). The time step size is At = 21073,
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whereas the spatial tolerance varies in the range Tol = [10,5,2,1] x 1072 for the SL scheme,
and Tol = [20,10,5,2] x 1072 for the SLG scheme; as the “exact” (i.e., reference) solution we
consider a numerical solution computed with the same time step size and the smallest spatial
tolerance Tol = 2 - 1072 using the more accurate SLG scheme and anisotropic adaptation.
Figure 6 shows the evolution of the flame front as it is crossed by the vortex. We notice a
higher degree of anisotropy in the optimal mesh produced by the adaptive algorithm, with
quite stretched elements in the regions close to the flame front. In this set of simulations the
maximum streaching factor is max(sx) ~ 30. As Pey rises, the intensity of the flame/vortex
interaction becomes more evident, with the vortex producing a much larger distortion of the
flame and its surroundings (e.g. Figure 6, third panel). The estimated convergence rates &
obtained in this case are reported in Figure 7. The anisotropic results are almost an order
of magnitude better than those provided by the isotropic refinement with the SLG scheme.
However, as was also indicated in previous test, the results with the SL scheme for isotropic,
anisotropic adaptation, and uniform mesh are quite similar.
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Figure 6: Isolines of temperature and vorticity for Test I with Peg = 3. In the left panel of the figures we can
see a detail of the adapted anisotropic meshes.

10° SL scheme 10 SLG scheme
er(ty) —o— Anisotropic adap. era2(ty) o— Anisotropic adap
102 &— Isotrop adap. 102t —a— Isotrop adap. Y
erz X NE " Uniform mesh —#— Uniform mesh
10'F E 101 i
~—=—1.15 , o 199 =160
er2 x NE er2 x NE er2 x NE
———1.80 h
100+ R 100k er2 Xx NE E
=270
_ NE e x NE N
0L L 10 L J\Es
10 10 1( 10 10 107

Figure 7: Convergence in the L2-norm of the global error for Test I with Peyp = 3. Classical semi-Lagrangian
(SL) (left) and semi-Lagrange-Galerkin (SLG) (right) schemes for uniform, isotropic and anisotropic adapted
meshes.

As a summary of our simulations in Test I, we collect the most relevant parameters for
Peyg = 1 and Pey = 3 in Table 2, including the individual contributions to the global error
er2(ty) as defined in (32), using our anisotropic SLG scheme. We may observe the good
behavior of the algorithm, with a balanced contribution of each of the variables to the global
error.
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Table 2: Results for Peg = 1 and Pep = 3 in Test I, using the local anisotropic SLG scheme. Mean number of
elements NE, global L2-error ey2(tf), and individual contributions.

Peg = 1.0, anisotropic SLG scheme in Test I

Tol NE 8L2(tf) 6L2(Tf)/7 eLz(YRf)) eLz(uzf)/lo 8L2(uyf)/10
8.1072  1.42-103 0.276 0.1045 0.1143 0.0722 0.2166
4.1072 1.93-103 0.090 0.0389 0.0425 0.0289 0.0627
2-1072 2.74-103 0.045 0.0234 0.0255 0.0168 0.0235
1-1072  4.04-103 0.021 0.0083 0.0091 0.0063 0.0151

Peg = 3.0, anisotropic SLG scheme in Test I

Tol NE eLz(tf) 6L2(Tf)/7 6L2(YRf)) €L2(“If)/10 eLz(uyf)/IO
20-1072  1.70-103 4.974 2.5019 2.7203 1.5072 2.9675
10-10—2 2.31-10% 1.322 0.6152 0.6650 0.4193 0.8660
5.1002  3.30-10% 0.466 0.2492 0.2712 0.1289 0.2539
2.1072  5.60-10% 0.187 0.1084 0.1187 0.0498 0.0820

3.2. Test II: Axisymmetric non-premized flame/vortex interaction

In many combustion devices, fuel and oxidizer enter the combustion chamber separately,
so that the combustion process takes place in the form of non-premixed (or diffusion) flames
[56]. In Test II, we explore the axisymmetric configuration where two coaxial counterflowing
streams of fuel (hydrogen diluted with nitrogen, with mass fractions of fuel Yr¢ and nitrogen
Yn,0 =1 —Ypo) and air (with mass fractions of oxygen Yo, and nitrogen Y, 4 =1 — Yo, 4)
simultaneously mix and react in a laminar mixing layer [41]. In particular, we analyze the
perturbations introduced in the resulting counterflow diffusion flame by a coaxial vortex ring
that is impulsively introduced in the computational domain moving head-on to the flame from
the air side. As a result of the perturbation flow induced by the vortex, a large variety of
interaction regimes may arise, including weakly distorted flames, strong flame wrinkling and
roll-up, annular and axial extinction events followed by reignition via edge flames, as well as
overall flame extinction [56]. In this test, we simulate several case studies presented by Renard
et al. [57] with three main goals: to provide a moderately complex model for the description
of nitrogen-diluted hydrogen-air diffusion flame/vortex interactions; to present a quantitative
convergence study of the anisotropic adaptive, semi-Lagrange-Galerkin procedure; and lastly,
to compare qualitatively our numerical results with experimental visualizations taken from the
literature [57].

3.2.1. Test II: Governing equations

As in Test I, the conservation equations are also written in non-dimensional form using
appropriate characteristic scales. The characteristic length is here the radius of the vortex ring
r{ at the time it crosses the plane of the unperturbed mixing layer (z = 0). The characteristic
time is the inverse of the strain rate AZI experienced by the flame prior to the interaction
evaluated on the air side of the mixing layer. Additional reference values include the fluid
properties of the air feed stream (denoted by a subscript A), defined at standard temperature
75 = 300K and pressure p{, = latm and assuming Yp,4 = 0.233: density, p's, viscosity, u/y,
thermal diffusivity, D74, heat capacity, c], 4, and molecular weight, W. Again, all dimensional
values have a prime. The solution to the problem is obtained by the integration of the low-
Mach number Navier-Stokes equations, coupled with the energy and species mass conservation
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equations:

dp B
E+Vo(pu)f0,

du _ Pra T
N RS

1 I
oT 1 . .
PCp <8t +u- VT) = T%v . (pDTCPVT) —R i:E - hzmz — <Z_E 1 .]icpi> . VT,

9Y; 1o . . .

(33)

Using the previous characteristic scales, two dimensionless numbers arise naturally in the
formulation of (33), namely the Peclet number of the unperturbed flow Pey, and the robustness
of the flame R, defined as follows:

/ 7n/2 A’
Pey = ZA0 =_°, 4
“=Dr, T, (39

The Peclet number Pey measures the relative importance between convection and diffusion
in the unperturbed mixing layer; alternatively, it can be written as the square of the ratio
between the characteristic radius of the vortex ring r{, and the characteristic thickness of
the unperturbed mixing layer, &/,, = (D’ 4/A’4)"/%. The robustness of the flame R indicates
how far from extinction is the flame at the initial, unperturbed condition [43]; it is defined in
terms of A., the critical strain rate at extinction of the unperturbed diffusion flame, which
represents a characteristic chemical time that depends on the thermodynamic state of the feed
streams (determined by the parameters T§, pj, Yro, and Yo, 4) and has to be obtained prior
to starting the unsteady calculations. Another parameter that shows up in the equations is the
Prandtl number of the air stream, Pra = p/, /(p’y D’ 4) = 0.714, which will be kept constant
throughout this study.

The system of equations (33) must also be supplied with appropriate state equations and
constitutive relations for the evaluation of the thermodynamic and transport properties of the
fluid: the dimensionless density p, viscosity p, heat capacity cp, thermal diffusivity D, and,
for the I chemical species of the mixture, the heat capacity cj,; and enthalpy h;. Besides, we
must specify the dimensionless species diffusion flux vector j; for species i, as well as a suitable
chemical kinetic model to evaluate the dimensionless chemical source terms ;.

State equations and constitutive relations. The dramatic increase in computing power over the
last few decades has allowed the use of increasingly complex descriptions of molecular transport
and chemical-kinetics in the numerical simulation of combustion problems. In the context
of flame/vortex interactions, these modeling improvements, combined with state-of-the-art
numerical methods, have enabled the detailed study of local flame extinction and re-ignition
phenomena. However, since the characteristic scales associated with the chemistry are typically
much smaller than the scales introduced by the vortex, these realistic models involve the
integration of a set of highly-stiff partial differential equations, making their numerical solution
much more expensive. In such a situation, the use of a method capable of solving efficiently
and accurately the conservation equations, becomes critical. In return for those efforts, one
may expect an improved predictive ability of the numerical model derived from a systematic
comparison of the simulations with experimental data.

Following standard practice, the fluid is assumed to be a mixture of ideal gases, so that the
density may be computed as
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where W = (Ele Y;/W;)~! is the dimensionless molecular weight of the mixture. We have
neglected above the spatial variations experienced by the absolute pressure, which in the
low-Mach number limit are small compared with the thermodynamic pressure, pj = 1 atm. The
dynamic viscosity of the mixture y, and the thermal conductivity of the mixture A = pDrc,
are evaluated following a mixture average model as:

I
1 1 1
w== E Xipy + ——— and /\<E Xihi + )
2 (i_l Zf:l Xi/ﬂl’) i=1 Zz 1 Xi/Ai

where X; = (W/W;)Y; is the molar fraction of species 4, and p; and \; are the dimensionless
viscosity and thermal conductivity of species 1.
The diffusion velocity of the chemical species is calculated using the generalized Fick’s law

Ji = pY;Va, (36)

where the diffusion velocity consists of three contributions, V4 = VP + VT 4+ V. namely the
ordinary-diffusion velocity VP; the thermal-diffusion velocity V7 (responmble for the Soret
effect); and the correction velocity V., necessary to ensure that Zi:l ji: = 0. The definition of
these diffusion velocities is given by:

D; Di0; NT
vP=_2vx;, VvIi=—-—_——-
: )Qv T X, T

and V.= — Z; (YivVP+Yvi),  (37)

where D; is the diffusion mass coefficient, given explicitly in terms of the binary diffusion
coefficients D;; as:
1-Y;

Z] 1]751X/D2]

while 6; represents the thermal-diffusion relation of species 4 in the mixture, negligible for all
species except for the light ones, with values 0, = 0.29 and 65 = 0.23 [59]. The dimensionless
variables p;, A;, and D;; for the pure chemical species i are functions of the temperature, and
are given by the expressions and data of the CHEMKIN library [60]. Moreover, the specific heat
capacity of the mixture is computed from the heat capacity of the species ¢, by the expression

I
Cp = E Cpi}/iv
7

where the dimensionless heat capacity c,; and mass enthalpy h; of species i (the latter also
appearing in the general equations (33)) are functions exclusively of the temperature, and are
computed using the NASA polynomials [61].

Regarding the chemical-kinetic model, a reduced mechanism suitable for the description
of diluted non-premixed hydrogen-air combustion is considered [62]. In particular, we use a
explicit, three-step reduced model proposed by Boivin et al. [63], which has been validated in
different flame configurations and is known to describe with sufficient accuracy extinction strain
rates in non-premixed counterflow flames. The three-step mechanism includes a branching
reaction (I), a recombination reaction (II), and an initiation reaction (III):

D; =

3H, + Oy = 2H,0 + 2H,
H+H+MiH2+M (38)
Hy + 02 H02 + H,
involving I —1 = 5 reacting species, namely Hy, Oo, H, HO5, and H5O. This kinetic mechanism

provides the dimensionless chemical source terms 7; appearing in the species conservation
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equations:
riy, = Wiy, (=3wp + wiy — win) /(P4 Ac),
m/Oz = Wéz(_w{ - wiH)/(pZAA/e)a
m'y = Wi (2wy — 2wy + wiyy) /(P4 AL), (39)
m'wo, = Wio,win/(paAL),
m'y,0 = 2Wi,owi/ (P4 AL)
H20 H,0W1/\Pasle)s
where the reaction rates wf, wi; and wi;;, are computed in terms of the temperature and species

mass fractions according to the guidelines provided in [63], with the reaction constants taken
from the San Diego mechanism [64].

Boundary conditions. In our study, we assume an axisymmetric configuration with the positive
z-axis pointing towards the fuel side. Thus, we choose as computational domain the cylinder
defined by the dimensionless radial coordinates 0 < r < rp.x, and the axial coordinates
Zmin < Z < Zmax. Lhe air stream comes from z = 2y, with oxygen mass fraction Yo, 4, while
the fuel stream, diluted with nitrogen, comes from z = zy,,x with fuel mass fraction Yrg. Both
streams are at standards conditions of temperature 7" = 1. For the moderately large values
of the Peclet number Pey that are considered here, the mixing between both streams occurs
only in a thin layer. Outside of this, the two coaxial counterflowing streams produce a nearly
inviscid, axisymmetric, laminar stagnation-point flow with a known potential velocity field.

According to the above, we set Dirichlet boundary conditions at the top and bottom
boundaries of our domain, as follows:

at 2 = zmin at z = Zpax
(up,uz) = (r/2, _Zmin)’ (uTvuz) = (pF)_1/2 (r/2, 20 — Zmax);
Yo, = Yo,4, YN, =1—-Y0,4, Yp = Ypo, Yy, =1- Yo, (40)
Y; =0, Vi# Oy, No, Y; =0, Vi#F No,
T=1; T=1;

where pp = Wi /W), is the air to fuel density ratio; z = 0 represents the apparent location
of the stagnation plane as seen from the air side, and zg is the apparent displacement of this
plane as seen from the fuel side, due to the thermal expansion of the gases in the unperturbed
flame. This displacement zy is of the order of the dimensionless thickness of the mixing layer
Pey 1 2, but its exact must be calculated as part of the unperturbed, steady solution of the
vortex-free counterflow. On the other hand, the air and fuel streams are assumed to leave
the computational domain through the lateral boundary, where we set the outflow boundary
conditions given by the pressure distribution of the inviscid potential velocity field found in
(40), along with the conditions of vanishing heat and mass diffusion fluxes for all chemical
species. That is:

at 7 = Tmax

2 o 2
(T“g“ + 2 220) )n 29 < 2,
PTA T _ T?nax
<—p+%u[vu+vu })-n— o 0 <z <2, (41)

z
2

z <0,

—
=
oo‘g“’
"
_|_
[ V]
~_
=

VY; n=0, Vi,
VT -n=0,

where n denotes the unit normal vector pointing outwards from the computational domain.
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Initial condition. As initial condition we consider the steady, unperturbed counterflow diffusion
flame obtained from the numerical integration of (33), subject to the boundary conditions
(40)—(41). This provides us with the steady velocity, us = (ups,u.s), temperature, T, and
species mass fraction, Y;,, distributions. The iterative computation of the steady solution also
yields the value of the apparent displacement z.

Once the steady solution has been computed, a coaxial vortex ring is introduced in the
computational domain, moving head-on to the flame from the air side; its addition to the
unperturbed straining field (u,s,u.s) provides the instantaneous velocity field (u,,u,):

S (r“ )3/2 <Z - Z> 1(€) [1 - e%g/m?} ,

2r

u(x,0) = Tle . e (42)
Uy = Uys + % (%)3/2 |::Il(€) - IO(E):| |:1 - e_(g/év)2:| )

where T is the dimensionless vortex strength, which represents the ratio of the characteristic
strain rate imposed by the vortex to the baseline strain rate:

= QTZQ Al (43)

In addition, (7.(t), z.(t)) denote the motion of the center of the vortex core, defined explicitly in
[43, 58] as a function of time. This expression assumes that, at time ¢ = 0, the vortex crosses the
plane z.(0) = 0, having a non-dimensional, unit size r.(0) = 1. Note that the superposition of
the baseline strain and the perturbation flow imposed by the vortex is only justified when both
flows are irrotational, a condition which is satisfied far away from the variable density, mixing
layer, prior to the interaction process. Accordingly, we take as the initial instant of time ¢q for
our simulations the situation when z.(to) > zmin/2. The remaining parameters appearing in (42)
are the non-dimensional distance to the center of the vortex core o = [(r — r.)? + (2 — 2.)?]'/?;
the elliptic integrals Io(€) and I1(€) of argument & = [(r — r.)? + (2 — 2.)?]/(2r7.); and the
vorticity core radius d, = (8Pr4/Peg)*/?

3.2.2. Test II: Numerical examples

In this section we carry out a series of numerical experiments for various combinations of
the dimensionless parameters Pey, R, and T’ defined in (34) and (43). In the laboratory, the
flame position is usually determined by measuring the molar concentration of the hydroxyl
radical OH; thus, Figures 8-10 depict the evolution of the diffusion flame by showing the
computed isocontours of Cog. The concentration Cop can be easily obtained from the mass
fractions of the reacting species Hy, O5, H, HO5, and HoO by means of the algebraic relations
given by Boivin et al. [63], derived from steady state assumptions applied for OH an other
intermediate species. Further, the numerical integration of the combustion equations (33) is
accomplished using the semi-Lagrange-Galerkin technique in an anisotropic adaptive framework.
The integration domain is defined in a 2D axisymmetric configuration with zy,;, = —10,
Zmax = 10, "max = 5, and time ¢ € [—0.4, 1.0]; the time step size is At = 1073, In addition, for
the mesh adaptation process we consider the set of variables

d) = {ﬂTTv BHYHa Buura ﬁuuz} (44)

according to section 2.3, where {81, By, 8.} will be defined in each numerical experiment as
the inverse of the characteristic value of each variable during the corresponding simulation.

Next, we explore three different instances of Pey, R, and I, showing the results offered by
our method with a fixed tolerance Tol = 1-1072. After that, we study the evolution of the
number of elements in an optimal mesh, for each of the three situations; finally, we compare
the convergence rates achieved by our semi-Lagrange-Galerkin adaptation method.
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Case 1: Weak flames. We start by examining the case of a weak flame characterized by a
robustness R = 3. The mass concentration of the fuel stream is Ypy = 0.015, the Peclet number
is Pey = 30, and the strength of the vortex is given by I' = 30. The parameters §; used for
the spatial adaptation are {f7, B, Bu} = {4.5,2 x 107%,30} ~!. Figure 8 shows our numerical
results at different instants of time; we see how the diffusion flame undergoes axial extinction,
producing a flame hole that recedes away from the axis and grows with time until the flame
eventually disappears from the domain.

t=-0.25 t=0.0 t=0.25 t =0.50 0.75
4 o ©

P = @ @tt === == = = = =

Figure 8: Numerical simulation of a weak flame with Pey = 30, T =30 y R =3.

Case 2: Local extinction followed by reignition caused by active flame fronts. Here, we replicate
the conditions of Case 1 studied by Renard et al. in [57]. The mass concentration for the fuel
is Ypo = 0.015, whereas the remaining dimensionless parameters defined by the experimental
conditions are Pey = 25, I' = 30, and R = 20. The parameters f3; used for the spatial adaptation
are {Br, B, Bu} = {5.5,3 x 107%,10} 1. As shown in Fig. 9, the vortex is now able to cause
local flame extinction despite the large robustness of the flame. The remaining flame then
travels up the stem pulled by the vortex, getting anchored in the fold that forms between the
stem and the vortex, until it eventually reignites the unburned mixture pocket that travels
with the vortex, thereby healing the flame. We also point out the noteworthy resemblance
between our numerical results and the experimental visualizations shown in Fig. 10 of [57],
which have been reproduced here for comparison purposes.

t =-0.20 t =10.30

Figure 9: Top panel: numerical simulation of a local extinction of the flame and re-ignition with Peg = 25,

I' =30 y R = 20. Bottom panel: Fig. 10 of [57] (reprinted with permission from Elsevier). The numerical and
experimental results are shown at exactly the same instants of time.

25



Case 3: Infinitely robust flames. Our last numerical experiment corresponds to Case 3 of
[57]. In this situation Ypg = 0.029, and the rest of the parameters governing the flow are
Pey = 30, T’ = 40, and R = 60. The parameters 3; used for the spatial adaptation are
{B7, B, Bu} = {7,4 x 107%,10} 7. In Fig. 10 we compare our numerical solution with the
experimental visualizations shown in Fig. 12 of [57], at the same instants of time. Again, we
note the excellent agreement between the numerical results and the actual experiment. We
can also observe how the infinite robustness of the flame prevents now its extinction, while the
high temperatures experienced by the vortex during its interaction with the flame eventually
causes it to disappear due to viscous dissipation.

6 t=-0075 t=0.150

Figure 10: Top panel: numerical simulation of a strong flame with Peg = 30, T =40 y R = 60. Bottom panel:
Fig. 12 of [57] (reprinted with permission from Elsevier).

Evolution of the number of elements and CPU times. All numerical simulations were run in
a workstation with an Intel Core i7-3770k processor and 16 GB of DDR3 1600 MHz RAM,
compiled with the -O3 optimization flag using the GCC-4.7.3 compiler. The elapsed CPU
time required to finish the N; = 1400 time steps of the simulations for the three cases has
been 65 minutes (Case 1), 103 minutes (Case 2) and 224 minutes (Case 3). As a summary of
the three cases studied, we represent in Fig. 11 the evolution of the number of elements N F,,
as a function of time. At the initial steps of the simulation, the vortex is still far away from
the flame and we need a small number of elements to reproduce accurately both the vortex
and the flame; in addition, during these initial instants, the case with the largest number of
elements is that with the larger values of Pey, I', and R. As soon as the vortex begins to
interact with the flame (¢ ~ 0), we observe a growth in NFE,,. The interaction between the
vortex and the flame in Cases 1 and 2 is not as intense, and after a local extinction the number
of elements stops growing and eventually starts to decrease. In Case 2, the number of elements
starts to increase again around t ~ 0.4, reaching a maximum value at time ¢ ~ 0.5 when the
active flame front reignites the unburned mixture pocket that travels with the vortex. In Case
3, we have the most significant rise in the number of elements, due to the high robustness
of the flame which now prevents its extinction, becoming instead extremely thin as it gets
wrapped by the vortex. At later instants of the simulations, the number of elements decreases
slowly due to the reduction of the vortex strength caused by viscous dissipation. The different
degrees of anisotropy in the previous cases become evident though inspection of the maximum
stretching factors; thus, the strong anisotropy of Case 3 shows a maximum streaching factor
max(sg) ~ 35, whereas in Case 2, max(sx) ~ 25; finally, Case 1 presents a weakly anisotropic
character with max(sg) ~ 20.
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Figure 11: Evolution of number of elements N FE, for the three cases presented above for Test II. We use
quadratic finite elements in anisotropic adaptive framework with tolerance Tol = 1-10~2.

Convergence results. Finally, we show in Table 3 the results for the global error ez2(ty) and
each of the individual contributions (measured from the set of variables ¢ (44) according to
the definition (21)); we include the average number of elements NE, and the tolerance Tol for
each of the three cases of study, taking as the “reference” solution one computed using a very
low tolerance Tol = [0.5, 1, 2] x 1073 for Case 1, Case 2, and Case 3, respectively.

Table 3: Results for Cases 1-3 in Test II, using the anisotropic SLG scheme. Mean number of elements N E,
global L2-error e;2(ts), and individual contributions.

Case 1, anisotropic SLG scheme in Test 11

Tol NE  ep2(ty)  Brep2(Ty) Bmer2(Yuyr)) Buer2(uzp)  Buer2(uyr)
2.102 1406 0.090 0.0161 0.0161 0.0597 0.0634
1-10—2 2056 0.044 0.0064 0.0061 0.0297 0.0316
5.1073 3131 0.024 0.0038 0.0039 0.0163 0.0172
2.1073 5817 0.008 0.0012 0.0001 0.0055 0.0058

Case 2, anisotropic SLG scheme in Test II

Tol NE er2(ty)  Prep2(Ty)  PBuer2(Ymyp)) Buerz(uzyp)  Buepz(uyy)

4-1072 1262 0.064 0.0462 0.0232 0.0299 0.0236
2.1072 1841 0.030 0.0217 0.0120 0.0140 0.0101
1-10=2 2872 0.012 0.0085 0.0045 0.0060 0.0049
5.1073 4702 0.005 0.0036 0.0019 0.0027 0.0021

Case 3, anisotropic SLG scheme in Test II

Tol NE  ep2(ty)  PBrep2(Ty)  Buer2(Yus))  Buep2(usp)  Buep(uyy)

8.1072 1273 0.170 0.1034 0.0692 0.0862 0.0770
4-1072 1823 0.092 0.0554 0.0376 0.0480 0.0415
2.1072 2791 0.044 0.0265 0.0180 0.0225 0.0193
1-1072 4571 0.019 0.0114 0.0075 0.0100 0.0083

The estimated convergence rate @ (using linear regression) of the global error with the

average number of elements, ep2(T) NE “is computed and plotted in Figure 12. Here,
although the convergence rates are lower than in the previous test owing to the much more
complex character of the simulations and chemical model employed, the algorithm still performs
quite satisfactorily, with & ~ 2.0 and well-balanced contributions to the global error (see Table
3).

We have just examined three different diffusion flame/vortex interaction cases. For a more
detailed account of the rich variety of interaction regimes arising from this problem, the reader
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Figure 12: Convergence in the L2-norm of the global error corresponding to Test IT simulated using the local
anisotropic adaptive semi-Lagrange-Galerkin scheme.

is referred to the recent review by Lindn et al. [56], where further results computed with our
numerical method are discussed.

4. Conclusions

In this work we have presented a novel, local anisotropic, space-adaptive, finite element
method for the simulation of unsteady combustion problems at low Mach and moderately
high Reynolds numbers (i.e., under laminar flow conditions). The equations governing these
phenomena are the Navier-Stokes equations supplemented by the energy and species mass
conservation equations, the solution of which is accomplished by means of a mixed Lagrangian-
Eulerian (or semi-Lagrangian) scheme: the convective terms are treated in the Lagrangian stage,
whereas the Eulerian stage deals with the diffusion-reaction part of the equations. In addition,
two different techniques have been considered for the Lagrangian stage, namely the classical
semi-Lagrangian (SL) interpolation method, and the more accurate, semi-Lagrange-Galerkin
(SLG) projection technique.

It has been shown that the semi-Lagrangian scheme effectively decouples the Navier-Stokes
equations from the thermochemical problem (involving energy and species mass conservation),
translating the former into a linear Stokes problem and the latter into a parabolic problem
that can be tackled via an explicit Runge-Kutta-Chebyshev scheme which allows to compute
all the thermodynamical variables of the problem separately; an explicit treatment that paves
the way for a future full-parallelization of the numerical code. The time-marching method is
embedded into an anisotropic, adaptive, finite element scheme which allows for an accurate
and efficient representation of features such as boundary layers, mixing layers, or flame fronts.
The adaptive refinement algorithm is controlled by a metric tensor built as the intersection of
individual metric tensors with an a posteriori error indicator computed from the information
supplied by the dominant convection terms.

To validate the code and illustrate the accuracy and efficiency of the numerical procedure,
we choose a canonical combustion problem: the flame/vortex interaction. First we solve a
planar, 2D premixed methane/air configuration replicating the results obtained by Lessani et al.
[10]. We compare our results using uniform, isotropic, and anisotropic refinement, along with
either the classical SL scheme or the SLG method; the SLG proves superior to the SL scheme
under all circumstances. Then, to underscore the benefits of using anisotropic adaptation, we
consider a flame/vortex interaction featuring stronger anisotropic features.

After the numerical validation of the code, we use our “workhorse technique”, i.e., the
anisotropic, semi-Lagrange-Galerkin scheme, to integrate the combustion equations in a more
complex scenario: the non-premixed hydrogen-air flame/vortex interaction, modeled using
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state-of-the-art descriptions for the molecular transport and the chemical-kinetics of hydrogen-
air combustion. We have illustrated the rich phenomenology of such flame/vortex interactions
with three different cases: weak flames with global extinction; more robust flames that suffer
axial extinction followed by re-ignition; and very robust flames undergoing no extinction. At
each and every situation, we observe an excellent agreement with laboratory experiments, and
report the good convergence rates achieved by our numerical scheme.

Although far from perfect, the method presented in this paper has been shown to perform
well in a selection of combustion problems, and has provided further insight into the complex
behavior of flame/vortex interactions. However, we think that it may still benefit from research
on a posteriori error analysis, interface discretization techniques, and a more efficient solution
of the algebraic systems, topics that we intend to address in future works.
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