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Abstract

Schemes for the incompressible Navier-Stokes and Boussinesq equations are formulated
and derived combining the novel Hybridizable Discontinuous Galerkin (HDG) method,
a projection method, and Implicit-Explicit Runge-Kutta (IMEX-RK) time-integration
schemes. We employ an incremental pressure correction and develop the corresponding
HDG finite element discretization including consistent edge-space fluxes for the velocity
predictor and pressure correction. We then derive the proper forms of the element-local
and HDG edge-space final corrections for both velocity and pressure, including the HDG
rotational correction. We also find and explain a consistency relation between the HDG
stability parameters of the pressure correction and velocity predictor. We discuss and
illustrate the effects of the time-splitting error. We then detail how to incorporate the
HDG projection method time-split within standard IMEX-RK time-stepping schemes.
Our high-order HDG projection schemes are implemented for arbitrary, mixed–element
unstructured grids, with both straight-sided and curved meshes. In particular, we provide
a quadrature-free integration method for a nodal basis that is consistent with the HDG
method. To prevent numerical oscillations, we develop a selective nodal limiting approach.
Its applications show that it can stabilize high-order schemes while retaining high-order
accuracy in regions where the solution is sufficiently smooth. We perform spatial and
temporal convergence studies to evaluate the properties of our integration and selective
limiting schemes and to verify that our solvers are properly formulated and implemented.
To complete these studies and to illustrate a range of properties for our new schemes, we
employ an unsteady tracer advection benchmark, a manufactured solution for the steady
diffusion and Stokes equations, and a standard lock-exchange Boussinesq problem.

Keywords: Hybridizable DG, Projection Methods, IMEX-RK, High-Order, Selective
Limiter, Quadrature-free, Navier-Stokes, Boussinesq, Ocean Modeling

1. Introduction

Solving systems of equations that govern fluid flows is required for a
vast number of applications, from designing microfluid devices to predicting
ocean dynamics, the weather, and climate on Earth. These equations are
challenging to solve accurately and quickly. A common trend is to attempt
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larger, more complex, and increasingly important problems that require more
accurate answers. Since solutions of multi-scale nonlinear equations are sen-
sitive to small errors, their simulations require accurate numerical schemes.
Schemes should be capable of phase-resolved predictions up to predictability
limits, which can be relatively long durations for certain waves and coher-
ent structures. Schemes should also limit numerical dissipation and other
truncation errors that can insidiously alter the system dynamics: for exam-
ple, global properties of discretized solutions can then differ from those of
analytical solutions [59]. Schemes should also be optimized for modern com-
putational architectures. Presently, our focus is on incompressible fluid and
ocean flow simulations, for ocean engineering and regional ocean dynamics
applications. Our aim is to develop a new class of numerical schemes which
combines the recently developed hybridizable discontinuous Galerkin method
with the well-studied projection method to obtain new high-order accurate
schemes with excellent efficiency for ocean applications.

Projection methods, pioneered by Chorin [7] and Témam [55], decouple
the solution of the velocity and pressure. Herein we consider a class of pro-
jection methods where the diffusion terms are treated implicitly, while the
remaining terms (such as non-linear advection) are treated explicitly, and the
pressure is handled through the particular projection scheme. With projec-
tion methods, smaller systems can be solved for each velocity component and
the pressure separately, instead of a globally coupled solution. The drawback
is the splitting errors (e.g. [18]). While many different projection methods
exist (e.g. [23]), we focus here on the scheme by Timmermans et al. [56].

Because the solutions of implicit diffusion and pressure Poisson equations
often dominate the cost, it is critical to solve them efficiently. Discontinuous
Galerkin (DG) methods [27] are attractive because they can be high-order ac-
curate on arbitrary meshes. High-order accurate schemes reach a smaller er-
ror tolerance with fewer degrees of freedom than low-order accurate schemes.
They also promise to be more efficient on new computational architectures
because the computation to memory ratio is higher, and present computa-
tions are often limited by the memory bandwidth. Additionally, the DG
method is well suited to advection-dominated problems because upwinding
can be used to stabilize the scheme. However, Continuous Galerkin (CG)
methods [54] are deemed to be less expensive for Poisson equations [32].
All of this, as well as conservative and consistency considerations, led us to
the Hybridizable Discontinuous Galerkin (HDG) [40, 14] method, aiming for
optimal combination of accuracy with cost, hence efficiency.
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Figure 1: Discontinuos Galerkin have more degrees of freedom compared to continuous
Galerkin on the same mesh.

The development of HDG methods [40, 14] was motivated by the desire
to improve the computational efficiency of DG compared to CG for elliptic
problems. DG has at times been deemed too expensive compared to CG by
counting the number of degrees of freedom (DOF) required for DG and CG
on the same mesh. The DG discretization duplicates DOFs on the edges of
elements (Fig. [1]), which means that a larger matrix needs to be inverted
compared to the CG case. This comparison is not necessarily fair, since
the DG scheme may reach the same level of accuracy with a coarser mesh
(or same number of DOFs). To address these issues, HDG parameterizes
element-local solutions using a new global edge space, ensuring conservation
of normal fluxes. This reduces the effective number of globally coupled DOFs
and renders HDG competitive with CG for elliptic problems [62, 32].

The HDG method was derived for second order elliptic [14, 15] and
convection-diffusion equations [40, 41]. Next, schemes for Stokes flows were
derived [8], applied [42] and analyzed [16]. HDG was then extended to incom-
pressible [43, 44] and compressible Navier-Stokes flows [48, 49, 45, 53]. Addi-
tionally, HDG was used for elliptic interface problems [30] and [57, 47] applied
HDG for curved domains using elliptic and convection-diffusion equations.
Computational aspects of HDG, such as its implementation and efficiency
compared to existing methods, has been explored [59, 62, 32, 1]. While it is
still too early to judge whether HDG will be adopted for CFD, results so far
show that HDG is competitive with both CG and FV approaches.

A challenge facing the wide-spread adoption of high-order schemes in-
volves shock-capturing or slope limiting [61]. Without stabilizing a high-order
numerical scheme, numerical oscillations can lead to instabilities. There is
an abundance of literature on slope limiting, and here we do not provide an
exhaustive list. For linear elements, critical contributions deal with Total
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Variation Bounded (TVB) limiters [9, 12, 13, 10, 11]. More recently, higher
order limiters have received much attention with WENO-type approaches
[51, 63] and higher-order limiting [28, 33, 37, 29]. Alternatively, stabiliza-
tion can be added using filtering [26, 59] or artificial dissipation [50, 4, 5].
Efforts to retain the full order of accuracy of the scheme away from the dis-
continuities have also been pursued [6]. However, there is not yet a standard
approach that retains high-order accuracy while capturing sub-cell shocks,
and research in this area is active, e.g. [58].

Our goals are to combine Projection methods with HDG Finite Elements,
derive consistent projections for the HDG schemes, formulate an efficient
numerical implementation using quadrature-free integration, and develop a
selective nodal slope limiter to stabilize the method. We start by presenting
the particular form of the Projection method we employ §2. We then derive
the discrete finite element formulation (§3), obtaining the consistent correc-
tion steps from the discrete HDG predictions. We prove the consistency of
our velocity correction on the HDG edge-space and derive a consistent HDG
stability parameter for the pressure correction. Then, we explain the modifi-
cations needed in order to use a Implicit-Explicit Runge Kutta time integra-
tor (§4). Next we address implementation issues concerning quadrature-free
integration and slope limiting (§5). The implementation issues are verified
in §6, and the overall scheme is evaluated in §7.

2. Governing Equations and Projection Methods

In this section, we provide the equations we solve and the particular
form of the projection method that we employ, specifically the rotational
incremental pressure correction scheme [56].

We solve the non-dimensionalized unsteady incompressible Navier-Stokes
equations on a simply connected domain Ω within a finite time interval [0, T ]:

∂v

∂t
−∇ · 1

Re
∇v +∇p = −∇ · vv + f in Ω× [0, T ],

∇ · v = 0 in Ω× [0, T ],

v|∂Ω = gD in ∂Ω× [0, T ],

v|t=0 = v0 in Ω,

(1)

where v = [u, v, w] is the velocity, p = 1
ρ0
P , P is the dynamic pressure, f

are external body forces and ρ0 is the mean density. The initial velocity con-
ditions are v0 and we assume for now Dirichlet velocity boundary conditions
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(BCs) gD. We will also consider Boussinesq flows using the Boussinesq ap-
proximation. The only body forcing is then due to density, i.e. f = gρ where
ρ is the density (temperature) perturbation. We then solve an additional
equation for ρ, which is obtained from internal energy conservation,

∂ρ

∂t
−∇ · 1

ReSc
∇ρ = −∇ · vρ in Ω× [0, T ],

ρ|∂Ω = gDρ in ∂Ω× [0, T ],

ρ|t=0 = ρi in Ω,

(2)

where Sc = ν
κ

is the Schmidt number (ratio of kinematic viscosity ν to
molecular diffusivity κ), gDρ are Dirichlet density BCs and ρi is the initial
condition for density. Alternatively, for ocean applications we can solve tracer
equations for temperature and salinity, then calculate density through a state
equation. However, if that equation is linear in salinity and temperature and
the Schmidt number is the same for both, we can use (2) above. For the
remainder of this section, we focus on momentum and continuity.

Now, since the non-linear term will be treated explicitly, we group it with
the right-hand-side forcing term and it will not affect the splitting error. As
such, we will only consider the Stokes equations henceforth.

∂v

∂t
−∇ · 1

Re
∇v +∇p = F∂t in Ω× [0, T ],

∇ · v = 0 in Ω× [0, T ],

v|∂Ω = gD in ∂Ω× [0, T ],

v|t=0 = v0 in Ω,

(3)

where F∂t = −∇ · vv + f .
The un-split time-discretization of the coupled eqs. (3) is given by

vk+1

a∆t
−∇ · 1

Re
∇vk+1 +∇pk+1 = Fk, k+1,

∇ · vk+1 = 0

v|k+1
∂Ω = gD,

v|t=0 = v0,

(4)

where a single stage in time is considered, a is some constant associated with
it, and Fk, k+1 contains the explicitly integrated terms (including old values
of v) and the possibly implicit right-hand-side forcing terms F∂t (see §4).
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The time-split discretization corresponding to (4), with the rotational
incremental pressure correction scheme [56, 23], starts by solving for the
predictor velocity v̄k+1 using an old or guessed value for the pressure gradient:

v̄k+1

a∆t
−∇ · 1

Re
∇v̄k+1 +∇pk = Fk, k+1, (5)

v̄|k+1
∂Ω = gD, (6)

v|t=0 = v0, (7)

p|t=0 = p0 . (8)

Note, here we only considered Dirichlet velocity BCs, for simplicity, but the
method extends to other BCs [58]. Next, a Poisson equation is solved for
the pressure corrector δpk+1 (note, negative signs are added so that this
derivation matches our numerical implementation in §3):

−∇2δpk+1 = −∇ · v̄
k+1

a∆t
, (9)

∂δpk+1

∂n̂

∣∣∣∣
∂Ω

= 0. (10)

Finally, the velocities and pressure need to be corrected

vk+1 = v̄k+1 − a∆t∇δpk+1, (11)

pk+1 = pk + δpk+1 − 1

Re
∇ · v̄k+1. (12)

We first note that the BC for the pressure-correction (10) comes from (11)
and a normal Dirichlet BC on both v and v̄. Hence, the v velocity satisfies
the normal Dirichlet BCs (v·n̂|k+1

∂Ω = gD ·n̂), and is divergence free (∇·v = 0),
while v̄ satisfies both the normal and tangential Dirichlet BCs (v̄|k+1

∂Ω = gD)
but is not divergence free (∇ · v̄ 6= 0). We then note that the final term in
(12) is known as the rotational-correction term. Eqs. (11)–(12) can be derived
by taking the difference between the un-split (implicit pressure) eqs. (4) and
split eqs. (5)–(10). Analogous differences of HDG discretizations will be used
to obtain the final corrections for the HDG predictor schemes (§3.2.4–§3.2.6).

3. Spatial Discretization of Time-Split equations using HDG

In this section we spatially discretize eqs. (5)–(12). We first define our
notation and describe the premise behind HDG methods. Then we complete
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Figure 2: Notation for domain discretization.

the basic derivations of the scheme. Later, we obtain and justify the final
HDG velocity and pressure corrections, the HDG rotational correction, and
a consistent HDG stability parameter for the pressure Poisson equation.

3.1. Finite Element Definitions and Notation

We let Th = ∪Ki be a finite collection of non-overlapping elements, Ki,
that discretizes the entire computational domain Ω (Fig. [2]). Also, let
∂Th = {∂K : K ∈ Th} be the set of interfaces of all elements, where ∂K is the
boundary of element K. For two elements sharing an edge K+ and K−, we
define e = ∂K+∩∂K− 6= ∅ as the unique interior interface between elements
K+ and K−. For a single element K belonging to Th , if e = ∂K ∩ ∂Ω 6= ∅
it is a boundary interface. Let ε◦ and ε∂ denote the set of unique interior
and boundary interfaces, respectively, such that ε = ε◦∪ ε∂. We note that in
the interior ∂Th contains two interfaces, ∂K+ and ∂K−, at the same location
(one for each element sharing the edge), whereas the set ε only contains a
single interface, e, at the same location.

K+ and K− have outward pointing normals n̂+ and n̂−, respectively.
We then let vector and scalar quantities [a±, c±] be the traces (i.e. the
projections) of [a, c] on the interface e from the interior of K±. The “mean”
value {{•}} and “jumps” [[•]] on the interior interfaces e ∈ ε◦ for scalar and
vector quantities are then defined as

{{a}} = (a+ + a−)/2, {{c}} = (c+ + c−)/2,

[[a · n̂]] = a+ · n̂+ + a− · n̂−, [[cn̂]] = c+n̂+ + c−n̂−.

On the set of boundary interfaces e ∈ ε∂ (with outward facing normal n̂ on
∂Ω) we set these mean and jump quantities as

{{a}} = a, {{c}} = c,

[[a · n̂]] = a · n̂, [[cn̂]] = cn̂.
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since here a and c are single-valued. Note that the jump will be zero for a
continuous function.

A main difference between CG and DG lies in the approximation sub-
spaces used. DG uses bases that are in L2(Ω) while CG uses bases that are
in H1(Ω), that is, the function has to be continuous across elements.

Let Pp(D) denote the set of polynomials of maximum degree p existing
on a domain D. For example, we will be using p = 2 to denote a second
degree polynomial basis, which will result in a 3rd order accurate scheme.
We define the discontinuous finite element bases we use on the element for
scalars, vectors, and tensors, respectively, as{

θ ∈ L2(Ω) : θ |K∈ Pp(K),∀K ∈ Th
}{

θ ∈ (L2(Ω))d : θ |K∈ (Pp(K))d,∀K ∈ Th
}{

Θ ∈ (L2(Ω))d×d : Θ |K∈ (Pp(K))d×d,∀K ∈ Th
}
.

To use the HDG method, we will also require the traced finite element
spaces existing on the unique interfaces ε{

θε ∈ L2(Ω) : θε |e∈ Pp(e),∀e ∈ ε
}
,{

θε ∈ (L2(Ω))d : θε |e∈ (Pp(e))d,∀e ∈ ε
}
,{

Θε ∈ (L2(Ω))d×d : Θε |e∈ (Pp(e))d×d,∀e ∈ ε
}
.

We also set {θε = PgD on ∂Ω}, where P is the L2 projection of the BC gD
into the same space as θε. Note that θε is continuous on the interface, e,
shared by K+ and K−, but discontinuous at the borders between different
interfaces (that is, for a 1D-line-interface, discontinuities are the end-points
of the line, see Fig. [3]).

Finally we define the inner products over continuous domains D ∈ Rd

and ∂D ∈ Rd−1 as

(a,b)D =

∫
D

a · b dD (c, d)D =

∫
D

cd dD (13)

〈a,b〉∂D =

∫
∂D

a · b d∂D 〈c, d〉∂D =

∫
∂D

cd d∂D (14)

for vector functions a,b and scalar functions c, d. Over discontinuous do-
mains we also define

(a,b)Th =
∑
K∈Th

(a,b)K , 〈c, d〉∂Th =
∑
K∈Th

〈c, d〉∂K , (15)
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Figure 3: The HDG method splits the solution of the element local equations from the
solution of the globally coupled problem for the boundary conditions.

for vector functions a, b defined on Th, and scalar functions c, d defined on
∂Th. We also utilize the additional inner product on the HDG edge space

〈a,θε〉ε =
∑
e∈ε

〈a,θε〉e 〈c, θε〉ε =
∑
e∈ε

〈c, θε〉e (16)

for vector or scalar functions a, c defined on ε.
To understand how HDG fluxes are specified over the interfaces ε, it is

useful to grasp an underlying premise of HDG methods. The premise is
that one can solve the equations of interest locally on an element as long as
the initial and boundary conditions are properly specified. While the initial
conditions for an element are specified as part of the problem, the BCs on
every element edge are not given a priori. The HDG method provides a
global system of equations for these unknown BCs, rendering them single-
valued in the HDG edge-spaces. To do so, the fluxes across element interfaces
are first parameterized and made a function of single-valued λ/λ variables
(see §3.2) that live on the HDG edge-spaces. These λ/λ variables are part
of the numerical scheme and are critical to its consistency, stability, and
efficiency. In some equations, they are the numerical fluxes or trace functions
that connect discontinuous elements, and in others, they are part of the
stabilization terms of such fluxes. Since the fluxes belong to the space of
continuous edge-space functions (e.g. θε, θε or Θε), one can enforce their
conservation across elements, which leads to global flux conservation (i.e.
the fluxes on the interior ε◦ balance the fluxes at the boundary ε∂). The
numerical traces are then conservative in the sense of [2]. To obtain the
global system of equations for the HDG edge-space variables, the solution on
the interior of an element is expressed in terms of these new variables that
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represent the BCs for that element. The globally-coupled equations are then
found by solving for BCs that give conservative fluxes (that is, the same flux
for both elements on either side of an edge). As such, the solutions of the
element-local equations are split from those of the globally-coupled equations
for the edge degrees of freedom (Fig. [3]). The HDG method thus benefits
from new implementations, e.g. see [40] and [57, 58].

For our set of equations (5)–(6) and (9)–(10), we need two new variables,
λ̄ for (5) and λδp for (9), which live in the same spaces as θε and θε, respec-
tively. That is, λ̄ and λδp only exist on the new HDG edge-space, and do not
have a value inside the element (i.e. no interior support).

Additionally, we note that the original Stokes system only required knowl-
edge of the velocity initial conditions, average pressure, and velocity BCs to
be solvable. However, for the time-split system using projection methods
(5)–(12) we need to specify the initial velocity and pressure, and BCs for
the velocity and pressure-correction. While this may appear to be an over-
specification due to the additional BCs for the pressure-correction, the BCs
for velocity and pressure are intimately related, and require careful treatment
to be numerically consistent. The proper specification of these HDG edge
fluxes using Projection methods is one of our contributions.

3.2. Discrete HDG projection-method equations and their derivations

We first introduce the additional DG unknown variables Q = 1
Re
∇v and

qδp = ∇δp. We then rewrite (5) as

ReQ̄
k+1 −∇v̄k+1 = 0, (17)

v̄k+1

a∆t
−∇ · Q̄k+1

+∇pk = Fk,k+1, (18)

(9) as

qk+1
δp −∇δp

k+1 = 0, (19)

−∇ · qk+1
δp = −∇ · v̄

k+1

a∆t
, (20)

and expect that final corrections (11) and (12) will remain close to

vk+1 = v̄k+1 − a∆tqk+1
δp , (21)

pk+1 = pk + δpk+1 − 1

Re
∇ · v̄k+1. (22)
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The time-discretized split equations (17)–(22) are the starting point of one
of our main results, the new HDG projection-method discretization.

Next, we obtain these equations with consistent HDG edge-space updates
(§3.2.1) and express fluxes in terms of element interior variables (§3.2.2). To
complete derivations, we first state an HDG discretization for the un-split
case (§3.2.3). We then use its differences with the HDG discretization of the
split eqs. (17)–(20) to derive the HDG forms of eqs. (21)–(22) and formally
justify these element-local velocity and pressure corrections, and their con-
sistent edge-space updates (§3.2.4–§3.2.5). In §3.2.6, we derive a consistency
relation between stability parameters for the split scheme. All equations,
including HDG fluxes, are recapped in Fig. [4], in the order in which the sys-
tems of equations are solved. The solid boxes give the discretized equations
that need to be solved while the dashed boxes give additional information
about the fluxes that are not explicitly a part of the numerical discretization.
Steps 1 and 2 require the numerical solution of a system of global/local HDG
equations. For the solutions steps of HDG systems, we refer to [40, 58].

3.2.1. HDG Spatial Discretization: Equations

We first multiply eqs. (17)–(20) by their test functions, and integrate over
the domain. Following [27], the terms that correspond to fluxes (divergence
terms for the conservative form of eqs. (17)–(20)) are integrated by parts
twice, substituting non-local and local fluxes sequentially. This leads to
edge integrals that contain differences between single-valued HDG edge-space
fluxes (denoted by •̂) and element interior fluxes. Hence, we utilize the strong
form [27], in part for implementation considerations (see §5.1). We then
enforce global flux-conservation, i.e. continuity of the normal component of
the total fluxes on the interior edge-space (inter-element boundaries) and
at domain boundaries (boundary conditions). For our velocity (17)–(18)
and pressure corrector (19)–(20) predictions, this implies that, on the edge-
space, the total normal stress and pressure corrector are conserved and single-
valued functions of λ̄ and λδp. The edge integrals are indeed parameterized
in terms of HDG stabilization functions (see §3.2.2). Since advection fluxes
depend on velocity only, they can be made single-valued on the edge-space
by construction: element-local fluxes are then set equal to edge fluxes and
they cancel out in the normal flux conservation equations. If the advection
term is evaluated explicitly (as we do, see (17)), its strong-form still needs
to be utilized to ensure continuity of normal advection fluxes. We give some
guidance on different choices of advective fluxes in §3.2.2, but for stability
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of advection schemes with the HDG framework see for example [41]. With
all of the above, we obtain the new element-local equations (with the HDG
fluxes substituted) along with their global flux-conservation equations.

The strong-form HDG discretization of (17)–(18) provides the element-
local equations for v̄k+1,(

(Re)Q̄k+1
,Θ
)
K
−
(
∇v̄k+1,Θ

)
K

+
〈
v̄k+1, n̂ ·Θ

〉
∂K

=
〈
λ̄
k+1

, n̂ ·Θ
〉
∂K

, (23)(
v̄k+1

a∆t
,θ

)
K

−
(
∇ · Q̄k+1

,θ
)
K

+
〈
τ v̄k+1,θ

〉
∂K

=
〈
τ λ̄

k+1
,θ
〉
∂K
−
(
∇pk,θ

)
K

+
(
Fk,k+1,θ

)
K
,

(24)

where Q̄
k+1

, v̄k+1, and pk live in the spaces Θ, θ, and θ, respectively; Fk,k+1

lives in θ; and λ̄
k+1

lives in θε. In (23)–(24), we defined the single-valued̂̄vk+1
= λ̄

k+1
and substituted an HDG stabilization vector-valued function

for the total normal edge-space flux〈
−( ̂̄Qk+1

− Q̄k+1) · n̂ + (p̂k − pk)n̂,θ
〉
∂K

= −
〈
τ(λ̄k+1 − v̄k+1),θ

〉
∂K

, (25)

where τ is the stability parameter, of O(1/Re) for our non-dimensional equa-
tions (§3.2.6). The flux defined via (25) is key to reducing the number of
global degrees of freedom of the problem (and therefore the computational
effort), as well as securing stabilization via the τ parameter. This flux defi-

nition leads to the global flux-conservation equations for λ̄
k+1

:〈[[ ̂̄Qk+1
· n̂
]]
, θε

〉
ε

= 〈gN , θε〉ε

⇒
〈[[

Q̄k+1 · n̂− τ
(
v̄k+1 − λ̄

k+1
)]]

, θε

〉
ε

=
〈[[
pkn̂

]]
, θε

〉
ε

+ 〈gN , θε〉ε , (26)

λ̄|k+1
ε∂

D

= gD (27)

where gD and gN are the provided Dirichlet and Neumann BCs for the mo-
mentum equations, respectively (other BCs can also be used, e.g. [44, 58]).

The strong-form HDG discretization of (19)–(20) provides the element-
local equations for δpk+1,(

qk+1
δp ,θ

)
K
−
(
∇δpk+1,θ

)
K

+
〈
δpk+1, n̂ · θ

〉
∂K

=
〈
λk+1
δp , n̂ · θ

〉
∂K

, (28)

−
(
∇ · qk+1

δp , θ
)
K

+
〈
τpδp

k+1, θ
〉
∂K

=
〈
τpλ

k+1
δp , θ

〉
∂K
−
(
∇ · v̄k+1

a∆t
, θ

)
K

−

〈
(λ̄k+1 − v̄k+1) · n̂

a∆t
, θ

〉
∂K

,

(29)
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where qk+1
δp , δpk+1, and λk+1

δp live in θ, θ, and θε, respectively. In (28)–(29), we

defined the single-valued δ̂p
k+1

= λk+1
δp and substituted an HDG stabilization

scalar function for the total normal edge-space flux〈
−(q̂δp

k+1 − qk+1
δp ) · n̂, θ

〉
∂K

= −
〈
τp(λk+1

δp − δp
k+1), θ

〉
∂K

, (30)

where τp = 1
a∆tτ

is the HDG stability parameter for the pressure-correction

(derivation in §3.2.6). In (29), we also used ̂̄vk+1

? = λ̄
k+1

by consistency witĥ̄vk+1
used in (24). The global flux-conservation equations for λk+1

δp are thus〈[[
q̂δp

k+1 · n̂
]]
, θε

〉
ε

=
〈
gNp , θε

〉
ε

⇒
〈[[

qk+1
δp · n̂− τp

(
δpk+1 − λk+1

δp

)]]
, θε
〉
ε

=
〈
gNp , θε

〉
ε
, (31)

λδp|k+1
ε∂D

= gDp (32)

where gDP and gNP are the provided Dirichlet and Neumann BCs for the
pressure-correction (and these are normally all zero Neumann, see eq. (10)).

We will show in §3.2.4 that the final correction for the element-local ve-
locity remains as (21) (except that spatially discrete HDG variables are used)

vk+1 = v̄k+1 − a∆tqk+1
δp . (33)

Logically, a final correction on the velocity edge-space is also required. To
be consistent with the HDG pressure-correction (28)–(29), we find that this

new correction is v̂k+1
cor = −a∆tq̂δp

k+1 = −a∆t
(
qk+1
δp − τp(δpk+1 − λk+1

δp )n̂
)
,

where δ̂p
k+1

= λk+1
δp still. The final corrected edge-space velocity is thus

λk+1 = ̂̄vk+1

? + v̂k+1
cor = λ̄

k+1 − a∆tq̂δp
k+1 (34)

= λ̄
k+1 − a∆tqδp

k+1 + a∆tτp
(
δpk+1 − λk+1

δp

)
n̂, (35)

where again ̂̄vk+1

? = λ̄
k+1

. In §3.2.5, the final discretized pressure correction
will be shown to be as a standard DG on (12) but with updated HDG fluxes,(
pk+1, θ

)
K

=
(
pk + δpk+1, θ

)
K
− 1

Re

(
∇ · v̄k+1, θ

)
K
− 1

Re

〈
(λk+1 − vk+1) · n̂, θ

〉
∂K
.

(36)

We note that this final pressure (36) with the HDG rotational correction is
only needed for the next stage in the local pressure gradient in (24) and jump
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terms in (26). The final corrected pressure on the edge-space is not needed
in the present scheme: it is within the stabilization term in (24). Variations
on the above are provided in [58, 35]. All of the HDG fluxes are given next.

3.2.2. HDG Spatial Discretization: Fluxes

To obtain the above HDG discretization, we needed to define the HDG

edge-space fluxes (numerical traces) ̂̄vk+1
, ̂̄vk+1

? , δ̂p
k+1

, ̂̄Qk+1

, p̂k and q̂δp
k+1.

In §3.2.1, these single-valued •̂ fluxes arose in the edge integral terms of the
strong-form HDG equations. For the equations added to define HDG gradi-
ents, the fluxes are simply edge variables and they were set to their λ’s. For
the momentum and pressure equations proper, the differences between the
single-valued edge fluxes and interior fluxes were set to stabilization func-

tions, τ(λ̄
k+1− v̄k+1) and τp(λ

k+1
δp − δpk+1), respectively. In other words, the

total single-valued HDG fluxes were set equal to the corresponding element
interior flux plus the stabilization term. These expressions are now given.

Our flux definitions for ̂̄vk+1
and total stress ̂̄Qk+1

− p̂kI that appeared
in (23)–(24) at time k + 1 are:

̂̄vk+1
=

{
λ̄
k+1

, on ε◦

PgD, on ε∂D
(37)

̂̄Qk+1

− p̂kI = Q̄
k+1 − pkI− τ

(
v̄k+1 − ̂̄vk+1

)
n̂, on ε◦̂̄Qk+1

= PgN , on ε∂N

(38)

where PgD/PgN is the L2 projection of gD/gN into the space of θε/Θε (e.g.

tangential stresses), I is the d × d identity tensor, and (v̄k+1 − ̂̄vk+1
)n̂ is a

d× d tensor. Substitution of these fluxes led to (23)–(24).

Similarly, the fluxes for δ̂p
k+1

and q̂δp
k+1 that appeared in (28)–(29) are:

δ̂p
k+1

=

{
λk+1
δp , on ε◦

PgDp , on ε∂Dp
(39)

q̂δp
k+1 = qδp

k+1 − τp
(
δpk+1 − δ̂p

k+1
)

n̂, on ε◦

q̂δp
k+1 = PgNp , on ε∂Np

(40)

where PgDp/PgNp is the L2 projection of gDp/gNp into the space of θε/θε
(normally all zero Neumann, see eq. (10)). Substitutions of these fluxes lead
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Element-Local equations:

Edge-space global flux conservation equations:

Flux definitions:

1. Velocity predictor (momentum equations)

Element-Local equations:

Edge-space global flux conservation equations:

Flux definitions:

2. Pressure corrector (to enforce continuity)

Element-Local correction:

Edge-space correction:

Implicit flux definition:

3. Velocity and pressure corrections

Consistent HDG
stability parameter:

(22)

(23)

(25)

(26)

(36)

(37)

(27)

(28)

(30)

(31)

(38)

(39)

(40)

(32)

(35)

(34)

(61) (60)

Figure 4: New HDG – projection method scheme. Plain boxes denote the main equations,
while dashed boxes give flux definitions. Element-local equations are arranged such that
locally-calculated quantities are on the left of the equal sign, while globally calculated (i.e.
λ’s) and known (or given) quantities are on the right.
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to (28)–(29). Finally, the velocity fluxes ̂̄vk+1

? stem from continuity on the
right-hand-side of (29) and thus ensue from the advective edge-space flux
used in (24). A consistent HDG flux is thus to select the same as in (24),

̂̄vk+1

? = λ̄
k+1

(41)

and in our experience, this choice (41) gives accurate results. However, a
central flux or, for improved stability, an upwind flux in the interior yields

̂̄vk+1

? =
{{

v̄k+1
}}
, (42)

̂̄vk+1

? =
{{

v̄k+1
}}

+
1

2
sign(v̄k+1 · n̂)

[[
v̄k+1n̂

]]
· n̂ , (43)

respectively. Each of these choices then replaces λ̄
k+1

in (29) and (35). Since
they originate from (24), they then also need to be used in (24) and thus
(37), for consistency.

3.2.3. HDG Spatial Discretization: Un-split equations
We now state the element-local and globally-coupled HDG discretization

for the un-split eqs. (4) (for a single time-stage). They are utilized in the
proofs that follow. The element-local equations for the un-split system are:(

(Re)Qk+1,Θ
)
K
−
(
∇vk+1,Θ

)
K

+
〈
vk+1, n̂ ·Θ

〉
∂K

=
〈
λk+1, n̂ ·Θ

〉
∂K

,(
vk+1

a∆t
,θ

)
K

−
(
∇ ·Qk+1,θ

)
K

+
〈
τvk+1,θ

〉
∂K

+
(
∇pk+1,θ

)
K

=
〈
τλk+1,θ

〉
∂K

+
(
Fk,k+1,θ

)
K
,(

∇ · vk+1, θ
)
K
−
〈
vk+1 · n̂, θ

〉
∂K

= −
〈
λk+1 · n̂, θ

〉
∂K

,(
pk+1,

1
|K|

)
K

= |p|k+1
.

(44)

Note that these eqs. (44) are solvable once the velocity BCs and average
pressure are specified. The globally coupled equations for λ and the average
pressure |p| = 1

|K|

∫
K
pdK on the element (with volume |K| =

∫
K

dK) are:〈[[
−Qk+1 · n̂ + pk+1n̂ + τ

(
vk+1 − λk+1

)]]
, θε
〉
ε

= 〈gN , θε〉ε ,〈
λk+1 · n̂, 1

|∂K|

〉
∂Th

= 0,

λk+1|ε∂D = gD.

(45)
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3.2.4. Final HDG velocity corrections: derivation

In this section we derive the element-local, (33), and edge-space, (35),
final corrections of the predictor velocity. The goal of these final corrections
is to obtain velocity fields vk+1 that are numerically divergence-free in the
HDG sense, i.e. as in the third equation of the un-split system (44). For the
split HDG system, it is the pressure-correction eqs. (28)–(29) that play that
role. Hence, by taking the difference of these equations with their un-split
counterpart, we can derive the final velocity corrections (33) and (35).

We begin by re-arranging (29), where the goal is to combine terms to
make the final element-local and edge-space velocities appear as they are in
the continuity equation of the un-split system (44). Multiplying (29) by the
scalar a∆t and assembling terms, we obtain,

−
(
∇ · (a∆tqk+1

δp − v̄k+1), θ
)
K

+
〈
a∆tτp(δpk+1 − λk+1

δp ), θ
〉
∂K

+
〈

(λ̄k+1 − v̄k+1) · n̂, θ
〉
∂K

= 0

⇒ −
(
∇ · (a∆tqk+1

δp − v̄k+1), θ
)
K

+
〈

(λ̄k+1 − v̄k+1) · n̂ + a∆tτp(δpk+1 − λk+1
δp ), θ

〉
∂K

= 0 .

Subtracting this result from the target un-split HDG continuity equation,(
∇ · vk+1, θ

)
K

+
〈
(λk+1 − vk+1) · n̂, θ

〉
∂K

= 0 in (44), we obtain(
∇ ·
(
vk+1 − (v̄k+1 − a∆tqk+1

δp )
)
, θ
)
K

+
〈(

λk+1 − λ̄
k+1 − (vk+1 − v̄k+1)

)
· n̂ + a∆tτp(λk+1

δp − δp
k+1), θ

〉
∂K

= 0 . (46)

Defining vk+1
cor = vk+1− v̄k+1 and v̂k+1

cor = λk+1
cor = λk+1− λ̄

k+1
, and using the

flux definition (40) (as stated in (30)), we rewrite (46) as(
∇ · (vk+1

cor + a∆tqk+1
δp ), θ

)
K

+
〈

(λk+1
cor − vk+1

cor ) · n̂ + a∆t(q̂δp
k+1 − qk+1

δp ) · n̂, θ
〉
∂K

= 0 ,

⇒
(
∇ · (vk+1

cor + a∆tqk+1
δp ), θ

)
K

+
〈

(λk+1
cor + a∆tq̂δp

k+1) · n̂− (vk+1
cor + a∆tqk+1

δp ) · n̂, θ
〉
∂K

= 0 .

(47)

This eq. (47) holds for all h and p discretizations and parameter τp. In
theory, as long as vk+1

cor and λk+1
cor satisfy (47), the final corrected velocities

vk+1 and λk+1 are divergence-free in the discrete HDG sense. However, a
logical choice that leads to consistent corrections is to set both interior and
edge terms to zero in (47) (and thus also in (46)). Hence, in (47), if we set
vk+1

cor +a∆tqk+1
δp = 0, both the element interior term and last edge-space term

cancel, while if λk+1
cor + a∆tq̂δp

k+1 = 0, the first edge-space term cancels and
λk+1

cor is then also consistent with vk+1
cor . Summarizing, we derived the final
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consistent corrections and corresponding vk+1 and λk+1, respectively,

vk+1
cor = −a∆tqk+1

δp and λk+1
cor = −a∆tq̂δp

k+1
. (48)

⇒vk+1 = v̄k+1 − a∆tqk+1
δp and λk+1 = λ̄

k+1 − a∆tqk+1
δp − a∆tτp(λk+1

δp − δp
k+1)n̂ .

(49)

This completes the justification of (33) and (35). A few remarks:

1. As mentioned above, other acceptable choices for vk+1
cor and λk+1

cor are
possible, in part because the edge-terms in (46) and (47) only constrain
the normal flux (the normal was in essence dropped in (48)–[(49)).
However, our corrections are logical and consistent with each other
and with other relations, including the final HDG pressure correction
(§3.2.5) and the τp relation (§3.2.6).

2. From (35) (and the above justification), the edge-space pressure-gradient
correction leads to a continuous change of the edge-space velocity in the
normal direction. Indeed, this change is equal to v̂k+1

cor · n̂ = λk+1
cor · n̂ =

−a∆tq̂δp
k+1 = −a∆tqδp

k+1 · n̂− a∆tτp
(
δpk+1 − λk+1

δp

)
, and is continu-

ous because we solved (31). However, the corresponding change in the

tangential direction, v̂k+1
cor · t̂ = λk+1

cor · t̂ = −a∆tq̂δp
k+1 · t̂, is not con-

strained to be continuous. Hence, even though ̂̄vk+1
= λ̄

k+1
is a unique

vector on the edge by construction, the final corrected edge velocity
λk+1 can be discontinuous in the tangential direction. This property is
common in projection methods, e.g. see [23].

3. Finally, combining (48) and (49), and using τ a∆tτp = 1 (to be justified
in §3.2.6), we obtain the following relation between HDG stabilization
functions for the final velocity correction and pressure-correction,〈

τ(vk+1
cor − λk+1

cor ),θ
〉
∂K

=
〈
τ a∆tτp(λk+1

δp − δp
k+1)n̂,θ

〉
∂K

=−
〈

(δpk+1 − λk+1
δp )n̂,θ

〉
∂K

. (50)

This relation will be used next in §3.2.5.

3.2.5. Final HDG pressure correction: derivation
We now derive the final HDG pressure correction (36). For a rotational

correction [56, 23], the goal is to obtain an equation for the final corrected
pressure (gradient) such that the discrete un-split momentum equations are
satisfied. Hence, just as in §3.2.4 we used the third equation of (44) to obtain
velocities that are HDG divergence-free, here, we employ the second equation
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of (44) to correct the pressure gradient in (24) such that, at the end of a time-
stage, momentum balance is satisfied in the HDG sense. Thus, taking the
difference of this equation with the predictor (24), using (25), we obtain(

vk+1
cor

a∆t
,θ

)
K

−
(
∇ ·Qk+1

cor ,θ
)
K

+
(
∇pk+1

cor ,θ
)
K

+
〈
−(Q̂

k+1

cor −Qk+1
cor ) · n̂ + (p̂k+1

cor − pk+1
cor )n̂,θ

〉
∂K

= 0

⇔
(

vk+1
cor

a∆t
,θ

)
K

−
(
∇ ·Qk+1

cor ,θ
)
K

+
(
∇pk+1

cor ,θ
)
K

+
〈
τ(vk+1

cor − λk+1
cor ),θ

〉
∂K

= 0 , (51)

where we defined Qk+1
cor = Qk+1 − Q̄

k+1
, Q̂

k+1

cor = Q̂
k+1
− ̂̄Qk+1

and pk+1
cor =

pk+1− pk, and where vk+1
cor and λk+1

cor are as in §3.2.4. Next, we insert in (51)
the velocity correction (33) and utilize the HDG pressure gradient corrector
(28) and relation (50) between final velocity and pressure corrections, to get(

∇pk+1,θ
)
K

=
(
∇pk,θ

)
K

+
(
∇δpk+1,θ

)
K

+
(
∇ ·Qk+1

cor ,θ
)
K
. (52)

To obtain (36), we need to express the diffusion term in (52) in terms
of a gradient. To do so, we can first start back from (51) and consider the

strong form
(
∇ ·Qk+1

cor ,θ
)
K

+
〈

(Q̂
k+1

cor −Qk+1
cor ) · n̂,θ

〉
∂K

. We integrate this

sum back to the weak form, utilize (33) and then return to the strong form
by integration by parts. We then complete the same manipulations as those
made to go from (51) to (52), which yields a re-written (52),(

∇pk+1,θ
)
K

=
(
∇pk,θ

)
K

+
(
∇δpk+1,θ

)
K
− a∆t

Re

(
∇ · ∇qk+1

δp ,θ
)
K
.

Realizing that qk+1
δp is a gradient, in the element-local space, numerical op-

erators can be defined such that
(
∇ · ∇qk+1

δp ,θ
)
K

=
(
∇∇ · qk+1

δp ,θ
)
K

i.e. the

numerical curl of qk+1
δp is null. With this, we obtain(

∇pk+1,θ
)
K

=
(
∇pk,θ

)
K

+
(
∇δpk+1,θ

)
K
− a∆t

Re

(
∇∇ · qk+1

δp ,θ
)
K
. (53)

This relation (53) holds for all element-local numerical gradient operator.
Thus, up to a constant,(

pk+1, θ
)
K

=
(
pk + δpk+1, θ

)
K
− a∆t

Re

(
∇ · qk+1

δp , θ
)
K
. (54)

Equation (54) can be utilized for computations. A first alternate form is
obtained by inserting the velocity correction (33) into (54) to obtain:(

pk+1, θ
)
K

=
(
pk + δpk+1, θ

)
K

+
1

Re

(
∇ · vk+1 −∇ · v̄k+1, θ

)
K
. (55)
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which is the HDG element-local version of the classic (22). A second alternate
form is obtained by utilizing in (54) the third equation of (44) which, as
derived in §3.2.4, is also satisfied by the split HDG scheme. This yields(
pk+1, θ

)
K

=
(
pk + δpk+1, θ

)
K
− 1

Re

(
∇ · v̄k+1, θ

)
K
− 1

Re

〈
(λk+1 − vk+1) · n̂, θ

〉
∂K

.

(56)

To confirm this, one can also proceed using the results of §3.2.4, inserting
(29) in (54) and using the edge-space corrections (33) and (35) to yield again
(56). We note that this final (56) is as a standard DG on (12) but with the
final updated HDG fluxes. Finally, the three forms (54), (55) and (56) can
be derived from each other and are thus theoretically equivalent, but they
lead to different implementations, efficiency and round-off errors.

3.2.6. Consistent HDG stability parameter for the pressure-correction: jus-
tification

We now justify the magnitudes of the HDG stability parameters τ and τp.
For diffusive fluxes, the effect of varying the magnitude of τ has been studied
[40, 14, 15, 16, 44] and τ = O(ν/`) was found to yield accurate fluxes and
stable solutions (for our non-dimensional equations, τ = O(1/Re)). Hence,
what remains is to justify the consistent expression for τp, τp = 1

a∆tτ
, used in

§3.2.5. To do so, we compare the fluxes of the split equations to these of the
un-split equations, through their respective edge-space variables. We first
solve for the un-split λ in terms of its element-local quantities. To compare
the un-split fluxes to the split ones, we then express the split edge-space
variables λ̄ and λδp in terms of their element-local quantities, and then form
the final edge-space velocity using (35).

To solve for λk+1 in the interior of the domain (note gN = 0 on the inte-
rior), we use the first equation in (45), then we expand the “jump” operator
in terms of element-local quantities on either side of the edge, and finally we
recombine terms using the “jump” and “mean” operators:

0 =
[[
−Qk+1 · n̂ + pk+1n̂ + τ

(
vk+1 − λk+1

)]]
0 = −Q+,k+1 · n̂+ + Q−,k+1 · n̂+ + p+,k+1n̂+ − p−,k+1n̂+ + τ(v+,k+1 + v−,k+1 − 2λk+1)

⇒ λk+1 =
{{

vk+1
}}
− 1

2τ
[[

Qk+1 · n̂
]]

+
1
2τ
[[
pk+1n̂

]]
. (57)

Now, we want to compare this to the λk+1 obtained from the split equa-

tions. From the flux-conservation equation for λ̄
k+1

, (26) (that is, using our
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flux definition (38), which includes the explicit pressure contribution), we
proceed similarly

0 =
[[
−Q̄k+1 · n̂ + pkn̂ + τ

(
v̄k+1 − λ̄

k+1
)]]

0 = −Q̄+,k+1 · n̂+ + Q̄−,k+1 · n̂+ + p+,kn̂+ − p−,kn̂+ + τ(v̄+,k+1 + v̄−,k+1 − 2λ̄
k+1)

⇒ λ̄
k+1 =

{{
v̄k+1

}}
− 1

2τ

[[
Q̄k+1 · n̂

]]
+

1
2τ
[[
pkn̂

]]
. (58)

Note that the time-level of the jump in the pressure is different between the
split flux (58) and the un-split flux (57) . To correct the velocity, we need

to know the form of the flux q̂δp
k+1 (40). Starting from (31) we can find the

form for λk+1
δp (similar to before)

0 =
[[
−qδp

k+1 · n̂ + τp
(
δpk+1 − λδpk+1

)]]
0 = −q+,k+1

δp · n̂+ + q−,k+1
δp · n̂+ + τp(δp

+,k+1 + δp−,k+1 − 2λk+1
δp )

⇒ λk+1
δp =

{{
δpk+1

}}
− 1

2τp

[[
qk+1
δp · n̂

]]
. (59)

Now, substituting (59) into (40) we find:

q̂δp
k+1 · n̂+ = qδp

+,k+1 · n̂+ − τp
(
δp+,k+1 − λk+1

δp

)
= qδp

+,k+1 · n̂+ − τp
(
δp+,k+1 +

{{
δpk+1

}}
− 1

2τ

[[
qk+1
δp · n̂

]])
= qδp

+,k+1 · n̂+ − τp
(
δp+,k+1 − δp+,k+1 + δp−,k+1

2
− 1

2τp
(q+,k+1

δp − q−k+1
δp ) · n̂+

)
=
{{

qδp
k+1
}}
· n̂+ +

τp
2

[[
δpk+1n̂

]]
· n̂+ (60)

Finally, we construct the final edge-velocity for the split equations by sub-
stituting for (58) and (60) into (35):

λk+1 = λ̄
k+1 − a∆tq̂δp

k+1

=
{{

v̄k+1
}}
− 1

2τ

[[
Q̄
k+1 · n̂

]]
+

1

2τ

[[
pkn̂
]]
− a∆t

{{
qk+1
δp

}}
+ a∆t

τp
2

[[
δpk+1n̂

]]
,

=
{{

v̄k+1 − a∆tqk+1
δp

}}
− 1

2τ

[[
Q̄
k+1 · n̂

]]
+

1

2τ

[[
pkn̂
]]

+ a∆t
τp
2

[[
δpk+1n̂

]]
,

=
{{

vk+1
}}
− 1

2τ

[[
Q̄
k+1 · n̂

]]
+

1

2τ

[[
pkn̂
]]

+ a∆t
τp
2

[[
δpk+1n̂

]]
. (61)
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We can now equate these split edge-space variables (61) with the un-split
ones (57). The result links the split diffusive flux and pressures to the un-split
ones:

− 1

2τ

[[
Q̄
k+1 · n̂

]]
+

1

2τ

[[
pkn̂
]]

+
a∆t

2
τp
[[
δpk+1n̂

]]
= − 1

2τ

[[
Qk+1 · n̂

]]
+

1

2τ

[[
pk+1n̂

]]
.

If we multiply both sides by 2τ and re-arrange, we have[[
−Q̄

k+1 · n̂ +
(
pk + (a∆tτ)τp δp

k+1
)

n̂
]]

=
[[
−Qk+1 · n̂ + pk+1n̂

]]
. (62)

This is the split vs. un-split “consistency of jumps” equation, with the sta-
bilization term (edge-space variables) eliminated. This equation (62) holds
for all time-discretization a∆t, space-discretization h and order p. Hence, for
consistency, τp = 1

a∆tτ
, which is the sought-after expression. A few remarks:

1. We can also obtain (a∆tτ)τp = 1 by decomposing the un-split pressure
pk+1 into pk + δpk,k+1 where δpk,k+1 is the total un-split pressure cor-
rection. This yields the following relation between split and un-split
pressure-correction jumps, (a∆tτ)τp

[[
δpk+1n̂

]]
=
[[
δpk,k+1n̂

]]
. Hence,

we retrieve: (a∆tτ)τp = 1.

2. Without the rotational correction, eq. (62) equates the new split pres-

sure pk + (a∆tτ)τp δp
k+1 = pk + δpk+1 to the un-split pk+1 and Q̄

k+1 · n̂
approximates Qk+1 · n̂.

3. With the rotational correction, e.g. using the form (54), the left-hand-
side of (62) yields pk+(a∆tτ)τp δp

k+1 = pk+δpk+1 = pk+1+ a∆t
Re
∇·qk+1

δp .

Equating the new split pressure pk+1 with its un-split version, eq. (62)

then shows that the rotational correction updates Q̄
k+1

.

4. The split and un-split fluxes are thus close, but can differ because the
diffusive fluxes are not exactly the same; the split equation’s diffusive
flux still contains a contribution due to the non-divergence of v̄k+1.
This contribution is partly removed by the rotational correction, but
there are additional terms present in the normal vector (Q− Q̄) · n̂. As
with any projection method scheme, this splitting error is expected to
be small, particularly for large Reynolds numbers (as we will show in
§7.2). Additional considerations are provided in [58].

5. Finally, the explicit pressure flux present in (38) leads to the constant
expression for τp. However, that expression for τp is also consistent in
other cases. For example, if in (24), the edge-continuous

(
qkp,θ

)
K

had
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been utilized instead of
(
∇pk,θ

)
K

, the pressure difference would not
be part of (25) nor in (38) and the pressure jump in (26), (58) and (61)
would be replaced by zero. In that case, if we decompose the un-split
pressure pk+1 into the edge-continuous pressure field at time k and its
departure from it, we still obtain (a∆tτ)τp = 1 (for details, see [35]).

3.3. Discussion on the effect of varying τp

As we have shown in §3.2, to ensure overall consistency and global flux-
conservation in the HDG sense, it is important to treat the time-split equa-
tions as a single system. Failure to do so can lead to relatively poor numerical
results, even when each discrete equation is on its own consistent and stable.

For example, using a value such as τp = O(1) could be thought as ade-
quate if the second step (9) in the split scheme was treated in isolation of the
first (that is, not treating the time-split equations as a single system). How-
ever, we now show that the consistent value for τp derived in §3.2.6 improves
solutions, using simple numerical experiments. For the first experiment we
use a first order upwind time discretization scheme to calculate one time-step
of a lock-exchange flow (described in §7). When τp = 1 is used, we see that
the solution is discontinuous across the elements bordering the top/bottom
boundary when the solution is not well-resolved (Fig. [5]-top). The consis-
tent τp = 1

∆tτ
does not have this issue (Fig. [5]-middle). When resolution

is increased (Fig. [5]-bottom), we find that both choices of τp give approx-
imately the same solution. Finally, as τp → ∞, the solution approaches a
continuous Galerkin discretization [14, 32].

Overall, this situation arises because the dominant velocity is aligned with
the grid. The tangential portion of the velocity-correction is not directly
penalized by the numerical scheme. That is, qδp · t̂ is free to vary. Increasing
τp, then, removes the discontinuity in the pressure field, which indirectly
also removes the discontinuity in qδp · t̂ across edges. If we used a mesh
of triangles instead of squares (see Fig. [6]), the discontinuity is not nearly
as severe, since in this case the u-velocity component is not tangent to the
diagonal edge of the triangles, and does get penalized.

We now use a second numerical experiment to highlight additional reper-
cussions of using an inconsistent τp, particularly at low-resolution. We show
in Fig. [7] the result of another lock-exchange simulation using our scheme
from §3.2 with the consistent τp = 1

a∆tτ
(see §3.2.6). If we employ another

value of τp, the proper vortices are not formed (not shown): e.g. with τp = 1,
Kelvin-Helmholtz instabilities don’t develop, while with τp = 1

a∆t2τ
, spurious
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Pressure u-velocity

High-resolution

-0.5 0.5 -0.0225 0.0225

Figure 5: Pressure and u-velocity after 1 time-step ∆t = 0.01 of the lock-exchange problem
(see §7) using a mesh of square elements at low-resolution (p = 1, ∆x = 0.04) with τp = 1
(top), τp = 1

∆tτ (middle), and at high-resolution (p = 5, ∆x = 0.01). The τp = 1
∆tτ

case (middle) has a lower u-velocity magnitude and the solution is smooth, while the low
resolution τp = 1 case (top) does capture the maximum velocity, but the solution has
large discontinuities at the locations indicated with arrows. When the solution is further
resolved, the τp = 1 and τp = 1

∆tτ (not shown) cases give essentially the same solution.

vortices form (see [58]). It is only when the spatial resolution is increased,
e.g. to 400× 100, that all three schemes give a similar answer (not shown).

We have shown that the magnitude of τp can significantly affect the nu-
merical solution for HDG schemes when the flow is not well-resolved and the
dominant flow is aligned with the element edges. We have derived the con-
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Pressure u-velocity

-0.5 0.5 -0.0225 0.0225

Figure 6: As in Fig. [5] but with triangular elements. The triangular mesh does not have
a large discontinuity for τp = 1 because the tangential correction velocity is penalized.

0

1.0

Figure 7: Density contours over velocity magnitude at time 10 of the lock-exchange prob-
lem (see §7) using a time step of ∆t = 0.001, a mesh of 100×25 linear elements and a
first-order accurate incremental pressure-correction scheme derived in §3.2.

sistent magnitude for this parameter, and we have shown how the solution of
the lock-exchange problem is affected by using different values. In general,
the time-split equations need to be treated as a single system, and consistent
penalty terms have to be used in each case.

4. Time discretization using IMEX-RK schemes

Now that the equations are spatially discretized, various ordinary dif-
ferential equation solvers can be used to advance the equations in time.
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Runge-Kutta (RK) methods are attractive because they are self-starting,
and allow for variable time-step sizes. We thus employ existing Implicit-
Explicit (IMEX) RK methods [3, 31]. However, these existing methods need
to be adapted, due to the nature of projection methods, which already in-
troduce a time-discretization, and HDG methods, which are often implicit.
Questions also arise for the treatment of the explicit and implicit pressure
updates. As a result, we describe next the modifications required to solve our
spatially-discretized equations using IMEX-RK methods. We note that since
splitting errors limit to second-order accuracy in time [23], for higher-order
integration, an iterative approach would be used, e.g. [22].

We are interested in IMEX-RK time-stepping schemes with s stages that
are of the form (using Python/C/C++ indexing):

φk+1 = φk + ∆t
s−1∑
i=0

bimi f
im(φi) + ∆t

s−1∑
i=0

bexi f
ex(φi), (63)

where the stage variables are solved using

φi = φk + ∆t
i∑

j=0

aimi,j f
im(φj) + ∆t

i−1∑
j=0

aexi,jf
ex(φj)

⇒ (1−∆taimi,i f
im(φi)/φi)φi = φk + ∆t

i−1∑
j=0

aimi,j f
im(φj) + ∆t

i−1∑
j=0

aexi,jf
ex(φj),

(64)

where φ is some field satisfying the equation ∂φ
∂t

= f im + f ex and φ0 = φk.
IMEX schemes treat one part of the right-hand-side implicitly (usually stiff
terms such as diffusion) and the other part explicitly (64). As such, we
require two Butcher Tableaus, one for the implicit terms, and one for the
explicit terms. We only consider schemes with Butcher Tableaus of the form:

0 0 . . . . . . 0
c1 aex1,0 0 . . . 0
...

...
. . . . . . 0

cs−1 aex(s−1),0 . . . aex(s−1),(s−2) 0

b0 . . . bs−2 a

0 0 0 . . . . . . 0
c1 aim1,0 a 0 . . . 0
...

...
. . . . . . 0

cs−1 aim(s−1),0 . . . . . . aim(s−1),(s−2) a

b0 . . . . . . bs−2 a

(65)

where these schemes have the following properties:
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1. bi = bexi = bimi
2. cs−1 = 1 (usually)
3. aexi,j = 0 ∀j ≥ i
4. aimi,j = 0 ∀j > i
5. aimi,i = a ∀0 < i < s

Item 1 is often-used in IMEX-RK schemes (e.g. [3, 31]). Item 2 provides
a last-stage pressure at end time k + 1 (useful but not required). Item 3
is a necessary condition for an explicit RK scheme. Finally, items 4 and
5 are important for an efficient implicit method, where zero entries above
the diagonal allow different stages to be solved sequentially (as opposed to
simultaneously), and a single diagonal entry allows for the creation of a single
implicit matrix.

We now obtain the IMEX-RK procedure for the time-split projection
method, where the time-splitting happens within every RK stage. For ease of
notation, we focus on the time-split projection of §2; the IMEX-RK procedure
for our time-split HDG projection of §3.2 is obtained at the end. To start,
we write the momentum equations for the true velocity from (3) as

∂v

∂t
= Fim + Fex −∇p, (66)

where Fim = ∇ · 1
Re
∇v,Fex = F∂t. Next, we first consider the un-split

projection and write a typical IMEX-RK stage, using items 1-5 above:

vi − aimi,i ∆tFim
i =

(
1− aimi,i ∆t∇ · 1

Re
∇
)

vi

= vk + ∆t
i−1∑
j=0

aimi,jF
im
j + ∆t

i−1∑
j=0

aexi,jF
ex
j

−∆t
i−1∑
j=0

aimi,j∇pj −∆taimi,i∇pi,

(67)

where Fex
i and Fim

i contain the explicit and implicit terms calculated at
previous stages, respectively, and pressure is treated implicitly.

Stage-i, split scheme. For the predictor equation, we estimate ∇pi at each
stage i in (67). For an incremental pressure-correction method, we predict
∇pi using ∇pi? where pi? is a function of the previously calculated pressures,

∇pi ≈ ∇pi? = ∇F (p0, . . . , pj), j ≤ i− 1.
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A typical, time-split, IMEX-RK stage calculation for the predictor velocity
v̄i can then be written as follows, where we have also divided by ∆t

v̄i
∆t
− aimi,i F̄

im
i =

(
1

∆t
− aimi,i ∇ ·

1
Re
∇
)

v̄i =
vk

∆t
+

i−1∑
j=0

aimi,jF
im
j +

i−1∑
j=0

aexi,jF
ex
j

−
i−1∑
j=0

aimi,j∇pj − aimi,i ∇pi?.

(68)

Proceeding similarly to §2, as in (9), we perform the stage i projection step

−∇2δpi = −∇ · v̄i
aimi,i ∆t

, (69)

and, as in (11), we correct the stage i velocity

vi = v̄i − aimi,i ∆t∇δpi . (70)

To derive the final pressure correction, we again proceed as in §2 and §3.2. We
subtract the IMEX-RK split eq. (68) from the IMEX-RK un-split eq. (67) and
substitute the velocity correction at stage i (70). In doing so, the differences
between the split and un-split terms from previous stages j = 0, i− 1 cancel,
both for the Fim

j terms and ∇pj terms (to be discussed later). Hence, since
the explicit Fex

j and vk terms also cancel out, we obtain:(
1

∆t
− aimi,i∇ ·

1

Re
∇
)

(−aimi,i ∆t∇δpi) = −aimi,i∇pi + aimi,i∇pi? .

Now we solve for ∇pi and then for pi which we obtain after re-using (70):

∇pi = ∇pi? +∇δpi − aimi,i∇ ·
1

Re
∇∆t∇δpi (71)

⇒ ∇pi = ∇
{
pi? + δpi −∇

1

Re
· aimi,i ∆t∇δpi

}
⇒ pi = pi? + δpi −

1

Re
∇ · v̄i. (72)

Note that this gives the pressure (up to a constant) at the time of stage i.
While this procedure allows us to calculate intermediate divergence-free

stage variables, the flux terms are also needed for the next stage, i.e. ∇pi and
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Fim
i are needed for stage i+ 1 in (68). First, the guessed values ∇pi? need to

be replaced by the final corrected ∇pi. This is assumed in (68) for previous
stages j = 0, i− 1 and was used in the above derivation of the final pressure
correction (71): up to splitting errors, the difference between the un-split and
split terms ∇pj at j = 0, i−1 cancelled out since the final corrected pressure
gradients at j = 0, i−1 were used to replace the∇pj?’s. Second, the corrected
velocities vi in (70) need to be used to replace the implicit predicted diffusion

F̄
im
i term by the final implicit corrected diffusion Fim

i term. Again, this is
assumed in (68) for j = 0, i− 1 and was used to derive (71): up to splitting
errors, the differences between split and un-split Fim

j terms then cancelled
out. While we can re-evaluate these implicit diffusion terms using vi, it is
more efficient computationally to solve for Fim

i from (67) as follows

vi − aimi,i ∆tFim
i = vk + ∆t

i−1∑
j=0

aimi,jF
im
j + ∆t

i−1∑
j=0

aexi,jF
ex
j −∆t

i−1∑
j=0

aimi,j∇pj −∆taimi,i ∇pi

⇒ Fim
i =

vi − vk

aimi,i ∆t
− 1
aimi,i


i−1∑
j=0

aimi,jF
im
j +

i−1∑
j=0

aexi,jF
ex
j −

i∑
j=0

aimi,j∇pj

 .

(73)

From (69) and (70), the stage-i velocity in (73) is divergence-free: ∇·vi = 0.

Hence, ∇ ·
{∑i

j=0 a
im
i,jF

im
j +

∑i−1
j=0 a

ex
i,jF

ex
j −

∑i
j=0 a

im
i,j∇pj

}
= 0. However,

the terms in this sum are in general divergent. At each stage, the pressure pi
thus balances the divergence from the previous stages. This has implications
for the final recombination stage. (Note also that if cs−1 = 1, ps−1 is at final
time k + 1, see item 2 above.)

Final recombination, split scheme. The final recombination (63) of the
IMEX-RK scheme sums implicit and explicit function evaluations. For our
Navier-Stokes equations (66), this yields

v̄k+1

∆t
=

vk

∆t
+

s−1∑
i=0

bimi Fim
i +

s−2∑
i=0

bexi Fex
i + bexs−1F

ex
s−1 −

s−1∑
i=0

bimi ∇pi , (74)

where we have all the implicit terms Fim
i ∀ i ∈ [0, s − 1], but we still need

Fex
s−1 = Fex(vs−1), since vs−1 is newly calculated after solving for all fi-

nal stage values. This means we have to evaluate the non-linear advection
terms Fex

s−1, which can be divergent. Critically, the recombination coefficients
(bimi , b

ex
i ) are not the same as the stage coefficients (aimi,j , a

ex
i,j) and the RHS of
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(74) is thus divergent. As such, we need to calculate an update to the pres-
sure ps−1, which will balance these divergent terms, leading to an updated
divergence-free velocity vk+1. Hence, we solve for the last correction,

−∇2δpk+1 = −∇ · v̄
k+1

bims−1∆t
, (75)

leading to the final corrected vk+1 and final corrected pressure pk+1,

vk+1 = v̄k+1 − bims−1∆t∇δpk+1 , (76)

∇pk+1 = ∇ps−1 +∇δpk+1 (77)

⇒ pk+1 = ps−1 + δpk+1. (78)

In (77)-(78), the rotational correction is null since the only newly computed
term in (74) is v̄k+1 itself [35].

For the HDG recombination step, we have to define ̂̄vk+1

? (see §3.2): for

the consistent HDG flux ̂̄vk+1

? = λ̄
k+1

(41), we have to take additional care.
Since we are not solving for the diffusive terms at the final recombination, we

need to obtain λ̄
k+1

by another means. The consistent value can be found
by considering an HDG discretization of (24) where the diffusive terms are
treated explicitly. In that case we only have to define a flux for −p̂kI (where

the analogous flux (38) contains the diffusive term Q̂
k+1

), which gives:

−p̂kI = −pkI− τ(v̄k+1 − λ̄
k+1

)n̂. (79)

Solving for λ̄
k+1

that sets
[[
−p̂kI

]]
= 0 in the interior, we obtain

λ̄
k+1

=
{{

v̄k+1
}}

+
1

2τ

[[
pkn̂
]]
. (80)

The main difference between the stage calculations and the final recombina-
tion is that we do not solve for implicit diffusive terms, which requires us to

calculate for the intermediate λ̄
k+1

. After the velocity predictor step, the fi-
nal recombination and stage calculations are nearly the same, except that the
rotational correction is not applied to the pressure at the final recombination.

In summary, to use IMEX-RK schemes with the HDG projection method
discretization, two new modifications are required. First, the projection step
has to be carried out at every stage and at the final recombination. Second,
at the final recombination, the HDG flux for the predictor velocity needs to
be evaluated, and the rotational correction needs to be omitted.
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5. Quadrature Free Integration and Slope Limiting

In this section, we first introduce a new quadrature-free numerical inte-
gration scheme which is consistent with the HDG method. Then, we derive
our new selective nodal slope limiter which aims to suppress numerical oscil-
lations locally, and so improve the stability of the method. Considerations
on nodal and modal HDG implementations are in [58].

5.1. Quadrature Free Integration Consistent With HDG Schemes

In §3.2 we formulated the scheme for the strong form of the equations.
As we will explain, a reason for this is tied to our quadrature-free implemen-
tation of the HDG method on general curved meshes, where the coordinate
transformation factors are not constant on the element (but treated as poly-
nomials). This extends the work by Hesthaven and Warburton [27] to HDG
implementations where the curved meshes may not be continuous. Next, we
first introduce some new notation, then describe our quadrature-free scheme,
and finally explain the issues with other choices.

We use ξ for the coordinates in the reference finite element (Fig. [8]). The
coordinate transformation can then be described through a vector function
x = f(ξ), which can be discretized using a truncated polynomial expansion,
x(ξ) ≈

∑
i xiθi(ξ). In this case, a nodal basis becomes particularly useful

since the coefficients of this polynomial will be equal to the real-space coor-
dinate at the nodal points of the reference element, or xi = x(ξi). With this
polynomial representation of the coordinate transformation, we can perform
all needed numerical derivatives, integrals and other operations after having
computed the: entries of the ∂ξ

∂x
matrix for every element; determinant of the

∂x
∂ξ

matrix for all elements and edges; and normal vector n̂ for every edge. We
shall refer to individual entries in the first matrix as the “Jacobian factors”
and to the determinant of the second matrix as the “Jacobian.”

Figure 8: Coordinate transformation from the reference coordinate system to the physical
coordinate system.
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It is simple to calculate derivatives ∂
∂ξ

on the master element, but we are

interested in calculating derivatives in the physical space ∂
∂x

. Numerically, we
always calculate derivatives on the reference element, and then use the chain
rule to obtain the desired derivative ∂

∂x
= ∂

∂ξ
∂ξ
∂x

. To calculate the Jacobian
factors, then, we use the identity:

∂xi
∂ξj

∂ξj
∂xk

= δik (81)

∂ξj
∂xk

=

[
∂xi
∂ξj

]−1

δik (82)

When using a quadrature-free scheme, it is important to maintain this prop-
erty (81) discretely. As for the derivations in §3.2, the gradient of a scalar
function φ (giving a vector function) could be taken discretely either in the
strong or weak form using vector θ’s as:

(∇φ)strong ≈
[
(θi,θj)K

]−1
{

(∇φ,θj)K +
〈
φ̂− φ, n̂ · θj

〉
∂K

}
(83)

(∇φ)weak ≈
[
(θi,θj)K

]−1
{
− (φ,∇ · θj)K +

〈
φ̂, n̂ · θj

〉
∂K

}
(84)

To discretize (81) using (83) or (84), let us define the discrete matrices

Me = (θi,θj)∂Kref , Mε = (θε,i,θε,j)εref ,

S = (θi,∇θj)Kref , M = (θi,θj)Kref ,

D = M−1S, L = M−1Me,

J = det

[
∂x

∂ξ

]
K

, Je = det

[
∂x

∂ξ

]
∂K

,

where Kref is the reference element. Note that Mε is a matrix of size
Nb,e × Nb,e and Me is a matrix of size Nb × (

∑i<Ne
i=0 Nb,e,i), where Nb is the

number of bases on the element, Nb,e,i is the number of bases on edge i of
the element, and Ne is the number of edges in an element. Also, J and Je
are diagonal matrices, where each element of the diagonal is the Jacobian at
that particular nodal point.

We can now write the discretization of (81) using the strong form (83) as(
∂xi
∂ξj

∂ξj
∂xk

)
strong

= [Djxi]
∂ξj
∂xk

+ J−1L(x̂i − xi)Jen̂k = δik,

[Djxi]

(
∂ξj
∂xk

)
strong

= δik − J−1L(x̂i − xi)Jen̂k,
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where, the Jacobian factor
∂ξj
∂xk

takes a value at each nodal point in the

domain, and n̂k is the kth component of the normal. Numerically, Djxi is
a matrix-vector multiplication, while the Jacobian factor is multiplied term-
by-term to the result (i.e. Hadamard/Schur product). We could have also
solved for the Jacobian factors using the discrete analogue of (82) as:(

∂ξj
∂xk

)
strong

= [Djxi]
−1 [δik − J−1L(x̂i − xi)Jen̂k

]
, (85)

which simplifies to the form given by Hesthaven and Warburton [27](
∂ξj
∂xk

)
strong

= [Djxi]
−1 (86)

for a continuous mesh. Let’s give a few remarks about the form (85):

1. The Jacobians satisfy the identity (81) analytically in the volume term:

[Djxi]
∂ξj
∂xk
≡ [(M−1)(Sxi)]

∂ξj
∂xk

.

2. The edge-term J−1L(x̂i−xi)Jen̂k = J−1M−1Me(x̂i−xi)Jen̂k does not
require a Jacobian factor since n̂ is the real-space normal, and the edge
Jacobian is used.

3. The edge-term calculated here (the element-local equation for the gradi-
ent) matches the discrete form of the HDG edge-conservation equation
〈[[q̂δp · n̂]] , θε〉e ≈ Mε [[q̂δp · n̂]] Je. The HDG flux-conservation equa-
tion is used to enforce the continuity constraint (31), and needs to be
consistent with the discrete continuity constraint in the element-local
equations (29) in order to satisfy continuity numerically.

Remark (1) holds analytically for the continuous operators and leads to a
convenient simplification for the numerical scheme without loss of accuracy.
Remark (2) reflects an important choice made for this scheme, and this choice
leads to the result of remark (3). The challenge for the quadrature-free im-
plementation (which remark (3) solves) is maintaining numerically-consistent
edge integration terms. Without consistent edge integrals, the conservative
flux calculated on the HDG space will not be numerically conserved in the
element-local calculations. This often makes the numerical solution of the
Navier-Stokes equations unstable.
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To appreciate the advantages of (85), consider the same approach but
using the weak form (84). This leads to the following for the Jacobian factors:(

∂ξj
∂xk

)
weak

=
[
−M−1STj xi

]−1 [
δik − J−1L(x̂i)Jen̂k

]
.

While this may appear reasonable, the operator
[
−M−1STj xi

]
can be singu-

lar, requiring a pseudo-inverse. Using this weak form is thus not as direct.
Alternatively, if we evaluate the edge-integrals in the reference space, this
would give:

∂ξj
∂xk

=
[
Djxi + L(x̂i − xi)J

ref
e n̂ref

k

]−1
.

While this approach works for both weak and strong forms, these edge in-
tegrals are no longer consistent with the HDG integrals. Even though the
form of the edge-integrals in the HDG method could be modified, the above
weak-form approach is less efficient than the strong formulation (85). This
approach requires d2 edge integrals, while the strong form (85) only requires
d calculations, where d is the dimension of the problem.

The calculation of the Jacobians and edge normals follow the usual ap-
proach in quadrature-free methods. As such, the only challenge was deal-
ing with the Jacobian factors and the quadrature-free derivative terms. We
showed that the strong formulation has distinct advantages over the weak
formulation in this case. We verify that this approach works in §6, using a
simple steady diffusion problem.

5.2. Dealing with Oscillations: Filtering and Limiting

The non-linear advection terms in the Navier-Stokes equations offer unique
challenges. In particular, high order methods can develop non-physical os-
cillations that can lead to numerical instabilities. As such, robust high-order
solvers deal with these oscillations. Applying a filter or a limiter are two ap-
proaches that can suppress oscillations. A filter damps the modal polynomial
coefficients according to a given spectrum, where higher-frequency modes are
usually damped more. A limiter ensures that the solution remains within
calculated bounds, usually determined from neighboring elements or nodes.
While limiting traditionally focuses on reconstructing completely oscillation-
free solutions, we are primarily interested in enhancing the stability of our
numerical solutions. The selective filters and limiters that we have evaluated
and developed for this purpose are described next.
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Our initial selective filtering approach is described in [59]. We used an
exponential filter [27, 26], where the modal coefficients are modified using a
function σ that decays exponentially with the polynomial degree [36]. The
selectivity of the filter was determined by comparing the decay of the modal
coefficient to a reference spectrum. In [59], there was only a filter. Here,
we first present our new nodal limiting procedure and then our improved
selective filter.

(i) Nodal Limiter: Our limiting procedure is based on previous nodal
limiting methods used for second-order accurate methods [28]. We have
modified this method for high-order nodal DG. There are some drawbacks
to our modifications, in particular our procedure is Total Variation Bounded
(TVB) as opposed to TVD, and without the selectivity, it does not remain
high-order accurate. However, it does successfully stabilize the numerical so-
lution by suppressing spurious oscillations, and with the selectivity criterion
the solution does remain high-order accurate.

Our procedure can be understood in 5 steps (Fig. [9]). The first step
is to find the limits, or the initial total variation of the solution. That is,
we determine the allowed maximum and minimum values for each element.
Presently, this is done by finding the maximum and minimum values of the
solution in the present and neighboring elements.

φmax = max(φ)K± , φmin = min(φ)K± , (87)

where K± includes the element K and all its immediate neighbors. Using the
terminology of [28], this is similar to choosing α = 1. While our present step
1 may cause the nodal limiter to fail the Hoteit et al. [28] “stair-step” nu-
merical example, a small modification should guarantee the correct solution:
if the maximum and minimum values of the function is determined solely by
the present and upwind neighboring elements, then our nodal limiter should
correctly solve the “stair-step” problem. Another possible modification is to
determine the maximum and minimum values for individual nodes by looking
at the values of neighboring nodes. This reduces the allowed variation for
each node, which could also improve accuracy. Nonetheless, our primary con-
cern is stability, so these questions are left for future research. The present
nodal limiter is efficient, simple to implement, and guarantees that the solu-
tion will remain bounded. For example, if the density is positive everywhere
in the domain, these limits will never be negative. Once the bounds have
been determined, the limiting procedure can continue.
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The first step determined the limits or total variation of the field before
evolving it in time, and this was the only operation that requires information
from neighboring elements. The remaining steps are all element-local.

In the second step of the limiting procedure, the solution is evolved using
the right-hand-side forcing without limiting

φ̄k+1 = φk + ∆tFφ. (88)

The right-hand-side forcing terms, particularly the advection terms, can in-
troduce oscillations. Thus, this new solution may exceed the limits calculated
in step 1.

The third step, limits the nodal values. That is, we find nodes where the
evolved solution exceeds the limits determined in step 1, and we calculate a
forcing F̄ limit

φ (which is the first predictor for the limiter forcing) that sets
those nodes equal to the appropriate maximum or minimum values.

¯̄φk+1 = φk + ∆tFφ + ∆tF̄ limit
φ (89)

In this step, however, the mean of the initial solution in the element could be
modified. As it is important to conserve mass, the mean in the element has
to be re-adjusted. Thus, the change in the value of the mean in the element
K caused by the adjustment is calculated

∆mean
(

¯̄φ
)
K

= mean(F̄ limit
φ )K . (90)

In other words, we want the final limiter forcing to have: mean(F limit
φ )K = 0.

The fourth step finds weights that determine by how much different nodes
can move to help with the re-adjustment of the mean in the element. While
previous researchers have developed sophisticated ways to minimize the er-
ror of this adjustment, here we use a heuristic approach. If the mean was
lowered or raised, we calculate the maximum upward or downward adjust-
ment allowed for each node, respectively, which we denote Fmax, adjust. For
example, if a node is already at the maximum value, it cannot be adjusted
upwards, and will therefore have a zero effective weight. The nodes furthest
away from the bounds will have the largest weight.

In the fifth and final step, we scale the maximum adjustment weight
calculated in step four by the required amount to correct the mean of the
limiter forcing. That is, we can now calculate the final limiter forcing

F limit
φ = F̄ limit

φ −
mean(F̄ limit

φ )K

mean(Fmax, adjust)K
Fmax, adjust, (91)

36



where the sign of the final adjustment depends on the sign of the calculated
maximum adjustment.

1. Find limits

Typical case Degenerate case

max value

min value

2. Evolve

3. Limit

4. Find weights

5. Correct mean

mean

modified mean

mean exceeds max

outside limits
between nodes

Figure 9: Graphical representation of the nodal limiting procedure from our high-order se-
lective nodal limiter. The nodal limiting procedure is sketched for a typical and degenerate
case in the left and right columns, respectively.

In the illustration of these steps Fig. [9], we sketch a normal and degen-
erate case. For the normal case, note that while the solution is limited at the
nodes, between nodes the polynomial is allowed to exceed the bounds. The
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issue with the degenerate case is that the initial mean of the solution exceeds
the calculated bounds. As such the final solution is a constant equal to the
original mean; in other words, all oscillations are removed. This situation can
occur for the advection operator if it is treated explicitly and the Courant-
Friedrichs-Lewy (CFL) condition is violated. In this situation, our nodal
limiter can actually stabilize the solution and prevent instability if the CFL
condition is not violated by too large a margin. The forcing due to implicit
diffusion can also create a degenerate situation and this case is discussed in
[58]. In general, different bounds and limiting can be used for different terms
in the governing equations. In particular, some terms introduce new varia-
tion in the solution and this should not be limited. However, these terms
should be well-resolved, or appropriately smoothed to avoid oscillations.

(ii) Filter: We have described how to calculate the forcing term F limit
φ

that will appropriately limit the solution to be within the calculated bounds.
A similar function for the filter can also be calculated, F filter

φ . For details on
this exponential filter forcing, see Ueckermann and Lermusiaux [59].

(iii) Selective limiting/filtering: At this stage both the nodal limiter and
filter would be fully applied everywhere in the domain. However, our aim is
to selectively restrict this limiting/filtering to only the parts of the domain
where required. What remains is thus an appropriate weighting function,
α(x, t). For this, we use a discontinuity sensor similar to the one used by
Huerta et al. [29], which was proposed in Persson and Peraire [50] and Nguyen
et al. [39]. The difference is that we do not include the coefficient of the zero-
degree polynomial in the denominator of the sensor (see below).

The discontinuity sensor works as follows. First, the coefficients of the
nodal basis are transformed to modal-basis coefficients. To do so, we need
to form the Vandermonde matrix Vij = θMj (xi), where θMj is the jth modal

polynomial, and xi is the ith nodal point. The modal coefficients can then
be found as φMi = V−1φi. We can then compare the decay of the modal
coefficients to the decay of reference spectra. To do so, we follow Huerta
et al. [29], and define the weight as:

α? =
1

βtop − βbot

log10


∑

{i:θMi ∈Pp?}

(φMi )2

∑
i>0

(φMi )2

− βbot

 , (92)

α = min(max(α?, 0), 1) (93)
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where p? ≥ p, β? = log10

(P
{i:θM

i
∈Pp?}(φ

M,?
i )2P

i>0(φM,?i )2

)
and φM,?

i are the modal coef-

ficients for the ? reference spectrum. What this indicator does is compare
the sum of the coefficients for the highest degree polynomial to the sum of
the coefficients for the polynomials of degree greater than zero. An notable
difference between our indicator and that defined in Huerta et al. [29] is that
we do not include the coefficient of the zero-degree polynomial in the denom-
inator. This is because the constant term can be arbitrarily scaled (based
on non-dimensionalization, for example) and should not have an impact on
the smoothness indicator. Note that α is variable in time and space: it is
a scalar in every element. Two reference spectra and the ranges for α are
sketched in Fig. [10]. Depending on the smoothness of the modal coefficients
of the numerical solution, the weights for α can be anywhere in [0, 1]. Our
approach is different from that of Huerta et al. [29] as we do not use the
Mach number for the discontinuity sensor, and we do not decompose the
high-order element into low-order sub-domains.

0 1 2 3 4 5 6 7 8 9-6

-5

-4

-3

-2

-1

0
Upper spectrum

Lower spectrum

Polynomial Degree

Figure 10: Sketch of the selectivity criterion. The solution is fully limited, partially limited,
or unmodified if the modal-polynomial-coefficient-decay is slower than the top reference
spectrum log10([p + 1]−3), between the two reference spectra, and faster than the bottom
spectrum log10([p + 1]−6), respectively.

Note that we calculate the selectivity index by examining the field before
the advection term is added (that is, at the start of the IMEX-RK stage).
At each subsequent stage in the IMEX-RK time-stepping procedure, the
selectivity index is updated. Alternatively, we could calculate the selectivity
index after the advection is added (that is, advanced in time due to advection
at that IMEX-RK stage). Another option is calculating the smoothness
index based on the advection term itself, or any combination of the above-
mentioned options. Additionally, to increase efficiency, the selectivity index
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could only be updated at the first or final stage of the IMEX-RK time-
stepping procedure. Here, we do not examine the effect of these choices.

Finally, the selective nodal limiter is applied as a weighted forcing term,
which gives the final evolution of φ as:

φk+1 = φk + ∆tFφ + ∆tαsF limit
φ , (94)

where s = 0 gives a non-selective nodal limiter, and s = 1 gives a linear
weighting between the reference spectra. For s > 1, the solution is weakly
limited close to the lower spectrum, and for 0 < s < 1 the weight quickly
increases. The same selectivity criterion can also be applied to the forcing
calculated from our filter [59], leading to a new selective filter.

In summary, we derived a new selective nodal-limiting/filtering proce-
dure. It is based on existing nodal-based limiters, but extends to higher-
order polynomials and employs an inexpensive heuristic to ensure mass con-
servation. We combined this nodal limiter with a smoothness indicator to
selectively limit the solution spatially and temporally: the selectivity index
is used to switch off the lower-order limiter and so preserve higher-order ac-
curacy. The resulting selective nodal limiter is tested in §6 and high-order
convergence is indeed observed when the solution is sufficiently resolved.

6. Verification of HDG diffusion and selectively-limited advection

Verification of a new code is necessary to ensure that it solves the intended
equations [46, 52]. To verify that the proposed schemes work, we perform
convergence studies on simple equations. To show that our quadrature-free
scheme works for HDG schemes, we perform a convergence study on straight
and curved meshes. Then we verify that the selective nodal limiter recovers
high-order convergence rates when the solution is adequately resolved.

6.1. Verification of quadrature-free hybridizable discontinuous Galerkin scheme

To verify that our HDG implementation works on curved meshes, we
perform a convergence study on a steady diffusion problem

∇2φ = f on Ω, (95)

φ = gD on ∂ΩD, (96)

(∇φ) · n̂ = gN on ∂ΩN , (97)
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where

f = sin(π(x+ x0)) sin(π(y + y0)), (98)

x0 = y0 = 0.3, and the bottom and right boundaries are Dirichlet (∂ΩD),
while the top and left boundaries are Neumann (∂ΩN) on the domain Ω ∈
[−1, 1]× [−1, 1]. We use both straight and curved meshes. The curved mesh
for ∆x = 0.5, p = 4 is shown in Fig. [11], and it is made up of a mixture of
triangular and rectangular elements. We also perform the convergence study
for two different values of the HDG stability parameter: τ = 1 and τ = 1000.

−1.0 1.0
−1.0

1.0

Figure 11: Curved mesh for the ∆x = 0.5, p = 4 simulation. Triangular and rectangular
elements are colored green and blue, respectively.

Both the straight-sided and curved mesh simulations converge near-optimally
for both values of τ (Fig. [12]). The error level (L2-norm) is generally lower
for the straight-sided mesh. While the error levels are generally similar for
the different values of τ , the p = 2 result using τ = 1000 seems to converge
faster for both meshes. However, the p = 5 result using τ = 1000 suggests
the larger value of τ reaches machine precision earlier, possibly due to a larger
condition number in the matrix.

These results verify that our scheme works for straight and curved meshes
with mixed element types.

6.2. Verification of selective nodal limiter

In §5.2 we developed a selective nodal limiter and filter, and here we test
the effect of the selective nodal limiter. To do so, we study a modification
of the swirl problem in chapter 5 of Durran [19]. We do not show results for
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Figure 12: Spatial convergence (L2-norm) of diffusion on straight (left) and curved (right)
meshes. Dashed lines give the optimal convergence rates.

the filter, see §5.2(ii)-(iii), because the nodal limiter is more robust, accurate,
and does not require tuning. We solve the unsteady advection problem

∂φ

∂t
+∇ · (vφ) = 0 on Ω,

φ = 0 on ∂ΩD,

on the domain Ω = [0, 1] × [0, 1] with Dirichlet BCs everywhere, over the
time interval T = [0, 10]. The time-varying velocity is specified as

v = sin
(π

5
t
)[1

2
sin(2πy) sin2(πx), −1

2
sin(2πx) sin2(πy)

]
,

and to have a smooth solution with positive and negative values for the
convergence test, we modified the initial condition for the tracer from [19] to

φ(x, t = 0) = sin(2πx) sin(2πy).
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The specified flow field causes the initial tracer concentration to swirl during
the interval T = [0, 5] (Fig. [13]). In the interval T = [5, 10] the flowfield
reverses direction, causing the tracer to “un-swirl.” Thus, the final tracer
concentration should be the same as the initial tracer concentration. Using
this property, we can compute the error by comparing the initial φ(x, t = 0)
and final φ(x, t = 10) fields.

T = 0 T = 5 T = 10
1.0

-1.0

Figure 13: Tracer concentration at T = 0, 5, 10 (left, center, and right, respectively) for
the advection benchmark using p = 5, ∆x = 1

64 .

For these simulations, we used a fixed time-step ∆t = 10−3, and a second-
order accurate explicit RK time-integrator (with the same coefficients as
the IMEX-RK integrators used later). The mesh is composed of uniform
quadrilateral elements. The selectivity index, (93), uses (p+1)−3 and (p+1)−6

for the top and bottom reference spectra, respectively.
The simulations without the selective nodal limiter converge near-optimally

(Fig. [14]). However, with the selective nodal limiter, for too coarse spatial
discretizations, the higher order (p > 1) simulations reduce to second-order
accuracy. This is because the limiter is fully applied at these resolutions,
causing the tops of the sinusoidal tracer concentrations to be chopped (Fig.
[15]). Once the mesh is sufficiently refined, the effect of the nodal limiter is
reduced by our selectivity criterion, and the higher-order convergence rate is
recovered. If we examine the value of the selectivity index at T = 5 for the
p = 3 case (Fig. [16]), we see that with increasing resolution the selectivity
index α takes a smaller value and is localized in space near sharp gradients.
Recall, the nodal limiter is fully applied for α = 1 and not applied at α = 0.
Therefore, at these higher resolutions, the selective nodal limiter is only ac-
tive in localized regions throughout the domain. This allows the higher-order
rates of convergence to be recovered at these resolutions (see Fig. [14]).

Overall, these results verify both that our quadrature-free advection scheme
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Figure 14: Spatial convergence (L2-norm) of advection equation without (left) and with
the selective nodal limiter (right). The spatial resolutions used are ∆x = 1
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1
8 ,

1
16 ,

1
32 ,

1
64 .

Dashed lines give the optimal convergence rates.

0.00754
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No limiter Limiter

Figure 15: Errors of the tracer advection test-case for the intermediate resolution, p =
3, ∆x = 1

16 , case in Fig. [14], without (left) and with the selective nodal limiter (right).

is properly implemented, and that our selective nodal limiter can recover
higher-order accuracy when the solution is sufficiently resolved.

7. Verification and Validation of Stokes/Navier-Stokes HDG Solvers

In this section we verify and validate our new algorithm derived in §3.2.
We perform detailed convergence studies using a manufactured solution. We
then solve a lock-exchange problem, comparing our density contours and
Froude numbers to existing literature.
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Figure 16: Selectivity index α (93) for the tracer advection test-case using p = 3 at
resolutions of ∆x = 1

16 ,
1
32 ,

1
64 on the left, center, and right, respectively.

7.1. Definition of Analytical Benchmark
To evaluate the implementation of our new scheme, we use a manufac-

tured benchmark of Guermond et al. [23]. For this case, consider a domain
Ω× [0, T ] where Ω = [−1, 1]× [−1, 1]. The solution [v, p] is defined as

v(x, y, t) = π sin(t)
[
sin(2πy) sin2(πx), − sin(2πx) sin2(πy)

]
, (99)

p(x, y, t) = sin(t) cos(πx) sin(πy). (100)

From these definitions, we can calculate the forcing term F∂t, which is

F∂t =
∂v
∂t
−∇ · 1

Re
∇v +∇p,

Fu∂t = π cos(t) sin(2πy) sin2(πx)− 2π3

Re
sin(t) sin(2πy) cos2(πx)

+
6π3

Re
sin(t) sin(2πy) sin2(πx)− π sin(t) sin(πx) sin(πy),

F v∂t = −π cos(t) sin(2πx) sin2(πy) +
2π3

Re
sin(t) sin(2πx) cos2(πy)

− 6π3

Re
sin(t) sin(2πx) sin2(πy) + π sin(t) cos(πx) cos(πy).

(101)

This provides a smooth analytical solution with which we can verify the
spatial and temporal convergence, as well as other numerical results.

7.2. Convergence Studies

For the spatial convergence study using the benchmark given in §7.1, we
find that the velocity and pressure converge near optimally (Fig. [17]). The
convergence of the pressure is slightly lower, but this can be attributed to
the splitting error (Fig. [19]). Note that if an inconsistent value of τp is used,
the solution can become unstable at coarse resolutions ([58]).
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Figure 17: Spatial convergence (L2-norm) of pressure (left) and velocity (right) using the
analytical Stokes problem with Re = 1, and τp = 1

a∆tτ = 105. A second-order accurate
IMEX integrator with time-step fixed at ∆t = 10−5 is used. Dashed lines give the optimal
convergence rates.

The temporal convergence is more involved due to the additional com-
plexity introduced by the projection method’s time-splitting. As such, we will
test convergence with and without the rotational pressure-correction, and for
various Reynolds numbers. We always use the consistent value τp = 1

τa∆t
in

these studies. The time-rates of convergence for the rotational form and stan-
dard pressure-correction form show that the rotational correction decreases
the error in the pressure field, without as large an impact on the velocity
field (Fig. [18]). The rotational correction removes part of the pressure error
near the boundary of the domain (Fig. [19]), as expected from [23].

As seen on Fig. [18], the irreducible splitting error from the projection
method can restrict the accuracy to second order in time. Because the split-
ting error is proportional to 1

Re
(see [58]), we can verify the correctness of our

time-integration method by considering an infinite Reynolds number. When
we do so, we find that pressure and velocity converge optimally (Fig. [20]).

To test the effect of the Reynolds number on the time integration ac-
curacy, we calculated the velocity and pressure errors for various Re. We
note that the error in the pressure steadily decreases with increasing Re, and
then saturates at Re = 106 (Fig. [21]). The velocity error is not drastically
affected for the second and third-order time-integration schemes, but the
first-order scheme’s error increases for increasing Re before plateauing. For
the pressure, the calculated order of convergence approaches second-order,
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Figure 18: Temporal convergence (L2-norm) of pressure (top) and velocity (bottom) using
the analytical Stokes problem with Re = 1. A 64 × 64 square mesh with p = 6 was used
for space, and first to third order accurate IMEX RK schemes for time. The rotational
correction is applied (right), and not applied (left). The rotational correction lowers the
absolute pressure-error. Dashed lines give the optimal convergence rates.

then decreases as the error plateaus. For the velocity, the calculated order is
mostly unaffected. The transition from Re = 107 to Re =∞ is not smooth,
suggesting that the mere presence of the diffusion operator has an effect
numerically. This indicates that to benefit from a time-integration scheme
higher than second-order when the implicit diffusion terms are present, iter-
ative HDG schemes would be needed (e.g. [22]). However, this projection-
method restriction may not be the limiting factor for the solution accuracy
in time. First, since the time-step is restricted by the CFL condition for
advection, the temporal dimension is often more finely discretized than the
spatial one, particularly when the non-dimensional physical advection-speed
exceeds unity. Second, if higher-order temporal accuracy is required, the
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Figure 19: Pressure error for second order IMEX-RK time integration using ∆t = 0.1
for our standard (left) and rotational (right) HDG pressure corrections. The rotational
correction removes errors at the boundary of the domain, but errors at the corners remain.
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Figure 20: Temporal convergence (L2-norm) of pressure (left) and velocity (right) using
the analytical Stokes problem with Re =∞. A 64× 64 square mesh with p = 6 was used
for space, and first to third order accurate IMEX RK schemes for time. Dashed lines give
the optimal convergence rates.

projection method can indeed be used as an iterative scheme, where the
pressure-predictor of the second iteration is the final pressure from one full
execution of the projection method (e.g. [20]). This may still be more com-
putationally efficient than solving a fully coupled system of equations. The
fully coupled HDG system requires the inversion of a matrix that is d + 1
times larger than our smaller HDG matrices. Since matrix inversion often
scales as the square of the number of unknowns, one full execution of the
projection method is expected to be roughly (d+ 1)2 times more efficient (in
d=3, this is a factor of 16). Thirdly, the results from a full execution of the
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projection method could also be used as a starting guess (or preconditioner)
for the fully uncoupled problem.
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Figure 21: Error (top) of pressure (left) and velocity (right), and order of temporal con-
vergence (bottom) using the analytical Stokes problem with Re = 1 (L2-norm). A 64× 64
square mesh with p = 6 was used for space, and first to third order accurate IMEX RK
schemes for time. The error is plotted for ∆t = 0.0125 and the order of convergence
was calculated using ∆t = 0.025, 0.0125. As Re increases, the pressure error decreases
while the velocity error increases for the first-order IMEX scheme, with less effect for the
higher-order schemes. The order of convergence remains unaffected, but when Re = ∞,
near optimal convergence is obtained for velocity.

In this section we evaluated our implementation and convergence rates.
We showed that we can obtain near-optimal spatial and temporal rates of
convergence when using a manufactured solution. Next we validate our code
against a standard benchmark case to ensure that our schemes give the cor-
rect solution for an unforced case.

7.3. Validation

We validate our scheme by using a Lock-exchange problem with the same
non-dimensional parameters as those of Härtel et al. [25] and Fringer et al.
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[21]. Our simulation uses a 2D domain of size [−8, 8] × [0, 2], discretized
using uniformly sized and distributed quadrilaterals of various resolutions,
and we integrate for T = [0, 10]. We use the no-slip boundary condition
at all boundaries, a Schmidt number of Sc = 1, and a Grashof number of
Gr = g′h3

ν2 = 1.25 × 106, where g′ = ∆ρ
ρ0

is the reduced gravity and h = 1 is
the half-height of the domain. The initial density profile is defined as

ρ =
1

2
tanh(105x).

We use a second-order accurate time-integration scheme, with a fixed time-
step of ∆t = 0.001.

To compare our results to [25] and [21], we compute the Froude number
Fr =

uf
ub

, where uf is the speed of the front, defined as the speed at which the

foremost point of the front travels, and ub =
√
g′h is the buoyancy velocity.

To estimate uf , we find the foremost point of the front at T = 5 and T = 10,
then we simply use uf = ∆x

∆T
= ∆x

5
, which gives an average front speed over

that time period. Finding the foremost point of the front is non-trivial for
cases using higher-order polynomial bases. In those cases we first identify
the element that contains the foremost point of the front. Following this, we
do an iterative root-find and line-search to find the foremost point (see [58]).

Our density contours are similar to those calculated by Härtel et al. [25]
(Fig. [22]). The higher-order simulations also match the second-order accu-
rate simulation. Comparing the Froude numbers, as the spatial resolution is
refined, our answer approaches the value of Härtel et al. [25], and the spread
in our results is on the same order as the difference between Härtel et al. [25]
and Fringer et al. [21] (Fig. [23]). We note that the first-order time inte-
gration scheme performs nearly as well as the second-order time integration
scheme for higher spatial resolutions. This suggests that the temporal dimen-
sion is well-resolved. Also, as the spatial resolution increases, the agreement
among simulations with different spatial order of accuracy increases. For the
low spatial resolution cases, there is a larger spread of values between the
high and low-order runs. In this case, finding the location of the foremost
point of the front may play a role in the error. Nonetheless, our results agree
closely with [25] and [21].

It would be interesting to compare the accuracy level and computational
effort for the various polynomial degrees of freedom shown in Fig. [22]. How-
ever, practical numbers can be highly depended on the implementation and
the architecture (e.g. parallel vs serial). If the implementation is memory-
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Figure 22: Density solution at time 10 of the Lock-Exchange problem (Gr = 1.25 × 106)
using various orders of accuracy and spatial resolution, all runs with approximately 160,000
degrees of freedom. There are some minor differences in the front propagation speed and
the shape of the Kelvin-Helmholtz instabilities.

bandwidth limited, the computational effort should be roughly correlated
with the total degrees of freedom of a discretization, in which case Fig. [23]
gives an indication of the differences between high– and low–order results.

8. Summary and Conclusions

In this manuscript, we formulated and derived new schemes for the incom-
pressible Navier-Stokes and Boussinesq equations combining the novel HDG
Method, a projection method, and IMEX-RK time-integration schemes. For
the spatial discretization we mathematically derived the proper forms of the
element-local corrections and HDG edge-space corrections for both velocity
and pressure, including the HDG rotational correction. We also found and
explained a consistency relation between the HDG stability parameters for
the velocity predictor and pressure correction. We detailed how to incor-
porate the HDG projection method time-split within standard IMEX-RK
time-stepping schemes. Next, we addressed numerical implementation issues
of our new solution schemes. In particular, we provided a quadrature-free
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scheme that is consistent with the HDG method. We also developed a se-
lective nodal limiting approach used to stabilize high-order schemes while
retaining high-order accuracy in regions where the solution is smooth.

To verify the quadrature-free approach, we performed a convergence study
on a steady diffusion problem using straight-sided and curved meshes. We
showed that both of these meshes achieve near-optimal convergence. To
verify the selective nodal limiting approach, we completed a convergence
study on an unsteady tracer advection problem. We showed that when the
selective nodal limiter is applied, the rate of convergence is unaffected for
sufficiently resolved solutions: e.g. the rate reduces to second-order for coarse
resolutions but the high-order accuracy is retained for fine resolutions.

We performed spatial and temporal convergence studies to verify that our
full Navier-Stokes solver based on the new HDG projection method scheme
is properly formulated and implemented. We showed that our discretization
of the rotational correction term removes pressure errors at the boundary of
the domain for the analytical benchmark. We also confirmed that while the
splitting error decreases with increasing Reynolds number, it still limits the
time-order of accuracy, indicating the need for iterations to achieve higher-
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order in time. Finally, we evaluated our schemes by comparing our results
for a standard lock-exchange benchmark to published literature. We found
that our solution closely matched the previous results.

Future opportunities abound for refinement and application of our schemes.
We have extended and applied this HDG Projection method to non-hydrostatic
physical-biogeochemical ocean equations with a free-surface [24, 58, 60]. An-
other research direction is to improve the calculation of bounds for the nodal
limiter. Presently the bounds are calculated based on the maximum and
minimum values of immediate neighboring nodes. Two potential improve-
ments are to calculate these bounds based on the upwind direction, or based
on points sampled between nodes. Finally, our implementation can be fur-
ther optimized and parallelized to improve efficiency [38], and allow higher
resolution required for more realistic and multiscale applications [17, 34].
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[25] Härtel C, Meiburg E, Necker F (2000) Analysis and direct numerical simu-
lation of the flow at a gravity-current head. Part 1. Flow topology and front
speed for slip and no-slip boundaries. Journal of Fluid Mechanics 418:189–212

[26] Hesthaven J, Kirby R (2008) Filtering in Legendre spectral methods. Math-
ematics of Computation 77(263):1425–1452

55



[27] Hesthaven J, Warburton T (2008) Nodal Discontinuous Galerkin Methods,
Texts in Applied Mathematics, vol 54. Springer, New York, NY

[28] Hoteit H, Ackerer P, Mos R, Erhel J, Philippe B (2004) New two-dimensional
slope limiters for discontinuous Galerkin methods on arbitrary meshes. Inter-
national Journal for Numerical Methods in Engineering 61(14):25662593

[29] Huerta A, Casoni E, Peraire J (2012) A simple shock-capturing technique
for high-order discontinuous Galerkin methods. Int J Numer Meth Fluids
69(10):1614–1632

[30] Huynh L, Nguyen N, Peraire J, Khoo B (2013) A high-order hybridizable
discontinuous galerkin method for elliptic interface problems. International
Journal for Numerical Methods in Engineering 93(2):183–200

[31] Kennedy C, Carpenter M (2003) Additive Runge-Kutta schemes for
convection-diffusion-reaction equations. Appl Numer Math 44:139 – 181

[32] Kirby RM, Sherwin SJ, Cockburn B (2012) To cg or to hdg: a comparative
study. Journal of Scientific Computing 51(1):183–212

[33] Krivodonova L (2007) Limiters for high-order discontinuous Galerkin meth-
ods. Journal of Computational Physics 226(1):276–296
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