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Two modified segregated PISO algorithms are proposed, which are constructed to avoid 
the development of spurious oscillations in the computed flow near sharp interfaces 
of conjugate fluid–porous domains. The new collocated finite volume algorithms modify 
the Rhie–Chow interpolation to maintain a correct pressure–velocity coupling when large 
discontinuous momentum sources associated with jumps in the local permeability and 
porosity are present. The Re-Distributed Resistivity (RDR) algorithm is based on spreading 
flow resistivity over the grid cells neighboring a discontinuity in material properties of the 
porous medium. The Face Consistent Pressure (FCP) approach derives an auxiliary pressure 
value at the fluid–porous interface using momentum balance around the interface. Such 
derived pressure correction is designed to avoid spurious oscillations as would otherwise 
arise with a strictly central discretization. The proposed algorithms are successfully 
compared against published data for the velocity and pressure for two reference cases 
of viscous flow. The robustness of the proposed algorithms is additionally demonstrated 
for strongly reduced viscosity, i.e., higher Reynolds number flows and low Darcy numbers, 
i.e., low permeability of the porous regions in the domain, for which solutions without 
unphysical oscillations are computed. Both RDR and FCP are found to accurately represent 
porous media flow near discontinuities in material properties on structured grids.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fluid flow through porous media is fundamental to many natural and industrial processes, such as groundwater flows, 
filtration, and chemical and biomass processing [1–5]. In order to efficiently simulate these processes and predict their 
characteristic properties, robust and accurate numerical models are of high importance. While the equations governing the 
flow and heat transfer in porous media are readily specified using the method of volume averaging [6] in conjunction with 
suitable closure models, it often remains challenging to obtain physically acceptable numerical solutions in the vicinity 
of fluid–porous interfaces. Without special care in the algorithm development, discontinuities in the material properties, 
particularly the resistivity, at the interface may yield spurious oscillations in the solution. This is especially true for high 
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Reynolds (Re) number flows at low Darcy (Da) number, for which the jump in flow resistivity is high, while damping effects 
of viscosity are rather low. The occurrence of spurious oscillations is particularly pronounced when segregated algorithms 
are applied, in which the velocity and pressure equations are solved separately and an iterative solution process is required. 
Numerical schemes that avoid spurious oscillations at sharp interfaces were proposed by [7] and [8] for both structured 
and unstructured grids using a collocated variable, finite volume block-coupled solver. In this case pressure and velocity are 
solved simultaneously. These rather complex schemes require special, local treatment of the fluid–porous interfaces. In this 
paper we turn to segregated solvers, which are more commonly adopted in Computational Fluid Dynamics (CFD) studies 
and present alternative treatments that are equally well suited to alleviate the problem of spurious oscillations. We compare 
the RDR [9] and FCP methods in the context of the Pressure Implicit with Splitting of Operators (PISO) algorithm and assess 
their relative performance in some detail for several test cases of increasing complexity. It will be shown that both RDR and 
FCP approaches are effective in eliminating spurious oscillations.

A correction to the Rhie–Chow interpolation in case the fluid is subject to large body forces was suggested by [10] and a 
force field discretization rule for the volume-of-fluid method was suggested by [11] as remedies for the occurring spurious 
velocity oscillations. These correction schemes may be applied for explicit treatment of the flow resistance terms present 
for porous media flow. However, due to the stiffness of the equations such explicit treatment suffers from very small time 
steps which render the method less effective.

In this paper two modified Rhie–Chow/PISO algorithms are proposed, which are constructed to avoid the development 
of spurious oscillations in the solution when large discontinuous momentum sources are present. The RDR algorithm is 
based on a redistribution of the discontinuous flow resistivity over grid cells adjacent to the discontinuity in the material 
properties, in a similar way as was proposed by [12] for discontinuous body force fields. In order not to create time step 
restrictions for high Re, low Da numbers, for which the resistance is high, this term is treated implicitly. The FCP algorithm 
uses an approach similar to that presented by Oxtoby et al. [11], where interface pressure values are derived by ensuring a 
force balance based on the momentum equations on both sides of the fluid–porous interface. This is aimed at eliminating 
spurious oscillations [12]. Differently from Oxtoby et al. [11] the FCP method treats all terms, except pressure, implicitly, 
thus relaxing the time step constraint imposed by high Re/low Da numbers.

Throughout this paper we adopt a numerical formulation, which solves the equations directly for the pressure field, 
rather than the density field as is common for compressible flows. The selected formulation is computationally cheaper 
than the density-based formulation for density varying flows, and does not require resolution of high frequency pressure 
fluctuations (i.e., sound propagation) [13,14]. The methods are implemented in the open source OpenFOAM� environment, 
which is based on collocated grid discretization, storing all variable fields at cell centers [15].

The proposed algorithms are successfully compared with published data for the velocity and pressure fields for in-
compressible, isothermal flow through a porous plug [7] and for flow parallel to a porous region, i.e., the so-called 
Beavers–Joseph problem [16]. These problems are used as benchmarks, since their particular geometry is known to cause 
oscillatory solutions in case standard interpolation methods are used for the resistivity term. The so-called porous resistance 
term in the momentum equation, which is the major source of the discontinuity in the domain, is a function of velocity 
and permeability. The two relevant flow parameters are Re and Da numbers. At fixed length-scale and fluid properties, high 
velocity corresponds to high Re number and low permeability corresponds to low Da number. An increase/decrease of these 
parameters is directly influencing the magnitude of the porous resistance term. The robustness of the proposed algorithms 
is demonstrated for both high Re number flows and low Da numbers, which constitutes the most challenging situation. RDR 
is found to successfully remove spurious oscillations compared to the reference model which adopts central discretization, 
for all tested values of Re and Da numbers. FCP is found to be adequate for most cases involving lower Re and higher Da
numbers, while for higher Re and lower Da numbers some oscillations can still be seen in the solution.

Spurious numerical oscillations of velocity or any other variable can have a big impact on delicate physical processes 
such as aerosol formation and evolution. Even slight variations in thermodynamic variables can have a large influence on, 
e.g., the nucleation rate, which is at the core of the formation of aerosol droplets. Such strong dependencies on rather subtle 
changes in the local conditions emphasizes the need for an accurate treatment of fluid–porous interfaces where oscillations 
may occur. This paper provides simple and effective numerical methods to suppress the aforementioned oscillations also in 
case one relies on segregated solvers with a collocated arrangement of variables.

The organization of this paper is as follows. In Section 2, the governing equations for weakly density varying flow and 
heat transfer in conjugate fluid–porous domains are introduced. In Section 3 the finite volume discretization is described and 
an analysis of the discretized equations for large, discontinuous source terms is given. Thereafter, Re-Distributed Resistivity 
(RDR) and Face Consistent Pressure (FCP) algorithms are put forward in Sections 4 and 5 followed by their validation in 
Section 6 and conclusions in Section 7.

2. Governing equations

Fluid flow and conjugate heat transfer in fluid–porous domains can be described by the volume-averaged mass, mo-
mentum and energy conservation equations [6]. Imagine a volume V , occupied by two constituents α (fluid) and β (solid), 
such that V = Vα + Vβ . Then the extrinsic, or superficial, average and the intrinsic volume average of a fluid property 
ϕ are defined as: 〈ϕα〉 = 1

V

∫
Vα

ϕαdV and 〈ϕα〉α = 1
Vα

∫
Vα

ϕαdV , respectively [6]. The 〈〉 brackets imply volume averaging 
over volume V and for intrinsic properties the exponent above the brackets 〈〉α or 〈〉β implies volume averaging only over 
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volume Vα or Vβ , respectively. The relationship between intrinsic and extrinsic volume averaged properties is defined as 
〈ϕα〉α = φ〈ϕα〉, where φ = Vα/V is the porosity of the porous medium.

Following the derivations in [6] and the closure modeling in [17] and [18], the equations governing the flow of fluid and 
heat in isotropic, heterogeneous porous media, consisting of a fluid phase α and a solid phase β are presented. The mass 
conservation for fluid flow is

∂t(φ〈ρα〉α) + ∂i(〈ρα〉α〈ui〉) = 0 (1)

where t is the time, ρ the density and ui the velocity in the xi direction. Because only weak density variations are con-
sidered, the mass dispersion term originating from the volume averaging procedure is neglected. The operator ∂t is the 
temporal partial derivative and ∂i is the partial derivative with respect to the spatial coordinate xi . We adopt a mixed for-
mulation in which the extrinsically averaged velocity field 〈ui〉 transports the intrinsically averaged fluid mass density 〈ρα〉α
in the volume V . The momentum equation for fluid flow is

∂t(〈ρα〉α〈ui〉) + ∂ j(φ
−1〈ρα〉α〈u j〉〈ui〉) = −φ∂i〈pα〉α + ∂ j〈τi j〉 + φ〈ζi〉α − φD〈ui〉 (2)

with the volume-averaged rate of strain tensor

〈τi j〉 = 〈μα〉α(∂ j〈ui〉 + ∂i〈u j〉) − (
2

3
〈μα〉α − 〈κα〉α)δi j∂k〈uk〉 (3)

In Eqs. (2) and (3) p is the pressure, ζi a momentum body source including also higher-order perturbation terms originating 
from the volume averaging procedure. The dynamic viscosity is denoted μ, δi j is the Kronecker delta tensor and κ the 
dilatational viscosity. The key term for this paper is the isotropic porous resistance term φD〈ui〉, the last term in Eq. (2), 
which takes a finite value in the porous media and zero otherwise. This porous resistance term is the source of discontinuity 
in the domain, and thus the primary cause of spurious oscillations, as later will be described in detail. It is defined as a scalar 
D = 〈μα〉α(K −1 + K −1 F ), where K is the isotropic permeability scalar and F = 〈ρα〉α

〈μα〉α K 1/2|〈u j〉|cE the non-Darcy resistivity, 
in which cE is the form drag coefficient, that together with the permeability accounts for the microscopic structure of the 
porous media.

The temperature equations for the fluid and solid constituents are respectively:

〈cp,α〉α (
∂t(φ〈ρα〉α〈Tα〉α) + ∂i(〈ρα〉α〈ui〉〈Tα〉α)

)

= ∂i(λ
e
α∂i〈Tα〉α) + hαβ sαβ(〈Tβ〉β − 〈Tα〉α) + ∂t(φ〈pα〉α) + 〈ui〉∂i〈pα〉α + 
̂α (4)

〈cp,β〉β〈ρβ〉β∂t((1 − φ)〈Tβ〉β) = ∂i(λ
e
β∂i〈Tβ〉β) − hαβ sαβ(〈Tβ〉β − 〈Tα〉α) (5)

where cp,m is the specific heat at constant pressure, Tm the temperature, λe
m the effective thermal conductivity for the phase 

m ∈ {α,β}, including both the stagnant effective conductivity and tortuosity effects. The interfacial heat transfer coefficient is 
denoted by hαβ and sαβ is the specific surface area (surface available per unit of porous media volume). Thermal dispersion 
is denoted 
̂α . In Eqs. (2) to (5) the closure terms suggested in [17,18] were adopted and local thermal non-equilibrium 
between the two phases was assumed.

This is to illustrate that the so-called one-domain approach [19] is taken, solving the described equations for the en-
tire fluid–porous domain, rather than splitting the domain into parts which are governed by multiple sets of equations 
and imposing interfacial boundary conditions in places where they merge. In the next section the discretization of the 
volume-averaged governing equations for the fluid flow in conjugate fluid–porous domains is presented.

3. Finite volume discretization and modified Rhie–Chow interpolation

Application of the Finite Volume (FV) method requires flux evaluation at cell faces, and interpolation of cell centered 
variables onto the cell faces. Segregated algorithms for FV methods, such as PISO [20], are based on either iterative or 
stepwise procedures for obtaining the solution. PISO consists of two main steps: the predictor and the corrector step. Both 
of these steps require evaluation of pressure gradients at cell faces for calculating pressure gradient values. An incorrect 
evaluation of these pressure gradients and pressure face values leads to pressure–velocity decoupling or the ‘checker-board’ 
pressure pattern, which is a well known problem on collocated grids [21,15]. In 1983, Rhie and Chow proposed a method 
which maintains the pressure–velocity coupling on collocated grids even when using segregated solvers [21]. This method 
is today known as the Rhie–Chow interpolation and will be described in some detail in this section to provide a point of 
reference for understanding the modifications in RDR and FCP as presented momentarily.

The Rhie–Chow interpolation was developed assuming governing equations without discontinuous body forces acting 
on the flow. As shown in Section 2, this is not the case when porous media are present in part of the domain. When 
body force discontinuities are present, in particular in the porous resistance term φD〈ui〉, Rhie–Chow interpolation fails 
to maintain the pressure–velocity coupling resulting in ‘velocity ripples’, as was discussed earlier by Mencinger et al. [12]. 
The exact mechanism behind its failure will also be presented here. In this section we will present a modified version of 
the Rhie–Chow interpolation which does preserve pressure–velocity coupling even when large body force discontinuities 
are present in the flow. In order to discretize the governing equations using a collocated FV method, the equations are 
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Fig. 1. Example cell of a collocated grid for FV analysis. The owner cell is denoted by P , the neighbor cell by nb. The vector di,Pnb is the distance vector 
between the node P and the node nb. The common face of cells P and nb is denoted by f . The surface normal vector of the face f is denoted Si, f ; this 
vector has a magnitude equal to the surface area of the face f . The vector between the cell center P and face center is denoted with di,Pf . The index i
stands for the ith coordinate direction.

integrated over a control volume V P centered around a node P and bounded by N faces with surface area vector Si, f and 
face centers f , as shown in Fig. 1.

Applying Gauss’ divergence theorem and using Einstein’s tensor notation, the semi-discretized form of the volume-
averaged mass, momentum and energy equations for a collocated variable discretization yields:

V P ∂t(φP ρP ) +
∑

f

(ρui) f Si, f = 0 (6)

V P ∂t(ρP ui,P ) +
∑

f

(φ−1ρu j) f ui, f S j, f = −φP

∑
f

p f Si, f +
∑

f

τi j S j, f + φP ζi,P V P − φP D P ui,P V P (7)

V P cp,P [∂t(φP ρP T P ) +
∑

f

(ρui) f T f Si, f ]

=
∑

f

λe
f (∂i T ) f Si, f + V P hαβ,P sαβ,P (Tβ,P − T P ) + V P ∂t(φP p P ) + ui,P

∑
f

p f Si, f + V P 
̂P (8)

V P (cp,βρβ)P ∂t((1 − φP )Tβ,P ) =
∑

f

λe
β, f (∂i Tβ) f Si, f − V P hαβ,P sαβ,P (Tβ,P − T P ) (9)

Here and in the sequel the spatial averaging operators 〈〉α and 〈〉 and the subscript α for the fluid phase are dropped 
for brevity, such that, i.e., 〈Tα〉αP = T P and 〈Tβ 〉βP = Tβ,P . Note that ui refers to the superficial velocity 〈ui〉 and the other 
variables are intrinsic.

In the discretized equations above, some of the properties and variables are required at the cell centers and some at the 
face centers. In a collocated variable representation, the properties and variables are all stored in the cell-centers and need 
to be interpolated by interpolation schemes to the face centers. Applying discretization and interpolation schemes for the 
terms and variables in (7), dividing by V P and replacing the discretized pressure gradient with its non-discretized form for 
ease of notation, the semi-discretized momentum equation for the node P can be written as:

A P ui,P = Hi,P − φP (∂i p)P (10)

A P is a scalar containing all the central coefficients, including implicit time derivative contributions, and Hi,P is a vector 
containing contributions from the neighboring cells, as well as time derivative contributions. A P and Hi,P are left unspec-
ified as their exact discretized form depends on the choice of discretization. More details on the discretization of A P and 
Hi,P can be found in [20,22]. The choices of the discretization schemes of this particular work are specified in Section 6. 
Dividing by A P results in the following equation:

ui,P = A−1
P Hi,P − A−1

P φP (∂i p)P (11)

giving us the expression for the velocity at cell P . Eq. (11) is used in both the predictor and corrector steps of the PISO 
algorithm [20]. In the predictor step it is used to find the initial solution of the velocity prior to entering the corrector loop, 
where the same equation is used to update the velocity field with the improved pressure field.

3.1. Discretized pressure equation and Rhie–Chow interpolation

In the chosen formulation there is no explicit equation for the density in the conservation equations. The primary reason 
for choosing this formulation is computational efficiency, as density-based solvers tend to require significantly smaller time 
steps and resolve pressure field details, such as sound wave propagation [14], that are not of importance to our application. 
In the selected formulation, the pressure equation is obtained by combining momentum and mass conservation. Once the 
pressure field is solved for, we obtain the density field through the use of the equation-of-state for which we adopt the 
ideal gas law.

To derive the equation for the pressure Eq. (11) is multiplied by ρ and thereafter inserted into the mass conservation 
equation (6). Furthermore, replacing ρ in the time derivative with the equation of state:

ρ = ψ p (12)
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where ψ is the compressibility factor, results in the following pressure equation:

V P ∂t(φP ψP p P ) +
∑

f

(ρ A−1 Hi) f Si, f =
∑

f

(ρ A−1φ∂i p) f Si, f (13)

In Eq. (13), (A−1φ∂i p) f needs to be specified using an appropriate interpolation rule based on cell-centered values of 
the variables. One way to determine (ρ A−1φ∂i p) f is to interpolate A−1

P φP (∂i p)P and its neighbor value A−1
nb φnb(∂i p)nb onto 

the cell face f using linear interpolation defined as:

� f = (1 − r)�P + r�nb (14)

where r = |di,Pf |/|di,Pnb|, and � is the property to be interpolated. However, if this would be adopted on a uniform, collo-
cated grid the pressure–velocity decoupling would be inevitable as the contribution of the central pressure value (node P ) 
would cancel out in the pressure gradient calculation for cell P [15]. It is at this point that Rhie and Chow [21] proposed 
that instead of directly interpolate this term onto the faces it is approximated as (ρ A−1φ∂i p) f = (ρ A−1φ) f (∂i p) f , where 
(∂i p) f is calculated directly as:

(∂i p) f = n̂i, f
pnb − p P

|di,Pnb| (15)

with n̂i, f being the unit normal vector. Adopting the method of Rhie and Chow, the pressure equation takes the following 
form:

V P ∂t(φP ψP p P ) +
∑

f

(ρ A−1 Hi) f Si, f =
∑

f

(ρ A−1φ) f (∂i p) f Si, f (16)

As it is well known, this approach ensures pressure–velocity coupling and avoids the unphysical ‘checker-board’ flow 
pattern. Anticipating further modifications in the next two sections we remark that this Rhie–Chow approximation is only 
practical in case the governing equations do not contain discontinuous body forces. Modifications that cope also with dis-
continuous body forces will be formulated in the RDR and FCP methods.

In the discretization of the governing equations, the mass flux over the cell faces plays an important role and needs 
to be regularly updated within the algorithm. The expression for the update of mass flux follows from the pressure equa-
tion (16):

(ρui) f Si, f = (ρ A−1 Hi) f Si, f − (ρ A−1φ) f (∂i p) f Si, f (17)

where, again, the pressure gradient at the face is directly computed using the Rhie–Chow assumption from Eq. 
(15).

3.2. Modified Rhie–Chow interpolation for discontinuous body forces

This section presents a modified Rhie–Chow interpolation method making it suitable for domains that incorporate body 
force discontinuities. We show the proposed modifications, starting from the momentum equation and derive novel pressure 
and corrector step equations. For easier notation, we revert the discretized pressure term 

∑
f p f Si, f from Eq. (7) back to 

its non-discretized form (∂i p)P .
To avoid interpolation of the discontinuous φ from the cell-centers to the face centers in the Laplacian term 

(
∑

f (ρ A−1φ) f (∂i p) f Si, f ) of the pressure equation (13), the discretized momentum equation (16) is divided by φP . Fur-
ther division by V P yields:

1

φP
∂t(ρP ui,P ) + 1

φP V P

∑
f

(φ−1ρu j) f ui, f S j, f = −(∂i p)P + 1

φP V P

∑
f

τi j, f S j, f + ζi,P − D P ui,P (18)

Instead of discretizing and inserting D P ui,P as a coefficient into A P and Hi,P , as was done in (10), D P ui,P is kept as 
a separate term, independent of A P and Hi,P . The rest of the terms, except the pressure gradient term, are discretized 
according to:

A P ui,P − Hi,P = 1

φP
∂t(ρP ui,P ) + 1

φ2
P V P

∑
f

(ρu j) f ui, f S j, f − 1

φP V P

∑
f

τi j, f S j, f − ζi,P (19)

Note that the reciprocal porosity in the convective term of (19) has been moved outside of the sum to avoid interpolation 
of the discontinuous porosity to the cell-faces. This approximation is relevant only at the interface, and is generally small in 
character since porosity values are bounded between 0 and 1. The resulting semi-discretized momentum equation takes the 
form:

A P ui,P + D P ui,P = Hi,P − (∂i p)P (20)
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Fig. 2. Example cell in the vicinity of the fluid–porous interface. The owner cell is denoted by P , the east neighbor cell by E and the west neighbor by W . 
The local spatial step �x is assumed uniform for ease of analysis. Cell faces from west to east are denoted by w , e and ee, respectively. The hatched areas 
symbolize the porous region.

Dividing it first by A P and then collecting the velocity terms, the cell-centered velocity becomes:

ui,P = B P A−1
P (Hi,P − (∂i p)P ) (21)

where B P = (1 + D P A−1
P )−1. We emphasize that only the matrix B P contains the porous resistivity D P . This is important to 

maintain a strong pressure–velocity coupling throughout the algorithm. In order to avoid oscillations near the discontinuity 
and to interpolate the discontinuous variables consistently to the interface in the face mass flux expression, B is interpolated 
separately to the faces resulting in the following modified Rhie–Chow interpolation:

(ρui) f Si, f = B f [(ρ A−1 Hi) f Si, f − (ρ A−1) f (∂i p) f Si, f ] (22)

where B f = (1 + D f (A−1) f )
−1. The terms (ρ A−1 Hi) f , (ρ A−1) f , D f and (A−1) f are found using the linear interpolation in 

(14), and (∂i p) f is discretized using (15). Note that the expression in the square brackets in Eq. (22) is in fact the original 
Rhie–Chow [21] expression for mass flux, Eq. (17). We keep the original Rhie–Chow method for the continuous or slowly 
varying variables (density and velocity), and isolate the contribution from the large discontinuity in the matrix B f .

In order to obtain the modified pressure equation, we insert Eq. (22) into the discretized mass conservation equation (6)
and replace ρP in the time derivative with (12) to find:

V P ∂t(φP ψP p P ) +
∑

f

B f (ρ A−1 Hi) f Si, f =
∑

f

B f (ρ A−1) f (∂i p) f Si, f (23)

The modified velocity definition Eq. (21) and the modified Rhie–Chow interpolation for the mass flux are key steps in 
accounting for the discontinuous resistivity contribution. This modified Rhie–Chow interpolation constitutes a new simula-
tion method that in principle incorporates discontinuities in D . As will be shown in numerical illustrations in Section 6, 
this particular modification by itself does not eliminate velocity oscillations to a sufficient degree. This drives us toward 
the construction of further adaptations that more effectively handle such spurious oscillations, which, nevertheless, follow 
the pattern as laid down in Eq. (21). The first option for further modifications addresses the definition of the matrix B P – 
this option will be referred to as the RDR approach. Alternatively, a second option presents itself through an adaptation of 
the pressure gradient in Eq. (21) – this option will be referred to as the FCP approach, closely following Oxtoby et al. [11]. 
In the next two sections we will elaborate the RDR and FCP options respectively before coming to a detailed assessment 
of the original Rhie–Chow approach Eq. (11), the modified Rhie–Chow approach Eq. (21) and the further RDR and FCP 
modifications in Section 6.

3.3. Pressure–velocity decoupling for discontinuous body forces

The Rhie–Chow interpolation and the PISO algorithm were proposed for single-phase fluid flows, for which the material 
properties are smooth and continuously varying in response to temperature and density changes. The Rhie–Chow inter-
polation as described previously has been shown to result in spurious pressure and velocity oscillations in the vicinity of 
discontinuities in porous properties or in general large source terms in the governing equations [7,8,10,12]. There are two 
reasons why Rhie–Chow interpolation fails and we will dedicate some space to clarify these. For the purpose of clarification, 
we concentrate on 1D example grid in the vicinity of a fluid–porous interface, shown in Fig. 2.

The first reason for the failure of Rhie–Chow interpolation in the presence of discontinuities is that the Rhie–Chow 
approximation (ρ A−1φ∂i p) f = (ρ A−1φ) f (∂i p) f , is inaccurate near faces where large body force discontinuities arise. This 
can be easily verified by writing out the above approximation in its discrete form for the grid shown in Fig. 2:

1

2

[
ρP A−1

P φP
pe − pw

�x
+ ρE A−1

E φE
pee − pe

�x

]
= 1

2

[
ρP A−1

P φP + ρE A−1
E φE

]( pE − p P

�x

)
(24)

with the local spatial step �x = const, and face values of pressure pw , pe and pee being interpolated using Eq. (14). Ex-
panding the left hand side of Eq. (24) using the interpolation Eq. (14) and some algebra we get that

1

2

[
ρP A−1

P φP
pe − pw

�x
+ ρE A−1

E φE
pee − pe

�x
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E φE
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Fig. 3. Example grid showing visually the value of the porous resistance across the interface. The owner cell is denoted by P and the neighbor cell by E . 
Cell faces are denoted w , e and ee. �x is the local spatial step of the grid, assumed constant for simplicity. The texturized grey area is representing the 
value of the porous resistance term φD〈ui〉 from Eq. (2). The solid lines mark the state of porous resistance value prior to using any additional interface 
treatment methods, while the dashed lines combined with right-slanted hatching pattern are porous resistance values after the application of the RDR 
method.

where the last two terms on the right hand side of Eq. (25) can be thought of as ‘correction’ terms relative to the original 
approximation Eq. (24). In fact, the first term on the right hand side corresponds directly to Eq. (24) while the last two 
terms list additional contributions. These additional contributions were written in terms of the difference between the left 
and right sided derivative of the pressure at the cell faces, which can be shown to reduce to zero in case of a differen-
tiable pressure field. However, in the case of discontinuous body forces, i.e., a kink in the pressure field indicative of its 
non-differentiability at the interface, these correction terms are not necessarily small and alternative approaches such as 
RDR and FCP are essential.

The second reason for the failure of the Rhie–Chow version of PISO is what Mencinger et al. [12] refer to as imbalance of 
the cell pressure gradient and cell body force term. We will describe this imbalance in some more detail, thereby deriving 
the basis for the RDR method.

Near an interface of discontinuity we equate the pressure gradient term φ∂i p and the porous resistance term φD〈ui〉
from the discretized momentum equation, Eq. (7), for cell P in Fig. 3

φP

∑
f

p f Si, f = −φP D P ui,P V P (26)

In the chosen 1D setting V P = �x. Dividing by φP and �x, and carrying out the sum we arrive at

pe − pw

�x
= −D P ui,P (27)

We use linear interpolation to obtain values of the pressure at the faces w and e.

pE + p P − p P − pW

2�x
= pE − pW

2�x
= −D P ui,P (28)

Expanding Eq. (28) relative to the face value at face e we find

(pE − pe) + (pe − pW )

2�x
= −D P ui,P (29)

which can suggestively be rewritten in terms of the weighted sum of two pressure derivatives

1

2

[1

2

2(pE − pe)

�x
+ 3

2

2(pe − pW )

3�x

]
= −D P ui,P (30)

or simplified

1

4

[ (pE − pe)

1
2 �x

]
+ 3

4

[ (pe − pW )

3
2�x

]
= −D P ui,P (31)

The formulation is in terms of the intrinsic velocity for which we approximate ui,P = ui,W = ui,E = ui . For each of the 
pressure gradients in (31) we can identify a corresponding resistivity contribution. This can be expressed as

−1

4
DEeui − 3

4
DWeui = −D P ui (32)

where DEe and DWe are porous resistivity values associated with the regions between point E and face e and between point 
W and face e, respectively. In the setting as presented in Fig. 3 we observe that DWe = 0, since this region is pure fluid, 
while DEe = D E since this region is located within the uniform porous medium. By the same rationale D P = 0. Inserting 
these values into Eq. (32) we notice

−1
D E ui − 3 · 0 · ui �= 0 · (−ui) (33)
4 4
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This is what Mencinger et al. [12] refer to as imbalance between the pressure gradient and the body force. There is an easy 
remedy to this problem which consists of re-defining D P for which we proceed as follows. Although physically the porous 
resistance in cell P is zero, Eq. (33) shows that a force balance would be maintained if we would assign D P a new value 
Drd

P = 1
4 D E . With a similar argument applied to the cell centered around E it can be concluded that the value of D E should 

be modified to Drd
E = 3

4 D E .
This discretization results in a redistribution of porous resistance between cell E and cell P , which is why the method is 

called Re-Distributed Resistivity (RDR). A graphical depiction of porous resistance values associated with the utilization of 
the RDR method is denoted by dashed lines and right-slanted hatching in Fig. 3.

Apart from the porous resistance redistribution, where linear interpolation of the pressure from cell centers to faces is 
applied and discontinuities are handled by redistributing the resistivity, an alternative ‘accounting’ of discontinuities in the 
body force term can be achieved by assigning alternative values to the pressure at the interface pe . This has direct influence 
on the pressure gradients in cells P and E . Deriving such an auxiliary value for pe is the essence of the FCP method, which 
is obtained closely following Oxtoby et al. [11]. Technical details of the implementation of both RDR and FCP methods will 
be covered in detail in Sections 4 and 5.

4. Re-distributed resistivity algorithm

Due to the presence of the body force discontinuity, represented by the porous resistance term φD〈ui〉 in Eq. (2), the 
pressure at the fluid–porous interface based on the standard central discretization is such that the velocity solution adjusts 
with velocity oscillations. These oscillations have been explored before in [12,10]. In order to restore the balance between 
the pressure gradient and the body force, we propose to adapt the resistivity in the cells adjacent to the interface. This is 
the basic principle behind the novel Re-Distributed Resistivity (RDR) algorithm [9] which will be presented below.

4.1. Flow resistivity redistribution

To avoid the generation of spurious velocity oscillations in the vicinity of the discontinuity, when solving the discretized 
momentum equation, Eq. (20) or correcting the velocity with Eq. (21), a balance between the discontinuous porous re-
sistance field and the cell-centered pressure gradient is required [12]. Because of the body force discontinuity at the 
fluid–porous interface, the interface pressure value p f is erroneously determined by linear interpolation using Eq. (14) as 
was shown in Section 3.3. These pressure gradients in the two cells neighboring the discontinuity are no longer in balance 
with the cell-centered flow resistance in these cells. Because of this, the cell-centered resistances are modified to balance 
the cell-centered pressure gradients calculated from the linearly interpolated face pressures, as shown in Section 3.3.

In order to determine the cells requiring redistribution of porous resistivity, a cell indicator function is defined as:

�P =
∑

f |(�φ) f |
max(

∑
f |(�φ) f |, ξ)

(34)

where (�φ) f = φnb − φP and ξ is a small number on the order of 10−15 to avoid division by zero if 
∑

f |(�φ) f | = 0. �P

has the value 1 for cells requiring redistribution of resistivity and 0 otherwise. Another indicator function θ f is defined as:

θ f = |(�(�φ)) f |
max(|(�(�φ)) f |, ξ)

(35)

where �(�φ) f = �nbφnb − �P φP , in order to determine the faces required for the calculation of the redistributed flow 
resistivity in the cells where �P = 1. θ f has the value 1 for the fluid–porous interface faces and the faces of the cells 
adjacent to a discontinuity and 0 otherwise. The redistributed resistivity Drd

P is computed using inverse distance weighting 
for the required faces according to:

Drd
P = (1 − �P )D P + �P∑

f ω f θ f

∑
f

ω f θ f D f (36)

where ω f = 1/|di,Pf | and D f is interpolated to the face centers by the linear interpolation in (14). The graphical depiction 
of this porous resistance redistribution process is shown in Fig. 4. The redistributed resistivity (36) is based on a ‘double’ 
interpolation in cells with discontinuities, i.e., first linear interpolation is used to estimate the face values D f , after which 
inverse distance weighting is used to complete the re-distribution. This approach is similar to that proposed by Raeini et 
al. (2012) [23] for smoothing the interface representation in a volume-of-fluid method, by using ‘double interpolation’ and 
Gaussian smoothing to define the new interface normals.

The modified discretized momentum equation with the redistributed resistivity yields:

1

φP
∂t(ρP ui,P ) + 1

φ2
P V P

∑
(ρu j) f ui, f S j, f = − 1

V P

∑
p f Si, f + 1

φP V P

∑
τi j, f S j, f + ζi,P − Drd

P ui,P (37)

f f f
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Fig. 4. Graphical depiction showing the state of variables after the redistribution of the porous resistance has been carried out. The new state of the 
porous resistance field compensates for over or underestimates of the pressure gradients in the cells adjacent to the interface and force balance is restored, 
retaining the correct velocity field.

and the expression for the velocity correction reads:

ui,P = Brd
P A−1

P (Hi,P − (∂i p)P ) (38)

where Brd
P = (1 + Drd

P A−1
P )−1. The face velocity ui, f in the convective term can be discretized by any suitable scheme 

(e.g. linear) and the mass flux (ρui) f Si, f is calculated from Eq. (22). We emphasize that relative to the first Rhie–Chow 
modification Eq. (21), the RDR approach can be interpreted by a change in B P only through a redistribution of the resistivity 
D in the direct vicinity of the fluid–porous interface or porous discontinuity.

4.2. Re-distributed resistivity algorithm

The original PISO algorithm [24] is a stepwise technique for the solution of the implicitly discretized time-dependent flow 
equations in a segregated manner. The solution is accomplished at each time step through a sequential predictor–corrector 
process by which the different dependent variables are updated individually. Following the notation in [24], variables with 
asterisks are intermediate step solutions. The RDR algorithm scheme is shown in Fig. 5.

The RDR algorithm differs from the original PISO algorithm [24] in that (i) the equations are differently formulated, 
(ii) the modified Rhie–Chow interpolation is used and (iii) an extra step prior to the predictor step is introduced, where 
we execute the porous resistance redistribution in accordance with Eq. (36). No significant computational cost was noticed 
because of this extra step. Subsequently, we continue the use of the Brd

P matrix in the first and second corrector steps in 
order to keep the method consistent. The original PISO algorithm [24] was intended to have only a single pass through the 
predictor and two corrector steps. In order to improve the precision of the algorithm and to control conservation errors 
coming from the segregated approach, we have added a convergence condition at the end of the algorithm as proposed 
by [25]. This condition is based on the residual value obtained by inserting the latest pressure solution p∗∗ into the pressure 
equation of the first corrector step. Once the residual value goes down below a pre-set value, e.g. 10−12, the solution is 
considered as converged. The conservation errors can therefore be controlled to an arbitrarily precision by specifying the 
pre-set value.

In the next section we will present the FCP method, which achieves similar results as RDR by modifying the value of the 
interface pressure instead of the resistivity.

5. Face Consistent Pressure PISO algorithm

In the previous section we presented the RDR method which aims to establish a balance between the pressure gradient 
and the body force term by redistributing the body force term between the cells adjacent to the interface. Considering 
Eq. (21) an alternative approach presents itself: if the pressure at the interface would be adapted, the balance between 
the pressure gradient and the body force terms could be achieved as well. This approach was previously explored by [7]
and [11], where special face pressure interpolation schemes were introduced to accurately estimate the interface pressure. 
Since such interface pressure values are derived to account for the influence of the local jump in the body force across the 
interface, the pressure at the interface is referred to as consistent with the resistivity jump. Schemes in [7] and [11] require 
either explicit corrections based on the mass flux or extrapolations of the cell-centered pressure from either side of the 
interface.

In this section we present the Face Consistent Pressure (FCP) algorithm, which utilizes auxiliary pressure values at the 
interface in order to prevent spurious velocity oscillations. The method builds on the work of Oxtoby et al. [11], but is 
different in three key ways: FCP solves for extrinsic velocity field, FCP treats all terms, except pressure gradient, implicitly, 
and FCP incorporates the modified Rhie–Chow interpolation, Eq. (21), presented in Section 3.2. The FCP method calculates 
the interface pressure value which is consistent with the adjacent flow resistance. This results in a pressure field that by 
default satisfies the balance between the discontinuous flow resistance field and the cell-centered pressure gradient [12] in 
cells adjacent to the interface at steady-state conditions. The derivation of the equations and the functioning of the modified 
algorithm are presented below.
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Fig. 5. RDR algorithm. The major difference with respect to the original PISO [24] is that the time step begins with redistributing the porous resistance 
values. The convergence condition is based on the residual value obtained by inserting the latest pressure solution p∗∗ into the pressure equation of the 
first corrector step [25].

Fig. 6. Control volume around the interface (dashed line) which is used for derivation of the pressure interpolation at the interface. The major difference 
with respect to the generic cell representation of Fig. 1 is that we now concentrate on the immediate vicinity of the fluid–porous interface. To differentiate 
the interface faces from the other faces denoted with f , we denote the interface values with index ε. The control volume used for derivation of auxiliary 
interface pressure value is marked with dashed lines. The vector connecting the two cell centers is denoted di,PE and the distance fractions r and (1 − r)
are also marked.

5.1. Derivation of the consistent interface pressure

Let us analyze the momentum balance of a fictional control volume around the interface as shown in Fig. 6. Cell center P
is in the pure fluid domain and cell center E is in the porous domain. In order to differentiate between the specially derived 
interface pressure and the other face values (calculated by linear interpolation), we denote the interface values with the 
index ε. The interface ε is positioned between points P and E at distance fraction r away from point P and (1 − r) away 
from point E . The distance between the two points is denoted by |di,PE|.
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Following the combined notation of Fig. 6 and Section 3, we first write out the mass conservation expressions for each 
half of the control volume:

(∂t(φρ))P + n̂i(ρui)ε − n̂i(ρui)P

r|di,PE| = 0 (39)

and

(∂t(φρ))E + n̂i(ρui)E − n̂i(ρui)ε

(1 − r)|di,PE| = 0 (40)

By combining Eqs. (39) and (40) we get:

r|di,PE|(∂t(φρ))P + (1 − r)|di,PE|(∂t(φρ))E = n̂i(ρui)P − n̂i(ρui)E (41)

The momentum fluxes for the left and right half of the fictional control volume can be expressed on the basis of Eq. (21)

(ρui)P = (Bρ A−1 Hi)P − (Bρ A−1)P
pε − p P

r|di,PE| n̂i (42)

and

(ρui)E = (Bρ A−1 Hi)E − (Bρ A−1)E
pE − pε

(1 − r)|di,PE| n̂i (43)

where the pressure gradient is approximated using the auxiliary pressure value pε . Inserting Eqs. (42) and (43) into Eq. (41), 
we can solve for the consistent pressure at the interface:

pε = (Bρ A−1)−1
ε [(Bρ A−1 p)ε − r(1 − r)|di,PE|2((∂i(Bρ A−1 Hi))ε + (∂t(φρ))ε)] (44)

with interpolated terms being:

(Bρ A−1)ε = (1 − r)(Bρ A−1)P + r(Bρ A−1)E (45)

(∂i(Bρ A−1 Hi))ε = |di,PE|−1(n̂i(Bρ A−1 Hi)P − n̂i(Bρ A−1 Hi)E) (46)

(∂t(φρ))ε = r(∂t(φρ))P + (1 − r)(∂t(φρ))E (47)

and

(Bρ A−1 p)ε = (1 − r)(Bρ A−1 p)P + r(Bρ A−1 p)E (48)

We refer to pε as consistent pressure because its value is taking into consideration the local jump in porous resistance 
through the coefficient matrix B .

In order to obtain the expression for the final pressure field, we utilize the same masking function θ f as defined in 
Section 4.1 to identify the porous fluid interface. The expression of the new face pressure field denoted � f then becomes:

� f = (1 − θ f )p f + θ f pε (49)

Note that because of the use of the masking function, the newly devised face consistent pressure correction (second term 
in Eq. (49)) will be applied only at the interface. The other face values of pressure (p f ) in the domain will be calculated 
according to the interpolation scheme of choice (e.g. linear, upwind etc.). This can be altered so that the face consistent 
pressure interpolation would be applied throughout the domain � f = pε , regardless of the interface presence. We refer to 
this approach as the Global-FCP method, since the interpolation of Eq. (44) is applied to all the faces in the domain. We do 
not pursue this approach in this paper and leave its analysis for future work.

By using the newly devised pressure � f we can now form a pressure gradient term in the momentum equation (Eq. (18)) 
to get:

1

φP
∂t(ρP ui,P ) + 1

φP V P

∑
f

(φ−1ρu j) f ui, f S j, f = −
∑

f

� f Si, f + 1

φP V P

∑
f

τi j, f S j, f + ζi,P − D P ui,P (50)

By creating this consistent value of face pressure � f at the interface, we aim at avoiding the force imbalance in the cells 
adjacent to the interface.

A correction of the pressure value at the interface has been derived by analyzing the momentum balance in the fictitious 
control volume around the interface. This corrected pressure incorporates the influence of the porous resistance values 
adjacent to the fluid–porous interface. Therefore, the pressure gradients at points P and E satisfy the force balance between 
the discontinuous flow resistance field and the cell-centered pressure gradient [12]. This force balance aims to remove the 
spurious oscillations in the velocity field.
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Fig. 7. FCP algorithm. The difference with respect to the RDR algorithm is that instead of redistributing porous resistivity, the face pressure field p f is 
updated to � f using Eq. (49) throughout the algorithm.

5.2. Face Consistent Pressure algorithm

The FCP algorithm is very similar to the original PISO algorithm proposed by Issa et al. [24]. The main differences are 
(i) the differently formulated equations, (ii) the modified Rhie–Chow interpolation and (iii) the use of a modified pressure 
(Eq. (49)) in the momentum predictor and corrector steps throughout the algorithm. Following [24], the FCP algorithm takes 
the form shown in Fig. 7.

The FCP algorithm uses the same steps as the RDR algorithm, except that instead of updating B P to Brd
P in the predictor 

and corrector steps, we update the face pressure field p f to � f . The convergence condition at the end is the same as for 
the RDR algorithm to control conservation errors coming from the segregated approach.

The proposed RDR, FCP and the original PISO algorithms described in Sections 4, 5 and 3, respectively, have been imple-
mented using the OpenFOAM� open source computational fluid dynamics C++ library (version 2.2.0).

6. Porous plug and Beavers–Joseph test cases

The case for flow perpendicular to a porous region [26] and the Beavers–Joseph problem [16] for flow parallel to a porous 
region are considered, in order to demonstrate the accuracy and robustness of the proposed algorithms. The respective 
geometries of these test cases are shown in Fig. 8. In these illustrations we assume incompressible and isothermal flow and 
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Fig. 8. Geometries for the (a) porous plug and (b) Beavers–Joseph cases.

an isotropic porous medium even though the algorithms are implemented in a compressible formulation. Exploration of 
compressibility and heat transfer are considered in future work.

The first case is set in a 2D channel, of height h and length 8h, in which an isotropic porous plug has been installed be-
tween 3h and 5h [26]. The inlet velocity boundary condition is a fully developed parabolic profile, with mean velocity U . The 
Reynolds number takes the values Re = {1, 100, 1000} and is defined as Re = ρUh

μ . The Darcy number of the flow is defined 
as Da = K/h2, where K is the porous medium permeability, and for testing purposes we chose Da = {10−2, 10−3, 10−7}. 
These values of Re and Da numbers correspond to low and moderate amplitudes of the porous resistance terms. The poros-
ity of the porous plug is kept constant at φ = 0.7. The outlet boundary condition for velocity is zero gradient or n̂ j∂ jui = 0i
where n̂ j is the normal vector to the outlet and 0i is a zero vector. The pressure value is specified as constant at the outlet, 
while at the inlet we require the zero gradient value of pressure or n̂i∂i p = 0. For channel walls, no-slip boundary conditions 
(ui = 0) were applied. The grid is uniform, structured and its resolution is equivalent to the grid resolution used in [7] for 
better comparison. The geometry is presented in Fig. 8(a).

The second case we consider was originally proposed by Beavers and Joseph [16], and is commonly used in the literature 
as a validation case. We adopt a slightly modified version following [26] and [7]. The domain is a 2D channel of height 2h
and length 8h. Half of the channel height h is filled with isotropic porous material. For the inlet velocity boundary condition 
a uniform velocity of magnitude U is adopted at Re = 1 so that the flow has time to fully develop before reaching the end 
of the domain. The tested Darcy numbers are Da = {10−2, 10−3}, and the porosity is kept constant for all cases φ = 0.7. 
The outlet boundary condition for velocity is zero gradient or n̂ j∂ jui = 0i where n̂ j is the normal vector to the outlet. The 
pressure value is specified as constant at the outlet, while at the inlet we require the zero gradient value of pressure or 
n̂i∂i p = 0. The choice of the grid resolution was motivated by the work of [7] for better comparison. Walls of the channels 
have an imposed no-slip boundary condition for the velocity or ui = 0. The geometry is shown in Fig. 8(b).

The time derivative is discretized by a second-order implicit backward differencing scheme and the convective term by 
the second-order linear upwind differencing (LUD) scheme [27]. The discretized equations for each coordinate direction 
are solved using standard solvers and utilities available in OpenFOAM� such as: the smooth solver with a Gauss–Seidel 
smoother down to a tolerance 10−11 for velocity components, and the pressure equations are solved with a Preconditioned 
Conjugate Gradient (PCG) solver adopting the Faster Diagonal Incomplete-Cholesky (FDIC) preconditioner down to a toler-
ance of 10−12.

The proposed RDR and FCP methods differ from a standard central discretization wherever there are variations or dis-
continuities in the porosity and consequently in the resistivity term. Central discretization methods have already proven 
their suitability to simulate flow in porous media with smoothly varying porosity [28]. Therefore, we restrict here to discon-
tinuities in the porosity near fluid–porous interfaces, where spurious oscillations may arise. The two test cases considered 
are designed to address these challenges close to fluid–porous interfaces, where discontinuities are most pronounced. The 
proposed algorithms are however also suitable for general heterogeneous fluid–porous media, e.g., where the porosity and 
resistivity are smooth functions of the position in the domain. We validate the new method for segregated solvers against 
numerical results from literature based on fully block-coupled numerical methods [8]. Validation is done for 2D geometries, 
on structured Cartesian grids, because no standard validation case based on 3D geometries are available. The robustness 
and applicability of the algorithms for complex 3D geometries and general unstructured meshes will be pursued further in 
future research.

6.1. Porous plug case

In Fig. 9, the velocity magnitude along the centerline of the porous plug geometry located at height 0.5h is presented. 
Since the velocity inlet is specified as fully developed parabolic profile with mean superficial velocity U , the peak value 
at the centerline is 1.5U . Once the flow reaches the porous plug, we register a dip in the centerline velocity. This may 
appear counter-intuitive, as the porous plug constricts the flow and acceleration is expected. However, what happens is that 
the velocity profile in the y-direction changes once the fluid enters the porous plug, going from parabolic to a flat profile, 
thereby maintaining conservation of mass even though the centerline velocity is much reduced. After the fluid exits the 
porous plug, the velocity profile in y-direction is seen to rapidly recover back to the Poiseuille profile.
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Fig. 9. Centerline velocity for porous plug problem for Re = 1 and Da = 10−3.

Fig. 10. Figure (a) showing centerline pressure for the porous plug problem at Re = 1 and Da = 10−3. Figure (b) is zoomed in around the interface, where 
the pressure gradient is discontinuous.

It can be seen in Fig. 9(a) that both the RDR and FCP algorithms provide an oscillation-free solution for the reference 
case (Re = 1, Da = 10−3), while the solution obtained by the original PISO algorithm exhibits substantial oscillations. This 
is emphasized in Fig. 9(b), where we see a zoomed-in area around the interface. We also see that both the RDR and FCP 
algorithms are in good agreement with the reference data [26]. At higher Re and/or lower Da the spurious oscillations were 
found to become even more pronounced.

In Fig. 10(a) we present the pressure field along the centerline of the geometry, corresponding to the velocity solution 
shown in Fig. 9. The pressure gradient in the fluid area upstream of the porous plug is low as the flow does not require 
a high pressure gradient to maintain the required mass flow rate. Once the fluid reaches the porous plug at 3h, we see 
a discontinuity in the pressure gradient and a much stronger forcing of the flow, i.e. a much steeper negative pressure 
gradient, is needed in the porous region to keep the mass-flow rate constant. The pressure gradient rapidly recovers its 
value that was also observed ahead of the plug after exiting the porous plug at 5h.

All solutions seem to match the reference data of [26]. When we zoom around the interface, Fig. 10(b), we see that the 
original PISO algorithm is producing small pressure variations, which are linked to the velocity oscillations. We also see that 
RDR and FCP slightly underestimate the value of the pressure with respect to the reference case, but show no unphysical 
oscillations. The slight underestimation by about 0.5% is a measure for the remaining discretization error at the spatial 
resolution that was adopted.

Next, we compare the RDR and FCP algorithms for different flow and porosity conditions and compare velocity solutions 
for four different cases at Re = {100, 1000} and Da = {10−3, 10−7}. Fig. 11 shows centerline velocity solutions of the RDR 
and FCP methods for these four cases. These solutions look identical, with the only noticeable difference being a slightly 
smoother velocity profile of the FCP solution at the porous plug inlet (h = 3) at Da = 10−7. The original PISO algorithm 
failed at producing accurate results for these demanding conditions. The discrepancies in Fig. 11 become obvious once we 
concentrate on the area around the interface, which are shown in Figs. 11(c) and 11(d).
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Fig. 11. Centerline velocities for the porous plug problem at Re = {100, 1000} and Da = {10−3, 10−7}. The Figures (a) and (c) show the RDR solutions, while 
the FCP solutions are presented in the Figures (b) and (d). Notice the small-amplitude oscillations in the FCP solutions in Figure (d), particularly for cases 
with Da = 10−3.

From Figs. 11(c) and 11(d) it can be immediately concluded that RDR produces smoother solutions.
The convergence of both algorithms has been tested to confirm correct implementation of the methods and to quantify 

the truncation error coming from spatial discretization. Fig. 12(a) shows the l2 norm plot of both the RDR and FCP solutions 
for the porous plug case. The reference resolution case had a four times higher resolution than the highest plotted point 
in Fig. 12(a). Fig. 12(b) qualitatively demonstrates the convergence, while also showing good agreement with the reference 
data of Costa et al. [26]. The convergence rate for both algorithms is roughly of the first order.

As a remark, we mention that in addition to the original PISO, RDR and FCP algorithms, we also investigated the pos-
sibility of using only a modified Rhie–Chow PISO algorithm, without the RDR or FCP extensions. This version of the code 
produced smooth velocity solution for the Re = 1 and Da = 10−3 case, but at more aggressive parameters, e.g. Re > 100, the 
spurious oscillations occurred. This confirms that making Rhie–Chow interpolation consistent is not enough to remove the 
spurious oscillations in general, as suggested in Section 3.2.

We used a porous plug case [26] to compare the performance of the newly developed RDR and FCP algorithms. We find 
that for low Re/high Da numbers, both RDR and FCP algorithms give satisfactory solutions. Once pushed to higher Re/lower 
Da numbers, the RDR algorithm maintains the smoothness of the velocity solution, while the FCP solutions experience some 
oscillations around the interface.

6.2. Beavers–Joseph case

For the Beavers–Joseph case [26,7,16] we present the results at Re = 1 and Da = {10−2, 10−3} for which a comparison 
with a reference solution from literature is shown in Fig. 13.

All algorithms are seen to perform equally well (nearly overlapping), compared to the reference data [26]. As can be 
seen, the original PISO algorithm also provides oscillation free results. This is because the pressure gradient over the porous 
interface is close to zero, leading to a negligible flow in the y-direction, i.e., normal to the interface between the fluid and 
the porous medium. As a direct consequence, the spurious oscillations are not to be expected. Therefore we limit ourselves 
to present results only for a few selected parameters.
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Fig. 12. Figure (a) showing the l2 norm of the difference between the numerical solution computed at �x and a fine-scale reference solution. The four 
points in Figure (a) are from meshes of 800, 3200, 12 800 and 51 200 cells. The reference case mesh contained 204 800 cells. Figure (b) is qualitatively 
showing convergence, while demonstrating good agreement with the literature data of Costa et al. [26].

Fig. 13. Fully developed velocity profiles at the end of the domain for the Beavers–Joseph problem (Re = 1 for Da = 10−2 and Da = 10−3).

7. Conclusions

In this paper we presented the governing equations for volume-averaged weakly density varying flow through porous 
media, with non-equilibrium heat transfer [6,8,18]. As a point of reference, the original PISO algorithm [24] for segregated 
solvers on collocated grids was presented, whose key element is the utilization of the Rhie–Chow interpolation [21] and a 
predictor–corrector scheme. By using the Rhie–Chow interpolation, the original PISO algorithm for collocated grids main-
tains the pressure–velocity coupling and avoids ‘checker-board’ patterns in the pressure and velocity fields when the flow 
fields are smooth. However, the standard Rhie–Chow interpolation is argued to fail when large body force discontinuities are 
present in the domain [12,10], resulting in spurious oscillations in the velocity solution. In conjugate fluid–porous domains 
these jumps in body forces correspond to jumps in the porous resistance and porosity across the fluid–porous interface. 
In Section 3.3 we elaborated the reasons behind this failure and in Section 3.2 a modification of the Rhie–Chow method 
was introduced that takes the resistivity jumps explicitly into account. The incorporation of resistivity jumps in the Rhie–
Chow interpolation was found to be insufficient to remove the velocity oscillations. Therefore, two modified algorithms have 
been proposed: the RDR and the FCP algorithms. Sections 4 and 5 are dealing with the numerical details of the proposed 
algorithms. While the RDR method addresses the problem through a redistribution of resistivity in cells adjacent to the in-
terface, while using linear interpolation of the pressure to the faces, the FCP method finds an alternative pressure estimate 
at the cell interface to counteract the problem. The obtained results from the algorithms were compared to literature data 
for incompressible and isothermal flow parallel and perpendicular to a porous region and were found to agree well with 
the reference velocity and pressure data for all cases. The results were also compared to data generated by the original 
PISO algorithm [24], which was shown to generate undesired pressure–velocity decoupling with resulting spurious oscilla-
tions in the velocity in the vicinity of the discontinuity, as expected. Both the RDR and FCP algorithms generate smooth, 
non-oscillatory results for cases with moderately low Re/high Da numbers, while at higher Re/lower Da numbers the RDR 
algorithm produces smooth and physically more convincing solutions than the FCP method.
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Ongoing work focuses on further exploration of operational parameters for both algorithms on both structured and 
unstructured meshes, as well as an assessment of the compressible capability, including non-equilibrium heat transfer.
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