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Abstract

Compressive sensing has become a powerful addition to tanugrquantification in recent years. This paper
identifies new bases for random variables through lineampingg such that the representation of the quantity of
interest is more sparse with new basis functions assoaidthdhe new random variables. This sparsity increases
both the éiciency and accuracy of the compressive sensing-basedtaimtgquantification method. Specifically,
we consider rotation-based linear mappings which are ohéted iteratively for Hermite polynomial expansions.
We demonstrate theffectiveness of the new method with applications in solvirgisastic partial dferential
equations and high-dimensionél((L00)) problems.

Keywords: uncertainty quantification, generalized polynomial chaompressive sensing, iterative rotations,

active subspace, high dimensions.
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1. Introduction

Uncertainty quantification (UQ) plays an important role onstructing computational models as it helps to
understand the influence of uncertainties on the quantitytefest. In this paper, we study parametric uncertainty,
which treats some of the parameters as random variablegQL €%, P) be a complete probability space, where
Q is the event space arfdlis a probability measure on thefield #. We consider a system depending on a
d-dimensional random vect@i(w) = (£1(w), &2(w), - - -, E9(w))T, wherew is an event inQ. For simplicity, we
denotefi(w) asg. We aim to approximate the quantity of interag) with a generalized polynomial chaos (gPC)

expansion [1, 2]:
N
U(€) = )" cop(€) + £(8), (1.1)
n=1

whereg is the truncation errol\ is a positive integer;, are codicients,y, are multivariate polynomials which

are orthonormal with respect to the distribution¢of

[ w@wepens = 12)

wherep(€) is the probability distribution function (PDF) @fandsd; is the Kronecker delta. The approximation

converges in thé, sense afN increases il is in the Hilbert space associated with the measuré @fe., the

*Corresponding author.
Email addressguanglin@purdue.edu (Guang Lin)

Preprint submitted to Elsevier November 17, 2015


http://arxiv.org/abs/1506.04344v2

weight of the inner product is the PDF &j [2, 3, 4]. Stochastic Galerkin and probabilistic colldoatare
two popular methods [1, 2, 5, 6, 7, 8] used to approximate B@ godficientsc = (c1,Cy, - ,Cy)". Stochastic
collocation starts by generating samples of inffut = 1,2, - - - , M based op(&). Next, the computational model
is calculated for eacl® to obtain corresponding samples of the outgfut u(£9). Finally, c are approximated
based oru® and£9. Note that in many practical problems, it is very costly tdadbu® and, due to the limited
computational sources, we will often haWe < N or evenM <« N. The smaller number of samples than basis

functions implies that the following linear system is undetermined:

Vc=u+eg, (1.3)
whereu = (Ut U?,---,uM)T is the vector of output sample®/ is anM x N matrix with ¥;; = ;(£') and
e = (g2, ---,eM)T is a vector of error samples wit = £(£9). The compressive sensing method fieetive

at solving this type of under-determined problem wilgés sparse [9, 10, 11, 12] and recent studies have applied
this approach to uncertainty quantification (UQ) problet® [L4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Several useful approaches have been developed to enhandédiency of solving Eq. (1.3) in UQ appli-
cations. First, re-weighte€, minimization assigns a weight to eachand solves a weighte€i minimization
problem to enhance the sparsity [25]. The weights can benastd ina priori [18, 26] or, for more general
cases, can be obtained iteratively [15, 17]. Second, kedtapling strategies can be used, such as minimizing the
mutual coherence [27, 20]. Third, Bayesian compressiveisgmethod provides the posterior distribution of the
codficients [23, 16]. Finally, adaptive basis selection selbetsis functions to enhance th&eency instead of
fixing the basis functions at the beginning [22]. Recently,propose an approach [17] to enhance the sparsity of
c through the rotation of the random vectoio a new random vectay, where the rotation operator is determined
by the sorted variability directions of the quantity of irestu based on the active subspace method [28].

In this work, we aim to extend our previous work [17] and cdesithe specific case where the system depends
oni.i.d. Gaussian random variables; i&~ N(0, I) where0 is ad-dimensional zero vector arids adxd identity
matrix. This assumption appears in a wide range of physid®agineering problems. We aim to find a mapping
g : RY » RY which maps£ to a new set of i.i.d. Gaussian random variabjes (;1,72, - -- ,nq)" such that the

gPC expansion af with respect tap is sparser. In other words,

N N
UE) ~ > cn(€) = > Elin@(@) ~ um(©)). (1.4)
n=1 n=1

wherey, are orthonormal polynomials associated with the new randectorp and ¢, are the corresponding
codficients. Note thaty, = ¢, sincen ~ N(0,/). We intend to find the set = (&1,&,---,&)" which is
sparser thaig while preserving the properties of matrix (with q"ij = z,Zj(ni)) close to those ofV to improve the
efficiency of the compressive sensing method. To accomplishvlg will use a linear mapping, based on the idea
of active subspaces [28], to obtajras first proposed in [17]. Unlike our previous work, we buliéstmapping
iteratively in order to obtain a sparserahd improve the ficiency of the gPC approximation by compressive
sensing. We also provide the analytical form of the “gratieatrix” (see Eq.(3.3)) to avoid estimating it with
Monte Carlo methods. Our method is applicable for b@tland £, minimization problems. Especially, for the
latter, we can also integrate the present method with refwed¢; minimization method to further reduce the
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error. We demonstrate that, compared with the standard i@ssipe sensing methods, our approach reduces the

relativel, error of the gPC approximation.

2. Brief review of the compressive sensing-based gPC method

2.1. Hermite polynomial chaos expansions

In this paper we study systems relying drdimensional Gaussian random vector N(O, /). Therefore,

the gPC basis functions are constructed by tensor prodfiotsvariate orthonormal Hermite polynomials. For a

multi-indexa = (a1, a2, -, @q), @i € NU {0}, we set
Val€) = Vo, 1), (€)Y, (€0). (2.1)
For two diferent multi-indices; = ((@),, (@i),. - - - , (@i),) ande; = ((¢)),, (@j),. - - - , (@j),), we have the property
fRd Vo ()W, (§)p(E)dE = bai0; = O(a), (), Olen),(ap), = * Olen), (@), > (2.2)
where L PRI
06 = (=) el - ). @3)
For simplicity, we denoté,, (£) asy;(£).
2.2. Compressive sensing
The vectorc in Eq. (1.3) can be approximated by solving the followingimation problem:
(Pre) : arg nginlléllh, subjectto||¥VE - U2 <€, (2.4)

wheree = |lg|l, andh is typically set as 0 or 1. Fdn = O (£, minimization problem), the greedy Orthogonal
Matching Pursuit (OMP) algorithm [29, 12] can be applied; io= 1 (£, minimization problem), convex opti-
mization methods are directly applicable [30]. As pointed io [12], OMP is very éicient — when it works —
but convergence to a sparse solution is not always guahniéere are specific cases where a sparse solution is
possible while OMP yields a dense one. Since both the OMP andnimization approaches are widely used,
we will demonstrate theffectiveness of our new method for both methods.

Next, we introduce the conceptsgarsityas it is critical in the error estimates for solving the undetermined
system Eq. (1.3) with the compressive sensing method £J freorm” of vectorx = (xg, X, - - - , Xy) is defined as

the number of its non-zeros entries [31, 9, 12]
def .
lIXllo = #{i : x; # O} (2.5)

and¢; norm is defined as the sum of the absolute value of its entries:

N
Xl = . (2.6)
n=1

x is calleds-sparséf ||x|lo < s, andx is considered a sparse vectosit N. Few practical systems have a truly
sparse gPC cdigcientsc. However, in many cases, tisare compressible, i.e., only a few entries make significant
3



contribution to itsf; norm. In subsequent discussion, we relax the definitiondrse”:x is considered sparse if
[IX — X4ll1 is small fors < N. Herexg is defined as thbest s-spar se approximation one could obtain if one knew
exactly the locations and amplitudes of théargest entries oX, i.e., Xs is the vectorx with all but thes-largest
entries set to zero [11].

The error bound for solving Eq. (1.3) with minimization requires definition of thestricted isometry prop-
erty (RIP) constant [32]. For each integer= 1,2, - -, the isometry constadi; of a matrix @ is defined as the
smallest number such that

(1 - 69)IXIZ < 1DXI2 < (1 + 6)lIXII3 (2.7)

holds for alls-sparse vectors. With some restrictions, Candes et al. showezhn be stably reconstructed [11].
Assume that the matri¥ satisfiess,s < V2 — 1, and|l|» < €, then solutioncto (P1) obeys
lic— cdlla

vg 9

whereC; andC; are constants; is the exact vector we aim to approximate anid the solution of P1,). This

llc—¢Cllz < Cie + Cz (2.8)

result implies that the upper bound of the error is relatethéotruncation error and the sparsity @fwhich is
indicated in the first and second terms on the right hand diée0(2.8), respectively.
There-weighted’s minimization approach is an improvement of theninimization method, which enhances

the accuracy of estimating[25]. The re-weighted; approach solves the following optimization problem:
(PY) . argmin||We|;, subject td|¥e - ullz < e, (2.9)
’ [

whereW is a diagonal matrixW = diagfvi, wo, - - - ,wy). Clearly, P1) can be considered as a special case of
(P‘l’f’s) by settingW = I. The elementsy; of the diagonal matrix can be estimated based on analysisasfin
Peng et al. [18], or be estimated iteratively [25, 15]. Moregisely, for each iteratioh (P‘l’YE) is solved to obtain
¢® and therwi(”l) = 1/(|(”:i(')| + 6) for the next step. The parameter- 0 is introduced to provide stability and
to ensure that a zero-valued componentthdoes not prohibit a nonzero estimate at the next step. In &€aetl
al. [25], the authors suggest two to three iterations ofphicedure. Subsequent analytical work [33] provides an
error bound for each iteration as well as the limit of compagtt with re-weighted’; minimization. The form is
similar to Eq. (2.8) with dferent constants.

In practice, the error terrais not knowna priori, hence cross-validation is needed to estimate it. One such

algorithm is [13] summarized in Algorithm 1 :

Algorithm 1 Cross-validation to estimate the ereor
1: Divide theM output samples td/l, reconstructiony;) and M, validation {1,) samples and divide the mea-

surement matrix¥ correspondingly into/; and .

2: Choose multiple values fer such that the exact erry; ¢ — u, || of the reconstruction samples is within the
range ofe values.

3: For eachg, solve @) with u; and ¥, to obtainc, then compute, = ||¥,€ — uylf2.

4: Find the minimum value of, and its corresponding. Sete = VM/M;¢.

We omit the review of the theoretical results for the OMP aB aits variants, and refer interested readers to
the literature [12, 34, 35]. Similar to thig approach, the error estimate for OMP includes a term whigedés
4



on the sparsity ot. This is a critical point that motivates us to propose the nesthod described in the next

section.

2.3. Compressive sensing-based gPC methods

GivenM samples o€, the quantity of interest is approximated by a gPC expansion as in Eq. (1.1):

N
UED = D e +e(€). q=1.2 .M, (2.10)
n=1

which can be rewritten as Eq. (1.3). A typical approach to passive sensing based-gPC is summarized in

Algorithm 2.

Algorithm 2 Compressive sensing-based gPC
1: Generate input samplé8,q=1,2,---, M based on the distribution gt

2: Generate output sampla$ = u(£9) by solving the complete model; e.g., running simulaticdyers, etc.

3: Select gPC basis functior{\gb‘zn},’}':1 associated witl§ and then generate the measurement mafrhbxy setting
Wi = ¢i(€).

4: Solve the optimization probleni( .):

argmin||€|lh, subjecttjW e —ullx <e,
C

whereh = 0 or 1,u = (U}, U?,--- ,uM)T, ande is obtained by cross-validation. If the re-weightgdnethod
is employed, solveI:(‘l’YE) instead.

5. Setc = € and construct gPC expansiond§) ~ Zr’}'zl Cntn(€)-

Note that the RIP condition in Theorem 2.2 idfizient but not necessary; furthermore, it iidult to obtain
the exact RIP constantin practical problems. A more trdetatoperty of the measurement matrix for calculation
is themutual coherencfl2]:

T
MO = R T - Tl 1)
where¥; and ¥y are columns of. In general, a measurement matrix with smaller mutual caines is better
able to recover a sparse solution with the compressiversgnstthod. Note that {zpi (f)zpj(f)} = gij since{yill;
are orthonormal polynomials. Therefore, asymptotical{y#) converges to zeros according to the strong law of
large numbers.

In the next section, we will demonstrate that our new metmadeiases the sparsity ofwithout changing

u significantly, and hence, our method is able to improve thricy of the compressive sensing-based gPC

method.

3. Iterativerotationsfor increasing sparsity

In this section, we provide a heuristic method to identifg totation matrix by computing the eigenvalue
decomposition of a gradient matriX. The rotation increases the sparsity of the gPC expansioggamtity of
interestu with respect to a new set of random variables. The rotatiocguiure is applied iteratively to achieve
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a target sparsity level. The enhancement of the sparsitsedses the second term (sparsity-induced error) on
the right hand side of Eq. (2.8). For the cases where thisgpanduced error dominates the total error of the
compressive sensing method, our new approach improveséhnallbaccuracy.

From Eq. (2.8), we notice that @ is exactly sparse (i.ec = cs for somes* <« N) and if the RIP condition
is satisfied fors > s, then||c — ¢¢|| = 0. Therefore, the upper bound of the error only depends dn practical
problemsgis usually not exactly sparse. But if the truncation eertw suficiently small, then the second term on
the right hand side of Eq. (2.8) dominates the upper boundeo&tror. Hence, in order to improve the accuracy
of the gPC expansion, we need to decrdfse cgl|1/ v/s. However, once the gPC basis functions are selected,
and thereforéic — c4l|1/ /s, are fixed. A natural way to enhance the sparsitg i to find another set of random
variablesy = (1,12, -+ ,ng)", which depend og such that the vectas, Which are the gPC cdiécients ofu with

respect tay, is sparser. In order words, our goal is to sgéR with

N

N
UE) ~ > cn(€) = > Elin@(@) ~ um(©)).
n=1

n=1
such that|& — &4l1 < |Ic - c4l1. Note thatN does not necessarily eqU‘aIand& can be diferent fromd. We will
denote the mapping frogato 7 asg : RY — RRY.

There are several behaviors that our proposed approachexhibtt.

The PDF ofp must be computedjiiently. The first step of generating a new gPC expansion is to obtain
the PDF ofyp. Hence, ifg is complicated, the PDF aj will be difficult to obtain. Even ifg is a simple

function, it can still be diicult to obtain an accurate PDF if the dimension is large.

e The new gPC basis functions associated withust be computedjiiently. If the n; are independent, then
the new gPC basis can be constructed as the tensor produtvafiate basis functions in each dimension.
Although this is not necessary, it will make the construttid new basis functions easier as it avoids the

computation of high-dimensional integrals.

e The properties of the measurement matrix must be prese@Gledrly, the measurement matrix changes as
we introduce new random variables and new basis functiomsn Ehough we may construct a very sparse
¢, if the key properties of the measurement matrix are altewvednuch (e.g., the RIP constant or mutual
coherence increases dramatically), we may be unable tonodaaccurate result with the compressive

sensing method.

¢ No additional output samples must be needegarticular, the existing output samplesq=1,2,--- , M
should be sfiicient. This is especially important for the cases when thdeh(simulation or deterministic

solver) is very costly to compute.

In this work, we focus on the special case of normal distidngé ~ N(0O, /); hence, the; are constructed as
the tensor product of univariate orthonormal Hermite potyials as shown in Eq. (2.1). We aim to find a linear
mappingg : RY - RY such that

1 =9(§) = A¢, 3.1)



whereA is an orthonormal matrix.

If we find this matrixA then all of the aforementioned behaviors can be obtained<iwe thaty ~ N(0, /)
sinceAAT = /. Therefore, the samples gfcan be obtained agl = A£9, where£d are generated at the beginning
(Step 1 in Algorithm 2). Sincg ~ AN(O, /) we can setl; = ¢; and no additional computation is needed. The
difference betweet and ¥ is that the latter is constructed by evaluating orthonorr®imite polynomials at
another set of samples of i.i.d. Gaussian random variablfs,‘i‘ij = z,Zj(qi) = yj(n'). Therefore, the mutual
coherence of/ converges to 0 as that ®f, and the diference betweeg( V) andy(ﬁ/) is O(M~1/2), the deviation
of the Monte Carlo numerical integral from the exact valueo &dlditional samples® are required since the
improvement of accuracy is achieved by enhancing the dpafsjPC codficients.

Given the Hermite polynomials defined above, we have a nearesipn foru:

N N
UE) ~ > (@) = ) Ewn(A€)) ~ u(r) (32)
n=1 n=1

with € sparser thar. In order to obtain thel, we adopt the active subspace approach [28]. We first defene th
“gradient matrix”:

G EE{Vu®) - vu@') = UAUT, UUT =1, (3.3)

where G is symmetric,Vu(€) = (0u/dé1, du/dé, - - - ,0u/dEg)T is a column vector{) = (U, Uy, ---,Ug) is an
orthonormal matrix consisting of eigenvecttfs andA = diag(11, A2, - -+ , A4g) With 13 > A, > --- is a diagonal
matrix with elements representing decreasing variatiagh@gystem along the respective eigenvectors. We choose
A = UT which, as a unitary matrix, defines a rotationRifi and the linear mapping in Eq. (3.1) projectg on
the eigenvectord); . Consequently, when the ftkrences betweeri;| are large,g helps to concentrate the
dependence ofl primarily on the first few new random variablgsdue to the larger variation af along the
directions of the corresponding eigenvectors. Therefseegpbtain a sparserthanc. We note that this approach
of constructingG is similar to the method of outer product gradients (OPGsjatistics [36, 37]. The information
of the gradient ofu is also utilized to improve thefciency of compressive sensing in tgeadient-enhanced
method [38, 39, 40, 22, 24].

Sinceu is not knowna priori, we replace it with its gPC expansiag = YN, cim(€). In prior work by
Constantine and others [28, 17], the expectation is obddiyeaking the average of the Monte Carlo results. In
the current work, we computé differently: after obtaining with compressive sensing method, we construct a

gPC approximationg to u and approximaté& accordingly:

N N T
G~E {v [Z cnu/n(f)) v [Z Crdn (-f)) } . (3.4)
n=1 n=1



The entries ofG can be approximated as:

Gij ~ E{ 3 (Z cnwn(f)) %, [nN Cr v (f))}
{5 E%0)

n=1 =1 (3.5)
Shy Wnl£) 0w (&)
:ZchcnIE{ 3% 3 }
n=1n=1 ! I
= cTKjc,
whereKj; is a “stiffness” matrix with entries
N | O(E) oun(E)
(Kij)ai = ]E{ 2% 3, } (3.6)

Notice thatK;j; can be precomputed singg} are normalized Hermite polynomials (see Appendix for deXat
is ad x d matrix, whered is the number of random variables in the system. Side a symmetric matrix, we
only need to compute(d + 1)/2 of its entries. Furthermore, unlike the active subspadhaukg which focuses on
thesubspacef RY, we keep the dimension and set of basis functions unchanged.

The entire iterative procedure is summarized in AlgorithmT®is algorithm adds post-processing steps to

Algorithm 3 Compressive sensing method with iterative rotations
1: For given random vect@and quantity of interest, run Algorithm 2 to obtain approximated gPC dogents

c.
2: Set countet = 0,7 = ¢, 80 = ¢

3: ConstructG'** with 8" according to Eq. (3.5). Then decompasé? as

GUD = YI+DAD YT 0+ O+ YT

4: Definep(*V) = (U*NTH0, and compute sampleg{V)d = (VD) T (»M)9,q=1,2,---, M. Also, construct
the new measurement matrix!+% with ‘I’i(;’“l) = ¢ (D).

5: Solve the optimization problentP{ .1):
argmin||&ll, subject tg w*De — ull, < €Y,
[

and sect*D = &. If reweightf; method is employed, solv@X"EM) instead.
6: Setl =1+ 1. If |||U(')|I1 - d| < 6, where the thresholdis a positive real number, then stop. Otherwise, go to

Step 3.

Algorithm 2, which is designed to increase the accuracy ofifp@ssive sensing based gPC method.
5, we use notatioa!*? since the estimated error at iteratiba 1 may be diferent frome. According to our
numerical experiments (see Sec. 4), it is usualljisient to test two or three fierent values one[/5, €] in the
cross-validation procedure (see Algorithm 1) to obdir.

In Algorithm 3, we propose a terminating condition based loa# norm of the rotation matrix in each
iteration: S(U®) %' S UL 1f UY s the identity matrix or a permutation matrix, we need naHar

8
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iterations, an&(U") = d. Otherwise S(UV) > d sincel|U"|, = 1 and

2
“Ui(l)||i:[§;|wi“))jl] U2 > OO > 1 (3.7)

1<jksd,j#k

Hence, one may set a threshéldnd the iteration stops whé®(U") — d| < 6. Empirically,# can be set around
0.1d ~ 0.2d. More sophisticated terminating conditions (e.g., Sparsi e estimates) are also possible. A
rigorous theoretical analysis on the convergence beh&vioot available at this time. The criterion presented
here provides an approach to estimate, to some extend, evhmih method converges. Empirically, when this
stopping criterion is satisfied, additional iterationslwibt improve the accuracy significantly. We also note
that the simplest terminating condition in Step 6 is to seteximum iteration stepk. Based on our numerical
examples in Sec. 4, this simple condition can also be uséfufjeneral, the f&ciency of our method depends on
the intrinsic sparsity of the system, i.e., whether theeysmainly relies on a small amount of subspaces. The
fewer subspaces the system depends on, the better perfmrrmanmethod exhibits. Otherwise, this method is
less dtfective, e.g., an extreme casel(§) = Zid:l &2, for which the iterative rotations based on current franméwo

does not help.

4. Numerical results

In this section, we present five numerical examples to detreteshe &ectiveness of our new method. The
accuracies of dierent methods are measured by the reldtiverror: (Ju — ugll2)/||ull2, whereuy is the Hermite

polynomial expansion af. The integral

1/2
@ = [ uernere] @)

(and|ju — ugll2) is approximated with a high-level sparse grid method wiigdbased on one-dimensional Gauss-
Hermite quadrature and the Smolyak structure [41]. The téguel” p means that the algebraic accuracy of the
sparse grid method ig®2- 1. We useP to denote the truncation order, which implies that Hermdkypomials up
to orderP are included in expansian. Hence, the number of unknowns can be computed ag( ”;?).

The relative errors we present in this section are obtaired 100 independent replicates for each sample size
M. For example, we generate 100 independent sets of inputlea#fipg = 1,2, ---, M, compute 100 dierent
relative errors, and then report the average of these enoples. To investigate théfectiveness of the increasing
of output samples, we set theaxis in our figures as the ratid/N which is the fraction of available data with
respect to number of unknowns. We use MATLAB packapeL1 [42, 43] to solve Py ) as well as P‘l’YE) and
useSparseLab [44] for the OMP method. If not otherwise indicated, resalts obtained with. = 3 iterations in

Step 6 of Algorithm 3.

4.1. Example function with equally important random valésh

Consider the following function

Q.

2 3
g—‘i] +o.025[2§i] , (4.2)

i=1

d
u(é) = Zfi + o.25{
i=1 i

d
-1
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Figure 1: Results for the example function with equally imant random variables. (Left) Comparison with themethod. ©™: ¢4, “[0™:
rotated¢; with 3 iterations, &”: rotated¢; with 6 iterations, ¢”: rotated¢1 with 9 iterations, %": re-weighted/;1. (Right) Comparison with
the OMP method. &": OMP, “[1": rotated OMP with 3 iterations,>”: rotated OMP with 6 iterations,<": rotated OMP with 9 iterations.

These calculations were performed with dimension 12 and the number of unknowié= 455.

where all§ are equally important. In this case, adaptive methods thiéd the surrogate model hierarchically
based on the importance&f(e.q., [45, 46, 47, 48]) may not béieient. A simple rotation matrix for this example

has the form
d—1/2 d—1/2 d—1/2

bS]

whereA is a (d - 1) x d matrix chosen to ensure thatis orthonormal. Given this choice fo, theny, =

(2%, &)/dY2 andu has a very simple representation:
u(€) = u(y) = d2n; + 0.25dn3 + 0.025d0% 273,

Therefore, as we keep the set of the basis functions uncHaalljghe Hermite polynomials not relatediipmake
no contribution to the expansion, which implies that we obéavery sparse representationnfUnfortunately,
the optimal structure is not knowapriori, hence, the standard compressive sensing cannot taketageanf it.

In this test, we setl = 12 (henceN = 455 forP = 3) and demonstrate théfectiveness of our new method.
The integrals for calculating thie, error are computed by a level 4 sparse grid method, henceatteegxact.
The relative error of; minimization and OMP are presented in Fig. 1. Clearly, ta@dard/,; minimization and
OMP are not &ective as the relative error is close to 100% even wikigN > 0.4. Also, the re-weighteé; does
not help in this case. However, our new iterative rotatiomdestrates much better accuracy, especially when
M is large. As demonstrated in Fig. 2 the iterative rotaticzates a much sparser representation, difence the
efficiency of compressive sensing method is substantiallyresgth We notice that the accuracy increases as more
iterations are included. However, the improvement frome6aitions to 9 iterations is less significant as that from
3 iterations to 6 iterations, especially for the OMP-bagderhtive rotation method. In general, the improvement

afforded by iterative rotation becomes small after 3 iteration
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Figure 2: Magnitude of the gPC cieients for the example function with equally important ramdvariables. (Left) Magnitude af,. (Right)
Magnitude ofc;, of a randomly chosen replicate computed by rotdtedith 9 iterations andM = 180 (M/N =~ 0.4). These calculations were

performed with dimensiod = 12 and the number of unknowihs = 455.

This contrived example demonstrates that our new methaapialde of enhancing the sparsity of the Hermite

polynomial expansion, even with a very inaccurefein Step 2 of Algorithm 3 when other methods fail.

4.2. Example function with high compressibility

Consider the following function:

P N
UE) = ) Cathal®) = D (), €= (€162 ,Ea), (4.3)
n=1

|a|=0
where,J, are normalized multivariate Hermite polynomiads= 12, P = 3,N = 455, and the cd&cientsc, are

chose as uniformly distributed random numbers,
Cn=¢/S ¢~ U-L1]. (4.4)

For this example, we generatesamples of: ¢, 72, .-+, ¢N then divide them by'>,n = 1,2,--- | N to obtain

a random “compressible signat. The integrals for the relative error are computed by a ldvsparse grid
method and are therefore exact. Figure 3 shows the theveskatior with diferent numbers of iterations (1-3)
for the £; minimization and OMP methods. Our new iterative rotatiorthod improves the accuracy of the gPC
approximation for both methods. As before, benefit of inseekiterations drops sharply ndar 3. Therefore,
in the remainder of this paper we ulse-= 3 iterations unless otherwise noted.

Figure 4 shows results obtained by applying our iteratiation technique to the re-weightéd approach
usingL = 3 iterations. The results for the iterative rotation apptoor OMP are also presented in Figure 4. For
all methods, introduction of the iterative rotation apmioémproves the results. A comparison of the sparsity of
c andc’is presented in Fig. (5). The main improvement is that thelmemof codficients with magnitude larger
than Q01 is decreased. Als(g,| cluster around the ling,| = 1/n'° as we set them in this way, while majiy|

are much below this line especially wheis large.

11
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calculations were performed with dimensids= 12 and number of unknowrs = 455.
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Figure 4: Results for the example function with high comsitaifity. (Left) Comparison withY; methods. ¢”: standardéy, “»": re-weighted
£1, “[0": rotated(s, “o": re-weighted and iteratively rotated. (Right) Comparison with OMP methods:™ OMP, “[1": rotated OMP. These

calculations were performed with dimensids= 12 and number of unknowrs = 455.

4.3. Example elliptic dferential equation

Next we consider a one-dimensional ellipti¢fdrential equation with a random high-order fiagent:

—d—dx(a(x; g)%) =1, xe€(0,1)

(4.5)
u(@)=u(1)=0,
wherea(x; £) is a log-normal random field based on Karhunen-Loéve (Kpegsion:
d
a(x; €) = ao(x) + exp| o | VA& |, (4.6)
i=1

where{&} are i.i.d. standard Gaussian random variab{leﬁle, and {¢i(X)}id:1 are the largest eigenvalues and

corresponding eigenfunctions of the exponential covagdwrnel:

C(x,X) = exp(lx_ X/|). 4.7)

le
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Figure 5: Magnitude of the gPC ddeients for example function with high compressibility. {eéVlagnitude ofc,. (Right) Magnitude of
€, of a randomly chosen replicate computed by re-weighted tndtively rotated’; with M = 180 (M/N ~ 0.4). These calculations were

performed with dimensiod = 12 and the number of unknowihs = 455.

In the KL expansiony; denotes the eigenvalue of the covariance keBiel x’) instead of entries ok in Eq. (3.5).
The value of; and the analytical expressions farare available in the literature [49]. In this example, we set
ap(X) = 0.1,0 = 0.5,l; = 0.2 andd = 15. With this settingZ?=1 A > 09337, 4. For each input sampl#, a

andu only depend orx and the solution of the deterministic elliptic equation ta&vobtained as [15]:

u(x) = u(0) + f (O)u(((;/; — dy. (4.8)
By imposing the boundary conditiarf0) = u(1) = 0, we can computa(0)u(0) as
1 1
a(0)u(0y = ( fo %dy) / ( fo %dy). (4.9)

The integrals in Egs. (4.9) and (4.8) must be obtained bylhiatcurate numerical integration. For this example,
we choose the quantity of interest to b, &) at x = 0.35. We aim to build a 3rd-order Hermite polynomial
expansion which includel = 816 basis functions. The relative error is approximated bgval-6 sparse grid
method. Figure 6 shows that accuracy of the re-weighite@ iterations) and the iteratively rotatéd (L = 3
iterations) method are very close in this case. Figure 6 shibw results of the iterative rotation process applied
to the OMP method. In all cases, the incorporation of iteeatbtation improves the performance of the other
methods. A comparison af and ¢ are presented in Fig. 7, which shows the improvement of taesgly in the

similar manner as in example function with high compreégjlin Sec. 4.2.

4.4. Example Korteweg-de Vries equation
As an example application of our new method to a more conglitand nonlinear éerential equation, we

consider the Korteweg-de Vries (KdV) equation with timgzeirdent additive noise [50]:

U(X, t; €) — BU(X, t; E)Uux(X, 1 €) + Uxux(X, 1, §) = T(1;€), X € (—00,00),
u(x, 0;&) = —2 secli(x).

(4.10)

Defining t
W(t ) = fo (y: £)cly, (4.11)
13
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These calculations were performed with dimension 15 and the number of unknowiné= 816.

-8

10

10

Figure 7: Magnitude of the gPC cieients for example elliptic dierential equation. (Left) Magnitude af. (Right) Magnitude ofc; of a
randomly chosen replicate computed by re-weighted anatitety rotated’; with M = 240 (M/N =~ 0.3). These calculations were performed

with dimensiond = 15 and the number of unknowihs= 816.

the analytical solution of Eq. (4.10) is
t
u(x, t; €) = W(t; £) — 2 sechi (x — 4t + 6f W(z, .f)dz). (4.12)
0

We modelf (t; £) as a Gaussian random field represented by the following Klaesion:
d
f(t6) = o ) VAs(Dé, (4.13)
i=1

whereo is a constant an(Mi,qbi(t)}id:l are eigenpairs of the exponential covariance kernel as § @g6) and
(4.7), respectively. In this problem, we dgt= 0.25 andd = 10 (Zid:l/li > 0.963,7, 4). In this case, the exact

one-soliton solution is

d t d t z
16) = iSi [ - Rl x— iSi [ . .
u(x t; €) 0'211 ﬁgf0¢(y)dy 2 sech|x 4t+60-; ﬁgfofo¢(y)dydz (4.14)
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Since an analytical expression f@ris available, we can compute the integrals in Eq. (4.14) Wigfh accuracy.

Denoting
t t z
A = x/ﬂ_ifo gi(y)dy, B = x/ﬂ_ifo fo giy)dydz. i=12-.d, (4.15)

the analytical solution is

d d
UGt )| gy = 0 D A — 25eCh [2 +60 ) Bigi]. (4.16)
i=1 i=1

The quantity of interest is chosen to bigg, t; £) atx = 6,t = 1 with o = 0.1, P = 4, and the number of gPC basis
functionsN = 1001. For this example, the combined iterative rotationrardeighted; method outperforms all
other approaches. However, unlike previous examples therotated re-weighteé; method works better than
our iteratively rotated unweighted method. Thiffelience likely arises becausas sparser in this case than in
others, which makes re-weightéd method more ficient. The pattern of sparsity in this case ifelient than
previous examples, hence th@aency of identifying a good rotation matrid is different. A comparison of

andcare presented in Fig. 9, which shows the improvement of thes@tg by the iterative rotation method.

4.5. Example high-dimensional function
The previous examples demonstrate the capability of ourmethod to solve moderately high-dimensional
problems. In the last example, we illustrate its potentialdealing with higher-dimensional problems. Specially,

we select a function similar to the first example (Sec. 4.1)th much higher dimensionality:

d d 2
u@ = &+ 0.25[2 &/ \fi] . d=100 (4.17)
i=1 i=1

The total number of basis functions for this exampl&lis= 5151. The relative error is computed with a level-3
sparse grid method, hence the numerical integrals are.ekhetresults are presented in Fig. 10. As before, our
iterative rotation approach out-performs the existingnd OMP methods. A comparisonofndc’is presented

in Fig. 11 and it shows the enhancement of the sparsity byténative rotation method.
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Figure 10: Results for the example high-dimensional fumcti(Left) Comparison withf; methods. &”: standard(q, “[J": rotated¢1 with 1
iterations, $": rotated¢1 with 2 iterations; ¢”: rotated ¢, with 3 iterations. (Right) Comparison with OMP methods!"! rotated OMP with
1 iterations, 5" rotated OMP with 2 iterations;¢”: rotated OMP with 3 iterations. These calculations werdgrened withd = 100 and the

number of unknown®l = 5151.

For general high-dimensional problems, simply truncatimg gPC expansion up to a certain order is not
efficient because the number of basis function will be very lakgg example, in this tesB = 2 requires 5151
basis functions. Under such conditions even a s = 0.2 needs 1030 samples, which can bgidlilt in
practical problems when the computational model is verylgobklence, a good approach for high-dimensional
problems is to integrate our iterative rotation method veithadaptive method to redudk e.g., adaptive basis

selection [22] or an ANOVA method [47]).

4.6. Accuracy of computing the expansionfioentsc

In many applications, gPC expansions are also used to shedyensitivity of the quantity of interest to the
input random variableg. In order to perform this analysis, we need to transformutg) = Zr'le Cntn(n) back
to the original variablesy(¢) = Z,’}Ll Cnn(€). This transformation can be accomplished through ineersi A
inp = A¢. In Figures 12 and 13, we present the ffi@@ents ofug(¢€) in examples 4.1 and 4.4, respectively. In
16
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Figure 12: Comparison of gPC dtieients for the example function with equally important ramdvariables (Sec. 4.1). (Left) Cieients
calculated by the standard method. ¢”: exact|ci|; “=™: |c| by standard’; method. (Right) Coécients calculated by our new iteratively

rotatedf, method withL = 9 iterations.

both figures we randomly choose one test from the 100 repcdib Figure 12, we select a result with= 180
(M/N =~ 0.4). Using the standaréi method (left) gives very inaccurate results torHowever, Figure 12 (right)
shows that the iterative rotation method with= 9 iterations gives much more accurate resultscfdiVe observe
the same behavior in Figure 13, where we chose a testwith120 (M/N ~ 0.12) for the example KdV equation
(Sec. 4.4). In order to make this figure legible, we only pnéskosec; with absolute value larger than 10
This example demonstrates that ffaentsc, with magnitude larger than 1®are computed accurately by the
combined iterative rotation and re-weightgdmethod while the standam obtained significantly less accurate
cn. This difference is more distinct fac,| € [1074,1073]; in this range our new method compugemuch more
accurate than the standdkdmethod. In the lower right corner of the left plot, the stamifa method yields many

¢y which should not appear in that area. As a comparison, we tiseosuclt, calculated with the new method.

17



10'éi @ 3 10_5% ®
® ®
107} 107 ®
° 3
—= = 2] (=)
Q . < =
— 107} 107 e @ o
% 8
® o ? 8
107 107} 8 ® Q
T, %8
10° 10° . %Q § * % |
10° 10° 10 10° 10°

Figure 13: Comparison of gPC daeients for solutions of the KdV equation (Sec. 4.4). (Lefoefficients calculated with the standafd
method. " “exact” |¢j|; “+": |¢| by standard’; method. (Right) Coicients calculated by our new iteratively rotated re-weaglfy method

(right). Only|ci| > 10°° are presented.

5. Conclusions

In this paper, we extend our previous work [17] and have thined a compressive sensing-based gPC method
to increase the sparsity and accuracy of Hermite polynaewjansion with iterative rotations. Similar to the active
subspace method [28, 17], the rotation is decided by sed¢h@directions of maximum variation for the quantity
of interest. Our current numerical examples are intendetbtoonstrate the ability of the method to increase the
sparsity and accuracy of the gPC expansion; therefore hetity of interest only relies on the random variables.
It is also possible to include the physical variables in thsidfunctions, i.ely(x; &) = X, can(X; €) (e.g, [16]),
our future work will explore how this new method may help torase the sparsity in such cases.

We have demonstrated the method fpminimization and OMP methods but it can also be integratet wi
other compressive sensing methods. In particular, futark will investigate the integration of our new methods
with advanced sampling strategies (e.g., [20]), adaptassbselection method (e.g., [22]), Bayesian compres-
sive sensing method (e.g.,[16]), etc. These advanceegiestare particularly important for high-dimensional
problems.

With this method, we will also be able to construct an aceausairrogate model of the quantity of interest
with limited data. Surrogate models are specifically usifuthe problems where the experiments or simulations
are very costly. This surrogate model can be used to studyehsitivity of the parameters and is very useful in
inverse problems based on Bayesian framework. Our new me#tuires fewer output data to construct such
surrogate models, which can be a great savings of experinantomputational resources.

Finally, we highlight three additional areas of future wéskimproving the new method. First, it is currently
only suitable for Hermite polynomial expansions. Secohd,rtew method requires a formal numerical analysis
to assess convergence behavior and determine specifietging criteria. Finally, there are likely more optimal
iterative rotation strategies that can be applied to Hermitlynomial or other expansions. One possible direction
of work is to design a suitable objective function and coesithis problem from an optimization point of view.

All of these questions will be addressed in our future work.
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Appendix

Here we provide the details of computing the elemelitg in Eqg. (3.6). Notice that for univariate normalized

Hermite polynomials,
Un(é) = Vg 1(é), neNU{0}, (A-1)

where we se_1(¢) = 0 for simplicity. Therefore, we have
B (@ 0,)] = [ 0@ @00 = Visi, (A-2)

wherep(¢) is the PDF of a standard Gaussian random variable. For &mdéxa = (a1, a2, - - , ag), @i € NU{0},

and basis funCtiomw(‘f) = 'pal (é:l)';baz (‘52) e lp(ld (é:d)v

9 d
—Val€) = Yur (&) | | Wom&m)- (A-3)
6§| m:1
ML
Hence, given two dierent multi-indicesv, = ((av),. (@),. - - - » (av),) andey = ((@1),. (@),, - - -, (a1),), the corre-
sponding entry of matrix; is
e 0w @)
(ko = E{ o8 o }
d d
= B3| Yo, @) | [0, G |- [, &) | | ¥en, Em (A-4)
et ey
= (@, (@),60, 1), 0@, @), 1 | | Omenn
m=1
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