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Abstract

This paper is concerned with a lesser-studied problem in the context of model-

based, uncertainty quantification (UQ), that of optimization/design/control un-

der uncertainty. The solution of such problems is hindered not only by the usual

difficulties encountered in UQ tasks (e.g. the high computational cost of each

forward simulation, the large number of random variables) but also by the need

to solve a nonlinear optimization problem involving large numbers of design vari-

ables and potentially constraints. We propose a framework that is suitable for

a large class of such problems and is based on the idea of recasting them as

probabilistic inference tasks. To that end, we propose a Variational Bayesian

(VB) formulation and an iterative VB-Expectation-Maximization scheme that is

also capable of identifying a low-dimensional set of directions in the design space,

along which, the objective exhibits the largest sensitivity. We demonstrate the

validity of the proposed approach in the context of two numerical examples in-

volving O(103) random and design variables. In all cases considered the cost
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of the computations in terms of calls to the forward model was of the order

O(102). The accuracy of the approximations provided is assessed by appropriate

information-theoretic metrics.1

Keywords: Uncertainty Quantification, Variational Bayes, Optimization,

Dimensionality reduction, Dictionary Learning

1. Introduction-Motivation

With the increased computational capabilities afforded by the utilization of

peta- and exa-scale computing resources throughout engineering and the physical

sciences, the issue of confidence in simulation results has come at the center of

current research. The objective of obtaining a nominal computational represen-

tation of a physical process is being replaced by the new paradigm of predictive

simulations where the analysis delivers a quantification of uncertainty due to ran-

domness in parameters, data or models. Decisions that are based on high-fidelity

computational simulations due to their potential economic or societal impact

cannot be accepted without quantitative information on the confidence in the

computed result.

The field of model-based, uncertainty quantification has seen marked ad-

vances in recent years. Naturally, the majority of the efforts have been directed

towards forward uncertainty propagation i.e. the computation of output statis-

tics given input uncertainties. While several important challenges still remain

unanswered, the ultimate objective of the analysis of physical processes and en-

gineering systems is to enable their control and optimization with respect to

1 This paper is based on the homonymous talk given during the international symposium
on ”Big Data and Predictive Computational Modeling” that took place in 18-21 May 2015 at
TUM-IAS, Munich Germany.
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design objectives. Problems of optimization in the presence of uncertainty have

attracted much less attention. On one hand, this is because they encompass

all the difficulties encountered in uncertainty propagation. First and foremost

the complexity of the forward problem and the increased computational expense

associated which each call to the forward solver. It is generally the number of

such forward solves that determines the overall computational cost. Secondly,

the high-dimensionality of the vector of random variables. Especially in cases

where spatiotemporal discretizations of random processes and fields are neces-

sary, one must frequently deal with thousands of random variables. Furthermore,

in stochastic optimization problems, there is the additional need to solve a de-

manding, nonlinear optimization problem which might itself involve thousands of

design variables as well as equality/inequality constraints,

Significant advances have been achieved in deterministic optimization and

control of complex systems particularly with the development of adjoint-based

techniques [1, 2, 3] as well as by making use of reduced-order modeling techniques

[4, 5]. Nevertheless their direct application in the stochastic counterparts of

these problems would be infeasible or impractical as the integration with respect

to uncertainties poses an insurmountable task.

While decision-making under uncertainty was pioneered in the 1950s [6],

applications to large-scale physical models are scarce due to the inherent com-

putational difficulties. Advances in stochastic/robust control and optimization

[7, 8, 9] or reliability-based design optimization [10, 11] are generally applicable

to small systems or rely on specific system structure. Techniques using surrogate

models and response surfaces [12] or generalized Polynomial Chaos expansions

[13] might fail to provide good approximations if the number of uncertainties
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is large, irreducible or non-Gaussian. Furthermore, there is a difficulty in quan-

tifying the error introduced due to the discrepancy between the surrogate and

reference model. A critical problem in that respect is the ability to deal with noisy

evaluations of the objective functions, its gradient and higher-order derivatives.

The stochastic optimization framework advocated in the present paper is

motivated by the following desiderata:

• The ability to seamlessly utilize deterministic (legacy) simulators and de-

terministic optimization components such as a first and second order para-

metric derivatives of model outputs.

• The ability to deal with high-dimensional vectors of random and design

variables.

• Least possible number of forward solutions

• The ability to quantify the robustness of the identified optimum and provide

information on the design features that exhibit the largest sensitivity.

• The ability to utilize even highly-approximate, reduced-order models or

surrogates in order to expedite the solution process.

The objective functions considered in this paper can be written in a general

form as:

V (z) =

∫

U(θ, z) pθ(θ) dθ (1)

where θ ∈ R
dθ denotes the vector of random variables with a probability density

function pθ(θ) and z ∈ R
dz denotes the vector of design variables. The function

U(θ, z) depends on the output of the mathematical model and in turn, implicitly
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depends on random and design variables. Each evaluation of U(θ, z) implies a

forward model solution which is assumed expensive as in most challenging appli-

cations. Naturally the optimization problem can be augmented with constraints

with regards to the design variables as it will be demonstrated in the stochastic

topology optimization problem that will be considered in the last section. We

adopt the term utility function (opposite of a loss function) for U(θ, z) and ex-

pected utility for V (z) and, without loss of generality, pose the corresponding

problem as one of maximization.

The formulation above is quite general and can be readily adapted to cases

of practical interest. For example if U(θ, z) = 1A(θ, z) is the indicator function

of an event A of interest (e.g. failure, or exceedance of a response threshold)

then maximizing V (z) in Equation (1) is equivalent to the maximization of the

probability associated with the eventA (similarly one can minimize the probability

of event A by employing the indicator function of the complementary even Ac

in place of U in Equation (1)). The case that would be of principal concern in

this paper involves utility functions of the following form 2:

U(θ, z) = exp{−1

2
‖ Q1/2(utarget − u(θ, z)) ‖2} (2)

where u(θ, z) ∈ R
n denotes an output vector of interest (i.e. displacements,

velocities, temperature etc), utarget ∈ R
n a target/desired response and Q a

positive definite matrix of choice (in the current examples Q = τQIn). Maxi-

mizing the corresponding expected utility implies finding z for which the response

2As it will become apparent in the subsequent derivations, the exponent in Equation (2)
is used in order to simplify the presentation and several other options to the same effect are
possible.
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quantities of interest are, on average, as close (in the norm defined by Q) to the

target values utarget. Similar objective functions have been employed by [14] to

identify random composites with target effective/homogenized properties and in

[15] in the context of computational mechanics. In addition, related stochastic

design/control objectives have been proposed in [16] and [17].

The obvious strategy for maximizing the expected utility in Equation (1) is

stochastic approximations such as noisy gradient ascent which, in its simplest

form, iterates as follows:

z(t+1) = z(t) + ηtĝt (3)

where ĝt is a noisy (unbiased) estimator of the gradient:

∇zV (z(t)) =

∫
∂U(θ, z(t))

∂z
pθ(θ) dθ (4)

and ηt a sequence of learning rates that satisfy
∑∞

t=0 ηt = +∞ ,
∑∞

t=0 η
2
t < +∞

[18, 19]. While convergence to a (local) maximum is assured under fairly weak

conditions [20, 21] even when a single sample of θ from pθ(θ) is used in the

context of a basic Monte Carlo estimate of ĝt, the convergence rate can be slow

requiring an exuberant number of forward calls to evaluate U and/or ∂U
∂z

.

An alternative perspective to the problem was proposed in [22] where it was

recast as a probabilistic inference task. In particular one defines an auxiliary

probability density paux(θ, z), jointly on random and design variables, as follows:
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paux(θ, z) ∝ U(θ, z)pθ(θ) (5)

The marginal paux(z) ∝
∫
paux(θ, z) dθ is clearly proportional to V (z). If for

example one could sample from the joint density paux(θ, z), the z−coordinates

will be marginally distributed according to V (z) and populate regions where this

attains its maximum value(s).

The proposed reformulation allows for a uniform treatment of random θ and

design variables z. More importantly, being able to infer paux(z) (or a good

approximation thereof) will not only lead to point estimates for the maxima of

the expected utility V (z) (which coincide with the maxima of paux(z)) but also

provide valuable information about the sensitivity of the latter with respect to

z and therefore the robustness of the selected optimal design [23]. Sequential

Monte Carlo strategies have been previously employed [24, 25, 23] with significant

success in identifying multiple local maxima as well as utilizing approximate,

surrogate models to expedite the inference task. Nevertheless the computational

cost can still be significant as they potentially require a few thousand forward

calls.

In this work we advocate an alternative probabilistic inference framework,

namely Variational Bayes (VB) [26, 27]. Such methods have risen into promi-

nence for probabilistic inference tasks in the machine learning community [28,

29, 30]. They provide approximate inference results by solving an optimization

problem over a family of appropriately selected probability densities with the ob-

3For the definition of paux to be valid, it suffices that U is non-negative. The formulation
can also account for U that take negative values as long as it is bounded from below i.e.
U(θ, z) ≥ U0 > −∞ (U0 < 0), in which case one can use U(θ, z)− U0 in place of U(θ, z)
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jective of minimizing the Kullback-Leibler divergence [31] with the target density

(in our case paux). The success of such an approach hinges upon the selection

of appropriate densities that have the capacity of providing good approximations

while enabling efficient (and preferably) closed-form optimization with regards to

their parameters.

A pivotal role in Variational Bayesian (VB) strategies or any other inference

method, is dimensionality reduction i.e. the identification of lower-dimensional

features that provide the strongest signature to the random variables and as-

sociated distributions. Discovering a sparse set of features has attracted great

interest in many applications as in the representation of natural images [32] and a

host of algorithms have been developed not only for finding such representations

but also an appropriate dictionary for achieving this goal [33]. While all these

tools are pertinent to the present problem they differ in a fundamental way. They

are based on several data/observations/instantiations of the vector that we seek

to represent. In our problem however we do not have such direct observations

i.e. the data available pertains to the output of a model which is nonlinearly

and implicitly dependent on the vector of latent variables. Furthermore we are

primarily interested in approximating the distribution associated with this vector

rather than the dimensionality reduction itself. More importantly, only dimen-

sionality reductions that are informative about the optimization objectives should

be sought.

A premise validated in a series of papers on the so-called “sloppy” models [34]

is that in several cases there exists a limited number of parameter combinations

to which the outputs are sensitive. The overwhelming majority of directions are

sloppy i.e. they embody parameter correlations that have minor influence in the
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response and correspond to removable degrees of freedom. In the context of

inverse problems it was found [35, 36, 37] that such features of the parameters

can be associated with the eigenvectors of an appropriate Hessian or Fisher

Information matrix corresponding to small eigenvalues. Along these lines and

by using a fully probabilistic argumentation we develop a reciprocal probabilistic

PCA 4 scheme where eigenvectors of smallest variance are iteratively computed

and are employed not only for solving the probabilistic inference problem but for

identifying the most sensitive design parameter combinations for the stochastic

optimization objective.

The rest of the paper is organized as follows: The next section (Section 2)

presents the essential ingredients of the VB framework advocated, the dimen-

sionality reduction scheme proposed and an iterative, coordinate-ascent algorithm

that enables the identification of all the unknowns. Section 3 demonstrates the

performance and features of the proposed methodology in two problems from

heat conduction and solid mechanics involving O(103) random and design vari-

ables.

2. Methodology

As discussed in the introduction we formulate the optimization-under-uncertainty

problem as one of probabilistic inference. To that end our goal is two-fold. Firstly,

to compute efficiently an accurate approximation of the marginal density on the

design variables z which provides a representation of the expected utility V (z).

4 We use the term reciprocal to distinguish from probabilistic PCA schemes [38] where one
is interested in identifying the directions with the largest variance. In contrast, in the current
setting as it will be explained later on, we are interested in the directions with lowest variance
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Secondly, to identify a lower-dimensional subspace with regards to the design

variables z that provides an assessment of the solution’s robustness by discover-

ing the most sensitive directions i.e. the directions along which, variations in z

will cause the largest decrease in the expected utility V (z). Such directions have

been proven useful in deterministic design tasks [39]. Apart from their obvious

utility, they can also facilitate the inference task discussed previously. More im-

portantly perhaps we propose a unified framework where the identification of the

aforementioned lower-dimensional subspace is performed simultaneously with the

inference of the associated densities under the same Variational Bayesian objec-

tive. This yields not only a highly efficient algorithm (in terms of the number

of forward solves) but also a highly extendable framework as discussed in the

conclusions.

We discuss first the parametrization advocated, identify latent variables and

model parameters (Section 2.1) and subsequently demonstrate how the asso-

ciated inference and learning tasks can be simultaneously addressed in the VB

framework (Section 2.5). We finally present validation metrics that quantitatively

assess the quality of the approximations derived (Section 2.6).

2.1. Parametrization - Dimensionality Reduction

Consider the auxiliary density paux(θ, z) defined in Equation (5). This can

be further extended by the introduction of an additional density pz(z) as follows:

paux(θ, z) =
U(θ, z)pθ(θ) pz(z)

Z
, Z =

∫

U(θ, z)pθ(θ) pz(z) dθ dz (6)

where pz(z) is the analog of the regularization term in a deterministic optimiza-

tion problem. In many ways Equation (6) is a restatement of Bayes’ rule with
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respect to θ, z:

p(θ, z|data) = p(data|θ, z) p(θ, z)
p(data)

(7)

where pθ(θ) pz(z) play the role of the prior, U(θ, z) is the likelihood and

paux(θ, z) is the posterior. The connection is more apparent when one con-

siders the utility function of interest in this work (Equation (2)) in which case:

paux(θ, z|utarget) =
e−

1
2
‖Q1/2(utarget−u(θ,z))‖2pθ(θ) pz(z)

Z
(8)

Clearly the target response utarget is the direct analog of the “data” in Equa-

tion (7) and the role of marginal likelihood or model evidence term p(data) is

played by the normalization constant Z [16]. We make use of this connection

frequently to motivate the modeling choices made, particularly with regards to

the regularizations or priors which are terms that we use interchangeably.

The inference task in such a case would be formidable given the high dimen-

sionality of θ, z and the cost associated with each evaluation of U as previously

discussed. To address this, we propose the following decomposition of the design

variables z ∈ R
dz :

z
︸︷︷︸

dz×1

= µz
︸︷︷︸

dz×1

+ W
︸︷︷︸

dz×dy

y
︸︷︷︸

dy×1

+ ηz
︸︷︷︸

dz×1

(9)

The motivation behind such a decomposition is quite intuitive as it resembles a

Principal Component Analysis (PCA) model [38]. The vector µz captures the

central/mean value of z, y are the reduced (and latent) coordinates of z along

the linear subspace spanned by the dy columns of the matrix W and ηz the

residual “noise”. As in PCA, the premise is that a few y i.e. dy << dz suffice

to capture the density of z. In contrast though with PCA where the reduced
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coordinates are associated with the principal directions of largest variance, the y

employed here should do the exact opposite i.e. identify directions with smallest

variance that imply largest sensitivity. We explain this in more detail in the next

Section.

The linear decomposition of a high-dimensional vector such as z has received

a lot of attention in several different fields. Most commonly z represents a high-

dimensional signal (e.g. an image, an audio/video recording) and W consists

of an over- or under-complete basis set [32, 40] which attempts to encode the

signal as sparsely as possible. Significant advances in Compressed Sensing [41]

or Sparse Bayesian Learning [42] have been achieved in recent years along these

lines. A host of deterministic [43] or probabilistic [44] algorithms have been

developed for identifying the reduced-coordinates y as well as techniques for

learning the most appropriate set of basis W (dictionary learning) i.e. the one

that can lead to the sparsest possible representation.

We adopt a simpler representation for the input random variables θ ∈ R
dθ :

θ
︸︷︷︸

dθ×1

= µθ
︸︷︷︸

dθ×1

+ ηθ
︸︷︷︸

dθ×1

(10)

the usefulness of which will become apparent in the sequel. In a fully probabilistic

setting all the aforementioned parameters (y,ηz,ηθ,µz,W ,µθ) and the corre-

sponding densities arising from Equation (6) would be sought. Such an inference

problem would in general be formidable particularly with regards to µz,W , whose

dimension is dominated by dz >> 1. To address this difficulty we propose com-

puting point estimates for µz,W ,µθ while quantifying the appropriate densities

for y,ηz,ηθ. We distinguish therefore between:
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• the latent variables y,ηz,ηθ.

• and model parameters R = {µz,W ,µθ}.

The computation of appropriate distributions for the latent variables and point

estimates for R will be addressed simultaneously under the VB framework dis-

cussed in the sequel.

2.2. Variational Bayesian approximation

Given the re-parametrization of the primal variables θ, z in Equations (9),

(10), one can write the target auxiliary density as:

paux(y,ηz,ηθ,R) =
U(µθ + ηθ,µz +Wy + ηz)pθ(µθ + ηθ)py(y)pηz(ηz)pµz(µz)pW (W )

Z
(11)

where in place of the regularization pz(z) on z we employ regularizations (priors)

on the corresponding parameters y,ηz and µz,W (Equation (9)). As discussed

earlier rather than approximating the whole paux which would pose significant

difficulties, we seek point estimates for R by maximizing the (marginal) density

paux(R):

paux(R) =

∫

paux(y,ηz,ηθ,R) dy dηz dηθ (12)

Such a maximization would amount to an analog of Maximum-A-Posteriori

(MAP) estimates in a Bayesian setting.

To that end, for any density q(y,ηz,ηθ) on the latent variables and by em-
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ploying Jensen’s inequality we obtain that [30]:

log paux(R) = log
∫
paux(y,ηz,ηθ,R) dy dηz dηθ

= log
∫
q(y,ηz,ηθ)

paux(y,ηz ,ηθ,R)
q(y,ηz ,ηθ)

dy dηz dηθ

≥
∫
q(y,ηz,ηθ) log

paux(y,ηz ,ηθ,R)
q(y,ηz ,ηθ)

dy dηz dηθ

= F(q(y,ηz,ηθ),R)

(13)

The variational lower bound F given above has an intimate connection with

the KL-divergence between q(y,ηz,ηθ) and the conditional density paux(y,ηz,ηθ|R) =

paux(y,ηz ,ηθ,R)
paux(R)

which can be expressed as:

0 ≤ KL(q(y,ηz,ηθ)||paux(y,ηz,ηθ|R)) = −Eq

[

log paux(y,ηz,ηθ|R)
q(y,ηz,ηθ)

]

= −Eq

[
paux(y,ηz,ηθ,R)

paux(R)q(y,ηz ,ηθ)

]

= log paux(R)− F(q(y,ηz,ηθ),R)

(14)

We note that when q(y,ηz,ηθ) ≡ paux(y,ηz,ηθ|R) the KL-divergence attains

its minimum value 0, while F attains its maximum value with respect to q (given

R = (µz,W ,µθ)) and becomes equal to log paux(R). On the other hand the

poorer the approximation that q(y,ηz,ηθ) provides to paux(y,ηz,ηθ|R), the

larger the KL-divergence and the smaller F (as a function of q) becomes.

The aforementioned discussion suggests an iterative optimization scheme that

resembles the Variational Bayes - Expectation-Maximization (VB-EM) methods

that have appeared in Machine Learning literature [26]. At each iteration t, one

alternates between (Figure 1):
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F(q(t−1),R(t−1))

KL(q(t−1)||paux(.|R(t−1)))

log paux(R
(t−1))

VB-E-step

F(q(t),R(t−1))

KL(q(t)||paux(.|R(t−1)))

log paux(R
(t−1))

VB-M-step

F(q(t),R(t))

KL(q(t)||paux(.|R(t)))

log paux(R
(t))

Figure 1: During the VB-E step, optimization with respect to the approximating
distribution q takes place, whereas during the VB-M step, F is optimized with
respect to the model parameters R (adapted from [45])

• VB-Expectation: Given R(t−1), find:

q(t)(y,ηz,ηθ) = argmax
q

F(q(y,ηz,ηθ),R
(t−1)) (15)

• VB-Maximization: Given q(t)(y,ηz,ηθ), find:

R(t) = argmax
R

F(q(t)(y,ηz,ηθ),R) (16)
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q(y,ηz,ηθ)

R = {µz,W ,µθ}
F(q(y,ηz,ηθ),R)

Figure 2: Variational Bayesian Expectation-Maximization (VB-EM, [26])

In plain terms, the strategy advocated in order to carry out the inference task

explained can be described as a generalized coordinate ascent with regards to F
(Figure 2).

2.3. Approximations

The variational lower bound F (Equation (13)) is the objective function in

the proposed scheme. In this Section we discuss its form for the utility function

of interest (Equation (2)) and an isotropic Q = τQIn. Furthermore we discuss

necessary approximations that enable the VB-EM steps. We defer discussions on

the validity and quantitative assessment of these approximations for Section 2.6.
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In particular, from Equations (11) and (13), we have:

F(q(y,ηz,ηθ),R) =
∫
q(y,ηz,ηθ) log

paux(y,ηz,ηθ,R)
q(y,ηz,ηθ)

dy dηz dηθ

= Eq

[
U(µθ+ηθ,µz+Wy+ηz)pθ(µθ+ηθ)py(y)pηz (ηz)pµz (µz)pW (W )

Z q(y,ηz ,ηθ)

]

= Eq [U(µθ + ηθ,µz +Wy + ηz)] + Eq

[
pθ(µθ+ηθ)py(y)pηz (ηz)

q(y,ηz ,ηθ)

]

+ log pµz(µz) + log pW (W )

= FU + Freg + log pµz(µz) + log pW (W )

(17)

where we distinguish the individual terms:

FU = Eq [U(µθ + ηθ,µz +Wy + ηz)] (18)

Freg = Eq

[
pθ(µθ + ηθ)py(y)pηz(ηz)

q(y,ηz,ηθ)

]

(19)

We note that in the aforementioned expressions we omit logZ as this does not

depend on q nor R and therefore does not affect any of the VB-EM results.

Furthermore, we note that:

FU = Eq [U(µθ + ηθ,µz +Wy + ηz)]

= − τQ
2
Eq[|utarget − u(µθ + ηθ,µz +Wy + ηz)|2]

(20)

is not only analytically intractable but also poses significant difficulties due to

the computational expense associated with each forward call for the evaluation of

u(µθ +ηθ,µz +Wy+ηz). To alleviate these issues we propose a linearization
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of the output vector u around for θ = µθ and z = µz. In particular:

u(µθ + ηθ,µz +Wy + ηz) ≈ u(µθ,µz) +Gθηθ +Gz(Wy + ηz)

= u(µθ,µz) +Gθηθ +GzWy +Gzηz

(21)

where Gθ = ∂u
∂θ
,Gz = ∂u

∂z
evaluated at (µθ,µz). These derivatives can be

computed using adjoint formulations when the forward model is a system of

PDEs as in the examples considered in Section 3. Such a linearization will lead

to a quadratic, Gauss-Newton-type, expression upon substitution in the log-utility

function:

|utarget − u(µθ + ηθ,µz +Wy + ηz)|2 ≈ |utarget − u(µθ,µz)|2 + ηT
θ G

T
θ Gθηθ

+yTW TGT
z GzWy + ηT

z G
T
z Gzηz

−2(utarget − u(µθ,µz))
T (Gθηθ +GzWy +Gzηz)

+2ηT
θ G

T
θ GzWy + ηT

z G
T
z (Gθηθ +GzWy)

(22)

We note here that a quadratic approximation could also be obtained using a 2nd

order Taylor series expansion of |utarget −u(µθ +ηθ,µz +Wy+ηz)|2 directly.
This would require the computation of the Hessian matrix which is also possible

using adjoint formulations albeit at a significant additional cost [1]. Furthermore,

for very large dθ, dz >> 1 the storage of the Hessian might be impractical. The

reason for the quadratic approximation advocated is that it leads to closed-form

expressions for the density q in the VB-Expectation step (Equation (15)) as it

will become apparent in Section 2.5. Higher-order approximations would also be

suitable as long as the latter requirement is satisfied.

A quadratic expression can be obtained by a 2nd-order Taylor series expansion
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of log pθ(µθ + ηθ) around µθ without significant cost (most often than not,

analytically) i.e.:

log pθ(µθ + ηθ) ≈ log pθ(µθ) + ηT
θ

∂ log pθ
∂θ

|µθ
+

1

2
ηT
θ

∂ log pθ

∂θ∂θT
|µθ

ηθ (23)

In the case that pθ(θ) is a multivariate Gaussian as in the examples considered

i.e. N (µθ0,Cθ0), then the quadratic expression is exact and attains the form:

log pθ(µθ + ηθ) = −1
2
(µθ + ηθ − µθ0)

TC−1
θ0 (µθ + ηθ − µθ0) (24)

2.4. Prior specification for latent variables and model parameters

The latent, reduced coordinates y ∈ R
dy capture the variation of z around its

mean µz along the directions of W as implied by Equation (9). It is therefore

reasonable to assume that, a priori, these should have zero mean and should

be uncorrelated [38]. For that purpose we adopt a multivariate Gaussian prior

(denoted by py(y) in the Equations of the previous section) with a diagonal

covariance denoted by Cy0 = diag(τ−1
0,i ), i = 1, . . . dy. In the examples presented

in Section 3, τ0,i are set to the same value τy0 i.e.:

Cy0 = τ−1
y0 Idy (25)

Alternatively, one can select τ−1
0,1 < τ−1

0,2 < . . . τ−1
0,dy

which induces a stochastic

ordering of the reduced coordinates y since z is invariant to permutations of the

entries of the y and the columns of W (Equation (9)).

The remaining latent variables ηz account for the part of z that is not cap-

tured by µz +Wy (Equation (9)) and should therefore account for the variance
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in the subspace orthogonal to W . The premise in the formulation advocated

(Figure 3) is that y capture the most sensitive directions (locally) around µz

which are much smaller in number than the dimensionality of z i.e. dy << dz.

The variance of y should therefore be the smallest amongst all possible di-

rections. The remaining directions where the variance is much larger should be

captured by ηz. We use therefore an isotropic Gaussian as a “prior“ for ηz i.e.

pηz(ηz) is N (0, τ−1
z0 (I −WW T )) 5 where the prior variance is set much larger

than the prior variances of y e.g.:

τ−1
z0 =

τ−1
y0

ǫ2
(26)

where ǫ2 << 1 (Section 3). We point out that this is the premise invoked also in

the context of Sloppy Models [35, 36, 37], whose behavior depends only on a few

stiff combinations of parameters (accounted here byW and y), with many sloppy

parameter directions largely unimportant for model predictions (accounted here

by ηz). We also note here the fundamental difference with PCA decompositions

which attain the same form as Equation(9). In PCA, W and the latent variables

y capture the directions of largest variance and ηz account for the remaining

variance which is isotropic, smaller, and superimposed on the directions W .

With regards to the regularization (prior) specification pW (W ) on W we

note that its dy columns wi, i = 1, . . . dy span the subspace over which an

approximation of z is sought. We note that z depends on the product Wy

which would remain invariant by appropriate rescaling of each pair of w′
i = αi wi

5The covariance (I−WW T ) is obviously improper as it has dy zero eigenvalues to reflect
the fact that ηz is inherently (dz − dy)-dimensional
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and y′i =
1
αi
yi for any αi. Hence, to resolve identifiability issues we require that

W is orthogonal i.e. W TW = Idy where Idy is the dy−dimensional identity

matrix. This is equivalent to employing a uniform prior on W on the Stiefel

manifold Vdy(R
dz) [46].

The final aspect of the prior model pertains to pµz(µz). As this is closely

related to the physical meaning of the design variables z we make this specific

for each of the examples considered in Section 3.

2.5. VB- Expectation-Maximization: Update equations for q(ηθ,y,ηz) and R

We consider Gaussian families of approximating distributions q(ηθ,y,ηz)

with the following mean and covariance characteristics:








Eq[ηθ] = 0

Eq[y] = 0

Eq[ηz] = 0







,








Eq[ηθη
T
θ ] = Cθθ Eq[ηθy

T ] = Cθy Eq[ηθη
T
z ] = 0

Eq[yη
T
θ ] = CT

θy Eq[yy
T ] = Cyy Eq[yη

T
z ] = 0

Eq[ηzη
T
θ ] = 0 Eq[ηzy

T ] = 0 Eq[ηzη
T
z ] = τ−1

z (I −WW T )








(27)

This form is postulated for the following reasons:

• ηθ expresses variations of θ from its mean µθ (Equation (10)) and should

therefore have a mean zero.

• y and ηz express variations of z from its mean µz (Equation (9)) and

should also have a mean zero.

• ηz expresses residual variation (noise) of z from µz + Wy. Apart from

having a zero mean, it is assumed to be uncorrelated with ηθ as well as y.

• ηz accounts for variance in the subspace orthogonal to W . Along this it is

assumed that the variance is isotropic and equal to τ−1
z (to be determined)
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Before embarking in the presentation of the expressions for the aforemen-

tioned parameters, we note that q provides an approximation to paux and there-

fore its marginal with respect to y,ηz can be used to approximate the marginal

on z i.e. paux(z) which is proportional to the expected utility V (z). We note

that based on Equation (27), the marginal q(y,ηz) will also be a Gaussian and

there the approximate paux(z) will be a Gaussian with the following mean and

covariance:

E[z] = µz, E[zzT ] = Czz = WCyyW
T + τ−1

z (I −WW T ) (28)

We can therefore approximate (up to a multiplicative constant) the expected

utility V (z) as:

V (z) ≈ V (µz +Wy + ηz) ∝ e−
1
2
(z−µz)

TC−1
zz (z−µz) (29)

Let ŵj , j = 1, . . . , dz denote the eigenvectors of Czz and σ1 < σ2
2 < . . . <

σ2
dz the corresponding eigenvalues in ascending order (Figure 3). Consider (local)

variations ∆zj of z from µz along the distinct directions ŵj i.e.:

∆zj = z − µz = α ŵj (30)

Then:

V (∆z1) ∝ e
− 1

2
α2

σ2
1 < V (∆z2) ∝ e

− 1
2

α2

σ2
2 < . . . < V (∆zdz) ∝ e

− 1
2

α2

σ2
dz (31)

Hence the expected utility of competing designs zj will decrease faster for varia-

tions along directions with the smaller variances/eigenvalues which represent the
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directions of higher sensitivity.

The methodology developed is based on the postulate that the number

of sensitive directions is small compared to dz and can be captured by the

dy << dz latent variables y and the vectors in W . Most of the remaining

directions are assumed to be sloppy i.e. have a much higher variance and can

be represented by ηz. The dy sensitive directions can be found by diagonalizing

Cyy = U diag(σ2
1÷dy

) UT and as a result:

Ŵ =
[

ŵ1 ŵ2 . . . ŵdy

]

= WU (32)

From the expressions of FU ,Freg in Equations (17) (18), (19) and the ap-

proximations in Equations (22) and (24), we obtain (up to additive constants):

F(q(y,ηz,ηθ),R) = − τQ
2
(|utarget − u(µθ,µz)|2 (from Eq[U ])

+GT
θ Gθ : Cθθ +W TGT

z GzW : Cyy + τ−1
z GT

z Gz : (I −WW T )

+2GT
θ GzW : Cθy

)

−1
2
(µθ − µθ0)

TC−1
θ0 (µθ − µθ0) (from Eq[pθ])

−1
2
C−1

θ0 : Cθθ

− τy0
2
I : Cyy (from Eq[p(y)])

−dz−dy
2

τz0
τz

(from Eq[p(ηz)])

+1
2
log

∣
∣
∣
∣
∣
∣

Cθθ Cθy

CT
θy Cyy

∣
∣
∣
∣
∣
∣

(from Eq[q(ηθ,y)])

+dz−dy
2

log τz (from Eq[q(ηz)])

+ log pµz(µz) + log pW (W )

(33)
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Figure 3: Illustration in two dimensions (dz = 2) of paux(z) (which approximates
expected utility V (z)) in the vicinity of (local) maximum µz. The most sensi-
tive/stiff directions are captured by W and their variance σ2

1 is accounted by y.
The most insensitive/sloppy directions are orthogonal to W (along W⊥) and
their variance σ2

2 >> σ2
1 is accounted by ηz.

The iterative VB-EM optimization with regards to q and R (Figure 2) pro-

ceeds then as follows:

• VB-Expectation: Given the currentR find the optimal q (i.e. the optimal

Cθθ,Cθy,Cyy, τz):




C

opt
θθ C

opt
θy

sym. Copt
yy





−1

=




τQG

T
θ Gθ +C−1

θ0 τQG
T
θ GzW

sym. τQW
TGT

z GzW + τy0I





(34)
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and:

τ optz = τz0 +
1

dz − dy
τQG

T
z Gz : (I −WW T ) (35)

• VB-Maximization: Given the current q (i.e. Cθθ,Cθy,Cyy, τz), find the

optimal R = {µz,W ,µθ}. To carry out this task, it suffices to consider

only the terms of F in Equation (33), that depend on the parameters of

interest i.e.:

(µopt
z ,µopt

θ ) = arg max
µz ,µθ

F̂µ(µz,µθ), W opt = argmax
W

F̂W (W ) (36)

where:

Fµ(µz,µθ) = − τQ
2
(|utarget − u(µθ,µz)|2)

−1
2
(µθ − µθ0)

TC−1
θ0 (µθ − µθ0) + log pµz(µz)

(37)

and:

FW (W ) = − τQ
2
W TGT

z GzW : Cyy − τQ
2
τ−1
z GT

z Gz : (I −WW T )

− τQ
2
2GT

θ GzW : Cθy + log pW (W )

= − τQ
2
W TGT

z GzW : (Cyy − τ−1
z I)

− τQ
2
2GT

θ GzW : Cθy + log pW (W )

(38)

Some remarks are warranted at this stage:

• The maximization of Fµ with respect to (µθ,µz) can be carried out using

any nonlinear optimization scheme. We discuss in Appendix B a Gauss-

Newton-type scheme which requires only first-order derivatives of u. We

note that this is the only part of the VB-EM scheme proposed that requires
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calls to the forward solver for the computation of u and its derivatives.

Hence in the context of large-scale, complex models this step controls, to

a large extent, the overall cost of the proposed algorithm.

• The updates of (µθ,µz) in Equation (37) are decoupled from the rest

i.e. q and W . This is a direct consequence of the assumption on q

that Eq[y] = Eq[ηz] = Eq[ηθ] = 0 (Equation (27)) which was described

earlier. As a result, the optimal (µθ,µz) can be computed beforehand and

the rest of the VB-EM steps would involve only iterative updates of q (i.e.

Cθθ,Cθy,Cyy, τz) and W .

• The optimization of FW with regards to the orthogonal matrix W requires

appropriate nonlinear constrained optimization tools. A highly efficient

such tool is discussed in Appendix A. We reiterate that this step does not

require any further calls to the forward solver.

• We also point out that the proposed algorithm inherits all the favorable

traits of Expectation-Maximization algorithms as discussed in [47]. As

explained therein it suffices that the updates for q (VB-E-step) or R (VB-

M-step) lead to an improvement of the variational bound F rather than

being the locally optimally values. This would for example allow for only

partial updates of q (e.g. updating Cθθ only every few iterations) or incre-

mental improvements of W that simply lead to an increase in FW without

finding the local maximum. Such strategies could expedite significantly

the computations involved.

• Finally we note that implicit to the aforementioned derivations is the as-

sumption of a unimodal density on the latent variables and as a result
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a unique, global maximum for z (Equation (28)). This assumption can

be relaxed by employing a mixture of Gaussians (e.g. [48]) that will en-

able the approximation of highly non-Gaussian and potentially multi-modal

paux which in turn can reveal multiple local maxima of the expected utility

V (z). Such approximations could also be combined with the employment

of different basis sets W for each of the mixture component i.e. differ-

ent sensitive/sloppy directions for each local optimum. We defer further

discussions along these lines to future work.

2.6. Validation - Assessing the accuracy of approximations

Thus far we have employed the variational lower bound in order to identify

the optimal dimensionality reduction and to infer the latent variables that approx-

imate paux(z) (Equation (28)) and the expected utility V (z) (Equation (29)).

The goal in this section is to propose quantitative indicators that assess the ac-

curacy of the VB approximation. To that end we consider the Kullback-Leibler

divergence KL(q(y,ηz,ηθ)||paux(y,ηz,ηθ|R)) (Equation (14)) that motivated

the VB-EM scheme discussed. In particular:

KL(q(y,ηz,ηθ)||paux(y,ηz,ηθ|R)) = −Eq

[

log paux(y,ηz ,ηθ|R)
q(y,ηz ,ηθ)

]

= −Eq

[
paux(y,ηz ,ηθ,R)

paux(R)q(y,ηz,ηθ)

]

= log paux(R)−Eq

[
paux(y,ηz ,ηθ,R)

paux(R)q(y,ηz ,ηθ)

]

(39)

where paux(y,ηz,ηθ,R) is given in Equation (11) and log paux(R) in Equation

(12). We propose estimating both terms in Equation (39) using Importance

Sampling with q(y,ηz,ηθ) as the Importance Sampling density [26]. If we denote
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by:

w(y,ηz,ηθ) =
paux(y,ηz,ηθ,R)

q(y,ηz,ηθ)
. (40)

the (un-normalized) importance weights, then by drawing samples {y(m),η
(m)
z ,η

(m)
θ }Mm=1

from q(y,ηz,ηθ) we obtain that:

log < w >= log

(

1

M

M∑

m=1

w(y(m),η(m)
z ,η

(m)
θ )

)

−→ log paux(R) (41)

and:

< logw >=
1

M

M∑

m=1

logw(y(m),η(m)
z ,η

(m)
θ ) −→ Eq

[

log
paux(y,ηz,ηθ,R)

q(y,ηz,ηθ)

]

(42)

In summary, by employing Importance Sampling we can estimate:

KL(q(y,ηz,ηθ)||paux(y,ηz,ηθ|R)) ≈ log < w > − < logw > (43)

We note that sampling from q(y,ηz,ηθ) is straightforward due to its Gaussian

form but the evaluation of the weights require the computation of the actual

utility i.e. running the exact forward model. We point out however that this is

done solely for the purposes of validation. Given that the KL-divergence is not

bounded from above and in order to compare it when considering various values

of dy i.e. the dimension of the reduced coordinates y, we propose normalizing

it with the entropy H(q) of the multivariate Gaussian q(y,ηz,ηθ) which can be
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exactly computed as:

H(q) = −dθ + dy
2

log 2π − 1

2
log

∣
∣
∣
∣
∣
∣

C
opt
θθ C

opt
θy

sym. Copt
yy

∣
∣
∣
∣
∣
∣

− dz − dy
2

log
2π

τ optz

(44)

In the examples that follow we report therefore the following normalized KL-

divergence:

nKL =
KL(q(y,ηz,ηθ)||paux(y,ηz,ηθ|R))

H(q)
(45)

In all the expressions above we use Ropt as found at the last iteration of the

VB-EM scheme.

3. Numerical Illustrations

In this section we discuss the numerical results obtained in the analysis of

two examples. In both cases the forward model consisted of an elliptic PDE.

The discretization of the forward problem for the computation of outputs u as

well as of the adjoint problem for the computation of the derivatives Gθ,Gz

was performed using standard finite element tools. Both problems involved a

very high number of random variables dθ arising from the discretization of a

random field with small correlation length (in relation to the problem domain).

Especially the second example involved a very large number of design variables

dz. A summary of the basic dimensions/quantities is contained in Table 1.

With regards to the regularization (prior) terms, in both problems we em-

ployed τ−1
y0 = 104 (Equation (25)) and ǫ2 = 10−10 (Equation (26)). Details

about the pµz(µz) are given for each example separately. With regards to the

VB-EM scheme employed we note that at each iteration, 100 W−updates were

performed according to the equations detailed in Appendix A.
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Random Variables θ Design Variables z τ−1
Q n = dim(utarget)

Num. Illustration 1 dθ = 1600 dz = 21 0.01 11
Num. Illustration 2 dθ = 3536 dz = 3536 5× 10−6 8

Table 1: Basic quantities/dimensions

3.1. Numerical Illustration 1

The goal of this problem is to optimally select the input to a random, hetero-

geneous medium so as to maximize an expected utility related to the response.

In particular we consider the rectangular domain Ω = [−1, 1]× [0, 1] of Figure 4

and the steady-state heat diffusion with a governing PDE:

∇ ·
(
− λ(x)∇u(x)

)
= 0, x ∈ int(Ω) (46)

The boundary conditions are u = 0 on ΓD, −λ(x)∂T (x)
∂n

= 0 on ΓN . The design

variables z parametrize the flux on the left hand boundary.

Figure 4: Problem Configuration for Numerical Illustration 1

The uncertainties θ parametrize the conductivity field λ(x). In particular we

consider a statistically-homogeneous, log-normally-distributed random field with

mean 1 and coefficient of variation 0.50. This is defined through a transformation

of a statistically-homogeneous Gaussian field λg(x) as:

λ(x) = eλg(x) (47)

The following autocovariance Cg(∆x1,∆x2) for λg(x) is employed:

Cg(∆x1,∆x2) = σ2
g exp{−

√

∆x2
1 +∆x2

2

x0
}, σ2

g = 0.223 (48)
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(i) sample 1 (ii) sample 2

(iii) sample 3 (iv) sample 4

Figure 5: Sample realizations of the conductivity (example 1) - Young’s modulus
(example 2) field λ(x) as prescribed in Equation (47)

where a correlation length of x0 = 0.1 is used. We note that the correlation

length is small in relation to the dimensions of the problem domain and as a result

a large number of random variables θ are required. In particular we discretize

the problem domain into 1600 triangular, finite elements 6 and model with θ the

value of λg(x) at the centroid of each element. This gives rise to dθ = 1600

and a pθ (Equation (24)) with mean µθ0 = −0.112, variance σ2
g = 0.223 and

covariance matrix Cθ0 obtained from Equation (48). Sample realizations of the

conductivity field λ(x) are depicted in Figure 5 for illustrative purposes.

We employ a design variable z for each node along the left-hand boundary

of the problem domain (Figure 4) resulting in dz = 21 design variables. Finally,

with regards to the utility function U , we use temperatures along x1 = 0, x2 ∈
[−.25, 0.75] (red line in Figure 4) and in particular at 11 equidistant points with

x2,k = 0.25 + 0.05(k − 1), k = 1÷ 11. The target temperature vector utarget is

set to:

utarget,k = 20− 40|x2,k − 0.5| (49)

and τ−1
Q = 0.01 (Equation (8)). We finally note that a vague Gaussian regular-

ization/prior was employed for µz such that pµz(µz) ≡ N (0,Cz0 = 1010I).

Figure 6 depicts the computed µz as a function of the number of iterations

6we consider a 40 × 20 regular grid and each rectangle is divided along its diagonal into
two triangles
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Figure 6: Computed µz (see Appendix B) as a function of the iteration number.
In example 1 this expresses the flux on the left boundary x1 = 0, x2 ∈ [0, 1].
Each iteration involves a forward call for the computation of the output u and
its derivatives.

(Appendix B). As it can be seen, convergence is attained with as few as 20

forward calls. We re-emphasize that these are the only forward solutions required

for the computation of the outputs and their derivatives. We note that while

the linearization in Equation (21) with respect to z is exact, this is not the case

with regards to the random variables θ. This is due primarily to the nonlinear

dependence of the response on the conductivity field λ(x).

The evolution of the the variational lower-bound F (Equation (33)) with

regards to the iterations alternating between q and W updates is shown in Figure

7i. We note that these iterations do not entail any additional forward calls. Figure

7ii depicts the evolution of the identified σ2
j per VB-EM iteration where as it is

clearly seen, there exist 3 “stiff” generalized eigenvectors with small values for the

corresponding generalized eigenvalues. One also notes that the variances top-off

at the prior value τ−1
y0 = 104. These 3 most sensitive generalized eigenvectors

Ŵ (Equation (32)) and the associated variances are shown in Figure 8. The

numbers in parentheses were the computed variances when the calculation was

repeated for exactly the same problem but by assuming a coefficient of variation

of 0.71 =
√
0.5 (instead of 0.50) for the conductivity field λ(x). The most

sensitive eigenvectors were identical (and therefore not plotted) but, as expected,

their sensitivity is reduced or equivalently the corresponding variances were larger.

Figure 9 compares the µz computed for these two cases where one notes that

while the shape is the same the amplitude/range is different.
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(i) Evolution of F (Equation (33)). (ii) Evolution of σ2
j

Figure 7: VB-EM Each iteration corresponds to one q (Equations (34), (35))
and one W (Equation (38)) update

(i) σ2
1 = 4.0 × 10−2

(5.9 × 10−2)
(ii) σ2

2 = 1.5× 103

(1.6× 103)
(iii) σ2

3 = 6.6× 103

(6.8 × 103)

Figure 8: First three most sensitive eigenvectors {ŵj}3j=1 (Equation (32)) and
associated variances σ2

j . We note that σ2
3/σ

2
1 = O(105)

Figure 10 depicts sample designs drawn from q(µz + W y) (which approx-

imates the expected utility V (µz + W y)) corresponding to different (relative)

levels of the the expected utility. While in the approximation advocated µz rep-

resents the optimal design for which V (z) attains its (locally) maximum value,

by considering expected utility values V (z) less than the optimal we can identify

an infinity of alternative designs but also assess the sensitivity of the solution.

Finally in Table 2 we record the normalized KL-divergence as discussed in

Section 2.6 and note that this decays for increasing dy to relatively small values

indicating a good quality in the approximation found.

3.2. Numerical Illustration 2: Stochastic Topology Optimization

The vast majority of studies in the context of stochastic topology optimization

consider uncertainties in the loads (i.e. input) of linear systems [49]. This

allows one to find closed-form expressions for the random response and perform

the integrations needed much more easily. Recently notable efforts have been

Figure 9: Comparison of µz computed when the conductivity field λ(x) has a
coefficient of variation (cov) of 0.50 and 0.71.
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(i) V (z)
V (µz)

= 0.95 (ii) V (z)
V (µz)

= 0.75

(iii) V (z)
V (µz)

= 0.50 (iv) V (z)
V (µz)

= 0.25

Figure 10: Alternative designs z at various levels of expected utility V (z)
V (µz)

as

compared to the optimal µz

dy nKL (Equation (45))

1 1.5× 10−1

2 1.2× 10−1

5 4.7× 10−2

10 2.5× 10−2

20 9.8× 10−3

Table 2: Normalized KL-divergence from Equation (45) for example 1

made towards addressing the significantly more complicated problem involving

geometric and/or material uncertainties [50]. Some of the proposed solution

strategies employed perturbations techniques [51, 52] whose performance decays

as the random variability around the mean and/or the number of random variables

increases . Other attempts have made use of intrusive [53] and non-intrusive

[54, 55] versions of (generalized) Polynomial Chaos (gPC) in order to address

the stochastic components.

We consider the two-dimensional domain Ω = [0, 1.6] × [0, 1] in Figure 11i.

The goal is to identify where the material of interest should be placed in order

to achieve the objectives (subject to appropriate constraints) to be discussed.

We can therefore partition Ω into Ω1 which contains all points where material

is placed and Ω0 = Ω Ω1 which corresponds to the points without any material
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(void). The governing differential is that of elastostatics:

∇ · (D(x)ǫ(u(x))) = 0, x ∈ int(Ω)

ǫ(u(x)) =








∂u1

∂x1

∂u2

∂x2

∂u1

∂x2
+ ∂u2

∂x1








(50)

where u(x) =




u1(x1, x2)

u2(x1, x2)



 is the displacement field, D is the (plane-stress)

elasticity matrix7 i.e. D(x) = E(x)
1−ν2








1 ν 0

ν 1 0

0 0 1− ν








and E(x) is the Young’s

modulus. Its spatial variation can be modeled as:

E(x) = Emin + 1Ω1(x)(λ(x)−Emin), 1Ω1(x) =







0 if x ∈ Ω0

1 if x ∈ Ω1

(51)

The value of Emin = 10−10 (instead of 0) is used to avoid numerical issues in

the solution of the governing equations. With regards to boundary conditions it

is assumed that u = 0 along ΓD and traction-free along ΓN (Figure 11i) with

the exception of a point force P = 10−3 at (x1 = 1.6, x2 = 0).

In deterministic formulations, λ(x) is assumed constant. In the context of

the analysis pursued in this study we are interested in exploring the case where

λ(x) not only varies spatially but also exhibits stochastic variability i.e. λ(x) is

a random field. The model adopted for λ(x) is identical to that in Example 1

7ν = 0.3 (constant) in this study
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which we repeat here for completeness. In particular we define λ(x) through a

transformation of a statistically-homogeneous, Gaussian random field λg(x) as

in Equation (47). The latter has a mean (constant) µg = −0.112 and autoco-

variance Cg(∆x1,∆x2) as prescribed in Equation (48) with a correlation length

x0 = 0.1 and a variance σ2
g = 0.223. This gives rise to a log-normally distributed

λ(x) with mean 1 and coefficient of variation 0.50.

The problem domain Ω is discretized using a regular mesh of 3536 triangular

elements 8. The vector of random variables θ represents the values of λg(x) at

the centroid of each element. This gives rise to dθ = 3536 and a pθ (Equation

(24)) with mean µθ0 = −0.112, variance σ2
g = 0.223 and covariance matrix Cθ0

obtained from Equation (48). We note that, as in Example 1, a small correlation

length is selected giving rise to a large number of random variables θ.

Normally the design variables z should be binary and discretize the indicator

function 1Ω1(x) in Equation (51) 9. As in deterministic topology optimization

schemes [58] and in order to be able to compute meaningful derivatives with

respect to the design variables we adopt a relaxation of the problem. In order to

represent the variations of the elastic modulus E(x) (Equation (51)), we employ

the sigmoid function to transform a real-valued field z(x) as follows:

E(x) = Emin +
1

1 + e−z(x)
(λ(x)−Emin) (52)

While the sigmoid function ensures that E(x) ∈ [Emin, λ(x)] as in Equation

8we consider a 52 × 34 regular grid and each rectangle is divided along its diagonal into
two triangles

9We note that in deterministic formulations level-set-based representation have also been
adopted e.g. [56, 57]
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(51) it does not necessarily yield a hard partitioning (0 − 1) of Ω as required in

such problems. To achieve this i.e. to promote solutions where z(x) → −∞ (i.e.

E(x) → Emin) or z(x) → +∞ (i.e. E(x) → λ(x)) we adopt an appropriate

hierarchical prior/regularization pz(z) that is discussed in detail in Appendix C.

Naturally the vector of design variables z represents the values of the field z(x)

at the centroid of each finite element (as we did for the random variables θ)

resulting in dz = 3536 design variables (Table 1).

More importantly though the problem formulation is only meaningful with the

introduction of a constraint on the volume of material that should be used i.e.

the volume fraction V F = area(Ω1)
area(Ω)

. This in turn implies an equality constraint

for the design variables z which can be written as:

c(z) =
1

dz

dz∑

j=1

1

1 + e−zj
− V F = 0, (53)

where V F is the targeted volume fraction 10. In order to account for this nonlin-

ear constraint in the proposed framework where the design variables z are treated

as random variables, we propose expanding the target, auxiliary paux(θ, z) (Equa-

tion (6)) as follows:

paux(θ, z) ∝ e
−

c2(z)

2ǫ2c U(θ, z)pθ(θ) pz(z) (54)

Clearly this represents a soft, probabilistic enforcement of the aforementioned

constraint where for small ǫ2c , the target density paux, and therefore the associated

10In the example considered, the area of each finite element is the same. If this does not
hold, the constraint has to be adjusted appropriately without loss of generality
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(i) Problem configuration
(ii) Deterministic solution for V F = 0.4
obtained by setting V ar[θ] = 0

Figure 11: Problem domain, boundary conditions and deterministic solution

z, are contained in the vicinity of the manifold implied by Equation (53). The

additional term in paux in Equation (54) partially alters the associated update

equations of the VB-EM scheme previously presented. We discuss these in detail

in Appendix C as well. In the examples presented the value ǫ2c = 10−10 was

used.

For the complete definition of the problem, we note that the target response

vector utarget consisted of the vertical displacement u2 at 8 points along the

bottom boundary i.e. with x2 = 0 and x1 = 0.2 k, k = 1÷ 8 such that:

utarget,k = 6.25× 10−3 k (55)

and τ−1
Q = 5× 10−6 (Equation (8)). For comparison purposes, the deterministic

problem was solved for V F = 0.4. To that end, the exact same algorithmic

scheme for finding µθ,µz was employed (Appendix C) by assuming that the

variance of the random variables θ was zero and their mean exactly the same as

detailed above. The resulting µz which is shown in Figure 11ii was obtained after

(approximately) 50 iterations and exhibits two diagonal ribs that are obviously

critical in stiffening the system. As it is easily understood, the objective function

is not (in general) concave and multiple local maxima could exist.

Figure 12 depicts the estimated µz for the stochastic problem and for two

volume fractions considered i.e. V F = 0.4 and V F = 0.2. The first was

obtained with 35 forward calls whereas the second with 54. As compared to
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(i) V F = 0.4 (ii) V F = 0.2

Figure 12: Computed µz (see Appendix B and Appendix C) as a function of the
iteration number. Each iteration involves a forward call for the computation of
the output u and its derivatives. For V F = 0.4 and V F = 0.2 the computation
required 35 and 54 such calls respectively.

(i) V F = 0.4 (ii) V F = 0.2

Figure 13: Evolution of F (Equation (33)). Each iteration corresponds to one q
(Equations (34), (35)) and one W (Equation (38)) update

the deterministic solution in Figure 11ii with the two diagonal stiffening ribs,

one notes that in Figure 12i only one is present. This could be attributed to a

different local maximum or it could be the result of the random variability in the

properties of the material.

More importantly the algorithm proposed can identify the most sensitive di-

rections around the local maximum. These are obtained through successive iter-

ations between q (Equations (34), (35)) and W updates (Equation (38)). The

evolution of the the variational lower-bound F (Equation (33)) with regards to

these iterations is depicted in Figure 13. We note that these iterations do not en-

tail any additional forward calls. Some of the generalized eigenvectors identified

Ŵ (Equation (32)) and the associated variances are shown in Figure 15. Due

to the presence of the constraint, the first (most sensitive) such eigenvector is

determined by the gradient of the constraint at µz and the associated variance σ2
1

(in parentheses, Figure 15) by the user-specified parameters ǫc (Equation (54)).

Figure 14 depicts the evolution of the identified σj per VB-EM iteration where

as it is clearly seen the first, most sensitive generalized eigenvectors are identified

in the first few iterations. One also notes that the variances top-off at the prior
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(i) V F = 0.4 (ii) V F = 0.2

Figure 14: Evolution of σ2
j

(i) (σ2
1 = 7.31× 10−1)

(ii) σ2
2 = 1.25 × 102

(iii) σ2
5 = 2.78 × 103

(iv) σ2
7 = 1.36 × 104

(v) (σ2
1 = 3.24 × 100)

(vi) σ2
2 = 1.93 × 102

(vii) σ2
5 = 1.91 × 103

(viii) σ2
9 = 1.99× 104

Figure 15: Generalized eigenvectors ŵj for V F = 0.4 (left column) and V F =
0.2 (right column)

value τ−1
y0 = 104.

Figure 16 depicts the squared values (ŵj)
2 (shown in Figure 15) in a log-

scale. This allows one to see how the sensitivity associated with each generalized

eigenvector is spatially distributed. Finally Figure 18 depicts the outlines of

sample designs drawn from q(µz+W y) (which approximates the expected utility

V (µz + W y)) corresponding to different (relative) levels of the the expected

utility. In the approximation advocated, µz represents the optimal design for

which V (z) attains its (locally) maximum value. By considering V (z) less than

the optimal, we can identify an infinity of alternative designs but also assess the

sensitivity of the solution.

Finally in Table 3 we record the normalized KL-divergence as discussed in

Section 2.6 and note that this decays for increasing dy to relatively small values

indicating a good quality in the approximation found, particularly for V F = 0.4.
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(i) (ŵ1)
2

(ii) (ŵ2)
2

(iii) (ŵ5)
2

(iv) (ŵ7)
2

(v) (ŵ1)
2

(vi) (ŵ2)
2

(vii) (ŵ5)
2

(viii) (ŵ9)
2

Figure 16: The squares of the entries of each of the generalized eigenvectors ŵj

(log scale) for V F = 0.4 (left column) and V F = 0.2 (right column)

(i) V (z)
V (µz)

= 0.75 (ii) V (z)
V (µz)

= 0.50 (iii) V (z)
V (µz)

= 0.25

Figure 17: Outline of alternative designs z at various levels of expected utility
V (z)
V (µz)

as compared to the optimal µz (V F = 0.4)

nKL (Equation (45))
dy V F = 0.4 V F = 0.2

5 1.5× 10−2 3.4× 10−1

10 8.7× 10−3 1.9× 10−1

15 3.9× 10−3 1.3× 10−1

20 6.0× 10−4 6.8× 10−2

Table 3: Normalized KL-divergence from Equation (45) for example 2

4. Conclusions

We present a framework for solving a large class of model-based, optimization-

under-uncertainty problems. The overarching idea is that of recasting the prob-

lem as one of probabilistic inference. This enables the uniform treatment of

both random and design variables and is capable of furnishing not only a (local)

(i) V (z)
V (µz)

= 0.75 (ii) V (z)
V (µz)

= 0.50 (iii) V (z)
V (µz)

= 0.25

Figure 18: Outline of alternative designs z at various levels of expected utility
V (z)
V (µz)

as compared to the optimal µz (V F = 0.2)
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maximum (i.e. a point estimate) but also the sensitivity of the objective to the

design variables. To achieve this objective, we propose a Variational Bayesian

framework that operates on two fronts. Firstly, it attempts to compute efficiently

an accurate approximation of the joint density of interest. Secondly, it seeks a

lower-dimensional subspace with regards to the design variables z that provides

an assessment of the solutions robustness by discovering the most sensitive direc-

tions i.e. the directions along which, variations in z will cause the largest decrease

in the expected utility. This is based on the same premise as the so-called Sloppy

Models whose behavior depends only on a few stiff combinations of parameters,

with many sloppy parameter directions largely unimportant for model behav-

ior. The identification of this lower-dimensional subspace, enables the analyst to

compute, apart from the optimal design, an infinity of alternative designs which

achieve a lower value of the expected utility. Interestingly enough, addressing the

probabilistic inference task under the Variational Bayesian perspective involves

the solution of an optimization problem. To that end we propose an iterative

VB-Expectation-Maximization scheme.

The aforementioned claims have been validated in the context of two nu-

merical examples involving O(103) random and design variables. In all cases

considered the cost of the computations in terms of calls to the forward model

was of the order O(10 ÷ 102). The accuracy of the approximations provided is

assessed by appropriate information-theoretic metrics.

The framework proposed cannot currently account for the possibility of mul-

tiple local maxima, as the approximation constructed is based on unimodal Gaus-

sian densities. Nevertheless, the formulation can be readily extended by employ-

ing mixture of Gaussians that will enable not only approximations for multi-modal
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cases but also produce better results for unimodal, but highly non-Gaussian den-

sities. We note finally the possibility of using approximate, surrogate or reduced-

order models in order to expedite computations. All the algorithmic steps dis-

cussed can be readily performed by using these less-expensive forward solvers. As

long as these convey some information about the expensive, reference forward

model, then they can provide a good starting point for further computations that

would require fewer expensive calls to converge.
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Appendix A. Maximization of FW

As discussed earlier, in order to updateW it suffices to consider only FW (W )

(Equation (38)):

FW (W ) = − τQ
2
W TGT

z GzW : (Cyy − τ−1
z I)

− τQ
2
2GT

θ GzW : Cθy + log pW (W )
(A.1)

While the first part is quadratic with respect to W the difficulty arises from the

orthogonality constraint W TW = I which can be enforced directly or through

the regularization term pW (W ) as previously discussed. To address this con-

strained optimization problem, we employ the iterative algorithm proposed in

[59] which is highly efficient not only in terms of the number of iterations needed

but also in terms of the the cost per iteration. It is based on the constraint-

preserving Cayley transform according to which the current W is updated to

W ′ as follows:

W ′ = (I +
a

2
A)−1(I − a

2
A)W (A.2)

where:

A = JW T −WJT (A.3)

and J = ∂FW

∂W
. The latter can be readily obtained from Equation (A.1):

J = −τQG
T
z GzW (Cyy − τ−1

z I)− τQG
T
z GθCθy (A.4)

It can be shown that W ′ satisfies automatically the orthogonality constraint and

that and for a = 0, W ′ is an ascent direction of FW . Several options exist

for selecting the step size a. In the numerical illustrations we made use of the
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Barzilai-Borwein scheme detailed in [60] which results in a non-monotone line

search algorithm. We note that the inversion of the dz × dz matrix (I + a
2
A)

can be efficiently performed by inverting a matrix of dimension 2dy × 2dy which

is much smaller than dz [59]. We finally re-emphasize that the updates of W

require no forward calls. The updates/iterations are terminated when no further

improvement to the objective FW is possible.

Appendix B. Maximization of Fµ

As it was previously discussed, in order to update µθ,µz it suffices to consider

only Fµ(µz,µθ) (Equation (37)):

Fµ(µz,µθ) = − τQ
2
(|utarget − u(µθ,µz)|2)

−1
2
(µθ − µθ0)

TC−1
θ0 (µθ − µθ0) + log pµz(µz)

(B.1)

This represent a nonlinear, unconstrained optimization problem that can be

solved with any of the well-known algorithms [61, 62]. We present here a Gauss-

Newton type algorithm that we employed and produced the results discussed

in Section 3. For clarity of the presentation we consider first the case in the

first numerical illustration where the regularization/prior pµz(µz) was a Gaussian

N (0,Cz0) in which case:

Fµ(µz,µθ) = − τQ
2
(|utarget − u(µθ,µz)|2)

−1
2
(µθ − µθ0)

TC−1
θ0 (µθ − µθ0)− 1

2
µT

z C
−1
z0 µz

(B.2)
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If (µ
(t)
z ,µ

(t)
θ ) denote the values at iteration t and (µ

(t+1)
z = µ

(t)
z +∆µ

(t)
z ,µ

(t+1)
θ =

µ
(t)
θ +∆µ

(t)
θ ), then a first-order Taylor series yields the following approximation:

Fµ(∆µ
(t)
z ,∆µ

(t)
θ ) ≈ − τQ

2

(

|utarget − u(µ
(t)
z ,µ

(t)
z )−Gθ,t∆µ

(t)
θ −G

(t)
z,t∆µ

(t)
z )|2

)

−1
2
(µ

(t)
θ +∆µ

(t)
θ − µθ0)

TC−1
θ0 (µ

(t)
θ +∆µ

(t)
θ − µθ0)

−1
2
(µ

(t)
z +∆µ

(t)
z )TC−1

z0 (µ
(t)
z +∆µ

(t)
z )

(B.3)

where Gθ,t =
∂u
∂θ
|
θ=µ

(t)
θ

and Gz,t =
∂u
∂z
|
z=µ

(t)
z
. Differentiating with respect to

(∆µ
(t)
z ,∆µ

(t)
θ ) leads to the following system of coupled linear equations:





∂F
(t)
µ

∂∆µ
(t)
θ

∂F
(t)
µ

∂∆µ
(t)
z



 =




0

0



→ H t




∆µ

(t)
θ

∆µ
(t)
z



 = ht (B.4)

where:

H t =




τQG

T
θ,tGθ,t +C−1

θ0 τQG
T
θ,tGz,t

τQG
T
z,tGθ,t τQG

T
z,tGz,t +C−1

z0



 (B.5)

and:

ht =




τQG

T
θ,t(utarget − u(µ

(t)
z ,µ

(t)
z ))−C−1

θ0 (µ
(t)
θ − µθ0)

τQG
T
z,t(utarget − u(µ

(t)
z ,µ

(t)
z ))−C−1

z0 µ
(t)
z



 (B.6)

We note that at each iteration the forward solver needs to be called for

the computation of the output vector u and its derivatives Gθ,z. Iterations

are terminated when no further improvement is possible i.e.
|∆µ

(t)
θ |

|µ
(t)
θ |

, |∆µ
(t)
z |

|µ
(t)
z |

<

(tolerance) = 10−5.
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Appendix C. Regularization of µz and update equation for Num. Illus-

tration 2

We discuss in this section the definition of the regularization/prior pµz(µz)

for numerical illustration 2 (Section 3.2) and the resulting changes in the opti-

mization scheme for µz in Appendix B. Given the physical interpretation of the

design variables µz as binary variables which for each pixel indicate the presence

or not of material, we adopt a regularization for µz that promotes the discovery

of such solutions but also exhibits the requisite spatial correlation. To that end

we propose a hierarchical prior where in addition to µz = {µz,j}3536j=1 we introduce

the binary hyperparameters φ = {φj = ±1}3536j=1 such that:

pµz(µz|φ) =
3536∏

j=1

p(µz,j|φj) (C.1)

where p(µz,j|φj = −1) = N (−m, s2) and p(µz,j|φj = +1) = N (m, s2). The

value of m was selected so that in combination with the sigmoid function (Equa-

tion (52)) produces solutions close to the binary images we would like to achieve:

1

1 + em
= 10−3 ≈ 0,

1

1 + e−m
= 1− 10−3 ≈ 1 (C.2)

This yields m = −6.9 and the resulting, bimodal, hierarchical prior is depicted

in Figure C.19i. In order to account for the spatial dependence of neighboring

µz,j we employ an auto-logistic hyperprior on φ of the following form [63, 64]:

p(φ|β) ∝ e−
β
2

∑
j

∑
k∼j φjφk (C.3)
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The second sum in the expression above is over all indices k which correspond

to sites neighboring to j (neighborhood relation denoted by ∼). Given the

triangular mesh used, we consider 3 neighbors for each site j as shown in Figure

C.19ii. The hyperparameter β controls the strength of spatial correlation. At

one extreme, if β → +∞, neighboring φj prefer to have different values (i.e.

−1/+1 or +1/−1) as this yields a higher hyperprior value. At the other extreme,

if β → −∞, neighboring φj prefer to have the same values (i.e. −1/ − 1 or

+1/+1). For β = 0 no correlation is present. We note that the aforementioned

prior in φ imbues indirectly spatial correlation in µz,j.

In summary, the prior pµz(µz) can be found by integrating out the hyperpa-

rameters φ and β as:

pµz(µz) =

∫

pµz(µz|φ)p(φ|β) dφdβ (C.4)

The integration above cannot be performed analytically and for that reason we

employed an Expectation-Maximization scheme [65, 27] whereby at the Expecta-

tion step a Metropolized-Gibbs scheme is used to sample the hyperparameters φ

and β from their conditional posterior (given the current value of µz). This does

not require any forward calls and can be very efficiently performed. The samples

generated can be used to estimate log pµz(µz) and its derivatives as needed for

the update equations in Appendix B. If we denote with < > expectations with

regards to the posterior samples of φ described above and by keeping only terms

that depend on µz we obtain that:

log pµz(µz) = − 1
2s2

∑

j < (µz,j −mφj)
2 >

= − 1
2s2

(µT
z µz − 2mµT

z < φ > + < φTφ >)
(C.5)
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Figure C.19: Definition of pµz(µz)

The quadratic form of this expression implies that the only changes in the update

Equation (B.4) in Appendix B will be in:

H t =




τQG

T
θ,tGθ,t +C−1

θ0 τQG
T
θ,tGz,t

τQG
T
z,tGθ,t τQG

T
z,tGz,t +

1
s2
I



 (C.6)

and:

ht =




τQG

T
θ,t(utarget − u(µ

(t)
z ,µ

(t)
z ))−C−1

θ0 (µ
(t)
θ − µθ0)

τQG
T
z,t(utarget − u(µ

(t)
z ,µ

(t)
z ))− 1

s2
(µ

(t)
z −m < φ >)



 (C.7)

The aforementioned equations should be augmented by the equality con-

straint in Equation (53). We enforce this constraint directly on µz so as the

optimal design (µz) satisfies it. From an algorithmic point, the process adopted

is similar to Sequential Quadratic Programming (SQP, [61]) where the quadrati-

cized objective (Equation (B.3)) at each iteration t is augmented by the linearized
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constraint:

0 = c(µ(t)
z +∆µ(t)

z ) ≈ c(µ(t)
z ) + fT

t ∆µ(t)
z (C.8)

where f t =
∂c
∂z
|
z=µ

(t)
z
.

In order to account for the constraint in the rest of the auxiliary density paux,

the scheme described in Equation (54) is adopted which induces a soft/probabilistic

enforcement. The term
−

c2(z)

2ǫ2c will therefore yield an additional contribution in

the variational lower-bound F detailed in Equation (17). If we denote by Fc this

additional term, then:

Fc = − 1
2ǫ2c

Eq[c
2(z)]

= − 1
2ǫ2c

Eq[c
2(µz +Wy + ηz)]

(C.9)

Given the nonlinear form of c(z), we employ another linearization around µz:

c(µz +Wy + ηz) ≈ c(µz) + fT (Wy + ηz)

= fT (Wy + ηz) (since c(µz) = 0)
(C.10)

where f = ∂c
∂z
|z=µz

. As a result of this and the form of q (Equation (27)),

Equation (C.9) becomes:

Fc = − 1
2ǫ2c

(
W Tf fTW : Cyy + τ−1

z f fT : (I −WW T )
)

(C.11)

which when combined with the rest of the terms in F in Equation (33), leads to

the following changes in the update equations in the VB-EM scheme:
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• VB-Expectation:




C

opt
θθ C

opt
θy

sym. Copt
yy





−1

=




τQG

T
θ Gθ +C−1

θ0 τQG
T
θ GzW

sym. τQW
TGT

z GzW + τy0I + 1
ǫ2c
W Tf fTW





(C.12)

and:

τ optz = τz0 +
1

dz − dy
(τQG

T
z Gz +

1

ǫ2c
f fT ) : (I −WW T ) (C.13)

• VB-Maximization:

W opt = argmax
W

F̂W (W ) (C.14)

where:

FW (W ) = −(
τQ
2
W TGT

z GzW + 1
2ǫ2c

W Tf fTW ) : (Cyy − τ−1
z I)

− τQ
2
2GT

θ GzW : Cθy + log pW (W )

(C.15)
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