
Third order Maximum-Principle-Satisfying Direct discontinuous

Galerkin methods for time dependent convection diffusion

equations on unstructured triangle mesh

Zheng Chen∗, Hongying Huang†, Jue Yan‡

October 6, 2018

Abstract

We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods
[8, 9, 19, 21] for convection diffusion equations on unstructured triangular mesh. We carefully
calculate the normal derivative numerical flux across element edges and prove that, with proper
choice of parameter pair (β0, β1) in the numerical flux, the quadratic polynomial solution satisfies
strict maximum principle. The polynomial solution is bounded within the given range and third
order accuracy is maintained. There is no geometric restriction on the meshes and obtuse
triangles are allowed in the partition. A sequence of numerical examples are carried out to
demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.

Keywords: Discontinuous Galerkin methods; Convection diffusion equation; Maximum Prin-
ciple; Positivity Preserving; Incompressible Navier-Stokes equations;

1 Introduction

In this article, we study direct discontinuous Galerkin finite element method [8] and its variations
[9, 19, 21] to solve two-dimensional convection diffusion equations of the form,

ut +∇ · F (u)−∇ · (A(u)∇u) = 0, (x, y, t) ∈ Ω× (0, T), (1.1)

with zero or periodic boundary conditions. We have spacial domain Ω ⊂ R2 and initial condition
u(x, y, 0) = u0(x, y). The convection flux is denoted as F (u) = (f(u), g(u)) and diffusion matrix
A(u) = (aij(u)) is assumed symmetric and positive definite.

On the continuous level, solution of (1.1) may satisfy the maximum principle, which states
the evolution solution u(x, y, t) being bounded below and above by the given constants, m ≤
u(x, y, t) ≤ M . Here m and M are the lower and upper bounds of the initial and boundary data.
It is desirable that the numerical solution satisfies the discrete maximum principle. The discrete
maximum principle can be considered as a strong L∞ sense stability result. Failure of preserving
the bounds or maintaining the positivity of the numerical solution may lead to ill-posed problems

∗Department of Mathematics, Iowa State University, Ames, IA 50011. Email: zchen@iastate.edu
†School of Mathematics, Physics and Information Science, Zhejiang Ocean University; Zhejiang and Key Labo-

ratory of Oceanographic Big Data Mining & Application of Zhejiang Province, zhoushan, Zhejiang, China, Email:
huanghy@lsec.cc.ac.cn
‡Department of Mathematics, Iowa State University, Ames, IA 50011. Email: jyan@iastate.edu

1

ar
X

iv
:1

50
8.

04
19

4v
1

 [
m

at
h.

N
A

]
 1

8
A

ug
 2

01
5

and practically cause the computations to blow up. Thus it is attractive to have the numerical
solution satisfy discrete maximum principle (or preserve positivity). Solution of equation (1.1)
may represent a specific physical meaning and is supposed to be positive, thus negative value
approximation loses physical meanings in such cases.

Generally it is very difficult to design high order numerical methods that satisfy discrete max-
imum principle for convection diffusion equations (1.1). No finite difference method is known to
achieve better than second-order accuracy [5, 25, 20] that satisfies discrete maximum principle.
Much less is known for higher order methods such as spectral FEM, hp-FEM or finite volume
methods [2, 6, 13, 23]. Compared to the elliptic type, more restrictive conditions on mesh are
required to obtain discrete maximum principle for the parabolic type equations, see [18, 16, 7, 17].

In this article, we study direct discontinuous Galerkin method [8] and its variations [9, 19, 21],
and prove the polynomial solution satisfy discrete maximum principle with third order of accu-
racy. Discontinuous Galerkin (DG) method is a class of finite element method that use completely
discontinuous piecewise functions as numerical approximations. Since the basis functions can be
completely discontinuous, these methods have the flexibility that is not shared by standard finite
element methods, such as the allowance of arbitrary triangulations with hanging nodes, complete
freedom of choosing polynomial degrees in each element (p adaptivity), and extremely local data
structure and the resulting high parallel efficiency.

Recently in [24, 25, 26], Zhang and Shu designed a maximum-principle-satisfying limiter for
high order DG and finite volume methods for hyperbolic conservation laws. The key step in Zhang
and Shu’s discussion is to show the polynomial solution average falling in the given minimum and
maximum bounds. For hyperbolic type equations, the solution average evolution only relies on
the solution polynomial values on the element edges. For diffusion type equations, the evolution
of solution average depends on the solution derivative values on the edges, thus the technique
developed in [24] can not be applied.

In [8], we developed the direct DG method (DDG) as a new diffusion solver. The key con-
tribution of direct DG method is the introduction of numerical flux to approximate the solution
derivative at the discontinuous element boundaries. The scheme is directly based on the weak
formulation of diffusion equation, thus gains its name the direct DG method. Now let’s use the
simple 2-D heat equation to go through the main idea of direct DG method,

ut −4u = 0. (1.2)

Multiply the heat equation with test function v, integrate over the element K, have integration by
parts and formally we obtain,∫

K
utv dxdy −

∫
∂K

ûnv ds+

∫
K
∇u · ∇v dxdy = 0.

The numerical flux ûn introduced in [8] is defined as follows,

ûn = ∇̂u · n = β0
[u]

hK
+
∂u

∂n
+ β1hK [unn].

It involves the jump, the derivative average and higher order derivative jumps to approximate the
normal derivative un on the element boundary ∂K. Here n = (n1, n2) is the outward unit normal
along ∂K and hK is the diameter of element K. The coefficient pair (β0, β1) is chosen to guarantee
the convergence of the scheme.

2

Due to accuracy loss of the original DDG method [8], we further developed DDG method with
interface correction in [9] in which optimal (k + 1)th order convergence is obtained with any order
P k polynomial approximations. We also have the symmetric [19] and nonsymmetric version [21]
of the DDG methods. In this paper, we mainly carry out the maximum principle study on DDG
method with interface correction [9] since it is the most efficient solver for time dependent diffusion
equations. The maximum principle arguments discussed in the following sections also apply to
DDG method [8] and its symmetric and nonsymmetric variations [19, 21].

In [22], we prove the DDG solutions satisfy discrete maximum principle on rectangular and
uniform triangular meshes with 3rd order of accuracy. We use an algebraic methodology and a
monotonicity argument to show the polynomial solution average being bounded within the given
range. The DG polynomial solution was written out in the Lagrange format with the unknowns
carefully chosen on the element. With Euler forward in time, we show the solution average at next
time level depends on the current time level solution values in a monotone fashion. For unstructured
mesh with possible obtuse triangles, it is very hard to identify six degrees of freedom to represent
the P 2 quadratic polynomial solution such that the monotone argument in [22] can be applied.

In this article we extend maximum principle studies of (1.1) on unstructured triangle mesh.
Again let’s use the heat equation to illustrate the new technique to carry out the proof. Notice that
the key step of the discussion is to show the solution average falling in the given range. Take test
function v = 1 in the DDG scheme and discretize in time with Euler forward, we have the solution
average evolving in time as,

un+1
K = unK +

∆t

area(K)

∫
∂K

ûn ds,

with the average defined as unK = 1
area(K)

∫
K u

n
K(x, y) dxdy and unK(x, y) as the polynomial solution

at time step tn in element K.
Instead of identifying suitable locations as degrees of freedom and writing out unK(x, y) in the

Lagrange format as in [22], we directly calculate the normal derivative flux ûn from the given
solution values in element K and its neighbors. Given suitable choice of coefficient pair (β0, β1)
in the numerical flux, we can bound the solution average un+1

K ∈ [m,M] at time level tn+1 once
we know unK(x, y) ∈ [m,M] at previous time level tn. Finally we borrow the maximum principle
discussion of [25] to show the DG polynomial solution of general convection diffusion equations (1.1)
satisfy strict maximum principle with 3rd order of accuracy. A sequence of numerical examples are
carried out to demonstrate the DG solutions are strictly bounded by the given values and at the
same time maintain the 3rd order accuracy. Solutions to nonlinear porous medium equations with
nonnegative initial data are maintained sharply nonnegative. Examples of incompressible Navier-
Stokes equations with high Reynold numbers are tested. Overshoot and undershoots are removed
with maximum principle limiter applied.

The key feature of direct DG methods is the introduction of numerical flux ûn that approximates
the solution derivative un on the discontinuous element boundary. This gives direct DG methods
the extra flexibility and advantage over IPDG method [1] and LDG method [4]. Following this
maximum principle framework, both IPDG method and LDG method can be proved to satisfy
maximum principle with up to second order of accuracy. In [27], DG solutions with piecewise linear
polynomial approximations are shown satisfying maximum principle on unstructured triangle mesh.

The paper is organized as follows. We first review the scheme formulation of direct DG method
with interface correction [9] in section 2. In Section 3, we prove the direct DG solutions satisfy
discrete maximum principle with 3rd order accuracy. We conduct numerical tests to validate the
theoretical results in Section 4. Section 5 serves as the Appendix in which we provide one way to

3

construct a specific quadrature rule for quadratic polynomials with selected points as quadrature
points.

2 Direct DG method with interface correction

We first recall the scheme formulation of direct DG method with interface correction [9] for two-
dimensional diffusion equations,

ut −∇ · (A(u)∇u) = 0, (x, y, t) ∈ Ω× (0, T), (2.1)

with initial condition u(x, y, 0) = u0(x, y) and zero or periodic boundary conditions. The complete
scheme formulation of convection diffusion equation (1.1) will be laid out toward the end of this
section. We should specify the DG method is for spatial discretization and we will incorporate
high order TVD Runge-Kutta methods [15, 14] to march forward the solution in time. As an
explicit scheme, our method is thus more efficient for convection dominated problems. However,
the extremely local dependency allows a very efficient parallelization and dramatically improves
the efficiency of the explicit method.

Let Th be a shape-regular partition of the polygonal domain Ω into triangle elements {K}K∈Th
with Ω = ∪K∈ThK. By hK = diam(K), we denote the diameter of the triangle element K ∈ Th.
We denote h = maxK∈Th hK as the mesh size of the partition. We have P k(K) representing the
kth degree polynomial space on element K. The DG solution space is defined as,

Vkh = {v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th}.

Suppose K and K ′ are two adjacent triangles and share one common edge e. There are two traces
of v along the edge e, where we add or subtract those values to obtain the average and the jump.
The outward normal vector from K to its neighbor element K ′ is denoted by n = (n1, n2). Now
the average and jump of v on the edge e are defined as follows,

v =
1

2
(v|K + v|K′) , [v] = v|K′ − v|K .

The original DDG scheme of (2.1) defined in [8] is to find DG solution u ∈ Vkh, such that for
any test function v ∈ Vkh we have,∫

K
utv dxdy −

∫
∂K

̂(A(u)∇u · n)v ds+

∫
K
A(u)∇u · ∇v dxdy = 0, ∀K ∈ Th. (2.2)

The numerical flux ̂A(u)∇u · n (equation (3.7) of [21] in dimension-by-dimension format) along the
element edge is defined as,

̂A(u)∇u · n =
(
̂b11(u)x + b̂12(u)y

)
n1 +

(
̂b21(u)x + b̂22(u)y

)
n2,

where bij(u) =
∫
aij(u)du with aij(u) as the diffusion matrix A(u) entry. The outward normal is

given with n = (n1, n2). Similar to (3.7) of [21], for example, the numerical flux ̂b11(u)x is calculated
with formula,

̂b11(u)x = β0
[b11(u)]

hK
n1 + b11(u)x + β1hK {[b11(u)xx]n1 + [b11(u)yx]n2} .

4

The coefficient pair (β0, β1) should be chosen carefully to ensure the stability and convergence of
the scheme. Again we have hK as element K’s diameter or the length of edge ∂K. Notice in [22],
we further require the entries aij(u) ≥ 0 to carry out the discrete maximum principle proof.

In this article, we simplify the calculation of numerical flux ̂A(u)∇u · n to the following,

̂A(u)∇u · n = ∇̂u · γ = β0
[u]

hK
+ uγ + β1hK [uγγ], (2.3)

where γ = AT (u)n is a vector pointing from element K into its neighbor along the edge ∂K. The
simplification holds true since (A(u)∇u) · n = ∇u · (AT (u)n) and A(u) is positive definite. We
should point out the simplified version (2.3) is very important to carry out the maximum principle
discussion in the following sections. Now the DDG interface correction [9] of (2.1) is defined to find
solution u ∈ Vkh, such that for any test function v ∈ Vkh we have,∫
K
utv dxdy−

∫
∂K

̂(A(u)∇u · n)v ds+

∫
K
A(u)∇u ·∇v dxdy+

∫
∂K

A(v)∇v ·n[u] ds = 0, ∀K ∈ Th,

(2.4)
with the numerical flux (2.3). The last term in (2.4) is the the extra added interface correction.
Notice that the test function v is taken to be zero outside the element K, thus the derivative average
degenerates to A(v)∇v = 1

2A(v)∇v|K on the edge ∂K.
The complete scheme formulation of (1.1) with DDG interface correction follows,∫
K
utv dxdy+

∫
∂K

F̂ · nv ds−
∫
K
F · ∇v dxdy

=

∫
∂K

̂(A(u)∇u · n)v ds−
∫
K
A(u)∇u · ∇v dxdy −

∫
∂K

A(v)∇v · n[u] ds, (2.5)

with the convection term Lax-Friedrichs flux defined as,

F̂ · n =
1

2
(F (uK) · n + F (uK′) · n− α(uK′ − uK)) , with α = max

u
|F′(u) · n|.

3 Maximum-Principle-Satisfying DDG methods

In this section we prove DDG polynomial solutions of nonlinear diffusion equations (2.1) satisfy
discrete maximum principle with the M-P-S limiter applied. We first discuss the linear case on
unstructured triangle mesh in section 3.1. Then we extend the study to nonlinear diffusion equations
in section 3.2.

Notice that the second derivative jump term has no contribution to the calculation of the
numerical flux with low order P 0 and P 1 approximations. The scheme of DDG method with
interface correction (2.4) degenerates to IPDG methods with low order approximations. In this
paper, we focus on P 2 quadratic polynomial approximations with 3rd order of accuracy. We skip
the trivial piecewise constant case and refer to [27] for 2rd order linear approximations.

On the continuous level the maximum principle states that m ≤ u(x, y, t) ≤ M , given m and
M as the minimum and maximum of the initial data u(x, y, 0) = u0(x, y) and boundary data.
We have u(x, y, tn) to denote the exact solution at time level tn and unK(x, y) as the polynomial
solution on element K and at time level tn. Our goal is to prove the polynomial solution satisfy
m ≤ unK(x, y) ≤ M without losing the 3rd order accuracy at all time levels. We can simplify the
discussion to Euler forward time discretization, since the full scheme (high order strong stability

5

preserving (SSP) Runge-Kutta method) is a convex combination of Euler forward scheme. For
example, the third order SSP Runge-Kutta method in [14] is

u(1) = un + ∆tH(un)

u(2) = 3
4u

n + 1
4(u(1) + ∆tH(u(1)))

un+1 = 1
3u

n + 2
3(u(2) + ∆tH(u(2)))

Now assume at time level tn, we have 1) the DDG solution is 3rd order accurate; and 2) we
have unK(x, y) ∈ [m,M] on all elements. The goal is to prove the solution polynomial un+1

K (x, y) at
next time level tn+1 still stay inside the bounds [m,M] without losing accuracy. To carry out this
study we need to consider following two steps:

1. to prove the polynomial solution average un+1
K stay inside the bounds [m,M];

2. to prove the whole polynomial un+1
K (x, y) stay inside [m,M] without losing accuracy.

The most challenging and the major step is to show the polynomial average un+1
K falling in

[m,M]. For the second step, we simply apply a linear scaling limiter [11] to un+1
K (x, y) and obtain a

modified polynomial ũn+1
K (x, y) such that the whole polynomial ũn+1

K (x, y) ∈ [m,M] without losing
accuracy. we refer to [25] for the proof of this accuracy preserving limiter. We have the DDG
solution approximates the exact solution with 3rd order accuracy, thus the polynomial solution can
only jump out of the bounds [m,M] in the scale of h3 with h as the mesh size. The limiter [11] is
applied to compress and squeeze the polynomial in the scale of h3 and put it back into the bounds
[m,M]. The extra cost to preserve maximum principle is to apply the limiter [11] to maintain the
bounds.

3.1 Linear diffusion equation

In this section, we prove the DDG quadratic polynomial solutions of heat equation (1.2) satisfy
discrete maximum principle. Again we focus on the first step and investigate under what conditions
the solution average un+1

K ∈ [m,M] given unK(x, y) ∈ [m,M] on all elements.
The scheme formulation of DDG with interface correction for (1.2) is to find DG solution u ∈ Vkh,

such that for any test function v ∈ Vkh we have,∫
K
utv dxdy −

∫
∂K

ûnv ds+

∫
K
∇u · ∇v dxdy +

∫
∂K

vn[u] ds = 0, ∀K ∈ Th. (3.1)

The numerical flux ûn on the element boundary ∂K is given with,

ûn = β0
[u]

hK
+ un + β1hK [unn]. (3.2)

To obtain the solution average evolution, we take test function v = 1 in (3.1), discretize in time
with forward Euler and formally we have,

un+1
K = unK +

∆t

area(K)

∫
∂K

ûn ds. (3.3)

The solution average is given with unK = 1
area(K)

∫
K u

n
K(x, y) dxdy and ∆t is denoted as the time

step size. The average unK can be calculated out exactly, since unK(x, y) is a quadratic polynomial.

6

Thus we see the quantity un+1
K of (3.3) is essentially determined by the integral of ûn on the three

edges. Recall that the numerical flux ûn of (3.2) involves the solution jump, normal derivative
average and second order normal derivative jumps on ∂K. The quantity un+1

K eventually is a
function of the four solution polynomials that spread out in K and its three neighbors.

For uniform triangular mesh in [22], we pick six solution values on each element and write
out the P 2 solution polynomial in Lagrange format, then use a monotone argument to bound
un+1
K ∈ [m,M]. For arbitrary triangular mesh, it’s hard to identify such six points inside each

triangle. We will use a new idea to bound un+1
K .

We observe that the three quantities, namely u, un and unn restricted on the edges from each
element, contribute to the calculation of ûn. If we manage to calculate u, un and unn from the
given solution polynomials, we can easily bound un+1

K ∈ [m,M] once we have unK(x, y) ∈ [m,M]
for all K.

A B

C

K

K3

K1 K2

A B

C

K

K3

x
K

0

x
K

3

0

 x
K,1

 x
K,2

 x
K,3

x
K

3
,1

 x
K

3
,2

 x
K

3
,3

x
K,4

x
K,5

x
K

3
,4

x
K

3
,5

Figure 1: Left: K and its neighbor elements. Right: selected points to calculate ûn on edge AB.

Let’s use Figure 1 to illustrate the solution points selected to calculate u, un and unn. For
example, we consider the edge AB shared by K and its neighbor element K3 (the right one in
Figure 1). Notice that unK3

(x, y) is a P 2 polynomial. The three points, namely xK3,1, xK3,2, xK3,3,
are enough to represent the restriction of unK3

(x, y) on edge AB. The second normal derivative
unn degenerates to a constant, and we can use three points xnK3,3

, xnK3,4
, xnK3,5

on the normal
line through the edge center to calculate unn. The first normal derivative un on AB is a linear
polynomial, thus the same three points on the normal line are good enough to calculate the line
integral of un. With this new idea to calculate the numerical flux ûn of (3.3), we are ready to
bound the average un+1

K .

Theorem 3.1. Consider DDG scheme with interface correction (3.1) - (3.2) with P 2 quadratic
approximations on unstructured triangular mesh. Given unK(x, y) in the range of [m,M] for all K,
we have un+1

K ∈ [m,M] provided,

β0 ≥
9

4
− 6β1,

1

8
≤ β1 ≤

1

4
, λ =

∆t

aread(K)
≤ A(β0, β1, θ̌, θ̂). (3.4)

Here (β0, β1) is the coefficient pair in the numerical flux (3.2). We have θ̌ and θ̂ denoted as the

7

maximum and minimum angle of the partition Th, and A is a function of β0, β1, θ̌ and θ̂, i.e.,

A = tan(θ̂) ·min

{
w1

72(1− 4β1)
,
tan(θ̂)

tan(θ̌)
min

(
1

6(8β1 − 1)
,

w1

8(β0 − 9
4 + 6β1)

,
w1

4β0

)}
, (3.5)

where w1 = 2
81 as shown in (5.4).

Proof. To bound un+1
K of (3.3), we see it’s important to carefully calculate the numerical flux ûn on

∂K. From the numerical flux formula (3.2) of the DDG schemes, we have hK taken as the element
diameter or the length of the edge ∂K. To simplify the proof, here we modify hK to incorporate with
the mesh geometrical information. We should comment that numerically we observe no difference
with either choice of hK .

Again we use edge AB in Figure 1 to illustrate the definition of hK chosen in the numerical
flux formula (3.2). Let’s have the parametric equation r(t) = tn + xK,3, t ∈ R to represent the
normal line through the edge center. And we have points x0

K and x0
K3

as the intersection of
the normal line with the other two edges of K and K3. Restricted on edge ∂K = AB, we take
hK = hAB = min

{
‖xK,3 − x0

K‖, ‖xK3,3 − x0
K3
‖
}

and we have,∫
AB

ûn ds =

∫
AB

β0
[u]

hAB

ds+

∫
AB

un ds+

∫
AB

β1hAB [unn] ds. (3.6)

To calculate unn, we pick two more points along the normal line from each side. We have points
xK,5(t = −hAB) and xK,4(t = −1

2hAB) taken in element K, and points xK3,5(t = hAB) and xK3,4(t =
1
2hAB) taken in element K3, as shown in Figure 1. Furthermore we denote uK,1, . . . , uK,5 as the
unK(x, y) quadratic polynomial solution values on points xK,1, . . . ,xK,5. As discussed previously, the
five points uK,1, . . . , uK,5 are enough to calculate

∫
AB ûnds from the side of element K. Similarly,

the five points uK3,1, . . . , uK3,5 are enough to calculate
∫
AB ûnds from the side of element K3.

Essentially the quantity
∫
AB ûnds can be explicitly written out in terms of the ten solution values

spread out in elements K and K3 as follows,

∫
AB

β0
[u]

hAB

ds =
β0lAB

6hAB

{(uK3,1 + uK3,2 + 4uK3,3)− (uK,1 + uK,2 + 4uK,3)}∫
AB

unds =
lAB

2hAB

{(−3uK3,3 − uK3,5 + 4uK3,4) + (3uK,3 + uK,5 − 4uK,4)}∫
AB

β1hAB [unn]ds =
4β1lAB

hAB

{(uK3,3 + uK3,5 − 2uK3,4)− (uK,3 + uK,5 − 2uK,4)} .

(3.7)

Here we have lAB denoting the length of edge AB. Finally the average un+1
K of (3.3) can be written

out as a function of the solution values that spread out in element K and its neighbors K1,K2,K3.
Thus formally we have,

un+1
K = unK +

∆t

area(K)

{∫
AB

ûnds+

∫
BC

ûnds+

∫
CA

ûnds

}
= H

{
unK(·, ·), unK1

(·, ·), unK2
(·, ·), unK3

(·, ·)
}
. (3.8)

8

The functional H(· · ·) involves 28 arguments with 15 points from K1,K2,K3 and 13 points from
K. The first 12 points from K are selected from the calculation of

∫
∂K ûnds, see Figure 1. The

13th one is to be selected by the quadrature rule for cell average unK , see Appendix 5.1.
Our goal here is to prove solution average un+1

K ∈ [m,M] given unK(x, y) ∈ [m,M] on all
elements. Again, we use a monotone argument showing un+1

K is a convex combination of the
selected solution points. To study the conditions to guarantee that H(⇑,⇑,⇑,⇑) is monotonically
increasing on the total 28 arguments, it is enough to check out the ten points selected inside K and
K3 of (3.8). We first check the five points selected on element K3. From (3.7) - (3.8) we have,

∂H

∂uK3,1
=

∂H

∂uK3,2
= λ

lAB

hAB

β0

6
,

∂H

∂uK3,3
= λ

lAB

hAB

(
2

3
β0 −

3

2
+ 4β1),

∂H

∂uK3,4
= λ

2lAB

hAB

(1− 4β1),
∂H

∂uK3,5
= λ

lAB

2hAB

(8β1 − 1).

With λ = ∆t
area(K) > 0, we only need β0 ≥ 9

4 − 6β1 and 1
8 ≤ β1 ≤ 1

4 to guarantee the coefficients
of the five solution values in K3 being non-negative. Before we carry out the discussion on the
five points in element K, we need an inequality (refer to Appendix 5.1) which reflects geometrical
property of the mesh partition.

hAB =
lAB

2
tan(min(θ1, θ2, θ4, θ5)) ≥ lAB

2
tan(θ̂).

From (3.7) and (3.8), we have,

∂H

∂uK,1
=

∂unK
∂uK,1

− λβ0

6

(
lAB

hAB

+
lCA

hCA

)
≥

∂unK
∂uK,1

− λ 2β0

3 tan(θ̂)

∂H

∂uK,2
=

∂unK
∂uK,2

− λβ0

6

(
lAB

hAB

+
lBC

hBC

)
≥

∂unK
∂uK,2

− λ 2β0

3 tan(θ̂)

∂H

∂uK,3
=

∂unK
∂uK,3

− λ lAB

hAB

(
2

3
β0 −

3

2
+ 4β1

)
≥

∂unK
∂uK,3

− λ
4
(
β0 − 9

4 + 6β1

)
3 tan(θ̂)

∂H

∂uK,4
=

∂unK
∂uK,4

− λ2lAB

hAB

(1− 4β1) ≥
∂unK
∂uK,4

− λ4 (1− 4β1)

tan(θ̂)

∂H

∂uK,5
=

∂unK
∂uK,5

− λ lAB

2hAB

(8β1 − 1) ≥
∂unK
∂uK,5

− λ8β1 − 1

tan(θ̂)
.

To guarantee the coefficients of the five solution points in K being non-negative, we need a special
quadrature rule with all positive weights on all the 12 selected points in K. We refer to Appendix
5.1 for details of this quadrature rule. The 13th point uK,13 is selected by the quadrature rule
also with positive weight. With CFL restriction (3.4)- (3.5) and the quadrature weights (5.1),
we see H(· · ·) is monotonically increasing on uK,1, uK,2, uK,3, uK,4 and uK,5. Similar argument
applies to edge BC and edge CA, involving solution values in elements K1 and K2. Easily we see
functional H(· · ·) is monotonically increasing w.r.t. all 28 point values. With the consistency and
the monotonicity of H(· · ·), we obtain,

m = H(m, · · · ,m) ≤ un+1
K = H(· · ·) ≤ H(M, · · · ,M) = M.

provided that m ≤ unK(x, y), unK1
(x, y), unK2

(x, y), unK3
(x, y) ≤M .

9

3.2 Nonlinear diffusion equation

In this section we extend the study of 3rd order M-P-S DDG scheme with interface correction (2.3)
- (2.4) to general nonlinear diffusion equations (2.1) on unstructured triangle mesh. Again, our goal
is to bound the solution average un+1

K ∈ [m,M] provided unK(x, y) in the range of [m,M]. Take
test function v = 1 in (2.4) and discretize in time with Euler forward, we have the solution average
evolving in time as,

un+1
K = unK +

∆t

area(K)

∫
∂K

̂(A(u)∇u · n) ds = unK +
∆t

area(K)

∫
∂K
∇̂u · γ ds. (3.9)

i−th edge

K

Ki

 x
i,j

 x
i,j’ u

1
 u

2

 u
3

u
1

o

u

2

o

u
3

o
 γ

 n

Figure 2: Selected points along direction γ = AT (un(xi,j))ni for representing the numerical flux

As discussed previously in (2.3), we apply a new way to calculate numerical flux ̂A(u)∇u · n =

∇̂u · γ with γ = AT (u)n as a vector pointing from K into its neighbor along the edge. This is true
because the diffusion matrix A(u) is positive definite and we have γ · n = AT (u)n · n > 0. In a
word, γ is a vector always pointing into its neighbor element. To bound un+1

K , we need to manage

to calculate
∫
∂K ∇̂u · γ ds on the three edges of element K. Notice that vector γ is a nonlinear

function of the solution, thus we apply a quadrature rule to calculate
∫
∂K ∇̂u · γ ds. For example,

we consider 2-point Gaussian quadrature rule along each edge to approximate the line integral.
Let’s use point xi,j to denote the jth Gaussian point on the ith edge. For each Gaussian point xi,j ,
shown in Figure 2, we see six solution values are enough to calculate the numerical flux,

∇̂u · γ|xi,j = ûγ |xi,j = β0
[u]

hi,j
+ uγ + β1hi,j [uγγ]

∣∣∣∣
xi,j

, (3.10)

where γ = AT (un(xi,j))ni and hi,j as the shortest distance from point xi,j to the other edges of
K and Ki along γ. Again, we bound un+1

K by showing it is a convex combination of polynomial
solution values that spread in element K and its three neighbors K1, K2 and K3.

Theorem 3.2. (Nonlinear diffusion equation) Consider DDG scheme with interface correction
(2.3) - (2.4) with P 2 quadratic approximations on a triangular mesh. Given unK(x, y) in the range
of [m,M], we have un+1

K ∈ [m,M] provided,

β0 ≥
3

2
− 4β1,

1

8
≤ β1 ≤

1

4
, λ =

∆t

area(K)
≤ A(β0, β1, θ̌, θ̂). (3.11)

10

Again (β0, β1) is the coefficient pair in the numerical flux (2.3), and θ̌ and θ̂ as the maximum and
minimum angles of the partition Th. Function A depends on β0, β1, θ̌ and θ̂ as,

A = sin(θ̂) · 3−
√

3

3
w0 ·min

{
1

2β0 + 8β1 + 3
,

1

8β1 + 1

}
, (3.12)

where w0 is the minimum quadrature weight in the quadrature rule.

Proof. Similar to Theorem 3.1, it suffices to study the monotonicity of un+1
K with respect to the

points selected to evaluate the right hand side of (3.9). Specifically it is enough to study the
Gaussian points that are used to approximate the line integral on the edges. For one Gaussian
point xi,j , as shown in Figure 2, six solution points selected along γ = AT (un(xi,j))ni direction are
enough to calculate the numerical flux (3.10). We denote u1, u2, u3 as the three solution values of
unK(x, y) selected in K and u1

o, u
2
o, u

3
o as the ones selected in Ki. Again we have hi,j denoting the

shortest distance from point xi,j to the other edges of K and Ki along γ.
Now at the Gaussian point xi,j , we can explicitly write out the value of ûγ of (3.10) with,

[u] = u1
o − u1

uγ =
1

2

(
4u2 − 3u1 − u3

hi,j
+

4u2
o − 3u1

o − u3
o

hi,j

)
=

1

2hi,j

(
4u2 − 3u1 − u3 + 4u2

o − 3u1
o − u3

o

)
[uγγ] =

u1
o + u3

o − 2u2
o(

hi,j
2

)2 − u1 + u3 − 2u2(
hi,j

2

)2 =
4

h2
i,j

[
u1
o + u3

o − 2u2
o − (u1 + u3 − 2u2)

]
.

Introduce notation αi,j = ∆t
area(K) l

i
Kωj with liK as the ith edge length and ωj as the jth Gaussian

point weight. Since we use 2-point Gaussian quadrature rule, the weight ωj ≡ 1. From (3.9), we
have,

∂un+1
K

∂u3
o

=
αi,j

2hi,j
(8β1 − 1),

∂un+1
K

∂u2
o

=
2αi,j

hi,j
(1− 4β1),

∂un+1
K

∂u1
o

=
αi,j

hi,j
(β0 + 4β1 −

3

2
),

∂un+1
K

∂u3
=
∂unK
∂u3

− αi,j

2hi,j
(8β1 + 1),

∂un+1
K

∂u2
=
∂unK
∂u2

+
2αi,j

hi,j
(4β1 + 1),

∂un+1
K

∂u1
=
∂unK
∂u1

− αi,j

2hi,j
(2β0 + 8β1 + 3).

With β0 ≥ 3
2 − 4β1,

1
8 ≤ β1 ≤ 1

4 satisfied in the numerical flux (2.3), we have un+1
K as a monotone

increasing function on the solution values u1
o, u

2
o, u

3
o chosen from element K3. Similar discussion

applies to the solution values used in element K1 and K2. With 2-point Gaussian quadrature rule
approximating the line integral, the quantity un+1

K is monotone increasing with respect to the total
18 solution values from K1, K2 and K3.

Similar to Theorem 3.1, we need to have a special quadrature rule for the cell average unK that
use all the selected points inside K (18 points in total) with positive weights. We use a similar
method as the linear case to find such a quadrature rule, see Appendix 5.1. Let w0 be the minimum
weight for the selected points.

With geometry information of the mesh partition,

liK
hi,j
≤ 1

C sin θ̂
, C ≥ 3−

√
3

6
, (3.13)

11

we see condition (3.11) is sufficient to guarantee the coefficients of solution values used in element
K being none-negative. Therefore, un+1

K is monotonically increasing w.r.t. all the selected points
inside K and its neighbors. Finally we conclude with,

m ≤ un+1
K ≤M,

provided that m ≤ unK(x, y), unK1
(x, y), unK2

(x, y), unK3
(x, y) ≤M .

Implementation of the M-P-S limiter
Given the quadratic DG polynomial solution unK(x, y) with cell average unK ∈ [m,M], the

following limiter ensures ũnK(x, y) ∈ [m,M] for any (x, y) ∈ K.

ũnK(x, y) = θ(unK(x, y)− unK) + unK , θ = min

{
1,

∣∣∣∣ M − unKMK − unK

∣∣∣∣ , ∣∣∣∣ m− unKmK − unK

∣∣∣∣} , (3.14)

with MK and mK as the maximum and minimum of unK(x, y) on element K,

MK = max
(x,y)∈K

unK(x, y), mK = min
(x,y)∈K

unK(x, y). (3.15)

Since unK(x, y) is a quadratic polynomial, it is easy to calculate the maximum and minimum value
over K.

Notice that the limiter (3.14) does not change the cell average. Moreover, ‖ũnK(x, y)−unK(x, y)‖∞ =
O(h3), if the exact solution is smooth. The proof can be found in [24]. Thus, ũnK(x, y) ∈ [m,M]
has uniform third order accuracy for smooth exact solution.

Algorithm 3.1. maximum-principle-satisfying DDG scheme with interface correction

1. At time level tn, we apply M-P-S limiter (3.14) - (3.15) to unK(x, y) and obtain ũnK(x, y).

2. Apply DDG scheme with interface correction (2.3) - (2.4) to ũnK(x, y) and evolve in time with
SSP Runge-Kutta method [14] to march forward the solution to the next time level tn+1.

For the convection part of (1.1), as discussed in [24], the solution average at next time level
un+1
K is a monotone function with respect to certain solution values (Gauss-Lobatoo points) at time

level tn. Thus the M-P-S limiter (3.14) - (3.15) with MK and mK as the maximum and minimum
of the polynomial solution unK(x, y) over the whole element K is enough to guarantee the solution
average staying in the given bound.

Remark 3.1. For general convection diffusion equation (1.1), we apply same procedure listed in
Algorithm 3.1 to guarantee the quadratic polynomial solution stay in the given bound and at the
same time maintain the 3rd order accuracy. For (1.1), we apply DDG with interface correction
scheme (2.5) for spatial discretization.

4 Numerical Examples

In this section, we present a sequence of examples to demonstrate the performance of M-P-S
limiter. For all examples in this section, we have the coefficient pair taken as (β0, β1) = (5, 1

8) in
the numerical flux formula (3.2).

12

Example 4.1. Accuracy test on linear diffusion equation

We start with accuracy check of the DDG with interface correction (3.1) with and without
M-P-S limiter (3.14) applied on the following linear diffusion equation,

ut − ε∆u = 0, (x, y) ∈ [0, 1]× [0, 1], t ∈ (0, T),

with initial data u(x, y, 0) = u0(x, y) = sin(2π(x+ y)) and periodic boundary condition. The exact
solution is given with,

u(x, y, t) = exp(−8π2εt) sin(2π(x+ y)).

Here, we take ε = 1 and final time t = 0.0001. We implement the scheme with P 2 quadratic
polynomials on unstructured mesh in Figure 3(a) and on mesh with obtuse triangles with largest
angle about 3

5π in Figure 3(b). Third order of accuracy is maintained with and without M-P-S
limiter (3.14) applied, see Table 1 and Table 2. At each time step tn, we set the bounds to be
uemin = − exp(−8π2εtn) and uemax = exp(−8π2εtn), which are the minimum and maximum of the
exact solution. We use umin and umax to denote the DG solution minimum and maximum values.
The overshoots and undershoots are eliminated after the M-P-S limiter applied, see Table 1 and
Table 2.

(a) Triangular mesh with h = 0.117. (b) Mesh with obtuse triangles, h = 0.148.

Figure 3: Illustration of meshes

Example 4.2. Porous medium equation

In this example we consider the nonlinear porous medium equation

ut =
(
u2
)
xx

+
(
u2
)
yy
, (x, y) ∈ [−10, 10]× [−10, 10],

with initial condition

u(x, y, 0) =

1, (x− 2)2 + (y + 2)2 < 6,
1, (x+ 2)2 + (y − 2)2 < 6,
0, otherwise,

13

h without M-P-S limiter with M-P-S limiter
L2 error Order L∞ error Order umin − uemin umax − uemax L2 error Order L∞ error Order umin − uemin umax − uemax

0.117 1.21e-03 1.10e-02 -3.91e-03 3.16e-03 1.28e-03 1.10e-02 0 0

0.0587 1.94e-04 2.64 1.28e-03 3.10 -2.40e-04 2.49e-04 1.95e-04 2.71 1.28e-03 3.10 0 0

0.0293 2.60e-05 2.90 1.59e-04 3.01 -1.49e-05 1.50e-05 2.60e-05 2.91 1.59e-04 3.01 0 0

0.0147 3.27e-06 2.99 2.01e-05 2.98 -9.61e-07 9.41e-07 3.27e-06 2.99 2.01e-05 2.98 0 0

0.00733 4.11e-07 2.99 2.52e-06 2.99 -5.82e-08 5.96e-08 4.11e-07 2.99 2.52e-06 2.99 0 0

Table 1: Accuracy table on triangular mesh of Figure 3(a).

h without M-P-S limiter with M-P-S limiter
L2 error Order L∞ error Order umin − uemin umax − uemax L2 error Order L∞ error Order umin − uemin umax − uemax

0.148 8.23e-04 1.46e-02 -1.17e-02 9.70e-03 1.08e-03 1.46e-02 0 0

0.0741 1.23e-04 2.74 1.82e-03 3.00 -7.86e-04 5.49e-05 1.26e-04 3.11 2.02e-03 2.85 0 0

0.0371 1.68e-05 2.87 2.17e-04 3.06 -2.66e-05 4.24e-05 1.68e-05 2.90 2.17e-04 3.22 0 0

0.0185 2.14e-06 2.97 2.69e-05 3.02 -1.12e-06 9.22e-07 2.14e-06 2.97 2.69e-05 3.02 0 0

0.00927 2.70e-07 2.99 3.33e-06 3.01 -7.17e-08 1.33e-08 2.70e-07 2.99 3.33e-06 3.01 0 0

Table 2: Accuracy table on unstructured mesh with obtuse triangles of Figure 3(b).

and zero boundary condition. Piecewise quadratic polynomial solutions implemented on unstruc-
tured mesh (Figure 3(a)) with size h = 0.00733 are shown in Figure 4. Notice that the minimum of
the solution is zero. Numerical approximation without M-P-S limiter may become negative which
may lead the problem ill-posed and cause the computations blow up. Implementations on a coarser
mesh with h = 0.0587 are carried out, see Figure 5. With M-P-S limiter applied, DDG interface
correction solutions are maintained strictly inside the bound [0, 1].

Example 4.3. Strongly degenerate parabolic problem

We consider the following strongly degenerate parabolic problem with DDG interface correction
method (2.5),

ut + (u2)x + (u2)y = ε(ν(u)∇ux)x + ε(ν(u)∇uy)y, (x, y) ∈ [−1.5, 1.5]× [−1.5, 1.5].

Initial condition is given with,

u(x, y, 0) =

1, (x+ 0.5)2 + (y + 0.5)2 < 0.16,
−1, (x− 0.5)2 + (y − 0.5)2 < 0.16,
0, otherwise,

and zero boundary condition is applied. We have ε = 0.1 and,

ν(u) =

{
0, |u| ≤ 0.25,
1, |u| > 0.25.

Quadratic polynomial implementation with M-P-S limiter is carried out. Here we apply the simple
slope limiter [3] to compress the oscillations caused from the nonlinear convection term. For the
slope limiter, we take γ = 1.5 and M = 5. Implementation on mesh (Figure 3(a)) with h = 0.0147
is shown in Figure 6. The result agrees well those in literature, see [12, 21].

Example 4.4. Incompressible Navier-Stokes equation in vorticity stream-function formulation

In this example, we consider to solve two-dimensional incompressible Navier-Stokes equation,
wt + (uw)x + (vw)y = 1

Re∇w,
∆φ = w, 〈u, v〉 = 〈−φy, φx〉,
〈u, v〉 · n = given, (x, y) ∈ ∂Ω,

(4.1)

14

(a) t = 0 (b) t = 0.1

(c) t = 0.5 (d) t = 2

Figure 4: Nonlinear porous medium problem with h = 0.00733.

15

x

u

-10 -5 0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

reference

with limiter

no limiter

x

u

-0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

reference

with limiter

no limiter

x

u

-4.5 -4 -3.5 -3

-0.2

0

0.2

0.4

0.6

reference

with limiter

no limiter

x

u

0 0.5 1 1.5

0.4

0.6

0.8

1

1.2

reference

with limiter

no limiter

Figure 5: The cut of the DDG interface correction solution along line x+ y = 0 at t = 0.005. Red
circle symbol: no M-P-S limiter. Blue diamond symbol: M-P-S limiter applied.

Figure 6: Strongly degenerate parabolic problem solution at t = 0.5.

16

written out in the vorticity stream-function format. We focus on the incompressible flow with high
Reynolds numbers (Re � 1), thus explicit treatment on both convection term and diffusion term
is efficient.

The initial vorticity is given with w(x, y, 0) = w0(x, y) and periodic boundary condition is
applied. We have φ(x, y) denoting the stream function and the velocity field is denoted as 〈u, v〉.
We adopt the method of [10] by Liu and Shu to solve (4.1). Thus at each time step, we first
apply P 2 continuous finite element method as the Poisson solver to obtain stream function φ, then
have the velocity field and plug them into the vorticity equation and discretize in space with DDG
interface correction method (2.5), finally update the vorticity DG solution to the next time level.
High order SSP Runge-Kutta explicit scheme [14] is applied to march forward solution in time. As
remarked in [10] that there is a natural match between the vorticity DG solution and the stream
function. The normal component of velocity field 〈u, v〉 · n is continuous across all triangle edges,
thus DG implementation on the convection part of vorticity equation is straight forward.

We carry out two tests in this example. First one is for accuracy check with exact solution
maximum and minimum available and being applied with M-P-S limiter at each time step. The
second one is a vortex patch problem.

Accuracy Test

We solve (4.1) with Re = 100. Initial condition is w0(x, y) = −2 sin(x) sin(y) with Ω = [0, 2π]×
[0, 2π] and periodic boundary condition is applied. Exact solution is available with

w(x, y, t) = −2 sin(x) sin(y) exp (−2t/Re).

Quadratic P 2 implementations are carried out on mesh Figure 3(a) and on mesh Figure 3(b) with
obtuse triangles. Errors and orders are listed in Table 3 and Table 4. Again we have wemax and
wemin represent exact solution maximum and minimum values. We observe that the M-P-S limiter
removes all overshoots and undershoots and still maintains the third order accuracy.

h/2π without limiter with limiter
L2 error Order L∞ error Order wmin − wemin wmax − wemax L2 error Order L∞ error Order wmin − wemin wmax − wemax

0.117 1.90e-03 1.85e-02 -8.17e-03 7.72e-03 1.98e-03 1.88e-02 0 0

0.0587 2.68e-04 2.82 2.07e-03 3.16 -3.64e-04 6.41e-04 2.68e-04 2.88 2.07e-03 3.18 0 0

0.0293 3.62e-05 2.89 2.92e-04 2.82 -6.40e-05 -4.50e-06 3.62e-05 2.89 2.92e-04 2.82 0 -4.52e-06

0.0147 4.54e-06 3.00 2.56e-05 3.51 -1.29e-06 3.62e-06 4.54e-06 3.00 2.56e-05 3.51 0 0

0.00733 5.84e-07 2.96 4.05e-06 2.66 -1.53e-07 1.95e-07 5.84e-07 2.96 4.05e-06 2.66 0 0

Table 3: Accuracy check on mesh Figure 3(a), final time t = 0.1.

h/2π without limiter with limiter
L2 error Order L∞ error Order wmin − wemin wmax − wemax L2 error Order L∞ error Order wmin − wemin wmax − wemax

0.148 1.31e-03 2.74e-02 -8.40e-04 -7.18e-05 1.31e-03 2.74e-02 0 -7.18e-05

0.0741 1.72e-04 2.93 3.35e-03 3.03 3.56e-05 -6.40e-05 1.72e-04 2.93 3.35e-03 3.03 4.15e-05 -6.40e-05

0.0371 2.37e-05 2.86 4.47e-04 2.90 3.36e-06 1.71e-06 2.37e-05 2.86 4.47e-04 2.90 3.36e-06 0

0.0185 2.99e-06 2.99 5.33e-05 3.07 1.79e-07 1.43e-07 2.99e-06 2.99 5.33e-05 3.07 1.79e-07 0

Table 4: Accuracy check on mesh Figure 3(b) with obtuse triangles, final time t = 0.1.

Vortex patch problem

17

Re = 100 without limiter with limiter

h/2π wmin − wemin wmax − wemax wmin − wemin wmax − wemax

0.117 -6.96e-01 6.87e-01 0 0

0.0587 -2.72e-01 2.66e-01 0 0

0.0293 -8.02e-02 4.22e-02 0 0

0.0147 -3.17e-03 3.00e-03 0 0

0.00733 -6.41e-04 7.41e-04 0 0

Table 5: Maximum and minimum of the solutions, Re = 100 at t = 0.1.

Re = 10000 without limiter with limiter

h/2π wmin − wemin wmax − wemax wmin − wemin wmax − wemax

0.117 -8.62e-01 8.62e-01 0 0

0.0587 -6.14e-01 7.82e-01 0 0

0.0293 -5.14e-01 5.77e-01 0 0

0.0147 -4.35e-01 4.79e-01 0 0

0.00733 -3.52e-01 2.81e-01 0 0

Table 6: Maximum and minimum of the solutions, Re = 10000 at t = 0.1.

Now we consider problem (4.1) with initial condition,

w0(x, y) =

−1, (x, y) ∈ [π2 ,

3π
2]× [π4 ,

3π
4],

1, (x, y) ∈ [π2 ,
3π
2]× [5π

4 ,
7π
4],

0, otherwise,
(4.2)

and periodic boundary condition. The Reynolds number is chosen to be Re = 100 or Re = 10000.
We compare the maximum and minimum of the numerical solutions with and without M-P-S
limiter applied, see Table 5 and Table 6. Mesh Figure 3(a) is used and quadratic polynomials is
applied. We also plot the solutions for the case Re = 100 at t = 1, shown in Figure 7, and the
case Re = 10000 at t = 5, shown in Figure 8. It is clear that the overshoots and undershoots are
removed with the M-P-S limiter applied.

5 Appendix

As discussed in Theorem 3.1, we need to find a 13-point quadrature rule that is exact for P 2

polynomial and include all the selected points (total 12) as quadrature points. For example we
consider the edge AB shared by K and K3. As shown in Figure 1, five points xK,i (i = 1, · · · , 5)
from element K’s side are used in the calculation of (3.6) - (3.7). In this section, our goal is to
find such a quadrature rule with the selected points as quadrature points and having non-negative
weights. Specifically we need to find the minimum weight in the quadrature rule, since it is used in
(3.4) - (3.5) to bound CFL condition and further identify suitable time step size for time evolution.
For convenience, we introduce notation |K| to represent the area of triangle element K.

5.1 Quadrature rules for cell average

Again we use edge AB to illustrate the way to find such quadrature rule with xK,i (i = 1, · · · , 5)
as quadrature points. The method we investigate is that we look for weights ωi in the following

18

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7: Contours of the solutions, Re = 100, at t = 1 with mesh size h = 0.0293 × 2π. Top:
no M-P-S limiter (wmin = −1.0011, wmax = 1.0008); Bottom: add M-P-S limiter (wmin = −1,
wmax = 1). 30 equally spaced contour lines are plotted.

19

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 8: Contours of the solutions, Re = 10000 at t = 5 and mesh size h = 0.0293 × 2π. Top:
no M-P-S limiter (wmin = −1.1211, wmax = 1.1508); Bottom: add M-P-S limiter (wmin = −1,
wmax = 1). 30 equally spaced contour lines are plotted.

20

Point Case 1 Case 2

xK,4
1
6 ·
(

2A1
|K| ·

1
3

)
≥ 1

18 tan(θ̂) cot(θ̌) 1
6 ·
(

2A1
|K| ·

1
3

)
≥ 1

18 tan(θ̂) cot(θ̌)

xK,1
1
6 ·
(
A1+A2
|K| w1

)
≥ w1

12 tan(θ̂) cot(θ̌) 1
6 ·
(
A1+A2
|K| w1

)
≥ w1

12 tan(θ̂) cot(θ̌)

xK,2
1
6 ·
(
A1+A3
|K| w1

)
≥ w1

12 tan(θ̂) cot(θ̌) 1
6 ·
(
A1
|K|w1

)
≥ w1

12 tan(θ̂) cot(θ̌)

xK,3
1
6 ·
(

2A1
|K| w1

)
≥ w1

6 tan(θ̂) cot(θ̌) 1
6 ·
(

2A1
|K| w1

)
≥ w1

6 tan(θ̂) cot(θ̌)

xK,5
1
6 ·
(

2A1+A2+A3
|K| w1

)
= w1

6
1
6 ·
(

2A1+A2
|K| w1

)
= w1

6

Table 7: Estimate of the quadrature weights

format,

1

3
unK =

1

3|K|

∫
K
unK(x, y)dxdy =

5∑
i=1

wiu
n
K(xK,i) +

l∑
j=1

w∗ju
n
K(x∗K,j),

with other quadrature points x∗K,j (j = 1, · · · , l) selected in the following to complete the quadrature
rule. Notice we will combine these points together with other points from edges BC and CA to
find the location and weight for the 13-th point.

θ
1

θ
2

θ
3

θ
4

θ
5

A B

C

K

K3

(a) Angles in K and K3

A B

C

A
1

A
1

A
2

A
3

K

K3

(b) Case 1

A B

C

A
1

A
1

A
2

K

K3

(c) Case 2

Figure 9: Left: Element K with its neighbor K3; Right: Two cases of points selected along normal
vector(A1, A2, A3 denote small triangles area).

The subsection 5.2 below offers one way to find a quadrature rule on triangle element with
vortices included as quadrature points (with weight ω1 in (5.4)). We also use a quadrature rule
for triangle element only with edge centers with equal weights 1. We divide triangle K into small
triangles with xK,i (i = 1, · · · , 5) being vertices or edge centers and use each rule for a half 1

6u
n
K .

In this way, all other vertices and edge centers are selected as quadrature points as well.
Let’s focus the discussion on point xK,4 and xK,5, shown in Figure 1 or the blue dots in Figure 9.

First of all, the location of xK,4 and xK,5 are determined by elementsK andK3. There are two cases:
(1) min(θ1, θ2) > min(θ4, θ5), then xK,5 is inside K, see Figure 9(b); (2) min(θ1, θ2) ≤ min(θ4, θ5),
then xK,5 is on the edge of K, see Figure 9(c). The triangle geometrical information is shown and
marked in Figure 9. We can estimate the quadrature weights of xK,i (i = 1, · · · , 5) in each case,
see Table 7.

21

We apply the same procedure to edge BC and CA to include selected points as quadrature
points. Collect all data from the three edges, we have the estimate on the weights as follows,

∂unK
∂uK,1

,
∂unK
∂uK,2

,
∂unK
∂uK,3

≥ w1

6
tan(θ̂) cot(θ̌),

∂unK
∂uK,4

≥ 1

18
tan(θ̂) cot(θ̌),

∂unK
∂uK,5

=
w1

6
. (5.1)

Now we are ready to find a non-negative quadrature rule with only 13 points inside triangle
K which include the 12 selected points from numerical flux integral on the edges. Let’s reorder
the quadrature points, and denote uK,i (i = 1, · · · , 12) as the 12 points selected from evaluating∫
∂K ûnds with weights wi (i = 1, · · · , 12). We also reorder the rest points and denote them as u∗K,j

(j = 1, · · · ,m, where m is an integer), with weights w∗j (j = 1, · · · ,m). Let w13 =
∑m

j=1w
∗
j , we

have
∑13

j=1wj =
∑12

j=1wj +
∑m

j=1w
∗
j = 1. Moreover, 1

w13

∑m
j=1w

∗
ju
∗
K,j =

∑m
j=1

w∗j
w13

u∗K,j is a convex
combination of the points u∗K,j (j = 1, · · · ,m). By the mean value theory, one can find a point uK,13

inside the convex hall of the points u∗K,j , j = 1, · · · ,m such that uK,13 =
∑m

j=1

w∗j
w13

u∗K,j . Therefore,
we have a quadrature rule with positive weights of total 13 points inside triangle K which include
the 12 selected points: {(uK,j , wj) |j = 1, · · · , 12}.

5.2 Quadrature rule for triangle element with vertices

In this section, we design one quadrature rule that is exact for quadratic polynomial P 2(K) on
any triangle element K. Especially we include the three vortices and three edge centers in the
quadrature points set. This work is inspired by the quadrature rule designed in [26]. Specifically
we are interested in finding the weights before the vertices.

For convenience, we use the position vectors to denote the three vertices of K: v1, v2 and v3.
Thus, the position vector P of any point P inside triangle K can be described by the barycentric
coordinates (ξ1, ξ2, ξ3), i.e., P = ξ1v

1 + ξ2v
2 + ξ3v

3.
We first consider the quadrature rule on the unit square with vertices coordinates as

(
−1

2 ,−
1
2

)
,(

−1
2 ,

1
2

)
,
(

1
2 ,−

1
2

)
and

(
1
2 ,

1
2

)
in the u-v plane, and then we use projections/transformations to map

it to a quadrature rule on triangle element K.
Let {ûα : α = 1, 2, 3} denote the Gauss-Lobatto quadrature points on

[
−1

2 ,
1
2

]
with weights ŵα

(in Table 8), which is exact for one variable polynomial of degree 3. We have
{
vβ : β = 1, 2, 3

}
(including the left boundary v1 = −1

2) denote the 3-point Gauss-Radau quadrature points on[
−1

2 ,
1
2

]
with weights wβ (in Table 9), which is exact for one variable polynomial of degree 4. For a

two-variable polynomial p(u, v), we use tensor product of 3-point Gauss-Lobatto for u and 3-point
Gauss Radau for v as the quadrature rule on the square. The quadrature points can be written as
S2 =

{(
ûα, vβ

)
: α = 1, 2, 3;β = 1, 2, 3

}
with weights ŵαwβ, listed in Figure 10(a).

α 1 2 3

ûα −1
2 0 1

2

ŵα
1
6

2
3

1
6

Table 8: 3-point Gauss-Lobatto
quadrature rule

β 1 2 3

vβ −1
2

1
10(1−

√
6) 1

10(1 +
√

6)

wβ
1
9

1
36(16 +

√
6) 1

36(16−
√

6)

Table 9: 3-point Gauss-Radau quadrature rule

Without loss of generality, we assume the orientation of the three vertices v1, v2 and v3 is
marked clockwise. We define the following three functions as projections from the square to triangle
K, mapping the top edge of the square into one vertex and the other three edges to the edges of

22

K.

g1(u, v) =

(
1

2
+ v

)
v1 +

(
1

2
+ u

)(
1

2
− v
)
v2 +

(
1

2
− u
)(

1

2
− v
)
v3,

g2(u, v) =

(
1

2
+ v

)
v2 +

(
1

2
+ u

)(
1

2
− v
)
v3 +

(
1

2
− u
)(

1

2
− v
)
v1,

g3(u, v) =

(
1

2
+ v

)
v3 +

(
1

2
+ u

)(
1

2
− v
)
v1 +

(
1

2
− u
)(

1

2
− v
)
v2.

Under each projection gi (i = 1, 2 or 3), the quadrature points S2 are mapped onto the triangle K,
i.e. gi(S

2), as in Figure 10(b) - Figure 10(d) . Let S2
K = g1(S2) ∪ g2(S2) ∪ g3(S2).

(a) S2

v
3

v
2

v
1

(b) g1(S
2)

v
3

v
2

v
1

(c) g2(S
2)

v
3

v
2

v
1

(d) g3(S
2)

Figure 10: Illustration of quadrature points mapping from rectangle element to triangle element.

We use gi(i = 1, 2, 3) and S2 to construct our triangle element quadrature rule. Let pK(x, y) be
a two-variable polynomial of degree 2 with cell average pK = 1

|K|
∫
K pK(x, y)dxdy, then we have,

pK =
1

|K|

∫
K
pK(x, y) dA =

1

|K|

∫ 1
2

− 1
2

∫ 1
2

− 1
2

pK(gi(u, v))

∣∣∣∣∂gi(u, v)

∂(u, v)

∣∣∣∣ dudv, i = 1, 2, 3

=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

pK(gi(u, v))2(
1

2
− v) dudv =

3∑
α=1

3∑
β=1

pK(gi(û
α, vβ))2(

1

2
− vβ)ŵαwβ

=
3∑
i=1

3∑
α=1

3∑
β=1

pK(gi(û
α, vβ))

2

3
(
1

2
− vβ)ŵαwβ =

∑
x∈S2

K

pK(x)wx. (5.2)

With the three vertices v1, v2 and v3 orientated clockwise, we have the Jacobian
∣∣∣∂gi(u,v)
∂(u,v)

∣∣∣ =

2|K|(1
2 − v). Notice that pK(gi(u, v))2(1

2 − v) is a polynomial of u and v with degree 2 and degree
3, therefore the quadrature rule on S2 is exact.

It is easy to show the weights wx for quadrature points x ∈ S2
K are non-negative, then we can

rewrite (5.2) as a combination of quadrature points, see below,

pK =
∑

x∈S2
K\{v1,v2,v3}

pK(x)wx +
3∑
i=1

pK(vi)wi. (5.3)

We are interested in the weights {wi}3i=1 for all three vertices v1, v2 and v3. Let us take v1 for
example. Notice that g2(−1

2 ,−
1
2) and g3(1

2 ,−
1
2) are the same point (1, 0, 0), i.e., v1. Therefore,

23

the weight of (1, 0, 0) is

w1 =
2

3

[
1

2
−
(
−1

2

)]
ŵ1w1 +

2

3

[
1

2
−
(
−1

2

)]
ŵ3w1 =

2

3
(ŵ1 + ŵ3)w1 =

2

81
. (5.4)

Remark 5.1. This section only provide one way to construct a quadrature rule on any triangle,
with three vertices and edge centers included as quadrature points. The goal is to show that one can
find such a quadrature rule with positive weights for quadrature points.

Acknowledgements. Huang’s work is supported by Natural Science Foundation of Zhejiang
Province grant No.LY14A010002 and No.LY12A01009.

24

References

[1] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM
J. Numer. Anal., 19(4):742–760, 1982.

[2] E. Bertolazzi and G. Manzini. A second-order maximum principle preserving finite volume
method for steady convection-diffusion problems. SIAM J. Numer. Anal., 43(5):2172–2199
(electronic), 2005.

[3] B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor. Advanced numerical approximation of
nonlinear hyperbolic equations, volume 1697 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1998. Papers from the C.I.M.E. Summer School held in Cetraro, June 23–28, 1997,
Edited by Alfio Quarteroni, Fondazione C.I.M.E.. [C.I.M.E. Foundation].

[4] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463 (electronic), 1998.

[5] S. Evje and K. H. Karlsen. Monotone difference approximations of BV solutions to degenerate
convection-diffusion equations. SIAM J. Numer. Anal., 37(6):1838–1860 (electronic), 2000.

[6] F. Gao, Y. Yuan, and D. Yang. An upwind finite-volume element scheme and its maximum-
principle-preserving property for nonlinear convection-diffusion problem. Internat. J. Numer.
Methods Fluids, 56(12):2301–2320, 2008.

[7] S. Holst. An a priori error estimate for a monotone mixed finite-element discretization of a
convectiondiffusion problem. Numerische Mathematik, 109:101–119, 2008. 10.1007/s00211-
007-0097-7.

[8] H. Liu and J. Yan. The direct discontinuous Galerkin (DDG) methods for diffusion problems.
SIAM J. Numer. Anal., 47(1):475–698, 2009.

[9] H. Liu and J. Yan. The direct discontinuous Galerkin (DDG) method for diffusion with
interface corrections. Commun. Comput. Phys., 8(3):541–564, 2010.

[10] J.-G. Liu and C.-W. Shu. A high-order discontinuous Galerkin method for 2D incompressible
flows. J. Comput. Phys., 160(2):577–596, 2000.

[11] X.-D. Liu and S. Osher. Nonoscillatory high order accurate self-similar maximum principle
satisfying shock capturing schemes. I. SIAM J. Numer. Anal., 33(2):760–779, 1996.

[12] Y. Liu, C.-W. Shu, and M. Zhang. High order finite difference WENO schemes for nonlinear
degenerate parabolic equations. SIAM J. Sci. Comput., 33(2):939–965, 2011.

[13] Z. Sheng and G. Yuan. The finite volume scheme preserving extremum principle for diffusion
equations on polygonal meshes. J. Comput. Phys., 230(7):2588–2604, 2011.

[14] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing
schemes. J. Comput. Phys., 77(2):439–471, 1988.

[15] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing
schemes. II. J. Comput. Phys., 83(1):32–78, 1989.

25

[16] V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[17] V. Thomée and L. B. Wahlbin. On the existence of maximum principles in parabolic finite
element equations. Math. Comp., 77(261):11–19 (electronic), 2008.

[18] T. Vejchodský. On the nonnegativity conservation in semidiscrete parabolic problems. In Con-
jugate gradient algorithms and finite element methods, Sci. Comput., pages 197–210. Springer,
Berlin, 2004.

[19] C. Vidden and J. Yan. Direct discontinuous Galerkin method for diffusion problems with
symmetric structure. Journal of Computational Mathematics, 31(6):638–662, 2013.

[20] Z. Xu. Parametrized maximum principle preserving flux limiters for high order schemes solving
hyperbolic conservation laws: one-dimensional scalar problem. Math. Comp., 83(289):2213–
2238, 2014.

[21] J. Yan. A new nonsymmetric discontinuous Galerkin method for time dependent convection
diffusion equations. J. Sci. Comput., 54(2-3):663–683, 2013.

[22] J. Yan. Maximum principle satisfying 3rd order Direct discontinuous Galerkin methods for
convection diffusion equations. Commun. Comput. Phys., 2015, submitted.

[23] P. Yang, T. Xiong, J. Qiu, and Z. Xu. High order maximum principle preserving flux finite
volume method for convection dominated problems. J. Sci. Comput, under review.

[24] X. Zhang and C.-W. Shu. On maximum-principle-satisfying high order schemes for scalar
conservation laws. J. Comput. Phys., 229(9):3091–3120, 2010.

[25] X. Zhang and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high-order
schemes for conservation laws: survey and new developments. Proc. R. Soc. A, (467):2752–
2776., 2011.

[26] X. Zhang, Y. Xia, and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving
high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci.
Comput., 50(1):29–62, 2012.

[27] Y. Zhang, X. Zhang, and C.-W. Shu. Maximum-principle-satisfying second order discontinuous
galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys.,
234:295–316, 2013.

26

	1 Introduction
	2 Direct DG method with interface correction
	3 Maximum-Principle-Satisfying DDG methods
	3.1 Linear diffusion equation
	3.2 Nonlinear diffusion equation

	4 Numerical Examples
	5 Appendix
	5.1 Quadrature rules for cell average
	5.2 Quadrature rule for triangle element with vertices

