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An energy and potential enstrophy conserving numerical scheme for the
multi-layer shallow water equations with complete Coriolis force
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bOCIAM, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2
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Abstract

We present an energy- and potential enstrophy-conserving scheme for the non-traditional shallow water
equations that include the complete Coriolis force and topography. These integral conservation properties
follow from material conservation of potential vorticity in the continuous shallow water equations. The latter
property cannot be preserved by a discretisation on a fixed Eulerian grid, but exact conservation of a discrete
energy and a discrete potential enstrophy seems to be an effective substitute that prevents any distortion
of the forward and inverse cascades in quasi-two dimensional turbulence through spurious sources and
sinks of energy and potential enstrophy, and also increases the robustness of the scheme against nonlinear
instabilities. We exploit the existing Arakawa–Lamb scheme for the traditional shallow water equations,
reformulated by Salmon as a discretisation of the Hamiltonian and Poisson bracket. The non-rotating,
traditional, and our non-traditional shallow water equations all share the same continuous Hamiltonian
structure and Poisson bracket, provided one distinguishes between the particle velocity and the canonical
momentum per unit mass. We have determined a suitable discretisation of the non-traditional canonical
momentum, which includes additional coupling between the layer thickness and velocity fields, and modified
the discrete kinetic energy to suppress an internal symmetric computational instability that otherwise arises
for multiple layers. The resulting scheme exhibits the expected second-order convergence under spatial grid
refinement. We also show that the drifts in the discrete total energy and potential enstrophy due to temporal
truncation error may be reduced to machine precision under suitable refinement of the timestep using the
third-order Adams–Bashforth or fourth-order Runge–Kutta integration schemes.

Keywords:
geophysical fluid dynamics, energy conserving schemes, Hamiltonian structures

1. Introduction

Geophysical fluid dynamics is concerned with the large-scale motions of stratified fluid on a rotating,
near-spherical planet. In principle such motions are governed by the compressible Navier–Stokes equations
as modified to include rotation, but simplified and approximate forms of these equations are widely used in
both theoretical and computational models [1, 2]. At large scales viscous effects are relatively unimportant,
and usually neglected. The resulting inviscid equations possess various conservation laws, for instance of
energy, momentum, and potential vorticity [2]. The last property is perhaps the most important. Energy and
momentum may be transported over large distances by waves, but potential vorticity is tied to fluid elements
[3]. It is desirable for the simplified and approximated equations to share these conservation properties, and
(as far as possible) for any numerical scheme to preserve them too.

Planetary scale fluid flow is typically dominated by the Coriolis force. However, almost all models
of the ocean and atmosphere employ the so-called “traditional approximation” [4]. This retains only the
contribution to the Coriolis force from the component of the planetary rotation vector that is locally normal
to geopotential surfaces. The traditional approximation is typically justified on the basis that the vertical
lengthscales of rotationally-dominated geophysical flows are much smaller than their horizontal lengthscales
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[5]. However, the “non-traditional” component of the Coriolis force is dynamically important in a wide
range of geophysical flows [6]. In the ocean, nontraditional effects can substantially alter the structure and
propagation properties of gyroscopic and internal waves [7, 8, 9, 10, 11, 12], the development and growth
rate of inertial instabilities [13, 14], the instability of Ekman layers [15], high-latitude deep convection [16],
the static stability of the water column [17], and the flow of abyssal waters close to the equator [18, 19, 20].
A parallel line of development has led to “deep atmosphere” models that include non-traditional effects
[21, 22, 23, 24, 25, 26].

The focus of this article is a set of shallow water equations that include the full Coriolis force [27, 28].
Shallow water models approximate the ocean’s stratification using a stack of layers of constant-density fluid.
This is equivalent to a Lagrangian vertical discretisation of the water column using density as the vertical
coordinate. Density or isopycnal coordinates are a natural choice for ocean models because mixing and
transport across isopycnal surfaces in the ocean interior is weak, so large-scale flows are largely constrained
to flow along density surfaces [29]. Models based on vertical coordinates aligned with surfaces of constant
geopotential tend to produce spuriously large diabatic mixing due to the slight misalignment between grid
cells and isopycnal surfaces [30]. Shallow water and isopycnal coordinate models are thus widely used
to study the ocean circulation, both in conceptual modelling studies and comprehensive ocean models
[31, 32, 33]. This isopycnal modelling framework has recently been extended to solve the non-hydrostatic
three-dimensional stratified equations with the non-traditional components of the Coriolis force [34].

In this paper we derive an energy- and potential enstrophy-conserving numerical scheme for our ex-
tended shallow water equations that include the complete Coriolis force [27, 28]. There are three principal
motivations for exactly preserving these conservation laws in our scheme:

1. Ideally any numerical scheme should materially conserve potential vorticity, as this is a crucial dynami-
cal variable in large-scale geophysical flows [3]. Material conservation of potential vorticity, Dq/Dt = 0,
implies conservation of all the integral moments of q,

d

dt

∫
hc(q) dxdy = 0, (1)

for any function c(q). These spatial integrals are much more amenable to approximation on a fixed
grid. The most important is conservation of potential enstrophy, for which c(q) = q2. However, exact
material conservation of potential vorticity is only possible via specialised Lagrangian schemes such
as the particle-mesh method [35] or the contour-advective semi-Lagrangian method [36]. Thompson
[37] showed that a vorticity evolution equation for an incompressible fluid that conserves energy and
potential enstrophy, and satisfies reasonable properties such as spatial locality (for the streamfunction)
and invariance under rotations, is inevitably of material conservation form. Although derived for partial
differential equations in continuous space, this result suggests that conservation of energy and potential
enstrophy on a fixed Eulerian grid provides a suitable substitute for material conservation of potential
vorticity.

2. Conservation of energy and potential enstrophy is crucial for the development of the simultaneous
inverse cascade of energy and forward cascade of potential enstrophy that characterises quasi-two-
dimensional turbulence [2]. Long-term integrations using non-conservative finite-difference schemes
are prone to a spurious cascade of energy towards the scale of the grid spacing, where the spatial
truncation error is largest [38]. Conserving the discrete analogue of total energy alone does not prevent
the cascade of energy to small scales, and leads to an increase in potential enstrophy [39]. Thus long-
time integrations require a scheme that conserves both energy and potential enstrophy, though even
this is not sufficient to completely eliminate spurious spectral transfers of these quantities [40].

3. Enforcing these conservation properties eliminates the possibility of nonlinear instabilities driven by
spurious sources of energy or potential enstrophy at the grid scale. For example, Fornberg [41] showed
that the only stable member of a class of semi-discrete centred finite difference schemes for the inviscid
Burgers equation is the scheme that conserves a discrete energy.

Arakawa [38] constructed a finite difference scheme for the two-dimensional incompressible Euler equa-
tions, now known as the “Arakawa Jacobian”, that exactly conserves a discrete kinetic energy and a discrete
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enstrophy when formulated in continuous time. Arakawa & Lamb [42] later extended this approach to
construct a finite difference scheme for the inviscid shallow water equations that exactly conserves total
mass, energy, and potential enstrophy. The spurious energy cascades observed in non-conservative long-
time integrations of the SWE (see point 2 above) are due to errors introduced in the spatial, rather than
temporal, discretisation [39], as we shall confirm in §5. The Arakawa–Lamb scheme therefore discretises only
the spatial derivatives of the traditional shallow water equations, yielding evolution equations in continuous
time for the discrete particle velocities and layer thicknesses at spatial grid points. This semi-discrete finite
difference scheme has since been extended to multiple layers [43], to fourth-order accuracy for the vorticity
in the non-divergent limit [44, 45, 46, 47], to spherical geodesic grids [48], and to unstructured finite element
meshes [49].

Arakawa & Lamb [42] began with a general finite difference discretisation of the shallow water equations
on a staggered grid, known as the Arakawa C-grid, as sketched in figure 1. They wrote down a discretisation
that contained many undetermined coefficients, including some unphysical Coriolis terms that were parallel,
not perpendicular, to the fluid velocity. They obtained a scheme that conserves consistent spatially discrete
approximations to the energy and potential enstrophy via direct algebraic manipulation of the discrete
equations to determine suitable coefficients. In particular, the coefficients of the unphysical Coriolis terms
become proportional to grid spacing squared. That a discrete scheme should exist that conserves not
quadratic invariants like the Arakawa Jacobian [38], but a cubic quantity (energy) and a quotient (potential
enstrophy) was long mysterious.

Salmon [47] interpreted the Arakawa–Lamb scheme as a particular discretisation of a non-canonical
Hamiltonian formulation of the traditional shallow water equations, in which the evolution is expressed using
a Hamiltonian functional and Poisson bracket. Symmetries of a Hamiltonian system correspond directly
to conservation laws via Noether’s theorem, making this a natural starting point for the development of
conservative schemes. The equations of ideal fluid mechanics, including the shallow water equations, can
be expressed as non-canonical Hamiltonian systems using space-fixed Eulerian variables [50, 2, 51, 52]. To
keep the canonical form of Hamilton’s equations one must either use Lagrangian variables that follow fluid
elements, or introduce artificial Clebsch potentials.

The non-rotating, traditional, and our non-traditional shallow water equations all share the same Hamil-
tonian structure and Poisson bracket, provided one distinguishes between the particle velocity and the
canonical momentum per unit mass [27, 28]. This distinction is often glossed over in the traditional shallow
water equations because the two differ only by a function of space alone, so their time derivatives are identi-
cal. We use this insight to construct an analog of the Arakawa–Lamb scheme for our non-traditional shallow
water equations by adapting Salmon’s [47] Hamiltonian formulation. The main difficulty we encounter is
that the layer thickness field enters the canonical momentum through the non-traditional terms, so we need
to find a suitable average of the layer thickness field that is compatible with the placement of variables on the
Arakawa C grid. Like the Arakawa Jacobian and Arakawa–Lamb schemes, we obtain a system of ordinary
differential equations (ODEs) for the evolution in time of field values at grid points. Discrete analogs of the
energy E and potential enstrophy P are exactly conserved under the exact evolution of this ODE system.
To get a concrete numerical scheme we further discretise in time using the 4th order Runge–Kutta and 3rd
order Adams–Bashforth schemes [53]. We investigate the time step that is necessary to reduce the temporal
truncation errors in our discrete approximations of E and P down to machine precision.

Recently a similar Hamiltonian and Poisson bracket formulation has been employed to derive energy
conserving schemes for the deep and shallow atmosphere equations [54], again using the canonical momenta
to formulate the discrete Poisson bracket and ensure antisymmetry. However, these authors were unable
to construct a discrete Poisson bracket that conserves potential enstrophy. A more general approach to
constructing schemes that conserve energy and potential enstrophy formulates the shallow water equations
as evolution equations for the potential vorticity, divergence, and layer thickness fields using discrete Nambu
brackets [55, 56]. This formulation requires an elliptic inversion to compute the velocity field, which is
computationally expensive but allows for a straightforward incorporation of boundary conditions.

The structure of this paper is as follows. In §2 we briefly review the shallow water equations with
complete Coriolis force and their Hamiltonian formulation [27, 28]. In §3 we review Salmon’s Hamiltonian
derivation of the Arakawa–Lamb scheme for the traditional shallow water equations (§3.1), and extend it to
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include the complete Coriolis force in a single layer (§3.2) and in multiple layers (§3.3). In §4 we present a
series of numerical verification experiments, and in §5 we demonstrate that energy and potential enstrophy
can be conserved to machine precision if the time-step is sufficiently short. Finally, in §6 we summarise our
results and provide concluding remarks.

2. Shallow water equations with complete Coriolis force

The derivation of our numerical scheme begins with the non-canonical Hamiltonian formulation of the
traditional shallow water equations, henceforth abbreviated as SWE, as described in [50, 51, 52]. The
single and multi-layer non-traditional shallow water equations (henceforth NTSWE) were recently derived
in [27, 28]. For clarity we first present the non-canonical Hamiltonian formulation of the single-layer NTSWE.

We begin by writing the single layer NTSWE [27, 28] in the vector invariant form [57],

∂ũ

∂t
− hqv +

∂Φ

∂x
= 0, (2a)

∂ṽ

∂t
+ hqu+

∂Φ

∂y
= 0, (2b)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (2c)

These equations are written in pseudo-Cartesian coordinates with x and y denoting horizontal distances
within a constant geopotential surface [5, 58]. The effective gravity g acts in the z direction perpendicular
to this surface. They describe a layer of inviscid fluid flowing over bottom topography at z = hb(x, y) in a
frame rotating with angular velocity vector Ω = (Ω(x),Ω(y),Ω(z)). We allow for an arbitrary orientation of
the x and y axes with respect to North, so Ω(x) and Ω(y) may both be non-zero, and may depend arbitrarily
on x and y, but not z [28].

The mass conservation equation (2c) for the fluid layer thickness h(x, y, t) contains the particle velocity
components u and v in the x and y directions. These particle velocity components also appear in the
Bernoulli potential

Φ = 1
2u

2 + 1
2v

2 + g(hb + h) + h
(

Ω(x)v − Ω(y)u
)
. (3)

The vertical momentum equation for the underlying three-dimensional fluid contains additional non-traditional
contributions proportional to the horizontal components Ω(x) and Ω(y) of the rotation vector. The three-
dimensional pressure whose depth-average appears in the shallow water equation thus satisfies a three-
dimensional quasihydrostatic balance [22], rather than the usual hydrostatic balance.

However, the time derivatives in (2a) and (2b) are of the canonical velocity components

ũ = u+ 2 Ω(y)
(
hb + 1

2h
)

, ṽ = v − 2 Ω(x)
(
hb + 1

2h
)

, (4)

which together form the vector ũ = (ũ, ṽ). These velocity components also appear in the potential vorticity

q =
1

h

(
2 Ω(z) +

∂ṽ

∂x
− ∂ũ

∂y

)
, (5)

where Ω(z) is the component of the rotation vector parallel to the z-axis.
We call ũ the canonical velocity because it is related to the canonical momentum per unit mass, or to

the depth-average of the particle velocity relative to an inertial frame [27, 28]. For spatially-uniform Ω(x),
Ω(y), Ω(z), i.e. making an f -plane approximation, the latter quantity is

˜̃u = u− Ω(z)y + 2 Ω(y)
(
hb + 1

2h
)

, ˜̃v = v + Ω(z)x− 2 Ω(x)
(
hb + 1

2h
)

, (6)

which may be derived from the depth average of the three-dimensional vector field

˜̃u = u + Ω× x +∇(xzΩ(y) − yzΩ(x)) = u + (2zΩ(y) − yΩ(z), xΩ(z) − 2zΩ(x), 0). (7)
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The first two terms u+Ω×x give the three-dimensional velocity relative to an inertial frame. The additional
gradient of a gauge potential eliminates the vertical component of the vector potential for the Coriolis force,
as required for a shallow water system formulated in terms of the depth-averaged horizontal velocity alone.

The potential vorticity is

q =
1

h

(
∂ ˜̃v

∂x
− ∂ ˜̃u

∂y

)
, (8)

with no explicit contribution from the rotation vector. The terms proportional to Ω(z) in (6) are independent
of time, so they do not contribute to the time derivatives in (2a) and (2b). Thus the distinction between the
particle velocity and canonical velocity is commonly not made in the traditional shallow water equations,
in which the additional terms proportional to both Ω(x), Ω(y) and the time-dependent h(x, y, t) are absent.

Instead, the contribution from Ω(z) is put explicitly in the definition (5) of the potential vorticity. By
using (4) instead of (6) we omit the time-independent terms proportional to Ω(z), which are much larger
than the other terms in the canonical momenta (by a factor of the inverse Rossby number). This reduces
the accumulation of floating point round-off errors in transforming between the canonical and particle
velocities. It is also then straightforward to impose periodic boundary conditions, because the explicit x
and y dependence in (6) is absent. Moreover, the non-traditional numerical scheme we derive below will
reduce to the exact form of the Arakawa–Lamb scheme when we set Ω(x) and Ω(y) to zero. Conversely, the
additional terms proportional to x and y in (6) will be differentiated exactly by a second-order accurate
spatial discretisation, so the equivalent scheme based on the full canonical velocity (6) instead of (4) would
give identical results in exact arithmetic.

By distinguishing between the particle velocity u and the canonical velocity ũ we have written the
NTSWE in the same structural form (2a)–(2c) as the SWE. However, in the following we treat the particle
velocity as a known function of the canonical velocity and the layer thickness, as given by solving (4) for
u = u(ũ, h).

The Hamiltonian for the system (2a)–(2c) is simply the total energy, which is independent of the Coriolis
force when expressed in terms of the particle velocity components u and v,

H = E =

∫∫
dx
{

1
2h
(
u2 + v2

)
+ gh

(
hb + 1

2h
)}
. (9)

However, we treatH = H [u(ũ, h), h] as a functional of the canonical velocity components and layer thickness.
We do not specify a domain of integration for this functional, but assume that the boundaries of the domain
are periodic, or permit no normal fluxes, to allow us to integrate by parts as necessary below without
acquiring boundary terms.

The non-canonical Hamiltonian formalism expresses the time evolution of any functional F in terms of
a Poisson bracket as [50, 2, 51, 52]

dF
dt

= {F ,H} . (10)

The Poisson bracket must be bilinear, antisymmetric, and satisfy the Jacobi identity

{F , {G,K}}+ {G, {K,F}}+ {K, {F ,G}} = 0, (11)

for any three functionals F , G, K. These three properties provide a coordinate-independent abstraction of
the essential geometrical properties of Hamilton’s canonical Poisson bracket. The Poisson bracket for the
shallow water equations may be written as

{A,B} =

∫∫
dx

{
q

(
δA
δũ

δB
δṽ
− δB
δũ

δA
δṽ

)
− δA
δũ
· ∇δB

δh
+
δB
δũ
· ∇δA

δh

}
, (12)

for any pair of functionals A and B. This bracket may be rewritten in several different but equivalent
forms using integrations by parts [51]. The functional derivatives in (12) are defined with respect to the
canonical velocities ũ and h, so this bracket reduces to the traditional shallow water Poisson bracket when
Ω(x) = Ω(y) = 0, since ũ then equals u .
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The evolution equations (2a)–(2c) may be derived by setting in turn F = ũ(x0, t), F = ṽ(x0, t), and
F = h(x0, t) for a fixed location x0 in (10). For example, setting F = h0 = h(x0, t) in (10) gives

dh0
dt

= {h0,H} =

∫∫
dx

{
q

(
δh0
δũ

δH
δṽ
− δH
δũ

δh0
δṽ

)
− δh0

δũ
· ∇δH

δh
+
δH
δũ
· ∇δh0

δh

}
.

For the purpose of taking variational derivatives, ũ and h are treated as independent variables so δh0/δũ = 0.
The particle velocity u is treated as an explicit function of ũ and h, so the variational chain rule gives

δH
δũ

=
δH
δũ

∣∣∣∣
u

+

(
δH
δu
· ∂u

∂ũ
,
δH
δu
· ∂u

∂ṽ

)
=

(
δH
δu

,
δH
δv

)
=
δH
δu

= hu. (13)

The notation |u indicates that u is held constant while taking the variational derivative with respect to ũ.
Now δh0/δh is nonzero only at x = x0, so

dh0
dt

=

∫∫
dx

{
δH
δu
· ∇ δh(x0, t)

δh(x, t)

}
=

∫∫
dx
{
hu · ∇ δ(x− x0)

}
, (14)

where δ(x − x0) is the Dirac delta function in two dimensions. Finally, we integrate by parts and use the
divergence theorem with the periodic or no-flux boundary conditions to obtain

d

dt
h(x0, t) =

∫∫
dx
{
−∇ · (hu) δ(x− x0)

}
= −∇ · (hu)

∣∣∣
x=x0

, (15)

which is the mass conservation equation (2c).
Symmetries in the variational principle for a Hamiltonian system imply conservation laws via Noether’s

theorem. The usual momentum and energy conservation laws arising from translation symmetries in space
and time. Material conservation of potential vorticity arises from a more subtle relabelling symmetry in the
particle-to-label map used to formulate the shallow water equations in Lagrangian coordinates [2, 50, 59, 60].
In the non-canonical Hamiltonian formalism, these conservation laws arise instead from properties of the
Poisson bracket. Conservation of energy follows immediately from antisymmetry of the Poisson bracket,

dE
dt

=
dH
dt

= {H,H} = 0. (16)

Non-canonical Poisson brackets typically support Casimir functionals C that satisfy

{C,F} = 0 (17)

for any functional F . Two salient Casimir functionals for the shallow water Poisson bracket in (12) are the
total mass M, and the potential enstrophy P,

M =

∫∫
dx
{
h
}

and P =

∫∫
dx
{

1
2hq

2
}

. (18)

The latter is just one of an infinite family of Casimir functionals of the form

C =

∫∫
dx
{
h c(q)

}
, (19)

where c(q) is an arbitrary function of the potential vorticity. This family of Casimir functionals thus expresses
the material conservation of potential vorticity in an Eulerian setting.

In the following sections we will show that discretizing the non-canonical Hamiltonian formulation of
the NTSWE allows us to enforce exact conservation of discrete analogues of the total energy E , potential
enstrophy P, and total mass M.
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Figure 1: Staggered layout of the variables on the Arakawa C grid. Panel (a) shows the indices of the computational grid and
its alignment with the coordinate axes. Panel (b) shows the layout of the variables within a single computational cell.

3. Spatial discretisation

In this section we derive an energy- and potential enstrophy-conserving spatial discretisation for the
NTSWE. We begin with a brief review of the Arakawa–Lamb scheme [42] for the single-layer SWE and its
Hamiltonian formulation [47], then extend the scheme to the NTSWE, and to multiple layers.

3.1. Hamiltonian formulation of the Arakawa–Lamb scheme

The Arakawa–Lamb [42] scheme for the traditional shallow water equations begins with a staggered
placement of the u, v, h and q variables known as the Arakawa C grid, and illustrated in Figure 1. The C
grid may be thought of as a mesh of square cells of side length d. The layer thickness h is defined at cell
centres, the velocity components are defined at cell faces, and the potential vorticity is defined at cell corners.
This layout is optimised for computing the pressure gradient terms in the evolution equations for u and v,
and for computing the vorticity as the curl of a two-dimensional velocity field. The velocity components
u and v are also naturally placed for computing mass fluxes across cell faces. The schemes presented here
generalise straightforwardly to rectangular cells with different side lengths in the x and y directions.

Salmon [47] showed that the Arakawa–Lamb scheme is equivalent to a discrete Hamiltonian system
with a discrete Hamiltonian that approximates (9) and a discrete Poisson bracket that approximates (12).
Salmon’s discrete Hamiltonian for the Arakawa–Lamb scheme is [47]

H = E =
∑
i,j

1
2hi+1/2,j+1/2

(
u2

x

i+1/2,j+1/2 + v2
y

i+1/2,j+1/2

)
+ g hi+1/2,j+1/2 (hb + 1

2h)i+1/2,j+1/2. (20)

This sum ranges over all cells in the computational grid. We have omitted the factor of d2 that would
make (20) a discrete approximation to a two-dimensional integral

∫∫
dx. This factor cancels with the same

omission in our discrete Poisson bracket, which is also a two-dimensional integral
∫∫

dx. The right hand
side of (20) is a straightforward discretisation of the total energy (9) on the Arakawa C grid. The kinetic

energy terms u2
x

and v2
y

denote the averages of the contributions from the two u and v points either side
of the h point at the centre of each computational cell, as shown in figure 1(b),

u2
x

i+1/2,j+1/2 = 1
2

(
u2i,j+1/2 + u2i+1,j+1/2

)
, v2

y

i+1/2,j+1/2 = 1
2

(
v2i+1/2,j + v2i+1/2,j+1

)
. (21)
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The evolution of any function F of the discrete variables ui,j+1/2, vi+1/2,j , hi+1/2,j+1/2 is given by the
discrete version of (10)

dF

dt
= {F,H} . (22)

We use non-calligraphic symbols for functions of discrete quantities, which approximate the corresponding
functionals of continuous field variables written in calligraphic font. Antisymmetry of the discrete Poisson
bracket in (22) automatically implies conservation of the discrete energy by the discrete analog of (16)

dE

dt
=

dH

dt
= {H,H} = 0. (23)

The Arakawa–Lamb scheme also conserves the discrete potential enstrophy and discrete total mass defined
by

P =
∑
i,j

h
xy

i,jq
2
i,j , M =

∑
i,j

hi+1/2,j+1/2. (24)

The discrete potential enstrophy involves the discrete potential vorticity

qi,j =
1

h
xy

i,j

(
2Ω

(z)
i,j + ζi,j

)
, (25)

which contains the natural discrete relative vorticity on the Arakawa C grid,

ζi,j =
1

d

(
vi+1/2,j − vi−1/2,j − ui,j+1/2 + ui,j−1/2

)
, (26)

and the natural nearest-neighbour average of h on each q gridpoint,

h
xy

i,j = 1
4

(
hi+1/2,j+1/2 + hi−1/2,j+1/2 + hi+1/2,j−1/2 + hi−1/2,j−1/2

)
. (27)

As in the continuous theory, conservation of P and M is guaranteed if they are Casimirs of the discrete
Poisson bracket, i.e.

{F, P} = {F,M} = 0 for any F (ui,j+1/2, vi+1/2,j , hi+1/2,j+1/2). (28)

Here F (ui,j+1/2, vi+1/2,j , hi+1/2,j+1/2) denotes an arbitrary function of all the u, v and h gridpoints, not
just those from one particular grid cell. By the chain rule, this is equivalent to requiring{

ui,j+1/2, P
}

=
{
vi+1/2,j , P

}
=
{
hi+1/2,j+1/2, P

}
= 0 for all i, j, (29a){

ui,j+1/2,M
}

=
{
vi+1/2,j ,M

}
=
{
hi+1/2,j+1/2,M

}
= 0 for all i, j. (29b)

Thus the derivation of an energy-, potential enstrophy-, and mass-conserving scheme for the SWE amounts
to finding a discretisation of (12) that satisfies (29a) and (29b).

Salmon [47] split the discrete Poisson bracket into a potential vorticity dependent part and a remainder,

{A,B} = {A,B}Q + {A,B}R , (30)

where A and B are algebraic functions of the ui,j+1/2, vi+1/2,j , and hi+1/2,j+1/2 for all i and j. The potential
vorticity dependent part is

{A,B}Q =
∑
i,j

qi,j
∑
n,m

{
αn,m

∂(A,B)

∂
(
u(i,j+1/2)+n, v(i+1/2,j)+m

)
+ βn,m

∂(A,B)

∂
(
u(i,j+1/2)+n, u(i,j+1/2)+m

) + γn,m
∂(A,B)

∂
(
v(i+1/2,j)+n, v(i+1/2,j)+m

)} , (31)
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where
∂(A,B)

∂(u, v)
=
∂A

∂u

∂B

∂v
− ∂B

∂u

∂A

∂v
(32)

is the Jacobian of A and B with respect to u and v. Again, we omit the factor of d2 that would make
(31) an approximation of the integral in (12). The variational derivatives of the continuous Poisson bracket
(12) have become partial derivatives, as in Hamiltonian particle mechanics. The indices n = (nx, ny) and
m = (mx,my) are pairs of integers, and we suppose that the coefficients αm,n, βm,n, and γm,n are only
nonzero within a stencil that is 2M + 1 grid points wide, i.e. for |nx|, |ny|, |mx|, |my| ≤ M . The first
term proportional to αm,n approximates to the term proportional to q in the continuous Poisson bracket
(12). The additional terms proportional to βn,m and γn,m introduce the unphysical Coriolis terms in the
Arakawa–Lamb scheme that are needed to conserve potential enstrophy [47]. They introduce only an O(d2)
error, which is consistent with the overall second-order accuracy of the scheme.

The remaining part of the bracket is

{A,B}R =
1

d

∑
i,j

{
∂B

∂ui,j+1/2

(
∂A

∂hi+1/2,j+1/2
− ∂A

∂hi−1/2,j+1/2

)

+
∂B

∂vi+1/2,j

(
∂A

∂hi+1/2,j+1/2
− ∂A

∂hi+1/2,j−1/2

)
− (A←→ B)

}
, (33)

where (A←→ B) indicates that all the preceding terms in (33) should be repeated with A and B exchanged
to enforce the anti-symmetry. We have discretised the gradient ∇ in the continuous Poisson bracket (12)
using second-order central finite differences.

The coefficients αn,m, βn,m and γn,m in (31) must now be chosen to satisfy (29a) and (29b), so that P and
M are Casimirs. The mass M satisfies condition (29b) for any αn,m, βn,m and γn,m because ∂M/∂ui,j+1/2 =
∂M/∂vi+1/2,j = 0 and ∂M/∂hi+1/2,j+1/2 = 1. There are infinitely many suitable combinations of αn,m,
βn,m, and γn,m that conserve potential enstrophy P [47], but for the purpose of illustration we restrict
our attention to the coefficients that give the original Arakawa–Lamb scheme [42]. These are listed in
the Appendix. Combining (20), (22), and (30) recovers the discrete evolution equations for ui,j+1/2(t),
vi+1/2,j(t), and hi+1/2,j+1/2(t) derived by Arakawa & Lamb [42],

d

dt
hi+1/2,j+1/2 = −1

d

(
u?i+1,j+1/2 − u

?
i,j+1/2 + v?i+1/2,j+1 − v

?
i+1/2,j

)
, (34a)

d

dt
ui,j+1/2 =

∑
k,l

v?k+1/2,l

∑
n,m

δ(i,j)−(k,l)+m−n αn,m q(k,l)−m

+
∑
k,l

u?k,l+1/2

∑
n,m

δ(i,j)−(k,l)+m−n (βn,m − βm,n) q(k,l)−m −
1

d

(
Φi+1/2,j+1/2 − Φi−1/2,j+1/2

)
, (34b)

d

dt
vi+1/2,j = −

∑
k,l

u?k,l+1/2

∑
n,m

δ(i,j)−(k,l)+n−m αn,m q(k,l)−n

+
∑
k,l

v?k+1/2,l

∑
n,m

δ(i,j)−(k,l)+m−n (γn,m − γm,n) q(k,l)−m −
1

d

(
Φi+1/2,j+1/2 − Φi+1/2,j−1/2

)
, (34c)

where δi,j is the Kronecker delta. The discrete Bernoulli potential is

Φi+1/2,j+1/2 =
∂H

∂hi+1/2,j+1/2
= 1

2u
2
x

i+1/2,j+1/2 + 1
2v

2
y

i+1/2,j+1/2 + g(hb + h)i+1/2,j+1/2, (35)

using the averages u2
x

i+1/2,j+1/2 and v2
y

i+1/2,j+1/2 defined in (21). The mass fluxes across cell boundaries
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are

u?i,j+1/2 =
∂H

∂ui,j+1/2
=

1

2

(
hi−1/2,j+1/2 + hi+1/2,j+1/2

)
ui,j+1/2, (36a)

v?i+1/2,j =
∂H

∂vi+1/2,j
=

1

2

(
hi+1/2,j−1/2 + hi+1/2,j+1/2

)
vi+1/2,j , (36b)

which involve the natural averages of the h values either side of the u or v point.

3.2. Extension to the non-traditional shallow water equations

The Hamiltonian and Poisson bracket for the NTSWE are formulated using the canonical velocity ũ
and layer thickness h as independent variables. The particle velocity u is treated as a known function of
ũ and h via (4). The first step in constructing a discretisation of the NTSWE is therefore to define a
discrete canonical velocity. We assign the discrete canonical and particle velocity components to the same
grid points, so ui,j+1/2 and vi+1/2,j are collocated with ũi,j+1/2 and ṽi+1/2,j respectively (see Figure 1). We
then define the particle velocity components ui,j+1/2 and vi+1/2,j using two arbitrarily-weighted averages
over the h points,

ui,j+1/2 = ũi,j+1/2 −
∑
r,s

µr,s

[
2Ω(y)

(
hb + 1

2h
)]

i+1/2+r,j+1/2+s
, (37a)

vi+1/2,j = ṽi+1/2,j +
∑
r,s

ξr,s

[
2Ω(x)

(
hb + 1

2h
)]

i+1/2+r,j+1/2+s
. (37b)

The summations are taken over all integers r and s. The weights µr,s and ξr,s must be chosen so that (37a)–
(37a) are consistent with the continuous relations (4) to at least second order in d. We take µr,s = ξr,s = 0
for |r|, |s| > M , where M defines our stencil size as before. As in our continuous Hamiltonian formulation of
the NTSWE, we define the discrete potential and relative vorticities using the canonical velocity components
as

qi,j =
1

h
xy

i,j

(
2Ω

(z)
i,j + ζ̃i,j

)
, ζ̃i,j =

1

d

(
ṽi+1/2,j − ṽi−1/2,j − ũi,j+1/2 + ũi,j−1/2

)
. (38)

It is implicit in (37a)–(37b) and (38) that the horizontal components Ω(x) and Ω(y) of the rotation vector
are defined on the h points, while the vertical component Ω(z) is defined on the q points.

As discussed in §2, the total energy is not changed by the Coriolis force, whether traditional or non-
traditional. We therefore use exactly the same discrete Hamiltonian (20) for the non-traditional equations,
but now treat ui,j+1/2 and vi+1/2,j as explicit functions of ũi,j+1/2, ṽi+1/2,j , hi+1/2,j+1/2 via (37a)–(37b).
We pose a discretisation of the non-traditional Poisson bracket (12) that is analogous to (30)–(31) for the
traditional Poisson bracket,

{A,B}Q =
∑
i,j

qi,j
∑
n,m

{
αn,m

∂(A,B)

∂
(
ũ(i,j+1/2)+n, ṽ(i+1/2,j)+m

)
+ βn,m

∂(A,B)

∂
(
ũ(i,j+1/2)+n, ũ(i,j+1/2)+m

) + γn,m
∂(A,B)

∂
(
ṽ(i+1/2,j)+n, ṽ(i+1/2,j)+m

)} , (39a)

{A,B}R =
1

d

∑
i,j

{
∂B

∂ũi,j+1/2

(
∂A

∂hi+1/2,j+1/2
− ∂A

∂hi−1/2,j+1/2

)

+
∂B

∂ṽi+1/2,j

(
∂A

∂hi+1/2,j+1/2
− ∂A

∂hi+1/2,j−1/2

)
− (A←→ B)

}
. (39b)

The only difference is the replacement of u and v by ũ and ṽ. The discrete dynamics are still given by
(22), so it follows from the antisymmetry of the Poisson bracket (39a)–(39b) that (23) still holds, and so the
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discrete energy E is conserved. The total potential enstrophy P and mass M are given by (24), but now
with the potential vorticity qi,j expressed in terms of ũ and ṽ through (38). As in the traditional case, P
and M are Casimirs of the non-traditional bracket (39a)–(39b) if they satisfy{

ũi,j+1/2, P
}

=
{
ṽi+1/2,j , P

}
=
{
hi+1/2,j+1/2, P

}
= 0 for all i, j, (40a){

ũi,j+1/2,M
}

=
{
ṽi+1/2,j ,M

}
=
{
hi+1/2,j+1/2,M

}
= 0 for all i, j. (40b)

The conditions (40a)–(40b) and Poisson bracket (39a)–(39b) are exactly isomorphic to the traditional con-
ditions (29a)–(29b) and Poisson bracket (31) and (33) after replacing u and v by ũ and ṽ. Any choice of
αn,m, βn,m, and γn,m that satisfies (29a)–(29b) also satisfies (40a)–(40b). For the purpose of illustration we
use the coefficients corresponding to the original Arakawa–Lamb scheme [42], as given in the Appendix.

It now only remains to find explicit evolution equations for ũi,j+1/2, ṽi+1/2,j and hi+1/2,j+1/2 from (22)
using the discrete Hamiltonian (20) and Poisson bracket (39a)–(39b). For example,

d

dt
ũk,l+1/2 =

{
ũk,l+1/2, H

}
=
{
ũk,l+1/2, H

}
Q

+
{
ũk,l+1/2, H

}
R

, (41a)

d

dt
ṽk+1/2,l =

{
ṽk+1/2,l, H

}
=
{
ṽk+1/2,, H

}
Q

+
{
ṽk+1/2,l, H

}
R

, (41b)

d

dt
hk+1/2,l+1/2 =

{
hk+1/2,l+1/2, H

}
=
{
hk+1/2,l+1/2, H

}
Q

+
{
hk+1/2,l+1/2, H

}
R

, (41c)

for integers k and l. The Hamiltonian H depends on ũ only through u, so by the chain rule

∂H

∂ũk,l+1/2
=

∂H

∂uk,l+1/2

∂uk,l+1/2

∂ũk,l+1/2
=

∂H

∂uk,l+1/2
= u?k,l+1/2, (42a)

∂H

∂ṽk+1/2,l
=

∂H

∂vk+1/2,l

∂vk+1/2,l

∂ṽk+1/2,l
=

∂H

∂vk+1/2,l
= v?k+1/2,l. (42b)

Thus the contribution of
{
ũk,l+1/2, H

}
Q

to the non-traditional discrete equations is identical to the con-

tribution of
{
uk,l+1/2, H

}
Q

to the traditional discrete equations. The same is true for
{
ṽk+1/2,l, H

}
Q

,

{h̃k+1/2,l+1/2, H}Q, and {h̃k+1/2,l+1/2, H}R. However, the remaining parts of the discrete evolution equa-

tions (41a)–(41c),
{
ũk,l+1/2, H

}
R

and
{
ṽk+1/2,l, H

}
R

, introduce additional terms via the dependence of u
and v on h,

∂H

∂hk+1/2,l+1/2

∣∣∣∣
ũ

=
∂H

∂hk+1/2,l+1/2

∣∣∣∣
u

+
∑
i,j

{
∂H

∂ui,j+1/2

∂ui,j+1/2

∂hk+1/2,l+1/2
+

∂H

∂vi+1/2,j

∂vi+1/2,j

∂hk+1/2,l+1/2

}
. (43)

Here the subscript |u indicates that all the u and v values at grid points should be held constant in the deriva-
tive. Equation (43) defines the discrete Bernoulli potential Φk+1/2,l+1/2 = ∂H/∂hk+1/2,l+1/2. Evaluating
the derivatives of u with respect to h in (43) using (37a)–(37b) yields

∂ui,j+1/2

∂hk+1/2,l+1/2
= −Ω

(y)
i+1/2,j+1/2 µi−k,j−l,

∂vi+1/2,j

∂hk+1/2,l+1/2
= Ω

(x)
i+1/2,j+1/2 ξi−k,j−l. (44)

The discrete Bernoulli potential may therefore be written as

Φi+1/2,j+1/2 = 1
2u

2
x

i+1/2,j+1/2 + 1
2v

2
y

i+1/2,j+1/2 + g(hb + h)i+1/2,j+1/2

− Ω
(y)
i+1/2,j+1/2

∑
r,s

µ−r,−s u
?
i+r,j+1/2+s + Ω

(x)
i+1/2,j+1/2

∑
r,s

ξ−r,−s v
?
i+1/2+r,j+s, (45)

which contains discrete non-traditional terms proportional to weighted averages of the mass fluxes u? and v?

over the nearby ũ and ṽ points. Comparison with (37a)–(37b) shows that this is symmetric to the weighted
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average over h grid points in the definition of the discrete particle velocities ui,j+1/2, vi+1/2,j . Thus (45) is
guaranteed to be a second-order accurate approximation to the continuous Bernoulli potential (3), provided
the discrete particle velocities (37a)–(37b) give at least a second-order accurate approximation to (4). The
choice of the weights µr,s and ξr,s does not impact the conservation properties of the numerical scheme.

For simplicity, we use a second-order two-gridpoint average in (37a)–(37b), which corresponds to µ0,0 =
µ−1,0 = 1

2 , ξ0,0 = ξ0,−1 = 1
2 , and µr,s = ξr,s = 0 for all other r and s. The discrete particle velocities are

then defined as

ui,j+1/2 = ũi,j+1/2 − 2Ω(y)
(
hb + 1

2h
)x
i,j+1/2

, (46a)

vi+1/2,j = ṽi+1/2,j + 2Ω(x)
(
hb + 1

2h
)y
i+1/2,j

, (46b)

and the discrete Bernoulli potential becomes

Φi+1/2,j+1/2 = 1
2u

2
x

i+1/2,j+1/2 + 1
2v

2
y

i+1/2,j+1/2 + g(hb + h)i+1/2,j+1/2

+ Ω
(x)
i+1/2,j+1/2v

?y
i+1/2,j+1/2 − Ω

(y)
i+1/2,j+1/2u

?x
i+1/2,j+1/2. (47)

Note that Ω(x) and Ω(y) need not be located on h-gridpoints, as implied throughout this section. Locating

Ω(x) on v-gridpoints (i.e. Ω
(x)
i+1/2,j) and Ω(y) on u-gridpoints (i.e. Ω

(y)
i,j+1/2) is natural for calculating the

discrete three-dimensional divergence of Ω at the q-points where Ω(z) is located. The three-dimensional
divergence of the rotation vector must vanish for potential vorticity to be materially conserved in the
continuously stratified fluid equations [58]. The only effect on our scheme from this change would be to
move Ω(y) and Ω(x) outside of the averaging operators in (46a)–(46b), and to move them within the averaging

operators in (47). For example, the rightmost term in (46a) would become −2Ω
(y)
i,j+1/2

(
hb + 1

2h
)x
i,j+1/2

, and

the rightmost term in (47) would become −Ω(y)u?
x

i+1/2,j+1/2,

3.3. Extension to multiple layers

The multi-layer shallow water equations describe a stack of layers of immiscible fluids whose densities
ρ(k) decrease upwards. We use a superscript (k) to indicate the velocity, thickness, and density of the kth

layer, with k = 1 corresponding to the top layer and k = K to the bottom. We also define the vertical
positions of the interfaces between layers as

η(K+1) = hb, η(k) = hb +

l=K∑
l=k

h(l). (48)

The multi-layer analogue of the Hamiltonian (9) is [28]

H = E =
K∑

k=1

ρ(k)
∫∫

dx

{
1

2
h(k)

[(
u(k)

)2
+
(
v(k)

)2]
+ gh(k)

(
η(k+1) +

1

2
h(k)

)}
. (49)

The upper surface η(k+1) of the layer below thus appears as an effective bottom topography in the contri-
bution to the Hamiltonian from layer k.

The multi-layer Poisson bracket is just a sum of single-layer brackets weighted by inverse density,

{A,B} =

K∑
k=1

1

ρ(k)

∫∫
dx

{
q(k)

(
δA
δũ(k)

δB
δṽ(k)

− δB
δũ(k)

δA
δṽ(k)

)
− δA
δũ(k)

· ∇ δB
δh(k)

+
δB
δũ(k)

· ∇ δA
δh(k)

}
. (50)

The canonical velocity components in each layer are

ũ(k) = u(k) + 2Ω(y)
(
η(k+1) + 1

2h
(k)
)

, ṽ(k) = v(k) − 2Ω(x)
(
η(k+1) + 1

2h
(k)
)

, (51)
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and the potential vorticity in each layer is

q(k) =
1

h(k)

(
2Ω(z) +

∂ṽ(k)

∂x
− ∂ũ(k)

∂y

)
. (52)

The multi-layer NTSWE may be derived from (49) and (50) by substituting F = ũ(k), F = ṽ(k), and
F = h(k) in turn into (10), as outlined in §3.2. The multi-layer shallow water equations conserve the total
energy E over all layers, and the mass M(k) and potential enstrophy P(k) in each layer,

P(k) = ρ(k)
∫∫

dx

{
1
2h

(k)
(
q(k)

)2}
, M(k) = ρ(k)

∫∫
dx
{
h(k)

}
. (53)

As in the single-layer case, we derive a numerical scheme for the multi-layer NTSWE via a discretisation
of the Hamiltonian and Poisson bracket that conserves discrete analogues of the total mass, energy and
potential enstrophy. We discretise the Hamiltonian (49) as

H =

K∑
k=1

ρ(k)
∑
i,j

1

2
h
(k)
i+1/2,j+1/2

[
2

3

(
u2

xyy

i+1/2,j+1/2 + v2
xxy

i+1/2,j+1/2

)(k)
+

1

3

(
u2

x

i+1/2,j+1/2 + v2
y

i+1/2,j+1/2

)(k)]
+ gh

(k)
i+1/2,j+1/2(η(k) + 1

2h
(k))i+1/2,j+1/2. (54)

The only qualitative change from the single-layer case lies in the averaging of the squared particle velocity
components used to approximate the kinetic energy in each layer. These averages must be taken over a larger
stencil in the multi-layer case to avoid an internal symmetric computational instability [43]. For example,
the superscripts xyy and xxy correspond to the averages

u2
xyy

i+1/2,j+1/2 = 1
4

(
u2i+1,j+1/2 + u2i,j+1/2

)
+ 1

8

(
u2i+1,j+3/2 + u2i,j+3/2 + u2i+1,j−1/2 + u2i,j−1/2

)
, (55a)

v2
xxy

i+1/2,j+1/2 = 1
4

(
v2i+1/2,j+1 + v2i+1/2,j

)
+ 1

8

(
v2i+3/2,j+1 + v2i+3/2,j + v2i−1/2,j+1 + v2i−1/2,j

)
. (55b)

We pose the discrete Poisson bracket as a sum of a potential vorticity dependent part and a remainder in
each layer,

{A,B} =

K∑
k=1

{A,B}(k) =

K∑
k=1

{A,B}(k)Q + {A,B}(k)R , (56a)

{A,B}(k)Q =
1

ρ(k)

∑
i,j

q
(k)
i,j

∑
n,m

α(k)
n,m

∂(A,B)

∂
(
ũ
(k)
(i,j+1/2)+n, ṽ

(k)
(i+1/2,j)+m

)
+ β(k)

n,m

∂(A,B)

∂
(
ũ
(k)
(i,j+1/2)+n, ũ

(k)
(i,j+1/2)+m

) + γ(k)n,m

∂(A,B)

∂
(
ṽ
(k)
(i+1/2,j)+n, ṽ

(k)
(i+1/2,j)+m

)
 , (56b)

{A,B}(k)R =
1

ρ(k)d

∑
i,j

 ∂B

∂ũ
(k)
i,j+1/2

 ∂A

∂h
(k)
i+1/2,j+1/2

− ∂A

∂h
(k)
i−1/2,j+1/2


+

∂B

∂ṽ
(k)
i+1/2,j

 ∂A

∂h
(k)
i+1/2,j+1/2

− ∂A

∂h
(k)
i+1/2,j−1/2

− (A←→ B)

 , (56c)

with coefficients α
(k)
n,m, β

(k)
n,m and γ

(k)
n,m to be determined. The discrete potential vorticity in each layer is

defined as

q
(k)
i,j =

1

h(k)
xy

i,j

(
2Ω

(z)
i,j + ζ̃

(k)
i,j

)
, where ζ̃

(k)
i,j =

1

d

(
ṽ
(k)
i+1/2,j − ṽ

(k)
i−1/2,j − ũ

(k)
i,j+1/2 + ũ

(k)
i,j−1/2

)
. (57)
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The discrete potential enstrophy and mass in each layer are

P (k) = ρ(k)
∑
i,j

{
1
2h

(k)
xy

i,j

(
q
(k)
i,j

)2}
, M (k) = ρ(k)

∑
i,j

{
h
(k)
i+1/2,j+1/2

}
. (58)

As in the single-layer case, the dynamics of the discrete system are given by (22), where H is the
multi-layer Hamiltonian (54). Conservation of energy follows trivially from the antisymmetry of the Poisson
bracket (56b)–(56c), so (23) holds for the multi-layer Hamiltonian H. To conserve potential enstrophy P (k)

within each layer, it is sufficient to ensure that the Poisson bracket satisfies{
ũ(l), P (k)

}
=
{
ṽ(l), P (k)

}
=
{
h(l), P (k)

}
= 0, (59)

for all l = 1, . . . ,K. This requirement may be simplified by recognising that P (k) is a function only of ũ(k),
ṽ(k) and h(k), and that only the kth term of the Poisson bracket (56a) contains derivatives with respect to
these variables. Thus (59) reduces to{

ũ(k), P (k)
}(k)

=
{
ṽ(k), P (k)

}(k)

=
{
h(k), P (k)

}(k)

= 0. (60)

Requirement (60) for the discrete potential enstrophy (58) and Poisson bracket (56b)–(56c) is exactly iso-
morphic to requirement (29a) for the single-layer potential enstrophy (24) and Poisson bracket (31) and
(33). Therefore, we may ensure conservation of potential enstrophy using exactly the same coefficients

α
(k)
n,m = αn,m, β

(k)
n,m = βn,m and γ

(k)
n,m = γn,m in the multi-layer case as in the single-layer case. For the

purpose of illustration we use the coefficients corresponding to the original Arakawa–Lamb scheme, as given
in the Appendix. Finally, conservation of mass within each layer again follows from M (k) being independent

of all velocity variables, and ∂M (k)/∂h
(l)
i+1/2,j+1/2 = δkl being a Kroenecker delta.

Substituting F = h
(k)
i+1/2,j+1/2, F = ũ

(k)
i,j+1/2, and F = ṽ

(k)
i+1/2,j in turn into (22) with the discrete

Hamiltonian (54) and Poisson bracket (56a) gives the following scheme for the multi-layer NTSWE:

d

dt
h
(k)
i+1/2,j+1/2 = −1

d

(
u(k)?i+1,j+1/2 − u

(k)?
i,j+1/2 + v(k)?i+1/2,j+1 − v

(k)?
i+1/2,j

)
, (61a)

d

dt
ũ
(k)
i,j+1/2 =

∑
r,s

v(k)?r+1/2,s

∑
n,m

δ(i,j)−(r,s)+m−n αn,m q
(k)
(r,s)−m

+
∑
r,s

u(k)?r,s+1/2

∑
n,m

δ(i,j)−(r,s)+m−n (βn,m − βm,n) q
(k)
(r,s)−m −

1

d

(
Φ

(k)
i+1/2,j+1/2 − Φ

(k)
i−1/2,j+1/2

)
,

(61b)

d

dt
ṽ
(k)
i+1/2,j = −

∑
r,s

u(k)?r,s+1/2

∑
n,m

δ(i,j)−(r,s)+n−m αn,m q
(k)
(r,s)−n

+
∑
r,s

v(k)?r+1/2,s

∑
n,m

δ(i,j)−(r,s)+m−n (γn,m − γm,n) q
(k)
(r,s)−m −

1

d

(
Φ

(k)
i+1/2,j+1/2 − Φ

(k)
i+1/2,j−1/2

)
. (61c)

The larger averaging stencil in the Hamiltonian (54) determines the mass fluxes

u(k)?i,j+1/2 = u
(k)
i,j+1/2

(
1

3
h(k)

x

i,j+1/2 +
2

3
h(k)

xyy

i,j+1/2

)
, (62a)

v(k)?i+1/2,j = v
(k)
i+1/2,j

(
1

3
h(k)

x

i+1/2,j +
2

3
h(k)

xyy

i+1/2,j

)
(62b)
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in terms of the particle velocity components

u
(k)
i,j+1/2 = ũ

(k)
i,j+1/2 − 2Ω(y)

(
η(k+1) + 1

2h
(k)
)x
i,j+1/2

, (63a)

v
(k)
i+1/2,j = ṽ

(k)
i+1/2,j + 2Ω(x)

(
η(k+1) + 1

2h
(k)
)y
i+1/2,j

. (63b)

The discrete Bernoulli potential for each layer is

Φ
(k)
i+1/2,j+1/2 =

2

3

((
u(k)

)2xyy
i+1/2,j+1/2

+
(
v(k)

)2xxy
i+1/2,j+1/2

)
+

1

3

((
u(k)

)2x
i+1/2,j+1/2

+
(
v(k)

)2y
i+1/2,j+1/2

)

+ g

[
η
(k)
i+1/2,j+1/2 +

l=k+1∑
l=1

ρ(l)

ρ(k)
h
(l)
i+1/2,j+1/2

]

+ Ω
(x)
i+1/2,j+1/2v

(l)?
y

i+1/2,j+1/2 − Ω
(y)
i+1/2,j+1/2u

(l)?
x

i+1/2,j+1/2

+

l=k+1∑
l=1

2
ρ(l)

ρ(k)

(
Ω

(x)
i+1/2,j+1/2v

(l)?
y

i+1/2,j+1/2 − Ω
(y)
i+1/2,j+1/2u

(l)?
x

i+1/2,j+1/2

)
. (64)

3.4. Integration in time

For the numerical experiments below, we integrated the discretised NTSWE or multi-layer NTSWE
scheme forward in time using the standard 4th order Runge–Kutta scheme with a constant timestep chosen
to satisfy the Courant–Friedrichs–Lewy (CFL) stability condition throughout the integration.

4. Numerical experiments

We first nondimensionalise our equations by writing

x = Rdx̂, u(k) = cû(k), h(k) = Hĥ(k), hb = Hĥb,
(

Ω(x),Ω(y),Ω(z)
)

= Ω
(

Ω̂(x), Ω̂(y), Ω̂(z)
)

, (65)

where a hat ˆ denotes a dimensionless variable. We use the layer thickness scale H, gravitational acceleration
g, and planetary rotation rate Ω to construct the gravity wave speed c, Rossby deformation radius Rd, and
non-traditional parameter δ [18, 22, 27]

c =
√
gH, Rd =

c

2Ω
, δ = H/Rd = 2ΩH/c. (66)

The last of these is the aspect ratio based on the deformation radius and thickness scale. It is also the
ratio between the change 2ΩH in zonal velocity created by displacing a particle at the equator by a vertical
distance H while conserving angular momentum and the gravity wave speed c.

The dimensionless components of the rotation vector at latitude φ are

Ω̂(x) = 0, Ω̂(y) = cosφ, Ω̂(z) = sinφ, (67)

where we have aligned our x-axis with East to make Ω̂(x) vanish. We take φ = π/4, which corresponds to a
latitude of 45◦N. However, we have based our deformation radius on Ω rather than Ω(z) = Ω sinφ.

Under this nondimensionalisation, the single-layer shallow water equations become

∂ ˆ̃u

∂t̂
+ q̂ĥ ẑ× û + ∇̂Φ̂ = 0,

∂ĥ

∂t̂
+ ∇̂ ·

(
ĥû
)

= 0, (68)
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where the dimensionless canonical velocities are

ˆ̃u = û+ δΩ̂(y)
(
ĥb + 1

2 ĥ
)

, ˆ̃v = v̂ − δΩ̂(x)
(
ĥb + 1

2 ĥ
)

. (69)

The dimensionless potential vorticity and Bernoulli potential are

q̂ =
1

ĥ

(
Ω̂(z) +

∂ ˆ̃v

∂x̂
− ∂ ˆ̃u

∂ŷ

)
, Φ̂ = 1

2 û
2 + 1

2 v̂
2 + ĥb + ĥ+ 1

2δĥ
(

Ω̂(x)v̂ − Ω̂(y)û
)

. (70)

We will henceforth drop the hat ˆ notation for dimensionless variables.
We choose H = 1000 m as a characteristic vertical lengthscale for the ocean, and the Earth’s rotation

rate is Ω ≈ 7.3× 10−5rad s−1. We take g = 10−3m s−2 to be a reduced gravity for which our shallow water
equations give a “1 1

2 -layer” or “equivalent barotropic” description of a relatively thin active layer separated
from a much thicker quiescent layer by a small density contrast [18, 20, 17]. These parameters yield a gravity
wave speed c = 1 m s−1, a deformation radius Rd ≈ 6.88 km, and a non-traditional parameter δ ≈ 0.145.

4.1. Single-layer geostrophic adjustment

We first focus on the propagation of inertia-gravity waves, which are substantially modified by the non-
traditional component of the Coriolis force. Their group velocity and structure depend on their direction
of propagation relative to the horizontal component of the rotation vector [12]. We prescribe an initially
motionless layer with an upward bulge in the centre of a square doubly-periodic domain with a side length
of 10 deformation radii:

u|t=0 = 0, v|t=0 = 0, h|t=0 = 1 +
1

2
exp

[
−
(

4x

5

)2

−
(

4y

5

)2
]

. (71)

Figures 2(a–d) illustrate the generation and propagation of inertia-gravity waves from the collapse of
the axisymmetric initial peak. Nonlinear interactions subsequently generate shorter and shorter waves
that continue to propagate around the domain for as long as we have been able to evolve them (at least
until t = 1000) because the total energy is conserved. Figures 2(e) and 2(f) shows the convergence of the
numerical solution as we increase the number of gridpoints N along both the x- and y-axes. We quantify the
convergence using the discrete `2 norms of the differences in the potential vorticity (εq) and layer thickness
(εh) relative to a reference solution computed using a Fourier pseudospectral method with 2048 × 2048
collocation points, and the Hou–Li spectral filter to provide dissipation at the finest resolved scales [61]. We
use the average h

xy

i,j defined in (27) to construct a layer thickness field on the same (i, j) grid points as the
potential vorticity (see figure 1). Figures 2(e) shows the expected second-order convergence of the potential
vorticity field at the four times t ∈ {5, 10, 15, 20}. However, the convergence rate for the layer thickness
field deteriorates at later times due to the presence of small-amplitude shock waves [62]. These are created
by the nonlinear steepening of the original inertia-gravity waves, and form increasingly more complicated
patterns as shocks collide with their periodic images.

The asymmetry along the x-axis in figures 2(c) and 2(d) is due to the East/West asymmetry of the
gravity wave dispersion relation created by non-traditional effects [12]. The horizontal component of the
rotation vector Ω creates a preferred horizontal direction. To explore the consequences of this asymmetry
we continued the integration of both the SWE and the NTSWE up to t = 200 on a 1024 × 1024 grid.
To distinguish the geostrophically adjusted state from the fluctuations associated with the inertia-gravity
waves, which are trapped by the periodic boundary conditions, we plot the average 〈· · ·〉 of each quantity
over the time interval from t = 100 to t = 200. Figure 3 compares the mean layer thickness 〈h〉 and the

layer thickness variance 〈h′2〉 = 〈h2〉 − 〈h〉2 between the traditional and non-traditional SWE. Figures 3(a)
and 3(b) show that the geostrophically adjusted mean states are almost indistinguishable. However, their
variances show significant differences. Figure 3(c) shows that the fluctuations in the traditional shallow water
equations are focused at the site of the initial surface displacement and its antipode, and show near-perfect
4-fold rotational symmetry. The slight rotational asymmetry visible may be attributed to the imperfect
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Figure 2: Panels (a–d) show snapshots of the layer thickness h from the single-layer geostrophic adjustment test case described
in §4.1 on a 128 × 128 grid. Convergence in the `2 norm of (e) the potential vorticity q and (f) the layer thickness h under
refinement of the N ×N grid.
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Figure 3: Time-averaged diagnostics from our single-layer geostrophic adjustment test case between t = 100 and t = 200,
computed on a 1024× 1024 grid. Panels (a) and (b) compare the time-averaged layer thickness 〈h〉 in the SWE and NTSWE
solutions respectively. Panels (c) and (d) compare the layer thickness variance 〈h′2〉.

cyclone/anticyclone symmetry in the traditional shallow water equations [63]; a simulation in which Ω(z)

has the opposite sign produces the opposite asymmetry. Figure 3(d) shows a much greater loss of 4-fold
rotational symmetry due to the non-traditional component of the Coriolis force that spreads the fluctuations
into zonal bands.

4.2. Single-layer shear instability

The inertia-gravity waves produced in our first test involve a horizontally divergent flow with relatively
large vertical velocities. Our second test instead emphasises the vorticity dynamics of our model. We consider
the roll-up of an unstable shear layer that is initially in geostrophic balance, referred to in a geophysical
context as a barotropic instability [1]. A velocity field ug is in geostrophic balance with the layer thickness
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Figure 4: Snapshots of the potential vorticity q from the single-layer shear instability test case described in §4.2 computed on
a 1024 × 1024 grid at (a) t = 0 and (b) t = 75. Convergence of the `2 norm of (c) the potential vorticity q and (d) the layer
thickness h under refinement of the N ×N spatial grid.

field if the traditional component of the Coriolis force balances the pressure gradient,

Ω(z)z× ug = ∇h. (72)

This traditional geostrophic relation holds when non-traditional effects are weak (δ � 1), the dimensionless
velocity is small (|u| � 1), and deviations of the layer thickness are small (|∇h| � 1). The latter two condi-
tions are equivalent to smallness of the Rossby and Froude numbers respectively. The geostrophic velocity
given by (72) has no horizontal divergence. The vertical velocity component must thus be independent of
depth, and hence vanishes when the flow is over a horizontal lower boundary.

We prescribe an initial layer thickness that varies sinusoidally with amplitude ∆h = 0.2 in the y-direction,
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and compute the corresponding velocity components from (72),

h|t=0 = 1 + ∆h sin

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
, (73a)

u|t=0 = −2π∆h

Ω(z)L
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
, (73b)

v|t=0 = −4π2∆h∆y

Ω(z)L2
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
cos

(
2πx

L

)
. (73c)

These initial conditions describe an alternating patterns of geostrophic jets in the x-direction whose paths
are perturbed by a sinusoidal meander of amplitude ∆y = 0.5 in the y-direction. The model parameters are
otherwise the same as in our first test case in §4.1. As before, we take the dimensionless domain length to
be L = 10, and the reduced gravity to be g = 10−3m s−2, so the non-traditional parameter is δ ≈ 0.145

Figure 4(a–b) illustrates the roll-up of the potential vorticity from its initial state until the shear develops
filaments on the order of the grid scale. Beyond this point the solution begins to develop spurious grid-
scale potential vorticity anomalies, but remains numerically stable (in the sense that it does not blow up)
due to the exact conservation of discrete energy and potential enstrophy. Non-traditional effects remain
small, because the flow remains close to traditional geostrophic balance, with only a small vertical velocity
component. The difference between the SWE and NTSWE solutions is typically on the order of 0.5%.
The largest difference over in the domain at t = 75 is around 5%, which arises because the non-traditional
component of the Coriolis force shifts the PV filaments in Figure 4(b) downward by 0.05–0.1 deformation
radii.

Figure 4(c–d) shows the convergence of these solutions to a spectral reference solution under grid refine-
ment. The layer thickness field shows second-order convergence for all times, while the convergence of the
potential vorticity field deteriorates at later times due to the formation of extensive grid-scale noise. This
is consistent with the potential vorticity q being related to the Laplacian of the layer thickness h for flows
in geostrophic balance (72), so h remains smooth even when q develops grid-scale noise.

4.3. Two-layer shear instability

Finally, we test the extension of our scheme to more than one layer described in §3.3 using a two-layer
analogue of the problem in §4.2. We take the upper layer to be initially stationary with a flat upper surface,

u(1)
∣∣∣
t=0

= 0, v(1)
∣∣∣
t=0

= 0, h(1)
∣∣∣
t=0

= 2− h(2). (74)

In the lower layer we prescribe an initial jet configuration similar to the one we used in §4.2,

u(2)
∣∣∣
t=0

= −
(

1− ρ(1)

ρ(2)

)
2π∆h

Ω(z)L
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
, (75a)

v(2)
∣∣∣
t=0

= −
(

1− ρ(1)

ρ(2)

)
4π2∆h∆y

Ω(z)L2
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
cos

(
2πx

L

)
, (75b)

h(2)
∣∣∣
t=0

= 1 + ∆h sin

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
. (75c)

The initial lower layer velocity and thickness are again in traditional geostrophic balance, since

Ω(z)z× u(2) =

(
1− ρ(1)

ρ(2)

)
∇h(2). (76)

This two-layer configuration includes both horizontal and vertical shear, and so may be unstable to both
barotropic and baroclinic instabilities. The latter results from the available potential energy associated with
vertical shear in geostrophic flow [1]. As in the previous examples, we use a domain of dimensionless width
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Figure 5: (a,b) Snapshots of the lower-layer potential vorticity q(2) from the two-layer shear instability test case describe in
§4.3, with a grid size of N = 512. (c,d) Convergence of the `2 norm of the lower-layer potential vorticity q(2) and layer thickness
h(2) with increasing numbers of grid points N .

L = 10. We now use a larger reduced gravity g = 10−2m s−2, and a density difference ρ(1)/ρ(2) = 0.9, so
the effective reduced gravity at the interface between the layers is the same as in §4.2.

Figures 5(a–b) show the lower-layer potential vorticity at t = 0 and t = 700. These times correspond to
the snapshots plotted in Figure 4(a–b) because the dimensionless velocities in (75a)–(75b) are an order of
magnitude smaller than in (73b)–(73c). As for the single layer, the flow forms two rolls of potential vorticity
with grid-scale filaments around their margins. Figure 5(b) also displays intrusions into the core regions
of near-homogeneous potential vorticity, indicating the onset of a secondary baroclinic instability. These
features are not substantially modified by the non-traditional Coriolis force. The difference between the
traditional and non-traditional solutions is almost identical to the single-layer shear roll-up in §4.2.

Figures 5(c–d) show the convergence of the errors εq in q(2) and εh in h(2) under grid refinement. For this
test, the reference solution was obtained using Richardson extrapolation from the solutions with N = 512
and N = 1024. As before, we see second order convergence of the layer thickness field h at all times, but
the convergence of the potential vorticity q deteriorates at later times due to the formation of fine scale
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Figure 6: Change in the dimensionless (a,c) energy E and (b,d) potential enstrophy P between t = 0 and t = 1000 for
integrations of the single-layer geostrophic adjustment test case described in §4.1 on a 50×50 grid using three different floating
point precisions and the (a,b) 4th order Runge–Kutta and (c,d) 3rd order Adams–Bashforth schemes. In panel (b) the leftmost
point (smallest time step) from the 64-bit precision experiments is missing because ∆P is exactly zero under Kahan summation,
and so does not appear on a log-log plot.

structures in q.

5. Temporal truncation error

The convergence studies described in §4 demonstrate that the numerical scheme derived in §3 achieves
the expected second-order accuracy under spatial grid refinement. However, the exact conservation of the
discrete total energy E and potential enstrophy P only holds in the semi-discrete formulation in which the
values of u, v, h at grid points evolve according to an ODE system in continuous time. In this section
we show that the changes E and P due to the finite accuracy of the time integration may be reduced to
machine round-off level by using a sufficiently short time step at fixed spatial resolution. We re-use the
IGW propagation problem from §4.1 for which the non-traditional component of the Coriolis force is most
prominent. We employ a coarse 50× 50 grid for computational efficiency, and to emphasise any changes in
E and P due to spatial truncation error.
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Figure 6 shows the changes in the instantaneous dimensionless total energy E and potential enstrophy
P between t = 0 and t = 1000 as a function of the dimensionless time step ∆t for integrations using either
the 4th order Runge–Kutta or the 3rd order Adams–Bashforth schemes [53]. We used the Runge–Kutta
scheme to generate the two initial timesteps required by the Adams–Bashforth scheme. We also show
results computed using IEEE 32, 64, and 128 bit floating point arithmetic, with precisions of roughly 7, 16,
and 34 decimal digits respectively.

The natural calculation of E and P as sums over all grid points involves adding the contribution from
one grid point to the accumulated partial sum from previous grid points in the sum. This is susceptible to
loss of precision due to the differing magnitudes of the single contribution and the partial sum. The changes
in E and P over time are also expected to be small, so the calculation of ∆E = E(t = 1000) − E(t = 0)
and ∆P = P (t = 1000) − P (t = 0) involves the subtraction of two nearly equal quantities, which is again
susceptible to loss of precision.

We found that a straightforward calculation of E and P at the two different times, followed by their
subtraction, is subject to an accumulated round-off error several orders of magnitude larger than the error
achievable from the same discrete u, v and h fields at grid points using a more accurate summation. In other
words, the largest contribution to ∆E and ∆P is the error in their calculation, rather than any inaccuracy
in the underlying u, v and h fields.

We therefore computed E and P using the Kahan summation algorithm [64, 65], which compensates
for the residual lost when adding a smaller quantity to a larger quantity. For example, when adding two
numbers a and b, the Kahan summation algorithm computes s and r such that a+ b = s+ r holds exactly
in binary floating point arithmetic, s is the closest respresentable floating point approximation to the exact
sum a+ b, and r is the residual. When extended to n terms, Kahan summation has an error bound that is
independent of n when n is less than the reciprocal of the machine epsilon. By contrast, the error bound
for a straightforward recursive summation grows proportionally to n. We performed the Kahan summation
in 64 bit arithmetic for the 32 bit simulations, and otherwise used the same precision as the simulation.

Figures 6(a) and (b) show fifth-order convergence of ∆E, and fourth-order convergence of ∆P , using
the 4th order Runge–Kutta scheme. The higher than expected convergence for ∆E with the Runge–Kutta
scheme may be because the leading-order truncation error for wavelike phenomena is dispersive, and E
involves only sums of the u, v, and h fields at grid points. By contrast, P involves differences between
u and v fields at adjacent grid points, and so may be expected to be sensitive to phase differences due
to dispersive errors. McRae & Cotter [49] found the same combination of fifth-order convergence for ∆E
and fourth-order convergence of ∆P with their finite element spatial discretisation and the same 4th order
Runge–Kutta scheme. Figures 6(c–d) show the expected third-order convergence for both ∆E and ∆P with
the 3rd order Adams–Bashforth scheme, whose leading order truncation error is dissipative.

In all cases, the achievable accuracy for small ∆t is limited by finite floating point precision. Different
minima are achievable for ∆E and ∆P due to the different sequences of floating point operations required
to compute the two quantities. When using 32 bit arithmetic there is little benefit in reducing ∆t below
the CFL stability threshold, since ∆E and ∆P are dominated by round-off error, not temporal truncation
error. At more realistic spatial resolutions, such as 1024× 1024, for which ∆t must be substantially reduced
to satisfy the CFL stability condition, the largest stable ∆t will typically produce ∆E and ∆P comparable
to round-off error in 64 bit arithmetic.

6. Conclusion

We have extended the energy and potential enstrophy conserving properties of the Arakawa–Lamb [42]
scheme to the multi-layer non-traditional shallow water equations (NTSWE) that include a depth-averaged
treatment of the complete Coriolis force [27, 28]. These conservation properties help to prevent a spurious
forward energy cascade to the finest resolved scales, and suppress nonlinear numerical instabilities. They
seem essential for correctly simulating the inverse energy cascade in two-dimensional turbulence, and improve
material conservation of potential vorticity in Eulerian grid-based schemes [37].

Salmon [47] showed that the Arakawa–Lamb scheme is equivalent to the Hamiltonian system formed
by discretising the Hamiltonian and Poisson bracket for a non-canonical Hamiltonian formulation of the
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shallow water equations (SWE). Discrete energy conservation then follows immediately from antisymmetry
of the discrete Poisson bracket via (23). By contrast, the SWE conserve potential enstrophy because it is a
Casimir functional of the non-canonical Poisson bracket, so its bracket with any other functional vanishes.
Salmon [47] constructed a discrete Poisson bracket for which a discrete analog of the potential enstrophy is
also a Casimir.

We were able to reuse much of Salmon’s approach because the shallow water equations with no rotation,
traditional rotation, and non-traditional rotation may all be written in non-canonical Hamiltonian form using
the same Poisson bracket by distinguishing between the particle velocity u and the canonical velocity ũ. The
particle velocity appears in the mass conservation equation and the Bernoulli potential. The kinetic energy
in the Hamiltonian is calculated from the square of the particle velocity, and is unaffected by rotation. The
canonical velocity may be derived from the layer average of the three-dimensional velocity vector u + Ω×x
relative to an inertial frame by applying a gauge transformation to remove the vertical component [27, 28].
Its time derivative appears in the vector invariant form of the momentum equation, and its curl defines the
materially-conserved potential vorticity. However, the distinction between these two velocities is commonly
elided in the traditional shallow water equations, because they differ only by a function of position so their
time derivatives are equal.

By contrast, the canonical velocity for the NTSWE contains additional terms proportional to the evolving
layer depth h(x, t) and the horizontal components Ω(x) and Ω(y) of the rotation vector. The Poisson bracket
is formulated for h and ũ as independent variables, but the Hamiltonian contains u, which we treat as a
known function of h and ũ. We place the particle and canonical velocity components at the same locations
in the staggered Arakawa C grid that underlies the Arakawa–Lamb scheme. Since the layer depth h is not
collocated with any of these variables, we needed to construct averages of h at the u and v points (see
figure 1). We used simple averages of the two u or v points adjacent to each h point.

Turning to the multi-layer system, its Poisson bracket may be written as a sum of uncoupled Poisson
brackets, each involving only the canonical velocity ũ(k) and depth h(k) of the kth layer. Coupling between
layers occurs only through the Hamiltonian, in which the upper surface of each layer appears as an effective
bottom topography for the layer immediately above. This decomposition enabled us to construct a discreti-
sation that conserves a discrete total energy for the whole system, and the discrete masses and potential
enstrophies within individual layers. However, a widening of the averaging stencil used to the compute the
discrete kinetic energy within each layer is required to avoid spurious internal computational symmetric
instabilities [43]. This implies a wider averaging stencil for the discrete mass fluxes and Bernoulli potentials
in the resulting evolution equations.

In §4 we verified through numerical experiments that our scheme consistently exhibits at least second-
order convergence of the potential vorticity and layer thickness fields under grid refinement for both one and
two layers. The influence of the non-traditional Coriolis force is most obvious in the geostrophic adjustment
test case described in §4.1. There is little difference in the geostrophically adjusted states approached by the
SWE and NTSWE, but the fluctuations associated with propagating inertia-gravity waves are qualitatively
different due to the horizontal anisotropy in the inertia-gravity wave dispersion relation created by the
horizontal component of the rotation vector [12]. In our shear instability test cases (§4.2 and §4.3) the flows
are largely geostrophically balanced, so vertical motions and the non-traditional Coriolis force are minimised.

The Arakawa–Lamb scheme and our non-traditional extension are both semi-discrete schemes. They
express the evolution of grid point values of velocity and layer thickness in continuous time, and the con-
servation properties for mass, energy, and potential enstrophy also hold in continuous time. In §5 we
demonstrated that total energy and potential enstrophy can indeed be conserved down to machine round-
off error by using standard time integration schemes with a sufficiently short timestep. We observed the
expected 3rd order convergence of the conserved quantities for the 3rd order Adams–Bashforth scheme. For
the 4th order Runge–Kutta scheme we found 5th order convergence of the energy and 4th order convergence
of the potential enstrophy, in agreement with similar experiments recently performed with a finite element
spatial discretisation [49].

The schemes and test cases discussed here are all valid in the absence of lateral boundaries. The Arakawa–
Lamb scheme for the traditional single-layer SWE has been modified to include arbitrary lateral boundaries
by rewriting the discrete energy and vorticity equations in flux form, and imposing physical boundary
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conditions on the fluxes [66, 67]. This approach should extend to our scheme for the single-layer NTSWE,
but becomes more complicated for multiple layers due to the larger grid stencil used for the mass fluxes.
Incorporating boundary conditions into a multi-layer scheme may be more easily accomplished in a vorticity,
divergence, and depth formulation in which the boundary conditions only enter the elliptic equations needed
to solve for the velocity potential and streamfunction used to represent the velocity within each layer [56, 68].

Though in principle our numerical scheme permits arbitrary lateral variation of the components of the
rotation vector Ω [58], all of our numerical test cases in §4 use constant values for these components. We
have separately tested the scheme with spatially-varying Ω(z) and constant Ω(x) and Ω(y), similar to the
Grimshaw [69] β-plane and found that energy and potential energy are conserved to similar precision as in
§5. However, in this article we have not explored the performance of our scheme with spatially-varying Ω.

Our energy- and potential enstrophy-conserving scheme for the NTSWE has broad utility for modelling
large-scale geophysical flows using layer-based or isopycnal coordinate numerical models with a complete
treatment of the Coriolis force. By construction, the NTSWE prevent exchanges of mass and tracers across
density surfaces, unless these are explicitly imposed. It would be straightforward to retrofit isopycnal
models to incorporate the full Coriolis force using the scheme described in this paper. The authors foresee
this scheme being of practical use for the exploration of oceanic phenomena likely to be influenced by the
non-traditional component of the Coriolis force, such as internal wave generation over topographic features
[12] or abyssal currents flowing close to the equator [18, 19, 20].

Acknowledgements

Some of the computations employed the Advanced Research Computing (ARC) facility at the University
of Oxford [70]. The authors thank the three anonymous reviewers for their constructive comments on the
manuscript.

Appendix A. Coefficients of the Discrete Poisson Bracket

The discrete Poisson bracket (31) contains three families of coefficients αn,m, βn,m and γn,m that must
be chosen to ensure conservation of the discrete potential enstrophy. The nonvanishing coefficients for the
Arakawa–Lamb scheme are [47]

α(0,0)(0,1) = α(0,0)(−1,1) = α(0,−1)(0,−1) = α(0,−1)(−1,−1) = 1/12, (A.1a)

α(1,0)(0,0) = α(1,−1)(0,0) = α(−1,0)(−1,0) = α(−1,−1)(−1,0) = 1/12, (A.1b)

α(0,0)(0,0) = α(0,0)(−1,0) = α(0,−1)(0,0) = α(0,−1)(−1,0) = 1/24, (A.1c)

α(1,0)(0,1) = α(1,−1)(0,−1) = α(−1,−1)(−1,−1) = α(−1,0)(−1,1) = 1/24, (A.1d)

β(0,0)(1,0) = β(1,−1)(0,−1) = β(0,−1)(−1,−1) = β(−1,0)(0,0) = 1/24, (A.1e)

γ(0,1)(0,0) = γ(0,0)(0,−1) = γ(−1,−1)(−1,0) = γ(−1,0)(−1,1) = 1/24. (A.1f)

All other coefficients are equal to zero.
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