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División Qúımica Teórica, Blvd. 113 y 64 (S/N),
Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

fernande@quimica.unlp.edu.ar

Boris Rösler
Facultad de Ciencias, Universidad de Colima,

Bernal Dı́az del Castillo 340, Colima, Colima, Mexico
info@boris.net

June 25, 2018

Abstract

We apply second order finite difference to calculate the lowest eigenvalues of the

Helmholtz equation, for complicated non-tensor domains in the plane, using different

grids which sample exactly the border of the domain. We show that the results obtained

applying Richardson and Padé-Richardson extrapolation to a set of finite difference

eigenvalues corresponding to different grids allows to obtain extremely precise values.

When possible we have assessed the precision of our extrapolations comparing them

with the highly precise results obtained using the method of particular solutions. Our

empirical findings suggest an asymptotic nature of the FD series. In all the cases

studied, we are able to report numerical results which are more precise than those

available in the literature.

1 Introduction

Among the different methods for estimating the eigenvalues and eigenfunctions of the Lapla-
cian on a finite region of the plane, finite differences (FD) is the simplest, although the ac-
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curacy of the results obtained with this method is limited. In particular, for domains with
reentrant corners with an angle of π/α, it is well known that the error of the FD eigenvalues
is dominated by a behavior h2α for h → 0 (h is the grid spacing).

The so-called L-shaped membrane [α = 4/3] is a famous example which was studied
long time ago by Fox, Henrici and Moler [14]. Because of the quite slow convergence of
FD in this case (∆E ≈ h4/3), those authors applied an alternative method, the method of
particular solutions (MPS), and, exploiting all the symmetries of the problem, they were able
to obtain the first 8 digits of the lowest eigenvalue of the L-shape correctly, E1 ≈ 9.6397238.
Interestingly, the paper also mentions a precise (unpublished) value obtained by Moler
and Forsythe, E1 ≈ 9.639724, extrapolating the FD values obtained with very fine grids.
Unfortunately, the extrapolation is neither named nor explained.

A valuable discussion of the Richardson extrapolation of FD results for the eigenvalues
of the Laplacian on two dimensional regions of the plane is contained in [21], where it is
pointed out that the correct exponents of the asymptotic behavior of E1 for h → 0 must be
used in the extrapolation.

The purpose of the present paper is to show that is it possible to obtain quite precise
approximations to the eigenvalues of the Laplacian on a certain class of two dimensional
domains (specifically domains whose borders are sampled by the grid) by Richardson ex-
trapolation of the FD results, provided that the asymptotic behavior of the FD eigenvalues
for h → 0 is taken into account correctly.

The paper is organized as follows: in section 2 we provide a general discussion of Richard-
son extrapolation, and its relation to the “method of deferred corrections”; in section 3, we
describe the practical implementation of the Richardson extrapolation used in this paper;
in section 4 we present the numerical results obtained for different domains, comparing
them with the best results available in the literature; finally, in section 5 we summarize our
findings and discuss possible directions of future work.

2 Richardson Extrapolation

Richardson Extrapolation is interpolation of samples of a sequence Sn by a continuous
function of a continuous variable z followed by extrapolation to z = 0 to approximate the
limit of the sequence. The slowly convergent series

∑∞
n=1 n

−2, for example, can be summed
by taking the sequence of partial sums, Sν =

∑ν
n=1 n

−2, to be samples of a function in
z ≡ 1/ν. In our application, the sequence is that of approximations to an eigenvalue by
finite difference calculations whose asymptotic error is a series in some power of the grid
spacing h; here z = h2 [usually] or z = h4/3 [for one singular application.]

The history including many independent discoveries is reviewed by Brezinski [7], Marchuk
and Shaidurov [24], Sidi [33], Walz [37] and Joyce [20]. Christian Huyghens applied Richard-
son Extrapolation to estimate π to 35 decimals from the perimeters of a sequence of polygons
with more and more sides inscribed in the unit circle. Richardson’s (1927) paper [29] con-
tained a plethora of examples that was the first comprehensive display of the power of
extrapolation; he claimed no novelty but credited others including an obscure Russian lan-
guage paper by Bogolouboff and N. Krylov 1 Richardson Extrapolation of eigenvalues is
discussed in Pryce’s book on numerical solution of Sturm-Liouville problems [27].

Richardson Extrapolation has four steps. First, compute samples {f(hn)} of the function
being extrapolated. Second, choose a set of basis functions {φj(x)} – usually polynomials –

1N. Bogolouboff and N. Krylov, On the Rayleigh’s principle in the theory of he differential equations
of the mathematical physics and upon the Euler’s method in the calculus of variations, Acad. des Sci. de
l’Ukraine, Classe, Phys. Math., tonne 3, fasc. 3 (1926).
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for an approximation

fN(h) ≡

N
∑

j=1

aj φj(h) (1)

The coefficients aj can always be computed by solving a matrix problem at a cost of O(N3)
operations, and this is necessary when the φj are a mixture of polynomials and polynomials
multiplied by powers of log(x), for example. However, it is faster to use Neville-Aitken
interpolation to compute a two-dimensional array (”Richardson Table”) of approximations
of different N formed from different subsets of the full sample set {f(hn)}. This is cheaper
than matrix-solving [O(N2) floating point operations] though this is only a small virtue
because of the speed of modern laptops. More important, extrapolation is credible only
if its answers are independent of numerical choices such as N and subsets of the full set
of samples. More precisely, a numerical answer is believable if and only if several different
values of the numerical parameters yield the same answer to within the user chosen tolerance.
The Richardson Table allows a quick search for such stable approximations. We shall return
to this in analyzing each numerical example.

Various conventions are employed. A popular one is to arrange the table as a lower
triangular matrix with N samples of f(z), the function being approximated, as the first
column:

Rj,1 = f(zj) (2)

The simple recursion is

Rj,k =
(z − zj−k−1)Rj,k−1 − (z − zj)Rj−1,k−1

zj − zj−k+1
, k = j, (j + 1), . . .N, j = 1, 2, . . .N (3)

Each entry in column k is a polynomial of degree (k − 1) which interpolates a subset of k
samples. The basic step combines two polynomials that interpolate (k − 1) points each to
generate a polynomial that interpolates at the k points {zj−k+1, . . . zj}. Both generators
interpolate at the (k − 2) points {zj−k+1, . . . zj}, but only Rj,k−1 interpolates at zj while
Rj−1,k−1 does not, but interpolates at zj−k+1. It is easy to verify that

Rj,k(z = zj−k+1) =
(zj−k+1 − zj−k−1)Rj,k−1 − (zj−k+1 − zj)Rj−1,k−1

zj − zj−k+1
(4)

=
−(zj − zj)

zj − zj−k+1
Rj−1,k−1 (5)

= f(zj−k+1) [usingRj−1,k−1(z = zj−k+1) = f(zj−k+1)] (6)

Rj,k(z = zj) =
(zj − zj−k−1)Rj,k−1 − (zj − zj)Rj−1,k−1

zj − zj−k+1
(7)

=
(zj − zj−k−1

zj − zj−k+1
Rj,k−1 (8)

= f(zj [usingRj,k−1(z = zj) = f(zj)] (9)
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Rj,k(z = zj−k+1) =
(zj−k+1 − zj−k−1)Rj,k−1 − (zj−k+1 − zj)Rj−1,k−1

zj − zj−k+1
(10)

=
−(zj − zj)

zj − zj−k+1
Rj−1,k−1 (11)

= f(zj−k+1) (12)

Rj,k(z = zm) =
(zm − zj−k−1)Rj,k−1 − (zm − zj)Rj−1,k−1

zj − zj−k+1
, m = j − k + 2, . . . j − 1

=
(zm − zj−k−1)− (zm − zj)

zj − zj−k+1
f(zm) (13)

=
−zj−k−1 − zj)

zj − zj−k+1
f(zm) (14)

= f(zm) (15)

where we used Rj,k−1(zm) = Rj−1,k−1(zm) = f(zm) in the last lines.
For Richardson Extrapolation, we set z = 0 and the table of polynomials becomes a

lower triangular matrix of numbers.
When z = 1/n, a reciprocal integer, Salzer gave a nice closed-form extrapolation formula

in 1954 [30] as well as tables of the weights assigned to each sample in the final answer.
Sidi gives some convergence proofs in Chapter 3 of his book [33]. It is known that

Richardson Extrapolation is often exponentially (geometrically) convergent with the error
of the diagonals and bottom rows of the table falling as exp(−qn) for some positive constant
q even when the power series being extrapolated is factorially divergent, as usually true when
the samples are of the trapezoidal rule for different grid spacings h and the associated series
in powers of z = h2 is the Euler-Maclaurin formula. A comprehensive theory is still lacking,
however.

Richardson Extrapolation is closely related to the “method of deferred corrections”, al-
ternatively labelled “correction by higher order differences” in the (1983) book by Marchuk
and Shaidurov [24]. “Deferred corrections” also solves matrix problems that are the low
order, usually second-order, discretization of the problem. Deferred corrections also pro-
motes this low order approximation into a very high order approximation. In contrast to
Richardson Extrapolation, which solves the low order problem repeatedly on a variety of
different grids, deferred corrections uses only a single grid, and applies an iteration precon-
ditioned by the low order discretization [13, 5]. The residual is evaluated by a high order

method; the accuracy of the converged iterative solution is equally high. One grid, instead
of many, is obviously a significant advantage for deferred correction. The method can be
applied to eigenvalue problems [36, 9].This approach has become the standard way of gen-
erating very high order time marching schemes to pair with spectral spatial discretizations.
Dutt, Greengard and Rokhlin write, “We begin by converting the original ODE into the
corresponding Picard equation and apply a deferred correction procedure in the integral for-
mulation, driven by either the explicit or the implicit Euler marching scheme. The approach
results in algorithms of essentially arbitrary order accuracy for both non-stiff and stiff prob-
lems” [12]. Further developments of Picard integral/deferred correction time-marching can
be found in [18, 22, 19].

High order evaluation on a line in one dimension (time) is easy, but evaluating the resid-
ual of a partial differential equation by, say, twelfth order finite differences, is a bookkeeping
nightmare. The programming and debugging escalate rapidly when the domain is geomet-
rically complicated. Furthermore, corner singularities may make higher order evaluation of
the residual impossible without heroic measures [6]. For all the success of deferred correction
in other applications, for eigenproblems in domains with corners Richardson Extrapolation
is clearly the better way.
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3 Implementation of Richardson extrapolation

Suppose that we have calculated a given eigenvalue of the Laplacian on a certain domain
using finite differences for a number of grids, which all sample the border, and with de-
creasing grid spacings, h1 > h2 > · · · > hN . Only when h → 0 is the exact eigenvalue of
the associated problem in the continuum obtained, although the eigenvalues obtained for
different (finite) grid spacing an asymptotic behavior, which depends on h; for the kth grid
we may typically expect

E
(k)
1 = c0 +

∞
∑

j=1

cjh
αj

k (16)

where α1 < α2 < · · · < αN . However, logarithms and more exotic functions have arisen
in other problems. The exact values of these coefficients will depend on the particular
properties of the domain studied: in fact, while integer values of α are associated with the
discretization of the problem (α = 2, 4, . . . ), rational values of α may also appear when
reentrant corners are present (as for the case of the L-shape where α1 = 4/3).

Using eq. (16) for all grids, and with basis functions φj , one obtains a system of linear
equations



















E
(1)
1 = c0φ0 + c1φ1(h1) + c2φ2(h1) + · · ·+ cN−1φN−1(h1) + . . .

E
(2)
1 = c0φ0 + c1φ1(h2)c2φ2(h2) + · · ·+ cN−1φN−1(h2) + . . .

. . .

E
(N)
1 = c0φ0 + c1φ1(hN ) + c2φ2(hN ) + · · ·+ cN−1φN−1(hN ) + . . .

(17)

where the unknowns are the coefficients cj (j = 0, 1, . . . , N − 1).
In matrix form these equations take the form

R









c0
c1
. . .

cN−1









=











E
(1)
1

E
(2)
1

. . .

E
(N−1)
1











(18)

where

R ≡









φ0 φ1(h1) φ2(h1) . . . φN−1(h1)
φ0 φ1(h2) φ2(h2) . . . φN−1(h2)
. . . . . . . . . . . . . . .
φ0 φ1(hN ) φ2(hN ) . . . φN−1(hN )









(19)

The solution to Eqs. (18) is obtained as









c0
c1
. . .

cN−1









= R
−1











E
(1)
1

E
(2)
1

. . .

E
(N−1)
1











(20)

where the extrapolated value of c0 will provide an estimate of the exact eigenvalue.
Cramer’s rule can be used to obtain the coefficients cj without inverting the matrix R;
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in particular

c0 =

∣

∣

∣

∣

∣

∣

∣

∣

E1 φ1(h1) . . . φN−1(h1)
E2 φ1(h2) . . . φN−1(h2)

. . .
EN φ1(hN ) . . . φN−1(hN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ0 φ1(h1) . . . φN−1(h1)
φ0 φ1(h2) . . . φN−1(h2)

. . .
φ0 φ1(hN ) . . . φN−1(hN )

∣

∣

∣

∣

∣

∣

∣

∣

(21)

In our numerical examples

φj(z) = zαj (22)

where α0 = 1 and the αj are a monotonically increasing sequence of positive constants.
When we apply eq. (16) to the different grids, we are implicitly assuming that h̄ >

h1 > · · · > hN , where h̄ is the radius of convergence of the series. However, in general
h̄ is unknown and it will only be estimated once the first few coefficients cj have been
approximated. For this reason inaccurate results could be obtained if the spacing of one of
the grids falls outside the radius of convergence of the asymptotic series. This is a common
problem also of perturbative series, which are known to be divergent in many cases.

To avoid this problem, we can extrapolate by Padé rational approximation

E(k) =
c0 +

∑N
j=1 cjh

αj

k

1 +
∑M

j=1 djh
βj

k

(23)

For integer exponents, αj and βj , and N = M , the choice αN = βN , would correspond
to a diagonal Padé. In a general case, with N 6= M and rational exponents, we assume
αN = βM .

Using the different grids (in this case we use N +M + 1 grids) we obtain the system of
linear equations

E(1) = c0 + c1h
α1
1 + · · ·+ cNhαN

1 − d1h
β1

1 E(1) − · · · − dMhβM

1 E(1)

E(2) = c0 + c1h
α1
2 + · · ·+ cNhαN

2 − d1h
β1

2 E(2) − · · · − dMhβM

2 E(2)

. . . = . . .

E(N+M+1) = c0 + c1h
α1

N+M+1 + · · ·+ cNhαN

N+M+1 − d1h
β1

N+M+1E
(N+M+1)

− · · · − dMhβM

N+M+1E
(N+M+1)

which can be cast in matrix form as

R̃





















c0
c1
. . .
cN
d1
. . .
dM





















=











E
(1)
1

E
(2)
1

. . .

E
(M+N+1)
1











(24)

where

R̃ ≡









1 hα1
1 . . . hαN

1 −hβ1

1 E(1) . . . −hβM

1 E(1)

1 hα1
1 . . . hαN

2 −hβ1

2 E(2) . . . −hβM

2 E(2)

. . . . . . . . . . . . . . . . . . . . .

1 hα1

N+M+1 . . . hαN

N+M+1 −hβ1

N+M+1E
(N+M+1) . . . −hβM

N+M+1E
(N+M+1)









(25)
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The solutions to these equations are found inverting R̃




















c0
c1
. . .
cN
d1
. . .
dM





















= R̃
−1











E
(1)
1

E
(2)
1

. . .

E
(M+N+1)
1











(26)

or using Cramer’s rule once again.

4 Numerical results

To apply the extrapolation schemes described in the previous section we need to calculate
accurately the FD eigenvalues for a series of grids. We consider different domains, with
borders which can be sampled by a square grid and with different reentrant angles.

4.1 L-shaped domain

We consider the L-shaped region Ω ≡ {|x| < 1, |y| < 1}−{0 ≤ x < 1, 0 ≤ y < 1}, represented
in Fig. 1. Using finite differences and a five-points approximation to the Laplacian, the
Helmholtz equation on Ω is solved with Dirichlet boundary conditions on ∂Ω for a series of
grids with an increasing number of points. We have exploited the symmetry of the domain,
to obtain separately the even and odd modes of the L-shape.

Our numerical calculations consist of two sets:

• A calculation of the lowest eigenvalue of the L, using 124 grids with spacing h = 1/N0

and N0 = 10, . . . , 133. The finite difference results of this set are obtained using the
”Conjugate Gradient Method” (CGM), as described in Ref. [26], and they are accurate
to 220 digits;

• A calculation of the lowest 100 eigenvalues of the L, using 100 grids with spacing
h = 1/N0 and N0 = 10, . . . , 109. The finite difference results of this set are obtained
using the internal Mathematica command Eigenvalues and they are accurate to 60
digits.

In Table 1 we report the available estimates of the lowest eigenvalue of the L-shape in
the literature, including the results of the present work.

As we have mentioned before, the convergence of the numerical results is affected by the
presence of a reentrant corner and the finite-difference eigenvalue E(h) behaves for h → 0
as[10, 21]

E(h) = E(0) + ah4/3 + . . . (27)

where E(0) is the eigenvalue of the Laplacian in the continuum. For the related problem of
a H-shaped membrane, Donnelly [10] conjectured the asymptotic behavior

E(h) = E(0) + ah4/3 + bh2 + ch10/3 + dh4 + . . . (28)

for the fundamental eigenvalue 2. This behavior was also used by Christiansen and Petersen
[8] to perform a Richardson extrapolation of the finite difference results for the L-shape (see
Table 1).

2Since the H-shaped domain contains the same reentrant angle of the L-shape, we assume the same
asymptotic law for both domains.
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Table 1: Available estimates of the lowest eigenvalue of the L-shape (smaller fonts are used
for the last three values, to allow fitting the results in the column).

E1

Reid and Walsh [28] 9.63972
Fox, Henrici and Moler [14] 9.6397238
Mason [25] 9.6397
Sideridis [32] 9.6395
Schiff [31] 9.659
Christiansen and Petersen [8] 9.63972383991

Still [35] 96397239671
Betcke and Trefethen [3] 9.6397238440219
Amore [1] 9.6397238440
Yuan and He [40] 9.639723844404
this work (Richardson) 9.63972384402194105271145926236482315626728952582190645

this work (Padé-Richardson) 9.6397238440219410527114592623648231562672895258219064561095797005640

this work (MPS) 9.639723844021941052711459262364823156267289525821906456109579700564036

Figure 1: L-shaped region

The results obtained extrapolating the FD sequences can be compared with the precise
results obtained with the ”method of multiple solutions” (MPS)[14]. Table 2 reports the first
25 eigenvalues of the L-shape obtained with the MPS (for the case of the first eigenvalue we
have used 545 points evenly spaced, which allow one to obtain 70 digits of precision, for the
remaining cases we have used 425 points, which allows an accuracy of about 50 digits). The
eigenvalues marked with † are known exactly and correspond to modes of a square. The
MPS has been implemented in Mathematica 10 [38], taking advantage of Mathematica’s
ability to work with arbitrary precision numbers or with a large number of digits (in our
case typically numbers are specified to 100 digits).

We will use these values to establish the accuracy of the approximate values of En

obtained by applying four different extrapolation schemes, differing in the choice of the
exponents:
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• Extrapolation i

E(h) = E(0) +

∞
∑

n=1

c(i)n h2n ≈ E(0) + c
(i)
1 h2 + c

(i)
2 h4 +O(h6) (29)

• Extrapolation ii

E(h) = E(0) +

∞
∑

n=1

c(ii)n hn ≈ E(0) + c
(ii)
1 h2 + c

(ii)
2 h3 +O(h4) (30)

• Extrapolation iii (Donnelly, Ref. [10])

E(h) = E(0) +
∞
∑

n=1

[

c
(iii)
2n−1h

2n−2/3 + c
(iii)
2n h2n

]

≈ E(0) + c
(iii)
1 h4/3 + c

(iii)
2 h2 + c

(iii)
3 h10/3 +O(h4) (31)

• Extrapolation iv

E(h) = E(0) +

∞
∑

n=1

c(iv)n h2(n+1)/3

≈ E(0) + c
(iv)
1 h4/3 + c

(iv)
2 h2 + c

(iv)
3 h8/3 +O(h10/3) (32)

The first two schemes only use integer exponents and are expected to be accurate only
for the modes of the L-shape which are also modes of the square.

Figure 2 displays the error |E
(extra)
1 −E

(MPS)
1 | for the lowest eigenvalue of the L-shaped

region, using the third and fourth extrapolation schemes. Here

∆a = |R(k,124)(E1)− E
(MPS)
1 | (33)

∆b = |R(k,124)(E1)−R(k−1,124)(E1)| (34)

where the superscripts (iii) and (iv) refer to the series used and the FD eigenvalues are

accurate to 220 digits. The values ∆
(iv)
c are the analogous of ∆

(iv)
a , but using FD eigenvalues

are accurate to 60 digits.
The approximations obtained with the first two schemes, which do not use rational

exponents, are very poor for this mode.
In particular, the extrapolated values in the four cases are

• Extrapolation i
E1 ≈ 9.6398 (35)

• Extrapolation ii
E1 ≈ 9.6397327 (36)

• Extrapolation iiii
E1 ≈ 9.6397238440211929465 (37)

• Extrapolation iv (corresponding to the minimum in Fig. 2)

E1 ≈ 9.639723844021941052711459262364823156267289525821906456458 (38)
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Remarkably, the fourth scheme provides the first 55 digits of E1 for the L-shape correctly,
suggesting that the the exact asymptotic behavior of the finite difference eigenvalues, for

h → 0, is E(h) = E(0) +
∑∞

n=1 c
(iv)
n h2(n+1)/3.

In correspondence to the minimum of Fig. 2 we have calculated the first few coefficients
of the asymptotic series for the eigenvalue of the fundamental mode; the expansion reads
(underlined digits are expected to have converged)

E(h) ≈ 9.639723844021941052711459262364823156267289525821906456

+ 2.197599090803851421575379526724095836836485570945 h4/3

− 5.2543496498784122711900082970292408412850388510 h2

− 0.0457161009853659498276589784497947283500328 h8/3

− 1.9464681440368110592208977476994406505877 h10/3

+ 1.1250747549277551728363719468137771861 h4

− 0.21475440873743450214767285278719985 h14/3

+ 0.355884223534565052627129588962294 h16/3

+ 0.0064030709104867077324780383497 h6

+ 0.0382860914255417615635649360 h20/3

− 0.07305232821275730682390886 h22/3 + . . . (39)

The behavior of the error in Fig. 2 suggests that the FD series is asymptotic. Therefore,
if one picks a set of grids with spacings h1 > h2 > . . . , it is convenient to perform an
extrapolation using the grids up to a given spacing hN where the error reaches a minimum.

This behavior, however, does not limit the number of accurate digits of the eigenvalue
that one can obtain using the Richardson extrapolation. This is illustrated in Figs. 3 and 4:
the first figure is obtained extrapolating the FD results of a set with smallest spacing hmin

and determining the minimum error over the extrapolated eigenvalue (which will correspond
to the minimum observed in Fig. 2). In this case we observe that the number of accurate
digits of the extrapolated eigenvalue grows linearly for N0 ≫ 1. Of course this behavior will
be lost when the number of digits of the FD eigenvalue is not sufficient (see for example,
the last curve of Fig. 2, where the FD eigenvalue are only accurate to 60 digits). Fig. 4
illustrates the fact that, as hmin gets smaller and smaller, the number of grids used in the
optimal extrapolation also grows linearly.

In Fig. 5 we have applied the Padé-Richardson extrapolation to calculate the error over
the fundamental eigenvalue of the L. Here P(k,124) indicates the diagonal Padé with 2k + 1
coefficients, which uses the grids going from 124−2k to 124. The horizontal line corresponds
to the lowest error obtained with the Richardson extrapolation, i.e. to the minimum of Fig. 2.
The errors are obtained using as a reference the precise estimate obtained using the MPS
with 545 points distributed on the border, which is expected to have at least 70 correct
digits (see Table 1).

The result obtained with the Padé-Richardson extrapolation contains 13 extra digits of
accuracy with respect to the result obtained with the Richardson extrapolation alone!!

The same analysis can be carried out for the eigenvalue of the first excited mode of the
L-shaped membrane, which is odd with respect to reflection about the line y = x; also in
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Figure 2: Error over the first eigenvalue of the L-shaped region. The first two curves report
the difference between the values obtained with Richardson extrapolation of 124− k grids,
respectively using scheme iii and iv, and the precise value that we have obtained with the
MPS; the last two curves report the difference between the values obtained with Richardson
extrapolation of 124 − k grids and the values obtained with Richardson extrapolation of
124− k − 1 grids, respectively using scheme iii and iv. This difference essentially provides
the number of stable digits achieved. In the first four curves the FD eigenvalues are obtained
with an accuracy of 220 digits; the last curve is analogous to the second one, limiting the
accuracy of the FD eigenvalues to 60 digits
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Figure 3: Correct digits of the lowest eigenvalue of the L-shaped membrane obtained with
Richardson extrapolation using a set of FD grids with a smallest spacing hmin = 1/Nmax

0 .
Notice that the number of grids used for a given hmin depends on hmin itself (see Fig. 4).
The dashed curve is the fit f(n) = 7.23166 + 0.383229n− 20.9176

n . The FD eigenvalues used
in the extrapolation were computing using 220 decimal digit floating point arithmetic.
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Figure 4: Optimal number of FD grids used for a set of FD grids with smallest spacing
hmin = 1/Nmax

0 . The dashed curve is the fit g(n) = 0.542696n+4.20652. The FD eigenval-
ues used in the extrapolation were computed in multiple precision floating point arithmetic
with a precision of 220 decimal digits.
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Figure 5: Error in the first eigenvalue of the L-shpaed domain using the diagonal Padé-
Richardson Extrapolation P(k,124). The horizontal line corresponds to the minimal error
obtained with the Richardson extrapolation, corresponding to the minimum in Fig. 2.
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this case, the fourth scheme is the appropriate one and the asymptotic expansion is obtained

E(h) ≈ 15.1972519264543432748783821330005459006 + 3.18 · 10−32 h4/3

− 12.56556861526000377571418077053 h2

− 2.252904098848093556149181746 h8/3 − 9.9 · 10−25 h10/3

+ 3.93250890121371352650007 h4 + 1.128972930810112379242 h14/3

+ 0.95016411752387269321 h16/3 − 1.3690289112079930 h6

− 0.074036119116966 h20/3 + 0.77245968564750 h22/3 + . . . (40)

Notice that in this case we have used the less precise set of FD values, which were
computed only in 60 digit floating point arithmetic: the eigenvalue of the first excited state
is now reproduced with “just” 37 correct digits.

This result clearly shows that the coefficients of the terms h4/3 and h10/3 must vanish: in
particular it is easy to understand the absence of h4/3 since the mode that we are calculating
is the fundamental eigenmode of the desymmetrized region obeying Dirichlet boundary
conditions on y = x. In this case the reentrant corner is π/α = 3π/4 and therefore 2α = 8/3.

With this simple observation, eliminating 4/3 and 10/3 from the exponents used in the
extrapolation scheme, we are able to obtain 3 more digits of E2

log10
1

|E
(RE)
2 − E

(MPS)
2 |

= 40.8

Even more digits can be obtained using the Padé-Richardson scheme, without the expo-
nents 4/3 and 10/3: in this case

log10
1

|E
(PRE)
2 − E

(MPS)
2 |

= 45.8

4.2 H-shaped domain

We now consider a domain with the shape of H, displayed in Fig. 3, originally studied by
Donnelly [10] using the method of particular solutions (MPS) and finite differences (FD).
As we have already mentioned in the previous section, the author conjectured that the FD
eigenvalues, corresponding to a given grid spacing h, behave as

E(h) = E(0) + ah4/3 + bh2 + ch10/3 + dh4 + . . . (41)

where E(0) is the corresponding eigenvalue of the Laplacian in the continuum and the
exponent 4/3 is determined by the presence of a reentrant corner 3π/2 [10, 21].

As for the L-shape, we want to obtain a precise estimate of the lowest eigenvalues for this
problem, using a sequence of FD eigenvalues, obtained for different grids. Notice that the
eigenfunctions of the Laplacian on this domain can be classified according to four different
symmetry classes, even-even, even-odd, odd-even and odd-odd with respect to reflection
about the x and y axes. By working separately on the modes belonging to each class, the
computational complexity of the problem can be reduced and finer grids can be studied.
Our present analysis, in particular, is limited to the even-even modes. The spacing of the
grid is chosen so that the border of the H-shaped is sampled exactly and it corresponds to
hk = 3/2/(9 + 3(k − 1)), with k = 1, 2, . . . . We have calculated the first 25 eigenvalues of
the even-even modes of the H-shape with a floating point precision of 60 digits, for the grids
corresponding to k = 1, 2, . . . , 40.
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Table 2: Lowest 25 eigenvalues of the L-shaped domain obtained with the MPS using 425
points evenly spaced on the border. The eigenvalues marked with † are known exactly; the
first eigenvalue, marked with ∗, has been obtained using the MPS with 545 points.

n E
(MPS)
n

1∗ 9.639723844021941052711459262364823156267289525821906456109579700564036
2 15.197251926454343274878382133000545900777179939609
3† 2π2

4 29.521481114144883298220387998949268230835182037083
5 31.912635957137762200327505645485619891180683442197
6 41.474509890214922338810104064796906887679915692804
7 44.948487781351230152829670239630032397049780134665
8† 5π2

9† 5π2

10 56.709609887385120714216741638492259079610565870838
11 65.376535709845878509384400627738811907191161706097
12 71.057755648513529930798223378765313509589316160842
13 71.572679680336556014706999077329408038228565031443
14 8π2

15 89.301668351960185629207557215836143584908527108716
16 92.306906763049247832266397297040944898714305036279
17 97.380722646021860253461536778106579066564981169123
18 10π2

19 10π2

20 101.60529408377871548543481415097538087072356189211
21 112.36860922562569413546584663077376004912074741174
22 115.52017309466770886932756039014897616475657545671
23 13π2

24 13π2

25 130.11902885096790256577606801292831058988583848246
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Table 3: Correct digits of the first 25 eigenvalues of the L-shaped domain, obtained applying
the Richardson and Richardson-Padé extrapolations to FD eigenvalues. The values marked
with the † correspond to eigenstates of the square. The first eigenvalue has been obtained
extrapolating the FD eigenvalues of 124 grids, obtained with a floating point precision of
220 digits.

n scheme log10
1

|E
(RE)
n −E

(MPS)
n |

log10
1

|E
(PRE)
n −E

(MPS)
n |

parity

1∗ iv 54.5 67.5 even
2 iv 40.8 45.8 odd
3† i 62.9 73.1 even
4 iv 37.1 45.8 odd
5 iv 35.9 42.6 even
6 iv 35.1 42.2 even
7 iv 36.7 44.5 odd
8† i 60.6 73.9 odd
9† i 60.8 73.8 even
10 iv 35.2 41.9 even
11 iv 34.5 42.6 odd
12 iv 34.8 42.2 even
13 iv 34.4 42.6 odd
14† i 60.3 73.2 even
15 iv 33.4 41.3 even
16 iv 30.8 39.9 odd
17 iv 30.6 39.3 odd
18† i 60.3 74.0 odd
19† i 59.5 73.9 even
20 iv 33.0 40.7 even
21 iv 32.6 40.0 even
22 iv 33.7 42.6 odd
23† i 59.6 73.6 odd
24† i 59.7 73.2 even
25 iv 33.3 43.4 odd
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Figure 6: H-shaped region

Our results for the lowest eigenvalue should be compared with those of Donnelly [10]

E
(Donnelly)
1 = 7.7330889 (42)

and, more recently, of Betcke and Trefethen [3]

E
(BT )
1 = 7.7330888559 (43)

In Fig. 7 we report the error over the first eigenvalue of the H-shape. The first two curves
report the difference between the values obtained with Richardson extrapolation of 40 − k
grids, respectively using scheme iii and iv, and the precise value of Betcke and Trefethen [3].
However, since the results of Ref. [3] are not sufficiently precise, it is convenient to estimate
the error using the difference between the values obtained with Richardson extrapolation
of 40− k grids and the values obtained with Richardson extrapolation of 40− k − 1 grids,
respectively using scheme iii and iv. This difference essentially provides the number of stable
digits achieved. Notice that the second curve rapidly reaches a plateau, for k ≤ 34, signaling
that in this range the extrapolated results are more precise than those of Ref. [3].

The figure clearly shows that the asymptotic behavior conjectured by Donnelly in Ref. [10]
is not correct; our best estimate of the fundamental eigenvalue corresponds to the last curve
in Fig. 7 (i.e. scheme iv) for k = 18:

E1 = 7.7330888559426190667 (44)

where all the digits are believed to be correct.
In table 4 we report the approximate values of the first 24 eigenvalues of the even-even

modes of the H-shape obtained using Richardson extrapolation. It is particularly interesting
to consider the value for the mode 24, which has the lowest precision. The coefficients of
the asymptotic series obtained from the Richardson extrapolation are (underlined digits are
expected to have converged)

E(h) ≈ 194.734725724853 + 1.288050h4/3 − 2861.99346h2

− 25.761h8/3 + 515.6h10/3 + 14691.3h4 + . . . (45)

The coefficients of this series, although determined with less precision than in the cases
discussed earlier for the L-shape, clearly suggest the presence of a smaller radius of conver-
gence, which drastically affects the accuracy of the calculation.
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Table 4: Lowest 24 eigenvalues of even-even modes of the H-shaped domain obtained using
Richardson extrapolation with set iv (the sets marked with † are eigenstates of the square
and are extrapolated using set i).

n E
(Richardson)
n

1 7.7330888559426190667
2 14.30522996107150163018552
3† 19.73920880217871723766898199975230227062739
4 33.0048892952083545188
5 37.2054234400574157525
6 46.2961910861973723751
7 58.7501048292892847997
8 63.113298546574958190
9 67.43457224647486521
10 85.80372978847046992
11 92.12485042399187898
12 95.7615825533281487
13† 98.696044010893586188344909998
14 112.42755013401679304
15 122.557976404091254965
16 133.5364354179283
17 139.4282184592822
18 142.4312241050896
19 150.543062476658690
20 164.339040164448839
21 171.85972578742946
22† 177.652879219608455139020837997770
23 180.46602205029118
24 194.7347257248
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Figure 7: Error over the first eigenvalue of the H-shaped region. The first two curves report
the difference between the values obtained with Richardson extrapolation of 40 − k grids,
respectively using scheme iii and iv, and the precise value of Betcke and Trefethen [3]; the last
two curves report the difference between the values obtained with Richardson extrapolation
of 40− k grids and the values obtained with Richardson extrapolation of 40− k − 1 grids,
respectively using scheme iii and iv. This difference essentially provides the number of stable
digits achieved.

4.3 Isospectral domains

Consider the domains of Fig. 8. It is known that these domains are isospectral, i.e. that the
eigenvalues of the laplacian on one domain coincide with those on the second domain, as
proved by Gordon, Webb and Wolpert [17, 16]. The numerical calculation of the eigenvalues
of these regions has attracted large interest, using different techniques; for example, Wu,
Sprung and Martorell [39] have used finite difference and mode matching to estimate the
first 25 eigenvalues of these domains; the most precise results have been obtained by Driscoll
in Ref. [11] and by Betcke and Trefethen [3]. The result that Betcke and Trefethen report
for the eigenvalue of the fundamental mode

E1 ≈ 2.537943999798

is slightly more precise than the value reported by Driscoll. Moreover, Sridhar and Ku-
drolli [34] have performed an experiment with microwave cavities of the form of the domains
of Fig. 8, verifying their isospectrality 3.

In this case, we have applied finite differences calculating the lowest eigenvalues of both
domains for 30 grids; the grid spacing is chosen appropriately so that the border is sampled
exactly 4. Remarkably, the matrices obtained with finite difference for the two domains are
also isospectral.

In Fig. 9 we report the error over the first eigenvalue of the isospectral domains, while in
Table 5 we report our best estimates for the lowest 25 eigenvalues, obtained using Richardson

3Readers interested in the topic of isospectrality should refer to the recent review paper of Giraud and
Thas [15].

4With respect to the case of the L-shape, here the domains do not have any symmetry and only specific
grids sample the border; this explains the smaller number of grids which could be used.
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Figure 8: Isospectral domains

extrapolation, with the same exponents as for the L. For the lowest eigenvalue we gain 5
digits with respect to the result of Betcke and Trefethen

E1 = 2.53794399979862045 (46)

Moreover, even our poorest result, for the 25th mode, has two extra digits with respect to
the result of Driscoll.

In light of these results, we stress that the finite difference method can provide very
accurate results, despite the common prejudices. In the abstract of the paper of Driscoll,
for example, we read: ”Furthermore, standard numerical methods for computing the eigen-
values, such as adaptive finite elements, are highly inefficient”.

A second comment regards the work of Wu, Sprung and Martorell, who calculated the
FD eigenvalues for these domains for 3 grids and then used Richardson extrapolation to
obtain better estimates. Incorrectly, they assumed that the FD results vary quadratically
with the grid spacing, a behavior which is appropriate only for the modes of the square
(modes 9 and 21).

4.4 Square domain with a 450-crack

The domain represented in Fig. 10 is particularly interesting, since it contains a reentrant
angle θ = 7π/4, which is larger than the angle of the L-shaped domain. Additionally, the
domain has no symmetry and therefore the numerical calculation is more demanding than
for the case of the L and H shapes. This problem has been originally studied by Blum and
Rannacher [4] and more recently by Yuan and He [40], where the bounds

35.631515 ≤ E1 ≤ 35.631522

have been obtained. The result E1 ≈ 35.617 was obtained in Ref. [4] applying Richardson
extrapolation to finite elements.

In Table 6 we report the numerical approximations to the lowest 5 eigenvalues of this
domain, obtained using the MPS with 356 points. The digits reported in the table are
expected to be correct; in particular for the lowest eigenvalue we have

E1 ≈ 35.63151951719172309520548614207765698409 (47)

In Fig. 11 we show a contour plot of the first four modes of this domain, obtained using
finite differences with a grid with spacing h = 1/120, corresponding to a total of 12331 grid
points. The solid blue lines are the nodal lines, while the dashed green lines are level curves.
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Figure 9: Error over the first eigenvalue of the isospectral regions. The first two curves
report the difference between the values obtained with Richardson extrapolation of 30 − k
grids, respectively using scheme iii and iv, and the precise value of Betcke and Trefethen [3]
(E1 ≈ 2.537943999798); the last two curves report the difference between the values obtained
with Richardson extrapolation of 30 − k grids and the values obtained with Richardson
extrapolation of 30 − k − 1 grids, respectively using scheme iii and iv. This difference
essentially provides the number of stable digits achieved.

Figure 10: Unit square with a 450-crack
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Table 5: Lowest 25 eigenvalues of the isospectral domains obtained using Richardson extrap-
olation with set iv (the sets marked with † are eigenstates of the square and are extrapolated
using set i).

n E
(Richardson)
n

1 2.53794399979862045
2 3.65550971352441826
3 5.17555935622451540
4 6.53755744376443310
5 7.2480778625641275588
6 9.20929499840321242
7 10.59698569133316780
8 11.5413953955859566289
9† 12.33700550136169827354311374984518891914212
10 13.0536540557280658
11 14.313862464291008706
12 15.871302620009314
13† 16.941751687972089
14 17.6651184368431201
15 18.9810673876525993
16 20.882395043282328
17 21.2480051773728
18 22.23285179297328
19 23.711297484824032
20 24.479234069273887
21† 24.674011002723396547086227499690377838284
22 26.08024009965984
23 27.304018921125
24 28.175128581453
25 29.569772913239
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Figure 11: Nodal lines of the first four excited modes of the unit square with a 450-crack

While the fundamental mode is nodeless, the remaining three states have one or two nodal
lines which start on the vertex of the reentrant corner, thus dividing the original domain in
two or more domains. Looking at the figure we see that for the second state the resulting
sub-domains have a reentrant angle θ = 7π/8, while for the third and fourth states the
sub-domains have a reentrant angle θ = 7π/12. The dashed straight lines in the plot are
tangent to the nodal line in the vertex.

As a result of this observation, we speculate that the asymptotic behavior of the finite
difference eigenvalue may contain the exponents 8/7, 16/7 and 24/7 5.

We have calculated the lowest eigenvalues for this domain using finite difference with 60
grids; the Richardson and Richardson-Padé extrapolations of these results, with the appro-
priate exponents in the asymptotic series, should allow one to obtain precise approximations
to the eigenvalues of this domain, as for the case of the L.

In this case we have extrapolated the finite difference results using a series of the form

E(h) = E(0) + c1 h8/7 + c2 h2 + c3 h16/7 + c4 h22/7 + c5 h24/7 + c6 h4

+ c7 h30/7 + c8 h32/7 + c9 h36/7 + c10 h38/7 + c10 h40/7 + c11 h6 + c12 h48/7

+ c13 h8 + c14 h64/7 + c10 h72/7 + c16 h80/7 + c17 h12 + c18 h88/7

+ c19 h96/7 + c20 h104/7 + c21 h120/7 + c22h
128/7 + c23 h136/7 + c24 h20/7

+ c25 h144/7 + c26 h152/7 + . . . (48)

where the coefficients are chosen empirically and include the ones mentioned earlier.
It is interesting to check the numerical values obtained for the coefficients of the series

(48), using the Richardson extrapolation of the FD results corresponding to the last 30

5In the case of the L-shape, the reentrant corner is divided in two halves by the line y = x for the modes
that are odd: in that case, the nodal line is exactly sampled by the grid and therefore the exponent 4/3 is
absent, while the first rational exponent is 8/3. In the present case the nodal lines are not sampled by the
grid.
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Table 6: Lowest 5 eigenvalues of the unit square with a 450-crack obtained with the MPS
using 356 points evenly spaced on the border

n E
(MPS)
n

1 35.63151951719172309520548614207765698409
2 54.19310844424629197411978585647040768914
3 73.63330812560383459483828674566950026083
4 104.3280904734882128897772035674716112638
5 124.5914636064409738708659060017320376707
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k

|R(k,60)(E1)− E
(MPS)
1 |

|R(k,60)(E1)−R(k−1,60)(E1)|

Figure 12: Error over the first eigenvalue of the unit square with a 450-crack. The asymptotic
series of Eq. (48) has been used.

Table 7: Correct digits of the first 5 eigenvalues of the unit square with a 450-crack, obtained
by applying the Richardson and Richardson-Padé extrapolations to FD eigenvalues.

n log10
1

|E
(RE)
n −E

(MPS)
n |

log10
1

|E
(PRE)
n −E

(MPS)
n |

1 22.18 25.37
2 23.65 23.87
3 22.00 23.92
4 21.04 24.22
5 20.85 23.01
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grids, for the modes above:

E1(h) ≈ 35.63151952+ 22.47641559 h8/7 − 71.03523727 h2 + 6.078713368 h16/7

− 78.46323288 h22/7 − 8.840565052 h24/7 + 63.35756993 h4 + . . . (49)

E2(h) ≈ 54.19310844− 2.87× 10−17 h8/7 − 164.3992546 h2 − 21.20457267 h16/7

+ 1.03× 10−8 h22/7 − 1.44× 10−7 h24/7 + 212.7295338 h4 + . . . (50)

E3(h) ≈ 73.63330813+ 3.52× 10−17 h8/7 − 260.5413126 h2 + 8.56× 10−12 h16/7

− 3.15× 10−8 h22/7 − 91.25393089 h24/7 + 222.794824 h4 + . . . (51)

E4(h) ≈ 104.3280905− 2.12× 10−15 h8/7 − 668.8593013 h2 − 3.38× 10−10 h16/7

+ 9.07× 10−7 h22/7 − 39.10703889 h24/7 + 1997.967306 h4 + . . . (52)

E5(h) ≈ 124.5914636− 2.6× 10−15 h8/7 − 766.4031071 h2 − 13.2187842 h16/7

+ 1.17× 10−6 h22/7 − 0.00001758167793 h24/7 + 1901.063425 h4 + . . . (53)

Clearly one observes that depending on the mode chosen, some of the coefficients are
consistent with a vanishing value: these observations are summarized in Table 8, where the
leading rational coefficients and the corresponding reentrant angle are reported for each of
the first 5 modes.

Table 8: Leading rational exponents of the FD series for the first 5 modes of the square
with a 450-crack, and corresponding reentrant angles.

n leading exponent dominant angle

1 8
7

7π
4

2 16
7

7π
8

3 24
7

7π
12

4 24
7

7π
12

5 16
7

7π
8

4.5 Square domain with two slits

Consider the unit square with two 1/4 slits, represented in Fig. 13. This example has been
studied in Refs. [4, 23]. In this case the re-entrant corner is 2π, thus the leading exponent in
the FD series is α1 = 1. Eliminating the pollution of this contribution, Blum and Rannacher
were able to obtain E1 = 35.728 for their finest grid.

Consistently with our previous assumptions, we conjecture that the FD series has the
form

E(k) = c0 +
∞
∑

j=1

cjh
j
k (54)

which is the typical form used in Richardson extrapolation. In this case, Bender and Orszag
provide in [2] a nice explicit formula for the coefficient c0 (Eq.(8.1.16) of pag. 375 of their
book), which in our notation reads:

c0 =

N
∑

k=0

E(n+k)(n+ k)N (−1)k+N

k!(N − k)!
(55)
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Figure 13: Square domain with two slits

Our numerical experiments with this domain consist of two sets:

• a set which contains the numerical approximation to the lowest eigenvalue of the
domain calculated to 220 digits of accuracy using the CGM, for 36 grids with h = 1/2n
and n = 8, 10, . . . , 80;

• a set which contains the numerical approximation to the lowest 50 eigenvalues of the
domain calculated to 60 digits arithmetic using the internal Mathematica command
Eigenvalue for 20 grids with h = 1/2n and n = 8, 10, . . . , 46;

In table 9 we report the approximate values of selected eigenvalues of this domain, ob-
tained using Richardson and Padé-Richardson extrapolation. The eigenvalue of the funda-
mental mode is obtained using the first set of FD results, whereas the remaining eigenvalues
are obtained using the second set. The digits reported in the table are believed to be correct.
The table omits the eigenmodes of the square, for which the convergence is much faster.

Table 9: Selected eigenvalues of the square with two slits obtained using Richardson and
Padé-Richardson extrapolation of the FD results

n E
(R)
n E

(PR)
n

1 28.131367480845754755206 28.131367480845754755206268
3 70.65038470368 70.65038470368488
5 99.846759253895 99.8467592538950
7 130.483305932580 130.4833059325804
8 153.39663535893 153.3966353589373
10 196.598428600514 196.5984286005142
13 218.04116455831 218.0411645583168
15 268.2038796851519 268.2038796851519
16 272.5993876495 272.59938764953
17 280.750584654 280.7505846542989
20 348.460286264284 348.4602862642840
50 750.8475130 750.847513086
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Figure 14: Nodal lines of the 50th mode of the square domain with two slits.

Of particular interest is the fiftieth mode, whose nodal lines are the solid lines displayed
in Figs. 14. Looking at the left plot, we are tempted to assume that a nodal line partitions
each of the 2π reentrant angles into three angles of 2π/3, which would imply that the
corresponding FD series would now have rational exponents. A simple analysis of the FD
results however shows that this mode is also described by the series in eq. (54). This behavior
is consistent with the information delivered by the right plot in Figs. 14, that reveals that
in fact the nodal line do not end in the reentrant corner. In other words, the study of the
FD series for a given domain, can also provide information on the behavior of the nodal
lines of the corresponding eigenmodes.

5 Conclusions

In this paper we have showed that it is possible to obtain precise estimates for the eigenvalues
of the negative Laplacian over particular domains in the plane by performing a Richardson
extrapolation or a rational (Padé)-Richardson extrapolation of the results obtained with
finite differences, where the exponents of the series are related to the reentrant angles in
the domain. The problem of determining the series describing the behavior of the finite
difference results from first principles is difficult and it seems that a theoretical study is
still lacking. The problem is both challenging and interesting for the applications of finite
differences in Physics, Applied Mathematics and Engineering are as numerous as the stars in
the Milky Way. Quoting Kuttler and Sigillito, pag. 178 of [21], ”the exact form of the first
several terms in the asymptotic formula for specific regions where no boundary interpolation
is required is a nice problem at about the level of a doctoral thesis.” The fact that, since
1984 this problem has not been yet solved suggests an even higher level of difficulty.

In this paper we have pursued the less ambitious goal of identifying the series (i.e. the
exponents) empirically and we have obtained particularly encouraging results. In the case
of the L-shaped domain, for instance, the extrapolation of the results obtained with finite
differences leads to a determination of the first 68 digits of the lowest eigenvalue.

The knowledge of the finite difference series for a given domain allows a precise determi-
nation of the numerical values of the eigenvalues of that domain, making the finite difference
method a powerful computational tool 6.

Here we stress the most relevant observations obtained from a careful analysis of the
numerical results for the examples considered in this paper:

6In all the examples that we have treated in this paper, we have been able to improve published results.
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• The FD series appears to be an asymptotic series, as suggested by the particular
behavior of the error; this does not limit the accuracy of the extrapolated results, if
the largest spacing of the set is appropriately decreased, as more and more terms are
added;

• The example of the square with a 450 crack tells us that when a nodal line terminates
in a reentrant corner, the corresponding FD series have exponents corresponding to
the fractions of reentrant angles, even if the nodal line is not completely sampled by
the grid (it is the behavior infinitesimally close to the corner that matters);

• It is reasonable to assume that, for a given domain, the FD series corresponding to the
different modes all are described by the same series (although for some modes some
exponents could be missing for symmetry reasons – this is the case of the modes of the
L which are also eigenmodes of the square, for which all the coefficients of all rational
exponents vanish );

• If the observation above is correct, this means that one cannot have nodal lines parti-
tioning the reentrant corner if the new exponent generated is not of the type already
contained in the series! The case of the fiftieth mode of the square with two slits
illustrates this behavior: the nodal lines stretch almost completely to the reentrant
corner, although they do not join it!

• We conjecture that the nature of the reentrant corners fully determines the exponents
of the FD series and therefore different domains, containing the same reentrant angles
should all have the same exponents (see for example the case of the L, of the H
and of the isospectral domains considered in this paper); this makes Richardson (and
Richardson-Padé) extrapolation practical even for complicated domains where the use
of MPS can be problematic;

• For the case of the L-shape and of the square with a 450 crack, our results also provide
an independent check/validation of the corresponding results obtained using MPS;
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