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Abstract

In this work, a strategy is developed to deal with the error affecting the objective functions
in uncertainty-based optimization. We refer to the problems where the objective functions
are the statistics of a quantity of interest computed by an uncertainty quantification tech-
nique that propagates some uncertainties of the input variables through the system under
consideration. In real problems, the statistics are computed by a numerical method and
therefore they are affected by a certain level of error, depending on the chosen accuracy.
The errors on the objective function can be interpreted with the abstraction of a bounding
box around the nominal estimation in the objective functions space. In addition, in some
cases the uncertainty quantification methods providing the objective functions also supply
the possibility of adaptive refinement to reduce the error bounding box. The novel method
relies on the exchange of information between the outer loop based on the optimization algo-
rithm and the inner uncertainty quantification loop. In particular, in the inner uncertainty
quantification loop, a control is performed to decide whether a refinement of the bounding
box for the current design is appropriate or not. In single-objective problems, the current
bounding box is compared to the current optimal design. In multi-objective problems, the
decision is based on the comparison of the error bounding box of the current design and the
current Pareto front. With this strategy, fewer computations are made for clearly dominated
solutions and an accurate estimate of the objective function is provided for the interesting,
non-dominated solutions. The results presented in this work prove that the proposed method
improves the efficiency of the global loop, while preserving the accuracy of the final Pareto
front.

Keywords:
Uncertainty-based optimization, Robust optimization, Adaptive error bounding boxes

1. Introduction

In many engineering applications, the design process has been greatly improved by the
employment of optimization methods. Optimization can explore the design space to define

Email address: francesca.fusi@polimi.it (F. Fusi)

Preprint submitted to Elsevier September 30, 2015



a new, different optimal design or improve an existing one with a local modification. Any
optimization metod requires a model of the system under consideration, e.g. a system
of governing equations. Several modelling assumptions may be necessary at this stage to
define a model of the system that may be representative of the real-world system, with
moderate complexity. For instance, it may be necessary to neglect some physical phenomena
or to approximate them with a simple model. In addition, it may be difficult to assign a
deterministic value to the variables included in the model of the system, because they are
known within an uncertainty band. For example, the environmental conditions in which the
system will operate or the geometric tolerance of the final product fall into this latter case.
A comprehensive discussion on the numerous sources of uncertainty that are encountered in
engineering design is given in Ref. [1].

It is clear that the uncertainty on the system model itself or the system variables may
impact the result of the optimization. To take into account the effect of uncertainty at
the very beginning of the design problem, uncertainty-based design optimization has been
introduced in the last decades [2, 3]. An example of such an approach is the robust design
presented by Taguchi in Ref. [4]. In robust design, the optimization seeks the design with
improved mean value and minimal variance with respect to uncertain operating conditions.
Another application of uncertainty-based optimization methods is reliability-based design,
where a design is computed to minimize the probability of system failure.

1.1. Methods for uncertainty-based optimization

In general, a method for uncertainty-based optimization relies on the coupling of an
optimization algorithm and an Uncertainty Quantification (UQ) method. The former is
a method which solves a single- or multi-objective optimization problem. The UQ method
propagates the effect of the uncertainty on the input variables into the performance, by com-
puting the statistics of the performance. A representation of the coupling of an optimization
algorithm and a UQ method is given in Fig. 1. The outer loop is performed by the opti-
mization algorithm which generates a new design xi based on the history of the optimization
procedure. The new design is passed on to the inner loop in which a UQ method computes
an approximation of the statistics f(xi) of the performance of interest. The statistics are
the objective functions of the optimization loop, which are passed on to the optimization

Initial
design x0

Optimization loop

Generate
new design UQ Convergence? Optimal

robust design
xi f(xi) Yes

No

Figure 1: Block diagram of the uncertainty-based optimization loop.
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Figure 2: Block diagram of non-intrusive UQ method.

algorithm, which in turn checks if convergence is reached. If the convergence criterion is not
met, the loop goes on with a new design.

Classical approaches for robust design optimization, called in this paper decoupled ap-
proaches, are based on two different and independent methods for solving the optimization
problem and the reconstruction of the statistics, respectively. Decoupled approaches are
widely employed in the uncertainty-based optimization literature [5, 6] and they are very
expensive. In fact, performing a deterministic optimization generally requires several com-
putations of the performance, since many designs has to be tested in the loop. This means
that many computations for solving the equations describing the system under consideration
are required. In the case of uncertainty-based optimization, the cost is even higher. When
considering non-intrusive methods for UQ, the system of equations is considered as a black-
box, and the equations are solved several times for different samples of the input uncertain
variables (see Fig. 2). Then, in order to reconstruct the statistics for a given design, many
samples of the performance are required which correspond to different realizations of the in-
put uncertain parameters. The cost of solving the equations and therefore the optimization
problem can be very high in most engineering applications. For instance, let us consider an
optimization problem in aerodynamics. A typical goal of aerodynamic optimization is the
maximization of the aerodynamic efficiency, i.e. the ratio of aerodynamic lift over drag, by
means of a modification of the wing shape. In this case, the mathematical model describing
the aerodynamic system is represented by the governing equations of fluid dynamics. The
numerical solution of this equation is achieved by Computational Fluid Dynamics (CFD)
tools that require significant CPU time. Thus, a single function evaluation is very expensive
from a computational point of view and in this case, decoupled approaches are not very
attractive.

A possible way to alleviate the cost of uncertainty-based optimization is to create a
stronger coupling between the inner loop and the outer loop. For instance, the two loops
could share information, and the accuracy in the stochastic space may be increased as the
algorithm gets closer to the optimum. Only few attempts to develop such an idea are given
in the literature. For instance, in Ref. [7] a method has been presented, which improves the
coupling between a Monte Carlo simulation and the stochastic annealing algorithm. To this
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end, the number of samples used to compute the statistics of the performance in the Monte
Carlo simulation are increased as the annealing temperature decreases. This strategy has
been extended to genetic algorithms in Ref. [8] to deal with multi-objective problems. In
this case, the number of samples increases after a certain number of generations. Another
example is the hierarchical stochastic optimization presented in Ref. [9], where the resolution
in the stochastic space is increased over the iterations. A more recent work [10] illustrates
the Simplex2 method, a method which efficiently couples the Nelder-Mead algorithm for
the optimization loop and the Simplex Stochastic Collocation [11, 12] for the uncertainty
quantification part. This method adresses the problem of single-objective optimization.

1.2. Objective of the novel strategy

In such a context, the present work presents a novel strategy to improve the efficiency
of uncertainty-based optimization. The method is based on an adaptive strategy in the
UQ loop to reduce the number of samples in the stochastic space for those designs that
are not interesting for optimization purposes. The main idea is to use the error bounds
on the estimates of the objective functions provided by the UQ method and to define a
bounding box in the objective space around the objective function estimate. A comparison
between the bounding box and the current Pareto front (or current best design in the case of
single objective optimization) during the optimization loop determines whether a refinement
is needed in the stochastic space. This method applies to both single- and multi-objective
optimization problems. Unlike the methods presented in the literature, the adaptation is not
set a priori, but instead it depends on the convergence history of the optimization procedure
and the performance of each new design. The strategy is here developed with either a Non-
dominated Sorting Genetic Algorithm or the BiMads algorithm for the optimization loop,
and the Simplex Stochastic Colocation for the UQ method. However, the strategy may
apply to different algorithms in both the optimization and the stochastic part, as long as it
is possible to define an adaptive strategy with the available UQ method.

The concept of a bounding box around a design vector has been discussed in several papers
to take into account the uncertainty affecting the objectives in deterministic optimization.
For instance in Ref. [13] the bounding box is defined to consider the confidence interval
of the objective function in deterministic contrained optimization. In Refs. [14, 15], the
authors replace the Pareto dominance with a probability of Pareto dominance and modify the
operators of a genetic algorithm accordingly. Similarly, evidence theory is used in Ref. [16].
To the authors’ knowledge all these attempts have never tackled the coupling of an optimizer
with a UQ method and they have never been used in conjuction with an adaptive strategy
to accelerate the optimization loop.

The paper is outlined as follows. Section 2 presents a generic uncertainty-based opti-
mization problem and the nested loops used to solve it. The novel strategy is described in
general terms in Section 3. The method is implemented for the optimization algorithms and
the UQ method explained in Section 4. Section 5 is devoted to a description of the estimates
of the error used in the definition of the error bounding box. In the second part of this
section, the estimates of the error are computed for some analytic test cases. The results
of the proposed strategy are discussed in Section 6 for two algebraic test cases. Finally,
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the proposed strategy is applied in Sec. 7 to an engineering test case, i.e. the aerodynamic
optimization of an airfoil with uncertain operating conditions.

2. Uncertainty-based optimization problem

The goal of optimization in engineering systems is to find the design that improves at most
a desired performance. The quantity of interest u typically depends on the solution φ of a
mathematical model describing the system under consideration. For this general description,
let us consider a model for a time- and space-dependent system, which could be represented
by the following equation

L(x, t,y;φ(x, t,y)) = 0, (1)

with appropriate initial and boundary conditions. To give a rigorous mathematical descrip-
tion, the operator L is defined on the domain D × T × X , where y ∈ D and t ∈ T are the
spatial and temporal coordinates with D ⊂ Rd, d ∈ {1, 2, 3}, and T ⊂ R. The vector of
the design variables x is defined on the domain X ⊂ Rn, where n is the number of design
variables. The solution of Eq. (1) is φ(x, t,y) and the performance is a function of this
solution u = u(φ(x, t,y)).

Now, let us consider that some variables in the system model are affected by uncer-
tainty. To highlight the dependency on the uncertain variables, equation (1) is written as
the following

L(x, t,y, ξ(ω);φ(x, t,y, ξ(ω))) = 0. (2)

The new element in this equation is the vector ξ collecting the uncertain variables, which are
modelled as a set of nξ second-order random parameters: ξ(ω) = {ξ1(ω1), . . . , ξnξ

(ωnξ
)} ∈ Ξ,

with Ξ ⊂ Rnξ . The symbol ω = {ω1, . . . , ωnξ} ∈ Ω ⊂ Rnξ denotes events in the complete
probability space (Ω, F , P ) with F ⊂ 2Ω, the σ–algebra of subsets of Ω and P a proba-
bility measure. The random variables ω are by definition standard uniformly distributed
as U(0, 1). Random parameters ξ(ω) can have any arbitrary probability density pξ(ξ(ω)).
The argument ω is dropped from here on to simplify the notation. In the case presented in
Eq. (2), the solution φ and consequently the performance u also depends on the uncertain
variables ξ: u = u(φ(x, t,y, ξ((ω)))).

When uncertainty is considered, the goal of the optimization problem is typically to
control the variability of the performance u with respect to the uncertainty in the system
variables ξ. For instance, in Taguchi robust design [4] the goal is to find a design which
provides a satisfactory mean performance, and minimizes its variability at the same time.
In this way, the system will operate adequately even in off-design conditions. For this case,
the objectives of the optimization are two low-order statistical moments of the performance
of interest u: the mean value and the variance. In general, a problem of uncertainty-based
optimization is stated in mathematical terms as the following

minimize: f (u (x, ξ))

subject to: g (u (x, ξ)) ≥ 0

by changing: x ∈ X , (3)
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where the m objective functions are collected in vector f ⊂ Rm, and g ⊂ Rq are the q
constraints of the optimization problem. Please note that the arguments y and t are dropped
in the preceding equation to highlight only the dependency on the design and uncertain
variables.

As previously mentioned, the objective vector f is composed of one or more statistics of
the performance of interest u; for instance, in robust design

f = {μ1
u(x), μ

2
u(x)}, (4)

where the statistical moment μα
u(x) of order α of the output of interest u is given by

μα
u(x) =

∫
Ξ

u(x, ξ)αpξ(ξ)dξ. (5)

Please note that the objective functions f do not depend on the uncertain variables.
The statistics are a function only of the design variables and they have to be computed

at each iteration in the optimization procedure. Beside the numerical model of the system,
two are the most important ingredients for uncertainty-based design optimization: (i) an
optimization algorithm to solve the optimization stated in Eq. (3) and (ii) an uncertainty
quantification technique that computes the statistics of the output of interest (Eq. (5))
starting from the input uncertainty. The latter operation has to be performed for each design
vector in the optimization loop. With reference to Fig. 1, an uncertainty-based optimization
problem can be regarded as two nested loops. The outer loop, based on the optimization
algorithm, solves Eq. (3), while the inner UQ loop computes Eq. (5). The next section
presents the novel strategy to couple the UQ method and the optimization loop.

3. Uncertainty-based optimization with adaptive error bounding boxes

This section presents an overview of the concepts and methods used in the optimization
loop of the uncertainty-based optimization framework. As presented in Section 2, a general
uncertainty-based optimization problem (Eq. (3)) is inherently multi-objective: the mean
value is used in conjunction with the variance in robust design, or with the probability of
the occurrence of failure events in the application to reliability-based design. Therefore, a
discussion on the methods to tackle multi-objective problems is here presented.

In the first part, the concept of Pareto dominance is discussed. This dominance relation
has been developed to define the concept of “optimality” in a multi-dimensional objective
space. Also, the discussion serves as a basis to the development of the proposed strategy.
In fact, the Pareto dominance relation is adapted in the second part of the section for the
application to the proposed adaptive method. It is clear that the Pareto dominance criterion
is a general criterion that can be applied to the single-objective case as well.

3.1. Pareto dominance relation

In many applications, conflicting criteria drive the design process. In this case the opti-
mization problem has a multi-objective formulation. The solutions of multi-objective prob-
lems (m > 1) is a set of solutions (unless of course the objectives are concurrent). These
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solutions represent a trade-off between the objectives considered in the optimization and
they are selected according to the Pareto dominance relation.

Definition 1. For two vectors a,b ∈ X with X the design variables domain

a � b (a dominates b) iff βjfj(a) ≤ βjfj(b) ∀j = 1, ...,m and

∃j such that βjfj(a) < βjfj(b)

a ∼ b (a is indifferent b) iff a does not dominate b and b does not dominate a

Coefficient βj indicates the goal of the optimization of function fj:

βj =

{
1 if fj is to be minimized

−1 if fj is to be maximized

Definition 2. A decision vector x ∈ X is said to be non-dominated regarding a set A ⊆ X
if and only if

�a ∈ A : a � x

Moreover, x is said to be Pareto-optimal iff x is non-dominated regarding X .

The solution vectors that are non-dominated regarding X are the Pareto optimal solu-
tions, and they belong to the set denoted as XP . The image of the set XP is called Pareto
front and it defined as P = {f(x) | x ∈ XP}.

The Pareto dominance is used in multi-objective optimization problems to rank the design
vectors and to define the optimal solutions. Please note that single-objective optimization
(m = 1) can also be treated with this criterion. In this case, the third option in Definition 1
cannot be satisfied, since only one function is considered: either vector a dominates vector
b or viceversa.

3.2. Pareto dominance with error bounding boxes

Let us assume that each estimate of the objective functions fj, j = 1, ...,m is affected by
an error εfj , j = 1, ...,m. The error is associated to the approximate method used in the UQ
loop to reconstruct the statistics of the performance u, i.e. the objective functions. Because
of the error in the estimation of the statistics, each objective is a function f ′

j that could take
any value in the interval

f ′
j (x) ∈ [fj

¯
, ..., f̄j] ∀i = 1, ...,m, (6)

where the lower bound fj
¯
and upper bound f̄j are obtained respectively by subtracting and

adding the error εfj to the function estimate fj. For instance, assuming the first objective
f1 is the mean value μ, the lower bound f1

¯
and and the upper bound f̄1 read

f1
¯
= μ− εμ f̄1 = μ+ εμ,

where εμ is the error affecting the mean value. Inside the adaptive UQ loop, the error εfj
decreases with increasing number of samples. Typically, a tolerance τ is used, and when the
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error εfj is lower than the tolerance the loop breaks. Thus, for a given design vector a the
amplitude of the errors is a function of the tolerance τ applied in the adaptive uncertainty
quantification method. This holds true also for the objective function f ′

j. Thus, both the
objective function f ′

j and the associated error εfj depends not only on the design variables
x, but also on the tolerance value τ :

f ′
j = f ′

j (x, τ) εfj = εfj(x, τ) ∀i = 1, ...,m. (7)

Once the error is lower than the limiting tolerance τ̂ , the objective function passed on to the
optimization algorithm is set equal to the estimate fj given by the UQ method.

Typically, the same value of the tolerance is set for each design in the optimization loop,
and the optimization and the uncertainty quantification are completely decoupled. Instead,
in the proposed strategy, the value of the tolerance is updated inside the inner UQ loop,
according to a comparison between the current Pareto front and the m-dimensional hyper-
cube composed of the upper and lower bounds of each objective function. The hypercube is
referred to as error bounding box and it is a function of the design vector and the tolerance:

B (x, τ) = [f1
¯
, f̄1]× ...× [fm

¯
, f̄m]. (8)

The error bounding box has also been used in Refs. [17, 13] to consider a confidence interval
around the objective function. To compare the box and the Pareto front, a modified definition
of the Pareto dominance criterion is used, which takes into account the error associated to
the objective function of the current design. Let us consider a single iteration inside the
optimization loop: the comparison is carried out between the current design a and one of
the non-dominated solution vector b belonging to the current Pareto set.

Definition 3. Consider two vectors a,b ∈ X . The objective functions f(a, τ) of the first
vector depend on the current tolerance τ (and thereby current refinement). The objective
functions f(b) of the second vector have been computed in a previous step up to the limiting
tolerance τ̂ and do not depend on τ . It is possible to state that:

a � b (a dominates b) iff βj

[
fj(a, τ)− βjεfj(a, τ)

] ≤ βjfj(b) ∀j = 1, ...,m and

∃j such that βj

[
fj(a, τ)− βjεfj(a, τ)

]
< βjfj(b)

a ∼ b (a is indifferent b) iff a does not dominate b and b does not dominate a

where coefficient βj indicates the goal of the optimization of function fj:

βj =

{
1 if fj is to be minimized

−1 if fj is to be maximized

With the use of the coefficient βj, the definition considers the lower bound of the i-th function
for a problem of minimization of fj, and analogously the upper bound for maximization
problem. Let us consider the example presented in Fig. 3 where a minimization of two
objectives f = {f1, f2} is performed. In this case, to compare the grey shaded box with
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(a) Pareto dominance comparison: vector a′

is clearly dominated, while the objectives of
vector a′′ has to be computed with further
refinement.

f1

f2

a′

a′′
b

(b) Boxes after refinement of design a′′: the
refinement proves that vector a′′ is non-
dominated.

Figure 3: Scheme of Pareto dominance with error bounding boxes for a minimization prob-
lem.

the current front in the objective space, the point corresponding to the lower bounds (f1 −
εf1 , f2 − εf2) is taken (the point is marked with a grey circle in the figure). Design a′ is
clearly dominated, whereas the box associated with design a′′ crosses the front. In the latter
case, neglecting the error on the objective functions would result in excluding the design
from the non-dominated set. However, a refinement in the stochastic space could improve
the estimate of the objective functions and it could prove that the design is actually non-
dominated (Fig. 3b).

In practice, if an adaptive UQ loop is considered, an estimate of the actual error is
provided for each objective function: ε̃fj . The bounding box is built with the estimate of
the error, rather than the error itself, and it is important that the estimate is conservative.

Definition 4. In a minimization problem of m objectives affected by an error εfj , j =
1, ...,m, it is possible to state with certainty that

b � a (b dominates a)

if and only if

fj(a, τ)− fj(b, τ) > εfj(a, τ) + εfj(b, τ) ∀j = 1, ...,m. (9)

When the objective functions are not affected by error, the previous definiton corresponds
to the inequality of the Pareto dominance relation (i.e. Definition 1).
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Theorem 1. Given a conservative estimate ε̃fj of the error εfj affecting the m objectives of
a minimization problem, if

fj(a, τ)− fj(b, τ) > ε̃fj(a, τ) + ε̃fj(b, τ) ∀j = 1, ...,m (10)

then with certainty

b � a (b dominates a).

Proof.
If the estimate is conservative, then

ε̃fj > εfj ∀j = 1, ...,m (11)

thus

εfj(a, τ) + εfj(b, τ) < ε̃fj(a, τ) + ε̃fj(b, τ)

< fj(a, τ)− fj(b, τ) ∀j = 1, ...,m. (12)

The latter relation is Definition 4. Thus, the dominance criterion with a conservative estimate
of the error guarantees the detection the truly non-dominated solutions.

3.3. Algorithm

Leveraging the idea of the bounding box, an adaptive refinement on the error affecting
the objective function is developed. The novel strategy proposes to modify only the inner
UQ loop (Fig. 1), which provides the objective function f for a given design.

The operations of the adaptive strategy are presented in Algorithm 1. For the i-th
design, the current design xi and the set Yi of the objective functions of the old design
vectors are passed to the function. The set is used to compute the Pareto front according to
Definition 1. The tolerance τ is initialized to a coarse, moderately high value τ̄ . Then, the
objective function is evaluated up to the current tolerance with the UQ method of choice.
With the adaptive UQ method, the error typically deacreases by increasing the number of
samples ns, so the number of samples is increased if the error is higher than the tolerance.
When ε̃fj < τ ∀j = 1, ...,m, the error bounding box is compared with the current Pareto
front: if the box is non-dominated, the tolerance is reduced by an order of magnitude and
another iteration is performed. If the box is dominated according to Definition 3, the while
loop is broken and the next individual is computed. The loop stops in any cases when the
error is lower than the tight tolerance τ

¯
.

The algorithm is formulated in such a way that the accuracy of the objective estimates
is variable throughout the design space. In fact, the limiting tolerance τ̂ is different for each
design. Design vectors far from the Pareto front are computed with the coarse tolerance
τ̂ = τ̄ , the Pareto solutions are computed with the tolerance τ̂ = τ

¯
providing the highest

accuracy (and highest number of samples), and the intermediate solutions are computed
with an intermediate tolerance on a case-by-case basis in the loop described in Algorithm 1.
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Algorithm 1 Scheme of error bounding box refinement

1: procedure Evaluate(xi, Yi)
2: compute Pareto front from Yi with Definition 1
3: τ = τ̄
4: ε̃ = BIG
5: while ( τ ≥ τ

¯
) ∧ ( ε̃ > τ ) do

6: evaluate f(xi) and ε̃(xi) with current τ
7: if ε̃ < τ then
8: compare current box B(xi) with front according to Definition 3
9: if B(xi) is non-dominated then
10: τ = τ/10
11: ns = ns + 1
12: continue
13: else
14: exit while
15: end if
16: else
17: ns = ns + 1
18: end if
19: end while
20: return f(xi)
21: end procedure

As a final remark, the refinement proposed in this strategy is based on a comparison of
the current design with the Pareto front. Thus, it is strictly associated to the performance
of each design and to the importance of such a design in the optimization history. This is a
key difference with respect to other approaches in the literature. For instance, the number
of samples increases as the annealing temperature decreases in the stochastic annealing [7],
or as the number of generations increases in stochastic genetic algorithm [8]. However in
these cases, there is not a real connection with the values of the performance: due to the
poor accuracy at the beginning of the optimization history, a good design may be discarded
and, viceversa, a poor design may be included in the non-dominated set. In the proposed
strategy, the non-dominated solutions are always computed with the highest accuracy (cor-
responding to the lowest tolerance τ

¯
). This requires a higher computational effort also for

those individuals that may temporarily appear as Pareto optimal during the optimization
process, and will be later dominated. However, the increase in the cost for these individuals
is a necessary price to pay to guarantee that the optimization would end up to the accu-
rate Pareto front. In future works, this condition may be relaxed to further increase the
computational efficiency.
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3.4. Convergence analysis

In this section, a proof of convergence is presented to prove that with a bounding box
approach an optimization algorithm able to converge to the correct solution will converge
also in the presence of an error up to the desired tolerance τ̂ , if the error estimates are
conservative.

From the property of the adaptive UQ method, the estimate of the objective function of
a design vector a satisfies the following

lim
τ→0

εfj(a, τ) = 0 (13)

Regarding the order of convergence, the UQ method used in this work is the Simplex Stochas-
tic Collocation (described in Sec. 4.2.1), whose convergence is linear for first-order piecewise
polynomials in a one-dimensional stochastic space, and superlinear if a p-refinement is used.
In the proposed strategy, a very low tolerance τ

¯
is used for the solutions belonging to the

Pareto front P . In other words, by construction of the method, if b ∈ P , then εfj(b, τ) → τ
¯
.

Definition 5. Let us consider the i-th iteration of the proposed optimization method, for a
minimization problem of m objectives affected by an error εfj , j = 1, ...,m. Considering the
i-th design vector xi, the estimate of the error satisfies

lim
i→∞

ε̃fj(xi) = τ
¯

∀j = 1, ...,m (14)

Let us suppose to have an optimization method to solve the minimization problem of
function f , whose solution is f ∗. The quantity f (xi) is the solution at the i-th iteration,
which corresponds to the statistical moment of a given quantity for the design xi. Note
that this quantity is considered as the exact statistical moment associated to the design xi.
Instead, the approximated function computed with a tolerance and affected by an error is
denoted with f̃j,i (xi).

Definition 6. A conservative estimate ε̃fj of the error εfj that affects the estimation f̃j (xi)
of the function fj (xi) is defined as follows∥∥∥fj (xi)− f̃j (xi)

∥∥∥ � εfj < ε̃fj ∀j = 1, ...,m (15)

Note that this conservative error estimation can be applied on the error of the mean, of
the variance, or of a linear combination of some statistics if this is the objective function.

Theorem 2. Let us suppose that the method converges to the solution of the optimization
problem, i.e.

lim
i→+∞

∥∥fj,i (xi)− f ∗
j

∥∥ = 0 ∀j = 1, ...,m (16)

or
lim

i→+∞
‖δj,i‖ = 0, ∀j = 1, ...,m (17)
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Then, by considering the adaptive bounding-box approach, the convergence of the optimization
method is preserved up to the tight tolerance τ

¯
used to compute the objective functions,

provided that a conservative error estimation is computed, i.e.

lim
i→+∞

∥∥∥f̃j,i (xi)− f ∗
j

∥∥∥ = τ
¯

(18)

Proof.
The proof stems directly from the definition of the conservative error estimation. In partic-

ular, for the j-th objective function
∥∥∥f̃j,i − f ∗

j

∥∥∥ can be written as follows:

∥∥∥f̃j,i − f ∗
j

∥∥∥ =
∥∥∥f̃j,i − f ∗

j − fj + fj

∥∥∥
=

∥∥∥(f̃j,i − fj) + (fj − f ∗
j )
∥∥∥ (19)

Using the triangle inequality, ‖a+ b‖ ≤ ‖a‖+ ‖b‖, we have∥∥∥f̃j,i − f ∗
j

∥∥∥ =
∥∥∥(f̃j,i − fj) + (fj − f ∗

j )
∥∥∥

≤
∥∥∥f̃j,i − fj

∥∥∥+
∥∥fj − f ∗

j

∥∥
≤ εfj + δj,i. (20)

By recalling the definition of conservative error estimation, the inequality also gives that∥∥∥f̃j,i − f ∗
j

∥∥∥ < ε̃fj ,i + δj,i. (21)

By assumption δj,i → 0 as i → +∞. Since by construction of the algorithm, the conservative
estimate ε̃fj ,i goes to the tight tolerance τ

¯
(recall Definition 5), taking the limit yields

lim
i→+∞

ε̃fj ,i + δj,i = τ
¯
. (22)

The previous result shows that the optimal solutions are known up to the tight tolerance
τ
¯
. If a decoupled strategy and a loose tolerance τ̄ are used, the difference from the computed

optimal solutions and the exact solutions may be significant. Instead, if a very tight tolerance
is used, the discrepancy may be negligible. In addition, in the limit of τ → 0, Eq. (22) reads

lim
i→+∞

lim
τ→0

ε̃fj ,i + δj,i = 0. (23)

This means that if the tolerance in the estimation of the objective function is equal to zero,
the computed optimal solutions converge to the exact solutions.

Finally, the order of convergence of the proposed strategy strictly depends on the con-
vergence of the UQ method (the limit τ → 0) and the order of the optimization algorithm
(the limit i → +∞).
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4. Methods for the optimization and UQ loops

The method proposed in this paper and presented in the preceding section is flexible
with respect to the optimization algorithms and UQ methods. This section presents the
specific optimization algorithms and the UQ method used in this work to assess the proposed
strategy.

4.1. Derivative-free optimization algorithms

In this work, the attention is focused on problems in which the functional dependency
of the objective function cannot be exploited, either because it is absent or it is unreliable.
In this kind of problems, derivative-free optimization methods can be used to solve the
optimization problem. These methods are very versatile, using the model of the system as
a “black box”. This is advantageous because it does not require an intrusive modification of
the model. For instance, in the application to fluid dynamics, it is not necessary to modify
the CFD solver. It also permits to easily change the objective function of the optimization.
On the other hand, they may be very expensive from a computational point of view, because
of their rate of convergence. Examples of such approaches are the Nelder-Mead method and
its modified versions, the pattern search methods, or genetic algorithms. In this paper, the
Non-dominated Sorting Genetic Algorithm and the BiMads algorithm are chosen, because
they are also suited to tackle the multi-objective case. These methods are described in the
following.

4.1.1. Genetic Algorithm

Evolutionary algorithms have been employed to tackle many engineering optimization
problems. Applications to aerodynamic optimization problems can be found for instance in
Refs. [6, 18, 19]. Main advantages of such approaches are the possibility to tackle multi-
objective problems without scalarization and to exhaustively explore the design space. On
the other hand, they are very expensive from a computational point of view because they
require many computations of the objective function, even in region of the domain where
designs with poorer performance are present.

Genetic algorithms uses operators inspired by natural evolution to get to the optimal
solution. In such a framework, each design vector is considered as an individual, and the
design variables in the vector represent the chromosomes. A group of individuals is called a
generation. Each individual is assigned a fitness function, that is a measure of the probability
that this individual will be a parent of the individuals of the next generation. The fitness in
the optimization algorithms is associated to the objective function: the better the objective
function, the higher the fitness value. In the single objective case, the fitness function is a
measure of the objective function. In the multi-objective case, the fitness function is assigned
based on the position of the individual in the objective space with respect to the current
Pareto front. With the fitness value, the selection step is performed to determine the parents
of the new generation; mutation and crossover operators are then used to mantain genetic
diversity and to obtain different children from a single set of parents.
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(a) Genetic algorithm.
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(b) BiMads algorithm.

Figure 4: Scheme of optimization algorithms used in the work.

The genetic algorithm performs a loop over the generations (see Fig. 4a). The starting
point is an initial generation of individuals that are typically randomly chosen. For each
iteration, a new generation of individuals is computed using selection, crossover and mutation
operators. Then, the objective functions are evaluated for each individual, and each design
vector is assigned a fitness function. From the fitness of these individuals, a new generation
is computed and the loop goes on for a sufficient number of generations.

In this work, the Non-Dominated Sorting Genetic Algorithm is used [20]. Typical values
for the crossover and mutation probabilities pc = 0.9, pm = 0.1 are chosen and the sharing
parameter is set using a formula based on the number of design variables.

4.1.2. BiMads

Another derivative-free optimization method is employed, the BiMads algorithm [21].
The method applies to bi-objective optimization problems and it is based on theMads (Mesh
Adaptive Direct Search) algorithm [22]. The Mads algorithm is a direct search algorithm
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for single-objective optimization. The underlying idea is to search an improved solution by
evaluating the objective function for all the points of a mesh defined around the current
design vector in the design variables space. The procedure consists on a two-step iteration
based on a “search” and a “poll” step. The search step evaluates the objective function in
the mesh points around the current design vector; if a better design vector is not found, a
poll step is performed, which consists in a local exploration of the design variables space. If
an improved solution is found, by either the search or the poll step, this one is set as the
new design vector around which a new search mesh is built. Otherwise, the mesh is refined
and the iteration is repeated. The optimization loop stops either when a fixed number of
function evaluations is reached or when the mesh size reaches a given tolerance.

For bi-objective problems, an approximation of the Pareto front is constructed using
the BiMads method, which launches successive runs of Mads. In the initialization of the
method, two separate single-objective optimization problems (one for each objective) are
performed by means of Mads. From the evaluations of the objective functions computed
in the initialization, an initial list of non-dominated solutions is defined. The following loop
is a repetition of three steps (see Fig. 4b). The first is the computation of a reference point
in the objective space from the list of non-dominated solutions. This reference point is used
to define a scalarization function Φ of the objective functions (for instance, the function
is a measure of the distance from the reference point in the objective space). Function Φ
is defined in such a way that it attains lower values in the non-dominated region of the
objective space. Secondly, a Mads run is performed to minimize this scalarized function.
Then, a new list of non-dominated solutions is determined from the evaluations obtained
in the preceding step. Finally, the repetition of the three step is terminated according to a
fixed number of iterations. A version of this algorithm exists for optimization problem with
more than two objective functions; it is not employed here because only bi-objective cases
are considered.

The BiMads method is very efficient for low-dimensional problems, but its rate of con-
vergence degrades as the number of design variables increases. Similarly to genetic algo-
rithms, the BiMads method treats the evaluation of the function for each design vector as
a black-box. Therefore, it is very suited to coupling with the UQ inner loop. Concerning the
implementation, the NOMAD software [23, 24] is coupled with the UQ method, presented
in the next section.

4.2. Adaptive UQ methods

In this section, a discussion is presented about the method for computing the statistics,
i.e. solving Eq. (5). As presented in Section 2, the objective of uncertainty propagation
in a probabilistic framework is to find the probability distribution of u(x, t,y, ξ) and its
statistical moments μα

u(x, t,y). Note that the statistical moments depend on the vector of
design variables x, and they have to be computed for a given set of design vectors. If the
i-th iteration of the outer optimization loop is considered, the design variables are the design
vector of the i-th design: x = xi.

When using non-intrusive methods, the function u has to be computed for a set of
samples ξk. To some extent this set represents a numerical grid in the space of the uncertain
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Figure 5: Simplex elements (triangles in two-dimensional stochastic space).

variables. An interesting approach is that of refining the grid with a step-by-step approach
according to the quality of the current computation. The advantage of an adaptive strategy
is using only as many samples as required for a sufficiently accurate computation of the
statistics. In this work, the Simplex Stochastic Collocation (SSC) is chosen. SSC is a
multi-element uncertainty propagation method which relies on adaptive refinement of the
sampling in the stochastic space [11]. Other examples of methods in which an adaptive
refinement could be used are Monte Carlo simulation methods, kriging-based or Polynomial-
based approaches.

4.2.1. Simplex Stochastic Collocation

In local UQ methods such as the multi-element stochastic collocation approach [25, 26]
the weighted integrals in Eq. (5) defined over the parameter space Ξ are computed as a
summation of integrals over ne disjoint subdomains Ξ =

⋃ne

j=1 Ξj

μα
u(x, t,y) ≈

ne∑
j=1

∫
Ξj

u(x, t,y, ξ)α pξ(ξ) dξ + ε, (24)

where ε is the error involved in the approximation. The elements in SSC are simplexes as
shown in Fig. 5 for a two-dimensional space.

In the SSC approach [11, 12], the integrals in the simplex elements Ξj are computed
by approximating the response surface u(ξ) by an interpolation w(ξ) of ns samples v =
{v1, . . . , vns}. Each sample vk is computed with the solution φk(x, t,y, ξk) obtained by
solving Eq. (2) for realization ξk of the random parameter vector ξ

L(x, t,y, ξk;φk(x, t,y, ξk)) = 0 (25)

for k = 1, . . . , ns. The interpolation of the samples w(ξ) consists of a piecewise polynomial
function

w(ξ) = wj(ξ) for ξ ∈ Ξj, (26)
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with wj(ξ) a polynomial interpolation of degree p of the samples vj = {vkj,1 , . . . , vkj,nse
} at

the sampling points {ξkj,1 , . . . , ξkj,nse
} in element Ξj, where kj,l ∈ {1, . . . , ns} for j = 1, . . . , ne

and l = 1, . . . , nse, with nse the number of samples in the simplex.
The main features of the SSC method [11, 12] are: (i) the possibility to compute an error

estimate, (ii) the adaptive h-refinement and (iii) p-refinement capabilities, (iv) treatment
of non-hypercube parameter spaces, and (v) treatment of discontinuities in the stochastic
space. Properties (i), (ii), (iii) are discussed here, because they are the key elements of the
method proposed in the paper. Please refer to Refs. [11, 12] for the other features. With
regard to the first property, the error ε of the interpolation is estimated using hierarchical
surpluses considering in each element Ξj, the difference between interpolated and exact value.
In this way, both local and global error in each simplex can be computed, thus identifying
the simplex element, where the error is largest.

Concerning h-refinement, SSC has two components: simplex selection (based on the
previous error estimator), and simplex splitting, designed to avoid clustering. In the first
step, the simplex element where the error ε is largest is selected for refinement. Then, a
region of this element is selected for node insertion and the new sample ξj,k is inserted (see
Fig. 6a). A threshold τ is assigned to determine whether to stop the refinement: when ε < τ ,
the adaptive refinement is stopped.

When using SSC, the error convergence of first degree SSC decreases for an increasing
nξ. To cure this issue, a p-refinement criterion for higher degree SSC has been conceived. In
practice, the idea is to use higher degree polynomial interpolation stencil based on Newton-
Cotes quadrature. Figure 6b shows for a two-dimensional stochastic space how more than
three samples can be used to build a higher degree polynomial interpolation by enlarging
the stencil. The choice of the optimal polynomial degree p is selected based on the number
of uncertainties nξ and the required order of convergence. A super-linear convergence can
be obtained for smooth responses (see [11] for more details).

The inner loop of the SSC is constituted by the following operations:

• initial discretization (2nξ vertexes of the hypercube enclosing the probability space Ξ
and one sampling point in the interior);

• nsinit initial samples vk computed by solving nsinit deterministic problems (Eq. (25)) for
the parameter values corresponding to the initial sampling points ξk located in Ξ only;

• Polynomial approximation (Eq. (26)) and p-refinement;

• Error ε estimate and h-refinement according to the threshold τ .

Finally, the probability distribution function and the statistical moments μα
u of u(ξ) given

by Eq. (24) are then approximated by the probability distribution and the moments μα
w of

w(ξ)

μα
u(x, t,y) ≈ μα

w(x, t,y) =
ne∑
j=1

∫
Ξj

wj(x, t,y, ξ)
α pξ(ξ) dξ, (27)
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Figure 6: Scheme of the h- and p-refinement of the SSC in two-dimensional stochastic space.

in which the multi-dimensional integrals are evaluated using a weighted Monte Carlo inte-
gration of the response surface approximation w(ξ) with nmc � ns integration points.

5. Estimation of error bounds in the uncertainty quantification method

As presented in the preceding section, there is a straightforward, quantitative way to
relate the cost of the uncertainty propagation procedure and the accuracy of the result: the
lower the tolerance τ on the error between function w and function v, the higher the cost
and the better the estimates. On the other hand, a rough, cheap estimate on the statistics
of the output v can be obtained with a coarser tolerance and fewer samples. To control the
accuracy of the result, a measure of the error of the estimate is required. This measure of
the error is the quantity that should be compared to the desired tolerance.

Different errors are computed in the SSC method, which are quantitative estimates of the
error of the statistics (i.e. mean value and variance) due to the polynomial approximation w.
In the following, three groups of errors are presented: Monte Carlo errors, estimated errors
and conservative estimated errors. The first set serves as a reference for the assessment of
the other estimates. Note that the errors on mean and variance are considered here, but
analogous estimates can be derived also for higher order statistics.

The first set is composed of the Monte Carlo (MC) errors , which are based only on the
value of function, and are obtained by means of random Monte Carlo sampling. The mean
MC error εμ reads

εμ = ||μmc − μw||, (28)

where nmc are the samples of the MC integration, and the mean μmc based on the exact
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function evaluation and the mean based on the approximation μw are computed as follows:

μmc =
1

nmc

nmc∑
i=1

v(ξi)

μw =
1

nmc

nmc∑
i=1

w(ξi). (29)

Similarly, the variance MC error is the following

εσ2 = ||σ2
mc − σ2

w||

σ2
mc =

(
1

nmc

nmc∑
i=1

u(ξi)

)2

− μ2
mc

σ2
w =

(
1

nmc

nmc∑
i=1

w(ξi)

)2

− μ2
w. (30)

These errors are useful to compare the function w and v with the same sampling technique,
by ruling out the error associated with the MC method. As a result, these errors represent
the accuracy of the polynomial approximation w. However they rely on the computation of
the exact function in many random samples, thus they are not employed in practical cases
where it is desirable to compute the exact function only for a small number of samples.

Therefore, the SSC provides a set of estimated errors that are based on the hierarchical
surplus and the order of the polynomial employed in each element of the grid. In this case,
the estimation of the error only relies on the (small) set of samples obtained in each vertex
of the SSC grid. Let us define the hierarchical surplus for the new k-th sampling point ξj,k
belonging to the j-th element (see Fig. 6a), as follows

εj = w(ξj,k)− v(ξj,k)

where w is the interpolation before refinement and v is the exact function evaluation. Based
on the hierarchical surplus, we define the estimated mean error ε̂μ as follows

ε̂μ =
ne∑
j=1

Ωj ε̃j

ε̃j =
εj

2
pj+1

nξ

, (31)

where Ωj is the probability contained in j-th simplex, pj is the order of the polynomial
approximation in the j-th simplex, and nξ is the number of the uncertain variables. The
estimated variance error ε̂σ2 then reads

ε̂σ2 =

∣∣∣∣∣
∣∣∣∣∣ σ2

w −
⎡⎣ 1

nmc

nmc∑
i=1

(w(ξi)− ε̃j,i)
2 −

(
1

nmc

nmc∑
i=1

(w(ξi)− ε̃j,i)

)2
⎤⎦ ∣∣∣∣∣

∣∣∣∣∣, (32)
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where ε̃j,i is the corrected hierarchical surplus of the element which point i belongs to. This
estimate is found by assuming that one could approximate the function v(ξi) by w(ξi)− εj,i;
this choice is conservative since typically the vertex based on which the surplus is computed
is the one with the greatest error in each simplex. This error estimate works quite well for
smooth functions when the interpolation reaches its theoretical convergence rate. However,
in some cases it may be useful to adopt a more conservative estimate which is only based on
the hierarchical surplus.

The conservative estimated errors are defined with a very similar structure with respect
to the estimated errors, but they employ directly the hierarchical surplus εj, without using
extrapolation based on h- and p-refinement. The conservative estimated mean error ε̃μ is
defined as

ε̃μ =
ne∑
j=1

Ωjεj, (33)

whereas the conservative estimated variance error ε̂σ2 is

ε̃σ2 =

∣∣∣∣∣
∣∣∣∣∣ σ2

w −
⎡⎣ 1

nmc

nmc∑
i=1

(w(ξi)− εj,i)
2 −

(
1

nmc

nmc∑
i=1

(w(ξi)− εj,i)

)2
⎤⎦ ∣∣∣∣∣

∣∣∣∣∣, (34)

where εj,i is the hierarchical surplus of the element which point i belongs to. To assess these
estimates a comparison is presented for some analytical cases in the following subsection.

5.1. Analytic testcases for error estimation

To begin with, a one-dimensional sine function is considered:

f(ξ) = 3 + sin(2πξ1) (35)

where the uncertain variable ξ1 is uniformly distributed in the domain [0, 1]. In Fig. 7a the
behavior of the errors and estimators is presented, which confirms the effectiveness of the
estimates. In fact, the estimated error and the conservative estimated errors are larger than
the MC error, proving that they are conservative estimates of the actual error. In other
words, the exact value of the statistics lies in the error bar defined around the SSC estimate
and whose width can be described either by the estimated or the conservative error. In the
case of the sine function, the error on the variance provides more information on the accuracy
of the response approximation rather than the mean value, which is equal to the constant
term in Eq. (35) and it is therefore affected by a small error even in the first iteration.

Then, the method is applied to a more complex function, the one-dimensional Michalewicz
function, that is a very challenging testcase in global optimization problems

f(ξ) = − sin(ξ1) sin20

(
ξ21
π

)
. (36)
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(a) One-dimensional sine function.
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(b) One-dimensional Michalewicz function.
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Figure 7: Monte Carlo, estimated and conservative errors for three analytic functions.
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The uncertain variable ξ1 is again uniformly distributed in the domain [0, 1]. Figure 7b shows
the result of the application of SSC and proves that in this case the conservative error is a
safer estimate of the error.

Finally, a two-dimensional function is considered to explore multi-dimensional problems.
The inverse tangent presented in Ref. [11] is analysed, which reads

f(ξ) = atan
(
ξ · ξ∗ + ξ∗21

)
, (37)

with ξ∗ ∈ [0, 1]2 is a two-dimensional vector of arbitrary values. In this case, the errors of the
mean value have a smoother behavior with respect to the errors of the variance (see Fig. 7c).
However, even in the latter case the convergence trend is clear and it appears that, despite
the oscillations, the estimated error and the conservative error are consistent with the MC
error.

As a final remark, these estimates are associated only to the error due to the polynomial
approximation w. Although the method developed in this work considers a generic error on
the estimate of the objective functions, regardless of the sources of that error, it is worth
noting that these estimates are obtained by means of MC sampling, which is affected by an
error itself. However, this error would decrease anyway when increasing the number of MC
sampling points. Adding a bias to the estimates would be a possibile strategy to include this
error as well, without affecting the proposed optimization method.

6. Uncertainty-based optimization of algebraic test cases

This section presents some results obtained with the proposed strategy for two algebraic
test cases, where there is a simple algebraic relationship between the performance u and the
design and uncertain variables. In the comparison with the standard non-adaptive method,
the proposed strategy is referred to as coupled strategy, and the classical approach is called
decoupled.

6.1. Single-objective algebraic problem

In this section a single-objective (m = 1) optimization is considered, with two uncertain
variables (nξ = 2) and two design variables (n = 2). The optimization problem reads

minimize: f(x) = μ(u) + σ(u)

by changing: x ∈ X = [0, 6]× [0, 6]

with: ξ ∼ U(0, 1) (38)

where the function representing the performance is the following

u(x, ξ) =
[
e−

∑n
i=1(xi/κ)

2γ − 2e−
∑n

i=1 ξi(xi−π)2
]
·

n∏
i=1

cos2 xi κ = 15, γ = 5. (39)

This function was presented in Ref. [27] and it is a modification to the classical test case for
deterministic optimization. In this case, the uncertain variables are present in the exponential
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Table 1: Comparison of results and cost between decoupled and coupled approaches for
problem in Eq. (38)

Strategy Percentual error on f(x∗) Distance from x∗ N. function evaluations
Decoupled (1e-3) 1.0e-6 6e-4 24956
Decoupled (1e-1) 1.2e-5 2e-3 16820
Coupled 1.7e-7 4e-4 18875

terms and they are as many as the design variables. The deterministic function has one global
minimum u(x∗) = −1 in x∗ = {−π, ...,−π}. When uncertain variables are considered the
function changes its shape, but the global minimum remains the same for any realization of
the uncertain variables. The mean value of u evaluated in the minimum is equal to -1 and
the variance is equal to 0. Thus the solution of the robust case in Eq. (38) is equal to the
deterministic global minimum f(x∗) = −1 in x∗ = {−π, ...,−π}. The solution is close to the
mid-point of the design variables domain, as represented in Fig. 8.

The solution of the optimization problem in Eq. (38) is obtained by means of the genetic
algorithm described in Section. 4.1.1 and the SSC method (Section. 4.2.1). The coupling is
obtained in three different ways: (i) with a decoupled approach in which the tolerance is
set to 1e-3, (ii) a decoupled approach in which the tolerance is set to 1e-1, (ii) the coupled
strategy. In the latter case, the upper value τ̄ of the tolerance is set to 1e-1 and the lower
value τ

¯
is 1e-3. The three approaches reach the minimum value of the function in the correct

minimum point, in spite of a slightly higher error for the decoupled approach with the loose
tolerance (see Tab. 1). The computational cost of the decoupled strategy with tight tolerance
is reduced by 24% with the coupled approach. The cost of the coupled method is comparable
with that of the decoupled approach with loose tolerance, and the estimate of the minimum is
very accurate. However, in this case a very good estimate of the optimal design is obtained
even with a loose decoupled strategy. In the next section, a test case is presented which
shows the real benefit of the coupled approach.
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Figure 9: Objective function for problem (40).

6.2. Multi-objective algebraic problem

In this section a bi-objective (m = 2) optimization is considered, with one uncertain
variable (nξ = 1) and two design variables (n = 2). The optimization problem reads

minimize: f(x) = {f1, f2} = {μ(u), σ2(u)}
by changing: x ∈ X = [1, 2]× [1, 2]

with: ξ ∼ U(0, 1) (40)

where the function representing the performance is the following

u(x, ξ) = ξ − x1ξ
5 + cos (2πx2ξ) + κ, κ = 5. (41)

The mean value and variance of function u are represented in the design space in Fig. 9. For
this test case, the tight tolerance τ

¯
is set to 1e-4 and the loose tolerance τ̄ is equal to 1e-1.

The set of results presented in the first subsection are obtained by coupling the SSC method
with the genetic algorithm. In the second subsection the BiMADS method is used for the
optimization loop in order to highlight the flexibility of the proposed method.

6.2.1. Coupled method with NSGA

Figure 10a presents the Pareto fronts of the analytic function and the fronts obtained
by means of the decoupled method with tight tolerance, the decoupled method with loose
tolerance and the coupled strategy. The sets of solution obtained with the tight tolerance
and the coupled approach compare well, while the loose tolerance results in a different branch
of the front. Because of this, the front obtained with loose tolerance has been re-computed
with the analytic function and plotted in the objective space for comparson. The distance
to the analytic Pareto front is presented in Fig. 10b and it is computed by taking the mean
of the distance of each point of the Pareto front to the closest point of the analytical Pareto
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(a) Pareto optimal fronts: the loose tolerance
result has been computed after the optimiza-
tion with the analytical function for compar-
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Figure 10: Results of multi-objective algebraic problem (Eq. (40)) with: (i) decoupled strat-
egy with tight tolerance (1e-4), (ii) decoupled strategy with loose tolerance (1e-1) and (iii)
coupled strategy.

front, as suggested in Ref. [28]. In mathematical terms, the distance dA−B of the Pareto set
PA to the Pareto set PB reads

dA−B =
1

|PA|
|PA|∑
i=0

min
f∈PB

||f(xi)− f(xPB
)||, (42)

where symbol | · | indicates the cardinality (i.e. number of elements) of the set, symbol || · ||
is the Euclidean distance, f and x are respectively the objective functions and the design
variables of the solutions in the Pareto set. The comparison of the difference computed at
each generation proves that the cheap optimization obtained with the loose tolerance results
in an inaccurate front, while the coupled approach yields a front consistent with the accurate
result. In addition, the approximation w(ξ) obtained with the SSC method is presented in
Fig. 11 for a representative design of the inaccurate Pareto front. In particular, the design
x̃ is selected, which is trade-off design vector in the Pareto front obtained with the loose
decoupled approach. The SSC with the tight tolerance provides the best fit of the analytical
function, whereas a good approximation is obtained with the coupled method. Instead, the
number of samples used with the loose tolerance is not sufficient to correctly capture the
behavior of the function. Thus, for this test case a tight tolerance is crucial to obtain the
correct solutions of the optimization problem.
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Figure 11: Approximations of the function u for the design vector x̃ in the Pareto set obtained
with the decoupled loose (τ̄ = 1e-1) method.
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Figure 12: Cost of the multi-objective algebraic optimization (Eq. (40)) with NSGA.

With regard to the computational cost of the coupled method, the number of function
evaluations for each generation is shown in Fig. 12a and reported in Tab. 2. In the very
first generation, the coupled approach has a significant reduction of the cost with respect to
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Table 2: Comparison of total number of function evaluations in the NSGA for the multi-
objective algebraic optimization.

Strategy Number of function evaluations

Initial generation Evolution Global
Decoupled (1e-1) 1077 5609 6686
Decoupled (1e-4) 4011 24482 28493
Coupled 1849 20368 22217
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Figure 13: Tolerance and bounding boxes of the coupled approach for the multi-objective
algebraic test case (Eq. (40)) with NSGA.

the tight decoupled approach: the reduction is close to 54%, thus the number of evaluations
has been reduced to less than half the reference value. With increasing number of genera-
tions, the cost of the coupled approach increases and it almost converges to the cost of the
tight decoupled method. In fact, with increasing number of generations during an evolution,
each generation typically becomes more and more rich of individuals close to the current
Pareto front, in other words design vectors with good objectives. For these “good” individ-
uals the coupled approach has to compute the objective functions with a tighter tolerance,
and the cost becomes higher. This is also shown in Fig. 12b, where the ratio of potentially
non-dominated solution over the generation size is presented. A solution is defined as poten-
tially non-dominated if the objective vector is non-dominated with respect to the individuals
computed up to that point. In mathematical terms, given the number of individuals in a
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generation NG the ratio ρ is expressed as follows

ρ =

∑NG

i=1 ck,i
NG

(43)

where the coefficient ck,i indicates whether the design vector xi,l occurring at the l-th itera-
tion in the current generation and i-th iteration in the global population is non-dominated
regarding the population at the i-th iteration Xi

ci,l =

{
1 if xi,l is non-dominated regarding Xi

0 otherwise.

It appears that when the ratio exceeds 0.3, the cost of the coupled approach becomes similar
to the cost of the tight decoupled approach. Nevertheless, the cost remains lower and the
global cost is reduced by 22 % (see Tab. 2). Please note that the ratio ρ is a lower bound
of the cost of the decoupled strategy, because it is computed in a post-processing stage with
the non-dominated solutions based on the final estimate. Therefore, it does not include the
refinement required for dominated solutions close to the Pareto front.

Figures 13a presents the tolerance τ used for each design vector in the objective space.
During the optimization, the algorithm uses the tighter tolerance τ

¯
= 1e-4 only in the region

close to the actual Pareto front. The loose tolerance τ̄ = 1e-1 is used for higher values of
the mean value f1. As a matter of fact, the resulting error bounding boxes are wider in that
area, as presented in Fig. 13b.

Discussion on error estimates. During the post-processing stage of the optimization, the
error with increasing number of samples has been computed for a group of design vectors.
For instance, in Fig. 14 the MC errors, estimated and conservative errors are plotted for the
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Figure 14: Errors affecting the mean value and the variance of function u for a representative
design vector of the decoupled loose Pareto front.
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Figure 15: Results of multi-objective algebraic problem (Eq. (40)) with conservative esti-
mates.

design x̃, a trade-off design belonging to the Pareto front obtained with the decoupled loose
method. The figure shows that in the first iterations of the SSC method the estimated errors
is not conservative with respect to the MC error (which represents the reference value, as
explained in Sec. 5).

In light of this result, the robust optimization has been performed again considering
the conservative estimated errors affecting the objective functions. The resulting Pareto
fronts are presented in Fig. 15a, which shows a situation similar to the one presented in
the preceding section. The coupled approach results in a front overlapping the result of the
decoupled method with tight tolerance. Once again, the loose tolerance does not provide
accurate results. The error bounding boxes computed in the coupled approach are larger in
this case, due to the higher order of magnitude of the conservative estimated errors. The
computational cost of the coupled approach in this case is higher and it approaches the
result of the tight tolerance (see Fig. 16a). This is due to two main reasons. First, the
ratio of potentially non-dominated solutions over generation size ρ is greater in this case
as presented in Fig. 16b. Second, since the conservative estimates overestimate the actual
errors, the bounding box is greater than the box that could be defined with the actual errors
(see the boxes in Fig. 15b). As a result, it is more likely for the bounding box to dominate
the Pareto front, thereby requiring a higher number of samples even for the design vectors
that are far from the Pareto front.
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Figure 16: Cost of the multi-objective algebraic optimization (Eq. (40)) with NSGA and
conservative estimates.

The results obtained with the estimated and conservative estimated errors highlight two
important aspects. First, even if the error estimates in the first iterations of the SSC are
not strictly conservative, the proposed strategy is able to attain the accurate Pareto front
as presented in the preceding section. In fact, for the non-dominated solutions the method
always uses the lowest tolerance τ

¯
, overcoming the problems that may arise with a non-

conservative error estimates in the first iterations. Thus, the method is robust and it is
able to assess whether a solution that may appear non-dominated due to a poor accuracy
of the objective function is actually dominated. Nevertheless, conservative estimates are
important in the opposite situation, that is to avoid discarding potentially non-dominated
solutions. Secondly, not only it is crucial to have an error estimate that is conservative, but
also the estimate should be consistent with the actual error. A too conservative estimate
may jeopardize the efficiency of the adaptive strategy.

6.2.2. Coupled method with BiMADS

The multi-objective robust optimization problem presented in Eq. (40) is tackled also
with the BiMADS algorithm coupled to the SSC method. The results are presented in
Fig. 17a, where the front obtained with the decoupled and coupled approaches are compared
to the result of the analytic function. Similarly to the case presented in the preceding
subsection, the distance computed with respect to the analytic result in Fig. 17b proves that
the decoupled method with tight tolerance and the coupled method reaches the analytical
result. Furthermore, the convergence is reached in almost five iterations of the algorithm.
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Figure 17: Results of the multi-objective algebraic test case (Eq. (40)) with BiMADS.
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Figure 18: Cost of the multi-objective optimization with BiMADS.
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Table 3: Comparison of total number of function evaluations in the BiMADS optimization
loop.

Strategy Decoupled (1e-1) Decoupled (1e-4) Coupled
Number of function evaluations 5331 26387 23894

The cost of the decoupled approach with tight tolerance is reduced by 30% with the
coupled approach in the first iteration (see Fig. 18a). In the following iterations the coupled
approach becomes more expensive and the cost gets closer to the cost of the tight decoupled
method, although it remains lower. The reduction of the global cost is about 10% in this case.
In fact, in the first iterations many design vectors close to the Pareto front are computed: as
reported in Fig. 18b over 70% of the design vectors are potentially non-dominated solutions.
In additon, during the remaining iterations, the design vectors tested are very close to the
Pareto front, so a tighter tolerance is required in those cases. On average, the coupled
approach in the last iterations uses 25 evaluations per design vector, whereas the decoupled
tight approach uses 28 function evaluations.

7. Uncertainty-based optimization of an engineering testcase

In this section an engineering test case is presented. The optimization problem is stated
in Sec. 7.1 and the results of the coupled strategy are discussed in Sec. 7.2.

7.1. Robust optimization problem

The robust optimization method proposed in the paper is applied to the optimal selection
of the airfoil for a helicopter rotor blade in hover. Instead of considering a deterministic,
representative operating condition, it is assumed that the freestream condition of the airfoil
section is affected by some level of uncertainty. In this paper we consider sources of uncer-
tainty in the physical modelling employed at the design stage that could impact the local
pitch angle θ and the rotor induced velocity Vi (see Fig. 19) at which the airfoil of the blade
operates. A complete description of the problem is presented in Ref. [29]. The uncertainty on
the pitch angle and induced velocity affects the angle of attack, Mach number and Reynolds
number of the flow encountered by the airfoil.

UT

Vi

θ

Figure 19: Scheme of operating conditions at a blade section: the uncertain variables are
the pitch angle θ and the induced velocity Vi. The velocity component UT is the velocity
tangential to the rotor disk.
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The objective of the aerodynamic optimization is to maximize the lift-to-drag ratio E,
which is a measure of the aerodynamic efficiency of the airfoil. Also, a robust optimal airfoil
shape is sought. Robustness means that the design parameters x defining the shape of
the airfoil allows simultaneous improvement in the overall performance and minimization of
the sensitivity with respect to changes in the system operative conditions. In other words,
the optimal design must maximize the mean value μE and minimize the variance σ2

E of
the objective function, computed by taking into account the uncertainties of the operating
conditions. The objective function E is a function of the output of the aerodynamic system,
that is the solution of the differential equation modelling the aerodynamics:

L (x,y, ξ;φ(x,y, ξ)) = 0, (44)

where L is a nonlinear spatial differential operator describing the problem. The problem is
well posed by considering a constraint on the geometry of the airfoil to avoid more than one
inflection point on the camber line, and an aerodynamic constraint on the pitching moment.
The latter constraint is applied when the moment coefficient about the quarter-chord location
exceeds 0.03 to prevent excessive torque on the blade structure. In mathematical terms, the
resulting optimization problem can be stated as:

maximize: f1 = μ (E (φ (x,y, ξ)))

and minimize: f2 = σ2 (E (φ (x,y, ξ)))

subject to: L (x,y, ξ;φ(x,y, ξ)) = 0

g (x,y, ξ;φ(x,y, ξ)) ≤ 0

by changing: x (45)

with uncertain input parameters ξ = {θ, Vi} and under the constraints previously described
and collected in vector g.

The uncertain variables are described with a probabilistic approach as uniformly dis-
tributed variables. In particular, they are assigned a nominal value and an uncertainty band
around it. The nominal conditions considered in the test case are summarised in Tab. 4, and
they refer to the 50% of the radius of the operating conditions of the Bo105 rotor [30]. The
uncertainty band is set to 15% for the induced velocity and ±2.5 deg for the pitch angle [29].

The design variables are represented by the coefficients of a parameterization used to dis-
cretize the shape of the airfoil in a set of finite design variables. In particular, the Class/Shape
function Transformation [31] is employed, which is based on a truncated series of Bernstein
polynomials. The number of design variables are set to 17 after a convergence analysis [29].

The aerodynamic model is based on the coupling of a potential model for the outer region
and a boundary layer method close to the airfoil. The numerical solver is XFOIL [32], an
aerodynamic code which couples panel and integral boundary layer methods developed for
the analysis of subsonic, isolated airfoils. This model is well suited for the simulation of
flows around an airfoil at moderate values of the angle of attack and Mach number, and it
permits a rapid evaluation of the aerodynamic coefficients.
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Table 4: Nominal operating conditions of the robust aerodynamic optimization.

θ[deg] Vi[m/s] α[deg] M Re

12.1 11.7 5.9 0.32 1.6e6
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(a) Pareto front of decoupled tight approach.
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(b) Pareto front of coupled method.

Figure 20: Pareto fronts of decoupled and coupled methods.

7.2. Results

The robust aerodynamic optimization has been performed by a decoupled approach with
tight tolerance (τ

¯
= 5e-1) and a coupled approach with τ

¯
= 5e-1 and τ̄ = 5. The tolerance

values are increased with respect to the algebraic cases due to the higher order of magnitude
of the objective functions. In addition, the decoupled approach with loose tolerance is not
considered here, because it is deemed that in real-world applications due to the substantial
cost of the robust optimization procedure it may not be possible to assess the effect of the
tolerance. If a single run has to be performed, it is best to choose a tight tolerance that
guarantees good results. For the optimization loop the NSGA has been used, because a high
number of design variables are employed.

The Pareto fronts obtained with the decoupled and coupled methods are presented in
Fig. 20a and Fig. 20b, respectively. In the figures, the solution with higher mean value,
higher variance and a trade-off solution are highlighted. From the figures it is clear that the
coupled method compares well to the decoupled approach. To give a rigorous, quantitative
measure of this comparison, the Pareto front obtained with the coupled approach has been
post-processed with the decoupled method. The resulting front is presented in Fig. 21
with the result of the decoupled method. The coupled front almost overlaps the decoupled
results; the distance between the fronts computed according to Eq. (42) is equal to 2.25. The
solutions belonging to the front improves the mean value of the efficiency of the reference
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Figure 21: Comparison of Pareto fronts (front obtained with coupled approach has been
post-processed with tight tolerance for comparison).
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Figure 22: Optimal airfoils of decoupled and coupled methods.

airfoil, i.e. the NACA 0012, and a subset has also reduced variance. To compare the optimal
shapes, the airfoils with higher mean value and higher variance are presented in Fig. 22a and
Fig. 22b. Despite minor differences, the airfoils of the fronts obtained with the two methods
share similar trends.

With regard to computational cost, the coupled method greatly reduces the cost of the
decoupled approach (see Tab. 5): in the first generation the cost is reduced by 58% and the
gain on the global cost is equal to 40%. The great reduction is due to the fact that the
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Figure 23: Cost of the decoupled and coupled methods for the robust aerodynamic optimiza-
tion.

Table 5: Comparison of total number of function evaluations for the robust aerodynamic
optimization.

Strategy Number of function evaluations

Initial generation Evolution Global
Decoupled tight 3982 51258 55240
Coupled 1661 31760 33421

optimization problem is high-dimensional and nonlinear. Thus, the optimization algorithm
samples many design vectors in the design space with poor objectives, especially in the first
iterations. In fact, the ratio ρ is lower than 0.2 (see Fig. 23b) with a growing trend after 20
generations. This means that the generation becomes rich of non-dominated individuals only
after a few generations of the algorithm. Please recall that the ratio ρ is a lower bound of the
actual cost, since it does not take into account the refinement needed for dominated solutions
close to the Pareto front (as explained in Sec. 6.2.1). To highlight this aspect, Figure 23b
presents the modified ratio ρ1, computed taken into account not only the non-dominated
solutions, but also the solutions within a distance to the current Pareto front of τ

¯
in each

direction of the objective space. The second ratio has a trend closer to the one of the actual
cost of the coupled strategy. To conclude, the coupled approach gives an accurate estimate
of the Pareto front with a greatly reduced computational effort.
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Conclusion

In this paper, a novel strategy is presented to merge the optimization algorithm and
the UQ method in an uncertainty-based optimization framework. The strategy relies on an
adaptive refinement in the stochastic space only for the design with good performance. A
bounding box based on the estimates of the error affecting the objective function is defined
around the objectives vector. A comparison between the error bounding box and the current
Pareto front determines whether a further refinement is necessary. The method only requires
minor modifications to the UQ method, and it applies to derivative-free optimization.

The novel strategy has been applied to single- and multi-objective optimization problems,
using two optimization algorithms, i.e. a genetic algorithm (NSGA) and an adaptive direct
search method (BiMADS). The results proves that the method reduces the computational
cost with respect to the classical decoupled approach, especially in the first iterations of the
optimization algorithm. The accuracy of the actual Pareto front is preserved by the novel
strategy. The algebraic test cases have also shown that the great benefit of the method holds
for those problems where changing the tolerance on the statistics affects the optimization
result. The method has proved robust to non-conservative estimates of the error, although
a conservative estimate is always recommended.

The novel approach has been applied to an engineering test case, i.e. the robust aero-
dynamic optimization of an airfoil with application to helicopter rotor blades. In this case,
the reduction of the computational cost is even higher owing to the higher dimensionality
and nonlinearity of the optimization problem, which requires several iterations to converge
to the optimal solution. Finally, the strategy proposed in the paper is very flexible and it
could be easily extended to different optimization algorithms and adaptive UQ methods.

Future works will be oriented to formulate more intrusive approaches for taking into
account the variability associated to the bounding boxes when applying the optimization
operators.
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