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Abstract

In this paper, we present a new pseudo-spectral method to solve the initial
value problem associated to a non-local KdV-Burgers equation involving a
Caputo-type fractional derivative. The basic idea is, using an algebraic map,
to transform the whole real line into a bounded interval where we can apply
a Fourier expansion. Special attention is given to the correct computation of
the fractional derivative in this setting.
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1. Introduction

In this paper, we present a new pseudo-spectral method to solve the initial
value problem associated to the following non-local KdV-Burgers equation
[1]:

∂tv + ∂x(v
2) = ∂xDαv + τ∂3

xv, x ∈ R, t ≥ 0, (1)

with τ > 0, where Dα denotes the non-local operator, acting only on the
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variable x ∈ R,

Dαv(x) = dα

∫ x

−∞

v′(y)

(x− y)α
dy, (2)

with 0 < α < 1, and

dα =
1

Γ(1− α)
> 0,

being Γ the Gamma function. The operator Dα can be regarded as a left-
sided fractional derivative in the Caputo sense, see e.g. [2], with integration
taken from −∞.

Equation (1) with α = 1/3 and either a quadratic flux, as above, or a
cubic one, has been derived from a model of two-layer shallow water flow.
This equation results by performing formal asymptotic expansions associ-
ated to the triple-deck (boundary layer) theory used in fluid mechanics (see,
e.g. [3] and [4]). It is well-known that hyperbolic systems, such as the two
dimensional shallow water model, may exhibit solutions that develop discon-
tinuities or shocks. These shocks correspond to the so-called hydraulic-jumps
or bores in this context. In order to investigate the internal structure of shock
waves, it is customary to consider the viscosity of the system or to introduce
it artificially. In the particular case studied in [3], viscosity terms become
important near the bottom boundary. In order to take its effect into ac-
count, a boundary layer needs to be introduced. Additionally, the effect due
to the stream curvature that becomes important near shock waves cannot be
neglected.

In [3] (for the single layer case) and in [4] (see also [5]), the authors
keep track of the viscosity on the bottom boundary in a way consistent with
the Navier-Stokes equations, by means of matched asymptotic expansions in
the limit of the Reynolds number tending to infinity. As a consequence, a
distinguished limit associated with a triple deck problem is presented. The
main idea of the triple deck theory (see e.g. [6]) is that the leading order outer
flow is not independent of the boundary layer flow, unlike in the classical
Prandtl’s theory [7]. These considerations, in a weak interaction limit, lead
to an equation of the type (1), where the fractional derivative term results
from the effect of viscosity, and the third order term results from the stream
curvature. The infinite domain where the equation is posed corresponds
to the domain of the inner region in the asymptotic limit. In this region,
traveling wave solutions and their stability are naturally analyzed, since they
resemble the inner structure of shock waves.
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There are other models where such a fractional derivative terms arise (see
v.g. [8], [9], [10], [11] and [12]). The common feature of these models is that
they result from the analysis of a boundary layer and thus they need to be
studied in an unbounded domain.

The existence of the Cauchy problem for (1), and the existence of traveling
wave solutions and their stability have been studied rigorously in [13] (with
τ = 0), and in [1] (with τ > 0). It is worth emphasizing that the study of
traveling wave solutions requires naturally that the equation is posed on R,
since these waves travel along the domain and are expected to emerge in a
large time limit. Our aim is thus to present a numerical method that deals
accurately and efficiently with the problem posed on R, taking particular
care of the numerical treatment of Dαv.

In the following pages, we will develop a new pseudo-spectral method for
(1). Essential references on spectral methods can be found in [14, 15, 16, 17,
18, 19], together with the more classical [20, 21].

One of the main difficulties in dealing with (1) is the unboundedness of the
spatial domain. However, according to Boyd [17, p. 338], the many possible
options for unbounded domains always fall into one of three following broader
categories:

1. Truncating the domain (taking x ∈ [−L, L], with L ≫ 1).
2. Using basis functions intrinsic to an infinite interval (for example, Her-

mite functions, sinc functions).
3. Mapping the unbounded interval to a finite interval, followed by the

application of Chebyshev polynomials or of a Fourier series.

We will adopt the third option here. It is possible to generate a great
variety of new basis sets for the infinite interval, which are the images of
Chebyshev polynomials or Fourier series [17, p. 355] under a change of the
independent variable x that maps R into a finite interval. Although an
infinite variety of maps is possible, we will concentrate on a very important
one, the so-called algebraic map (see v.g. [22] and [23]):

ξ =
x√

L2 + x2
⇐⇒ x =

Lξ√
1− ξ2

, (3)

with L > 0, which maps the whole real line x ∈ R into the interval ξ ∈ [−1, 1]
and vice versa. Then, we can use the Chebyshev polynomials (of the first
kind) Tk(ξ) over the new domain ξ ∈ [−1, 1]:

Tk(ξ) = cos(k arccos(ξ)), ∀k ∈ N ∪ {0}. (4)
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Moreover, (3) allows us to define a basis set for the infinite interval, formed
by the so-called rational Chebyshev polynomials:

TBk(x) = Tk

(
x√

L2 + x2

)
, x ∈ R, ∀k ∈ N ∪ {0}. (5)

These functions form an orthogonal basis in R with respect to the weight
(1 + x2)−1:

∫ +∞

−∞

TBm(x)TBn(x)

1 + x2
dx =





π/2, m = n > 0,

π, m = n = 0,

0, m 6= n.

Rational Chebyshev polynomials appear to behave extremely well in a great
variety of problems. For instance, in [24], rational Chebyshev polynomi-
als, Hermite functions and sinc functions were compared when solving nu-
merically two and three-dimensional nonlinear diffusion equations over un-
bounded domains. While Hermite and sinc functions are adequate for the
approximation of functions with exponential decay, it was shown in [24] that
rational Chebyshev polynomials are the most versatile option, because, be-
sides being a good choice for approximating exponentially decaying functions,
they really excel when applied to polynomially decaying solutions. In fact,
in this paper, we consider an exponentially decaying initial data for (1) that
become algebraically decaying as t increases (see [1]). Hence, in our opinion,
rational Chebyshev polynomials are here the best option, and, thus, we have
preferred them over other choices like Hermite functions and sinc functions.

In general, an advantage of not truncating the domain is that the bound-
ary conditions can often be ignored when the domain of integration is infinite
(see [23]), while truncating the domain necessitates setting artificial bound-
ary conditions (see v.g. [25] for a very complete review on artificial boundary
conditions in domain truncation problems).

Although we can work directly with (5), it is easier to use them under a
trigonometric representation, i.e., through the change of variable

ξ = cos(s) ⇐⇒ x = L cot(s), s ∈ [0, π]. (6)

Then, (4) and (5) become

Tk(ξ) = TBk(x) = cos(ks),
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i.e., we reduce the development of a function v(x) over R in a series of rational
Chebyshev polynomials to obtaining just a cosine expansion:

u(s) ≡ v(x(s)) =

∞∑

k=0

â(k) cos(ks).

We recall that, after applying (6), s ∈ [0, π], while the cosines are periodic in
s ∈ [0, 2π]. Therefore, in order to compute the cosine expansion of a function
defined over half a period, we may use an even extension of that function. At
this point, it is very important to underline that an even extension involving
only cosines is by no means the only option. Indeed, we will consider a more
general series expansion of v(x) under the change of variable x = L cot(s):

u(s) =
∞∑

k=0

â(k) cos(ks) +
∞∑

k=1

b̂(k) sin(ks), (7)

which implies augmenting (5) by a second set of basis functions denoted
SBk(x) and defined [23, p. 127] by:

SBk+1(x) = (1− ξ2)1/2Uk(ξ) = sin((k + 1)s), ∀k ∈ N ∪ {0},

where Uk(ξ) are the so-called Chebyshev polynomials of the second kind:

Uk(cos(s)) =
sin((k + 1)s)

sin(s)
, ∀k ∈ N ∪ {0}.

Even if we could work directly with TBk(x) and TSk(x), we follow the strat-
egy recommended by Boyd [23], i.e., to change to the trigonometric variable
and then apply Fourier series.

The structure of this paper is as follows. In Section 2, we propose a
pseudo-spectral method for simulating (1), which is based on the change of
variable (6), together with the application of a Fourier series expansion. Al-
though there are many references on the numerical computation by spectral
methods of fractional derivatives, most of them do not seem to consider inte-
gration from −∞ or to +∞, as is necessary in (2). For instance, [26] (which
is based on [27]) and [28] (for the closely related fractional integration) make
use of the Chebyshev polynomials, and in [29], Legrende, Chebyshev and
Jacobi polynomials are used for the computation of the Caputo derivative.
Other spectral methods use a suitable generalization of Jacobi polynomials
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for the computation of fractional derivatives (see for instance [30] and the
references therein). We remark that these generalized Jacobi polynomials
are well suited in the case of bounded domains; since, in that case, they form
an orthogonal basis, and the elements of this basis are mapped into the basis
by application of fractional derivatives. Fractional derivatives are also imple-
mented in the Chebfun package from Matlab c©, where the Gauss-Jacobi
quadrature is used (see v.g. [31]). In [32], a spectral method for substan-
tial fractional differential equations on a semi-infinite domain is developed,
without truncating the domain; notice that this fractional derivative has a
much more regular kernel. In any case, we have found no references on the
computation of the fractional derivative of rational Chebyshev polynomials.
Hence, the central part of this paper is the accurate computation of the op-
erator (2), or, more precisely, of ∂xDα, which is done in Section 2.1; whereas,
in Section 2.2, we do a numerical study on the minimum regularity required
by the involved functions.

The structure of (1) strongly suggests the use of an implicit-explicit
(IMEX) scheme in time, where the highest-order term, τ∂3

x, appears im-
plicitly, and the other lower-order terms appear explicitly; this is done in
Section 2.3. The numerical experiments are carried out in Section 3, and
show that we can simulate (1) until extremely large times.

Let us finish this introduction by mentioning that, in recent years, there
has been an increasing interest in solving Fractional Partial Differential Equa-
tions; in particular, equations with non-local diffusions, as in (1), (see for
instance [33] for fractional Laplacian); [34] for advection-diffusion with non-
local diffusion; and [35], for a spectral method applied to non-local reaction-
diffusion equations). Moreover, a computation of the fractional evolution
Burgers equation can be found in [36].

2. Numerical method

As explained above, in order to simulate numerically (1), we map the
space domain from R into [0, π] via the change of variable x = L cot(s), and
then apply Fourier series to the resulting equation. We discretize the space
variable at the non-final nodes:

sj =
π(2j + 1)

2N
⇐⇒ xj = L cot

(
π(2j + 1)

2N

)
⇐⇒ ξj = cos

(
π(2j + 1)

2N

)
,

(8)
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where 0 ≤ j ≤ N − 1, which divide the interval [0, π] in N equally-spaced
parts. Again, u(sj) ≡ v(x(sj)) = v(xj).

As mentioned in the introduction, instead of working only with cosines,
we consider a more general series expansion of u in the form (7). However,
the implementation is done with more ease by expanding u into series of eiks:

u(s) =

∞∑

k=−∞

û(k)eiks, s ∈ [0, π], (9)

where, in order to determine the coefficients û(k), it is necessary to decide
how to extend the function from s ∈ [0, π] to s ∈ [0, 2π]; i.e., we discretize
[0, 2π] in 2N nodes, sj = π(2j + 1)/(2N), 0 ≤ j ≤ 2N − 1. We recall that,
if we consider an even extension, we have a cosine expansion, while an odd
extension yields a sine expansion.

In general, given a 2N -term approximation of a 2π-periodic function u

u(s) ≈
N−1∑

k=−N

û(k)eiks, s ∈ [0, 2π], (10)

it is possible to determine uniquely the û(k) by evaluating (10) at sj

u(sj) =

N−1∑

k=−N

û(k)eikπ(2j+1)/(2N) =

2N−1∑

k=0

[û(k)eikπ/(2N)]e2ijkπ/(2N); (11)

then,

û(k) =
e−ikπ/(2N)

2N

2N−1∑

j=0

u(sj)e
−2ijkπ/(2N), (12)

where 0 ≤ i, j ≤ 2N − 1. Furthermore, the discrete Fourier transforms
(11) and (12) can be computed very efficiently by means of the fast Fourier
transform (FFT) [37]. Observe that, although (10) is in principle exact only
at the sj, it is nonetheless a very good approximation for all s, provided that
u is regular enough and that N is large enough. Let us mention also that, in
order to clean the spectrum, it is convenient to round to zero those û(k) whose
absolute value is smaller than the epsilon of the machine, ε = 2.2204 · 10−16.
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Let us express now all the terms of (1) in function of the new space-
variable s. It is straightforward [23] to check that

vx = −sin2(s)

L
us,

vxx =
sin4(s)

L2
uss +

2 sin3(s) cos(s)

L2
us,

vxxx = −sin6(s)

L3
usss −

6 sin5(s) cos(s)

L3
uss +

sin4(s)(8 sin2(s)− 6)

L3
us.

(13)

Therefore, given u in the form of (10), we can compute vx, vxx and vxxx
very efficiently. Indeed, let us suppose that u consists of just one node, i.e.,
u = eiks. Then, representing cos(s) and sin(s) in polar form, (13) becomes

vx =
ik

4L
ei(k+2)s − ik

2L
eiks +

ik

4L
ei(k−2)s,

vxx =− k2 + 2k

16L2
ei(k+4)s +

k2 + k

4L2
ei(k+2)s − 3k2

8L2
eiks

+
k2 − k

4L2
ei(k−2)s − k2 − 2k

16L2
ei(k−4)s,

vxxx =− i
k3 + 6k2 + 8k

64L3
ei(k+6)s + i

3k3 + 12k2 + 12k

32L3
ei(k+4)s

− i
15k3 + 30k2 + 24k

64L3
ei(k+2)s + i

5k3 + 4k

16L3
eiks

− i
15k3 − 30k2 + 24k

64L3
ei(k−2)s + i

3k3 − 12k2 + 12k

32L3
ei(k−4)s

− i
k3 − 6k2 + 8k

64L3
ei(k−6)s.

(14)

From (14), we can construct immediately (very sparse) differentiation matri-
ces in the Fourier side.

At this point, some comment about the choice of L is required; indeed,
the correct choice of the scaling is a matter of concern. Even if there are some
theoretical results [38], the optimal scaling values depend on the number of
points, the class of functions, and the type of problem, and can even change
during time. However, a good working rule of thumb seems to be that the
absolute value of the function at the extremal grid points is smaller than an
accuracy threshold ε.
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2.1. Computation of the fractional derivative

The most involved part in this paper is the accurate computation of the
fractional derivative ∂xDαv(x). The operator Dαv(x), in the form of (2), is
not very well-suited for numerical calculations when α is close to one, because
1/Γ(1− α) tends to infinity as α → 1−. On the other hand, throughout this
paper, we are considering solutions that remain at least C3 for all time (see
[1]). Therefore, we can safely integrate (2) by parts:

Dαv(x) =
1

Γ(1− α)
lim
b→x−

a→−∞

∫ b

a

v′(y)(x− y)−αdy

=
−1

Γ(2− α)
lim
b→x−

a→−∞

[
v′(y)(x− y)1−α

∣∣∣
y=b

y=a
−

∫ b

a

v′′(y)(x− y)1−αdy

]

=
1

Γ(2− α)

∫ x

−∞

v′′(y)(x− y)1−αdy, (15)

because, for a fixed x,

lim
y→x−

v′(y)(x− y)1−α = 0, lim
y→−∞

v′(y)(x− y)1−α = 0. (16)

The last condition is satisfied by all the functions we are interested in; for
instance, in (1), one expects that v(y, t) tends exponentially to a constant as
y → −∞, if the initial condition decays sufficiently fast (see [1]). A similar
reasoning enables us to conclude that ∂xDαv(x) and Dαv′(x) are equivalent.
Indeed, differentiating (15):

∂xDαv(x) =
1

Γ(2− α)
∂x

(∫ x

−∞

v′′(y)(x− y)1−αdy

)

=
1

Γ(2− α)

(
v′′(y)(x− y)1−α

∣∣∣
y=x

+

∫ x

−∞

∂x
(
v′′(y)(x− y)1−α

)
dy

)

=
1

Γ(1− α)

∫ x

−∞

v′′(y)(x− y)−αdy

=
1

Γ(2− α)

∫ x

−∞

v′′′(y)(x− y)1−αdy, (17)

where we are assuming that, for a fixed x,

lim
y→−∞

v′′(y)(x− y)1−α = 0. (18)
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In the numerical method that we propose, it is compulsory to integrate (2)
once by parts, as is done in (15). On the other hand, instead of working with
(17), it is possible to first compute numerically (15), and then differentiate it
numerically. However, we have chosen to work with (17), because it is more
compact to implement and more accurate.

Let us consider the change of variable x = L cot(s) from (6); then, using
(13),

vyyydy =

[
sin4(η)

L2
uηηη +

6 sin3(η) cos(η)

L2
uηη −

sin2(η)(8 sin2(η)− 6)

L2
uη

]
dη.

(19)

Hence, (17) becomes

(∂xDαv) (x(s)) =− L−1−α

∫ π

s

[
sin4(η)u′′′(η) + 6 sin3(η) cos(η)u′′(η)

− sin2(η)(8 sin2(η)− 6)u′(η)
]
(cot(s)− cot(η))1−αdη

=

∫ π

s

w(η)(cot(s)− cot(η))1−αdη, (20)

where

w(s) ≡L−1−α[− sin4(s)u′′′(s)− 6 sin3(s) cos(s)u′′(s)

+ sin2(s)(8 sin2(s)− 6)u′(s)]. (21)

We want to approximate (20) at the nodes sj defined in (8). At this point,
instead of applying a quadrature formula like the trapezoidal rule directly to
(20), we have chosen to transform it into an integral over [0, π] by means of
a characteristic function:

∂xDαu(s) ≡ (∂xDαv) (x(s)) =

∫ π

0

w(η)χ[s,π](η)(cot(s)− cot(η))1−αdη. (22)

Now, given a function f defined over [0, π] and whose value is known over the
nodes (8), a way of approximating its integral is by means of the well-known
Chebyshev-Gauss quadrature [39]:

∫ π

0

f(η)dη =

∫ 1

−1

f(arccos(ξ))√
1− ξ2

dξ ≈ π

N

N−1∑

j=0

f(arccos(ξj)) =
π

N

N−1∑

j=0

f(sj).

(23)
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However, in practice, we have found that applying this last formula to (22)
gives poor results; because, inside the integrand, χ[sj ,π](η)(cot(sj)−cot(η))1−α

has the singularity point precisely at η = sj . Therefore, we consider instead
the families of nodes

s
(m)
j =

π(2j + 1)

2m+1N
, 0 ≤ j ≤ 2mN − 1, m = 1, 2, . . .

Since s
(m)
j never coincides with any sj , we avoid evaluating χ[sj ,π](η)(cot(sj)−

cot(η))1−α at the singularity point, so we can apply (23) to (22) at the new
nodes, to obtain an approximation that depends on m:

[∂xDα](m) u(sj) ≡ [∂xDα](m) v(xj)

≡ π

2mN

2mN−1∑

l=0

w(s
(m)
l )χ[sj ,π](s

(m)
l )(cot(sj)− cot(s

(m)
l ))1−α

=
π

2mN

2mN−1∑

l=2m−1(2j+1)

w(s
(m)
l )(cot(sj)− cot(s

(m)
l ))1−α, (24)

where, in the last line, we have used that

s
(m)
l ≥ sj ⇐⇒ π(2l + 1)

2m+1N
≥ π(2j + 1)

2N
⇐⇒ l ≥ 2m−1(2j + 1). (25)

Bearing in mind the Fourier decomposition (10) of u, it is possible to evaluate

(21) at s
(m)
l fast and accurately. Indeed, if u = eiks, applying it to (21), we

get an expression similar to those in (14):

wk(s) = i
k3 + 6k2 + 8k

16L1+α
ei(k+4)s − i

k3 + 3k2 + 2k

4L1+α
ei(k+2)s + i

3k3

8L1+α
eiks

− i
k3 − 3k2 + 2k

4L1+α
ei(k−2)s + i

k3 − 6k2 + 8k

16L1+α
ei(k−4)s;

(26)

where we need to consider only k > 0, because w−k(s) = w̄k(s). Moreover,
from a computational point of view, it is much faster to evaluate wk(s) if
rewritten as

wk(s) =
eiks

L1+α

[
i
k3 + 8k

8
cos(4s)− 3k2

4
sin(4s)

− i
k3 + 2k

2
cos(2s) +

3k2

2
sin(2s) + i

3k3

8

]
.

(27)
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In (24), we are considering only s ∈ [0, π], although we are working with
s ∈ [0, 2π]. However, since cot(s) is π-periodic, we simply define

[∂xDα](m) u(sj+N) ≡
π

2mN

2mN−1∑

l=2m−1(2j+1)

w(s
(m)
l + π)(cot(sj)− cot(s

(m)
l ))1−α,

(28)

where sj+N = sj + π; moreover, if u = eiks, it follows from (26) that

wk(s+ π) = (−1)kwk(s). (29)

Summarizing, given an arbitrary function u(s) defined over [0, π], we extend it
to [0, 2π]; then we calculate its Fourier expansion (10); then we compute (24)
and (28), bearing in mind (27) and (29). For not extremely large N , the most
efficient option, and the one we follow, is to generate an operational (2N)×
(2N)-matrix M

(m)
α,N whose columns are precisely [∂xDα](m) eiks. Therefore,

(24) is reduced to just multiplying M
(m)
α,N by the column vector formed by the

Fourier coefficients (10) of u, which we denote by Û:

[∂xDα](m) u(sj) ≡
[
M

(m)
α,N · Û

]
j
. (30)

After some optimization of the code, this matrix can be generated in a very
efficient way; moreover, it needs to be calculated only once for given α, N
and m, and then it can be stored. L can be chosen equal to one and, for
other choices of L, apply a scaling, i.e., take L−1−αM

(m)
α,N . Let us mention

also that, if u is real, it is convenient to impose this fact explicitly in (30).
In order to test the quadrature formula (24), we have considered three

functions satisfying (16) and (18), and such that their fractional derivative
∂xDa can be explicitly computed by means of, for instanceMathematica c©.
More precisely, we have considered a function with quadratic decay,

v1(x) =
1

1 + x2
,

such that

∂xDαv1(x) = −πα(1 + α) csc(απ)

Γ(1− α)
(1 + x2)−(3+α)/2

·
[
sin

(απ
2

+ (1 + α) arctan(x)
)
+ x cos

(απ
2

+ (1 + α) arctan(x)
)]

;

(31)
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a function with quartic decay,

v2(x) =
1

(1 + x2)2
,

such that

∂xDαv2(x) =
πα(1 + α)

4Γ(1− α)
(1 + x2)−3−α/2

·
[
sec

(απ
2

)[
((3α + 8)x− αx3) sin(α arctan(x))

+ (−3 − α + (6 + 3α)x2 + x4) cos(α arctan(x))
]

+ csc
(απ

2

)
(1 + x2)1/2

[
(−3− α+ (1 + α)x2) sin((1 + α) arctan(x))

− (5x+ 2αx+ x3) cos((1 + α) arctan(x))
]]
;

(32)

and, finally, a function with Gaussian decay,

v3(x) = exp(−x2),

such that

∂xDαv3(x) =
1

3Γ(1− α)

[
− 6(1 + α)Γ

(
1− α

2

)
x1F1

(
3 + α

2
,
3

2
,−x2

)

− 3αΓ

(
1− α

2

)
1F1

(
1 +

α

2
,
3

2
,−x2

)

+ (4α+ 2α2)Γ

(
1− α

2

)
x2

1F1

(
2 +

α

2
,
5

2
,−x2

)]
,

(33)

where 1F1(a, b, c) is the confluent hypergeometric function [40], which can
be accurately evaluated by means of, for instance, Mathematica c© or
Matlab c©.

In general, it seems that the number of functions for which one can com-
pute explicitly ∂xDα is rather narrow. On the other hand, the resulting
expressions are rather involved, as we can see in (31), (32) and (33), which
thus constitute a stringent test for our numerical method. To measure the er-
rors, we have evaluated (31), (32), and (33) for 0 < α < 1, which are the cases
we are interested in; whereas, for the limiting cases α = 0 and α = 1, which
can also be considered with our method, we have taken, respectively, the first

13



and second derivatives of the test functions: v′1(x) = −2x(1+x2)−2, v′′1(x) =
(6x2 − 2)(1 + x2)−3; v′2(x) = −4x(1 + x2)−3, v′′2(x) = (20x2 − 4)(1 + x2)−4;
and v′3(x) = −2x exp(−x2), v′′3(x) = (4x2 − 2) exp(−x2).

In our numerical experiments, we have taken 1001 equally-spaced values
of α ∈ [0, 1], i.e., α = j/1000, j = 0, . . . , 1000. After applying (6), and doing
even extensions of the functions at s = π, we have multiplied the correspond-
ing M

(m)
α,N by their Fourier coefficients. The experiments corresponding to v1

have been done with L = 1.6; those corresponding to v2, with L = 1.1, and
those corresponding to v3, with L = 4. In all cases, N = 64.

In order to measure the accuracy of the results, we define, for a function
v(x) and a given α, the following error related to the discrete L∞-norm:

E(m)(α) ≡ max
j

∣∣∣∣
[
M

(m)
α,N · Û

]
j
− ∂xDαv(x)

∣∣∣∣ . (34)

For the sake of simplicity, we let E
(m)
1 (α), E

(m)
2 (α) and E

(m)
3 (α) denote the

errors corresponding to v1(x), v2(x) and v3(x), respectively. Then, Table 1

shows maxα∈[0,1] E
(m)
1 (α), maxα∈[0,1]E

(m)
2 (α) and maxα∈[0,1] E

(m)
3 (α), for m =

1, . . . , 6. Even if the errors clearly decay as m increases, they do it rather
slowly.

v1(x) v2(x) v3(x)

M(1) 5.0137 · 10−3 8.4605 · 10−3 1.2527 · 10−2

M(2) 2.1906 · 10−3 3.7336 · 10−3 5.3076 · 10−3

M(3) 9.7339 · 10−4 1.6713 · 10−3 2.3065 · 10−3

M(4) 4.3810 · 10−4 7.5653 · 10−4 1.0206 · 10−3

M(5) 1.9920 · 10−4 3.4555 · 10−4 4.5785 · 10−4

M(6) 9.1329 · 10−5 1.5902 · 10−4 2.0763 · 10−4

Table 1: Given v1(x) = (1+ x2)−1, v2(x) = (1+ x2)−2, and v3 = exp(−x2), we have com-

puted their fractional derivatives via M
(m)
α,N , for α = j/1000, j = 0, . . . , 1000. The columns

show, respectively, maxα∈[0,1]E
(m)
1 (α), maxα∈[0,1]E

(m)
2 (α) and maxα∈[0,1] E

(m)
3 (α), as de-

fined in (34), for m = 1, . . . , 6. The experiments corresponding to v1 have been done with
L = 1.6; those corresponding to v2, with L = 1.1, and those corresponding to v3, with
L = 4. In all cases, N = 64.

In order to improve the results, we have estimated the convergence rate
O(m−µ(α)), where, in our case, µ(α) is given by

µ(α) = lim
m→∞

log2

(
E(m)(α)

E(m+1)(α)

)
, (35)

14



because, from (24), E(m+1) requires twice as many points s
(m)
j as E(m+1).

Note however that, since the accuracy of a computer is finite, we do not take
in this formula m tending to infinity, but just an m large enough.
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Figure 1: Convergence rates of [∂xDα](m) to ∂xDα. Left: log2(E
(m)
1 (α)/E

(m+1)
1 (α)), cor-

responding to v1(x). Right: log2(E
(m)
2 (α)/E

(m+1)
2 (α)), corresponding to v2(x). Bot-

tom: log2(E
(m)
3 (α)/E

(m+1)
3 (α)), corresponding to v3(x). As m grows, the curves tend to

µ(α) = 2− α, for α ∈ [0, 1).

In Figure 1, we have plotted the convergence rates corresponding to v1(x),

v2(x) and v3(x), which are respectively given by log2(E
(m)
1 (α)/E

(m+1)
1 (α))

(left), log2(E
(m)
2 (α)/E

(m+1)
2 (α)) (right), and log2(E

(m)
3 (α)/E

(m+1)
3 (α)) (bot-

tom). The three graphics are very similar, and give evidence that µ(α) =
2 − α. For most α, this is clear even for m = 1, although, for those α very
close to α = 1, we can see the curves quickly converge to µ(α) = 2−α, as m
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grows. Hence, we claim that

‖[∂xDα]m v(x)− ∂xDαv(x)‖
∞

= O
(

1

m2−α

)
. (36)

Bearing in mind (36), it is immediate to construct more accurate quadrature
formulas by applying Richardson extrapolation [41] to (24). More precisely,
we define

[∂xDα](m,m+1) u(sj) ≡
22−α [∂xDα](m+1) u(sj)− [∂xDα](m) u(sj)

22−α − 1
, (37)

together with its associated matrix representation M
(m,m+1)
α,N . Note that Fig-

ure 1 suggests that (36) is valid for α ∈ [0, 1). On the other hand, when α = 1,
the experiments show clearly µ(1) = 2, i.e., a second-order convergence. In
general, the convergence for the limiting cases α = 0 and α = 1 is often
better. However, since we are interested in α ∈ (0, 1), these non-fractionary
cases are not so relevant, so we have applied (37) and the extrapolation for-
mulas that will appear in the next pages for all α ∈ [0, 1], obtaining good
results even for α = 0 and α = 1.

As in (34), we define E(m,m+1)(α) ≡ maxj |[M(m,m+1)
α,N · Û]j − ∂xDαv(x)|,

and as before, we let E
(m,m+1)
i (α) correspond to the error of vi(x) for each

i = 1, 2, 3. Table 2 shows maxα∈[0,1] E
(m,m+1)
1 (α), maxα∈[0,1] E

(m,m+1)
2 (α) and

maxα∈[0,1] E
(m,m+1)
3 (α), for m = 1, . . . , 5. Observe that the errors decay faster

than in Table 2.

v1(x) v2(x) v3(x)

M(1,2) 7.5676 · 10−4 1.0814 · 10−3 2.3110 · 10−3

M(2,3) 1.8889 · 10−4 2.7010 · 10−4 5.7575 · 10−4

M(3,4) 4.7205 · 10−5 6.7510 · 10−5 1.4381 · 10−4

M(4,5) 1.1800 · 10−5 1.6877 · 10−5 3.5945 · 10−5

M(5,6) 2.9499 · 10−6 4.2191 · 10−6 8.9858 · 10−6

Table 2: Continuation of Table 1. Errors obtained after computing the fractional deriva-

tives via M
(m,m+1)
α,N , for m = 1, . . . , 5. All the other details are identical.

Figure 2 depicts the convergence rates corresponding to Table 2, given
by log2(E

(m,m+1)
1 (α)/E

(m+1,m+2)
1 (α)) (left), log2(E

(m,m+1)
2 (α)/E

(m+1,m+2)
2 (α))

16



(right) and log2(E
(m,m+1)
3 (α)/E

(m+1,m+2)
3 (α)) (bottom), which correspond re-

spectively to v1(x), v2(x) and v3(x). The three graphics are very similar, and
give evidence that µ(α) = 3 − α. For most α, this is clear even for m = 1,
although, for those α very close to α = 0, we can see the curves quickly
converge to µ(α) = 3− α as m grows. Thus, there is a complete parallelism
with Figure 1.
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Figure 2: Convergence rates for (37). Left: log2(E
(m,m+1)
1 (α)/E

(m+1,m+2)
1 (α)), corre-

sponding to v1(x). Right: log2(E
(m,m+1)
2 (α)/E

(m+1,m+2)
2 (α)), corresponding to v2(x).

Bottom: log2(E
(m,m+1)
3 (α)/E

(m+1,m+2)
3 (α)), corresponding to v3(x). As m grows, the

curves tend to µ(α) = 3− α, for α ∈ (0, 1].

In view of the previous results, we claim that

∥∥[∂xDα]m,m+1 v(x)− ∂xDαv(x)
∥∥
∞

= O
(

1

m3−α

)
; (38)
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hence,

‖[∂xDα]m v(x)− ∂xDαv(x)‖
∞

=
c1(α)

m2−α
+

c2(α)

m3−α
+ . . . ,

for some c1(α), c2(α) bounded on α ∈ (0, 1). Bearing in mind (38), we have
applied Richardson extrapolation to (37), to define

[∂xDα](m,m+1,m+2) u(sj) ≡
23−α [∂xDα](m+1,m+2) u(sj)− [∂xDα](m,m+1) u(sj)

23−α − 1
,

(39)

together with its associated matrix representation M
(m,m+1,m+2)
α,N .

v1(x) v2(x) v3(x)

M(1,2,3) 5.5822 · 10−7 6.0120 · 10−7 3.4331 · 10−6

M(2,3,4) 6.0166 · 10−8 6.6696 · 10−8 3.6703 · 10−7

M(3,4,5) 6.7540 · 10−9 7.5771 · 10−9 4.0560 · 10−8

M(4,5,6) 7.6782 · 10−10 8.6835 · 10−10 4.5490 · 10−9

Table 3: Continuation of Tables 1 and 2. Errors obtained after computing the fractional

derivatives via M
(m,m+1,m+2)
α,N , for m = 1, . . . , 4. All the other details are identical.

Table 3 shows maxα∈[0,1] E
(m,m+1,m+2)
1 (α), maxα∈[0,1] E

(m,m+1,m+2)
2 (α) and

maxα∈[0,1] E
(m,m+1,m+2)
3 (α), for m = 1, . . . , 4; where E(m,m+1,m+2)(α) is the

generalization of (34) corresponding to M
(m,m+1,m+2)
α,N , etc. The errors decay

now much faster than in Tables 1 and 2. Moreover, in view of (36) and (38),
we may expect that

∥∥[∂xDα]m,m+1,m+2 v(x)− ∂xDαv(x)
∥∥
∞

= O
(

1

m4−α

)
. (40)

This is confirmed by Figure 3, which depicts the convergence rates corre-
sponding to Table 3, given by log2(E

(m,m+1,m+2)
1 (α)/E

(m+1,m+2,m+3)
1 (α)) for

v1(x) (left); by log2(E
(m,m+1,m+2)
2 (α)/E

(m+1,m+2,m+3)
2 (α)) for v2(x) (right);

and by log2(E
(m,m+1,m+2)
3 (α)/E

(m+1,m+2,m+3)
3 (α)) for v3(x) (bottom). Since

the errors are now much smaller, the graphics are not so sharp as those
in Figures 1 and 2. Nevertheless, they still give acceptable evidence that
µ(α) = 4− α.
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Figure 3: Convergence rates for (39). Left: log2(E
(m,m+1,m+2)
1 (α)/E

(m+1,m+2,m+3)
1 (α)),

corresponding to v1(x). Right: log2(E
(m,m+1,m+2)
2 (α)/E

(m+1,m+2,m+3)
2 (α)), correspond-

ing to v2(x). Bottom: log2(E
(m,m+1,m+2)
3 (α)/E

(m+1,m+2,m+3)
3 (α)), corresponding to

v3(x). The curves can be roughly approximated by µ(α) = 4− α, for α ∈ [0, 1).

We can go further in the extrapolation process. Indeed, all the previous
arguments strongly suggest that

‖[∂xDα]mv(x)− ∂xDαv(x)‖∞

=
c1(α)

m2−α
+

c2(α)

m3−α
+

c3(α)

m4−α
+

c4(α)

m5−α
+

c5(α)

m6−α
+ . . . ,

(41)

for some c1(α), c2(α), c3(α) . . . bounded on α ∈ (0, 1). Therefore, we define,
for a given integer n ≥ 3,

[∂xDα](m,m+1,...,m+n−1,m+n)u(sj)

≡ 2n+1−α [∂xDα](m+1,...,m+n) u(sj)− [∂xDα](m,...,m+n−1) u(sj)

2n+1−α − 1
,

(42)
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together with its associated matrix representation M
(m,m+1,...,m+n−1,m+n)
α,N . In

Table 4, we have used higher-order approximations given by (42) to approx-
imate ∂xDα. The very high accuracy achieved with, for instance, M(1,2,3,4,5)

and M(1,2,3,4,5,6), confirms the adequacy of (41).

v1(x) v2(x) v3(x)

M(1,2,3,4) 2.8383 · 10−8 2.3888 · 10−8 1.9085 · 10−7

M(2,3,4,5) 1.7682 · 10−9 1.4907 · 10−9 1.1862 · 10−8

M(3,4,5,6) 1.1053 · 10−10 9.3191 · 10−11 7.4030 · 10−10

M(1,2,3,4,5) 7.7385 · 10−12 3.5603 · 10−12 7.6762 · 10−11

M(2,3,4,5,6) 6.6334 · 10−13 3.8475 · 10−13 8.7386 · 10−12

M(1,2,3,4,5,6) 5.3305 · 10−13 3.8948 · 10−13 7.7834 · 10−12

Table 4: Continuation of Tables 1, 2 and 3. Errors obtained after computing the fractional
derivatives via higher-order approximations. All the other details are identical.

It is interesting to show graphically how fractional derivatives look like for
different values of α. In Figure 4, we have plotted [∂xDα](1,2,3,4,5,6) sech(x),
for α = 0, 0.1, . . . , 1, taking N = 128, L = 3.9. Note that, unlike in the
previous examples, we do not know the explicit expression of ∂xDα sech(x),
except in the limiting cases α = 0 and α = 1, which correspond to v′(x) =
− tanh(x)/ cosh(x) and v′′(x) = (2 tanh2(x)−1)/ cosh(x), respectively. How-

ever, since ‖ [∂xDα=0]
(1,2,3,4,5,6)

sech(x) − sech′(x)‖∞ = 2.3873 · 10−13 and

‖ [∂xDα=1]
(1,2,3,4,5,6)

sech(x) − sech′′(x)‖∞ = 7.2609 · 10−14, we can expect a
similar accuracy also for α ∈ (0, 1).

Observe the transition between the thick dashed-dotted line (α = 0, i.e.,
sech′(x)) and the thick solid line (α = 1, i.e., sech′′(x)). Let us recall here
the comments on the related Figure 5 from [31]: it is rare to see figures like
Figure 4, in which numerically evaluated fractional derivatives or integrals
are plotted. Indeed, the authors in [31] claimed that they did not known of
such figures in the literature. Therefore, Figure 4 seems to be the first one
where the numerically evaluated fractional derivative of a function defined
over the whole R has been ever plotted.

2.2. Remarks on the minimum regularity required

It is well-known that pseudo-spectral methods are most convenient when
applied to regular functions. In fact, along this paper, we are assuming
that all the functions are C3, and satisfying (16) and (18). However, it is
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Figure 4: Numerical computation of ∂xDα sech(x), for α = 0, 0.1, . . . , 1. The thick dashed-
dotted line represents the computation for α = 0 and the thick solid line represents the
computation for α = 1; being the thin solid lines the transitions between these two.

straightforward to check that our method can still be useful for functions
with much less regularity. In order to illustrate this, we have considered four
functions with similar structure, and decaying quadratically at infinity, but
with growing regularity:

v4(x) =
x|x|
1 + x4

, v5(x) =
|x|3

1 + |x|5 ,

v6(x) =
x3|x|
1 + x6

, v7(x) =
|x|5

1 + |x|7 .
(43)

More precisely, v4(x) is C1, but not C2; v5(x) is C2, but not C3; v6(x) is C3,
but not C4; and v7(x) is C4, but not C5.

Unlike in the previous examples with v1(x), v2(x) and v3(x), we do not
know the explicit expression of ∂xDα applied to (43). Therefore, as in the
example with sech(x) in Figure 4, we have to content ourselves with testing
our method for the limiting cases α = 0 and α = 1, which correspond
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respectively to the first and second derivatives:

v′4(x) = −2|x|5 − 2|x|
(1 + x4)2

, v′′4(x) =
6x8 − 24x4 + 2

(1 + x4)3
sgn(x),

v′5(x) = −2x7 − 3x|x|
(1 + |x|5)2 , v′′5(x) =

6|x|11 − 38x6 + 6|x|
(1 + |x|5)3 ,

v′6(x) = −2|x|9 − 4|x|3
(1 + x6)2

, v′′6 (x) =
6x13 − 54x7 + 12x

(1 + x6)3
|x|,

v′7(x) = −2x11 − 5x3|x|
(1 + |x|7)2 , v′′7(x) =

6|x|17 − 72x10 + 20|x|3
(1 + |x|7)3 .

Table 5 shows the errors in discrete L∞-norm between the exact and the
approximated values of ∂xDαv4(x), ∂xDαv5(x), ∂xDαv6(x), and ∂xDαv7(x),
for α = 0 and α = 1, and for six different-order approximations of ∂xDα. The
experiments have been done respectively with L = 0.1, L = 0.14, L = 0.2
and L = 0.28. In all cases, N = 256.

In view of the results, we can draw several important conclusions. On the
one hand, as expected, they are not as good as those obtained previously for
all α ∈ [0, 1], for the C∞ functions v1(x), v2(x) and v3(x), with just N = 64.
On the other hand, the accuracy with which one can compute numerically
∂xDαv(x) for a function v(x) increases dramatically with the regularity of
v(x). At this point, we find especially remarkable what happens with v4(x)
when α = 1. Indeed, in spite of being approximating a function that is not
even continuous,

lim
x→0−

v′′4(x) = −2, lim
x→0+

v′′4(x) = 2,

the results, even if poor, are still coherent.
Let us finish this section by making some comments on the boundedness

of the functions. In fact, all the functions we are interested in are bounded,
and boundedness is implicitly assumed all the time. However, if a regular
function v(x) is unbounded, the change of variable (6) will introduce an
artificial singularity in u(s) at s = 0 and/or s = π. In those cases, the
method is of limited application, but can still be of some utility, at least for
functions with slow growth. Let us consider for instance

v8(x) = log(1 + x2),
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v4(x) v5(x)
α = 0 α = 1 α = 0 α = 1

M(1) 1.7691 · 10−3 1.0451 · 10−1 1.6052 · 10−3 8.1360 · 10−3

M(1,2) 1.8867 · 10−4 8.6964 · 10−2 4.1015 · 10−6 4.0818 · 10−3

M(1,2,3) 1.8823 · 10−4 8.4886 · 10−2 4.4278 · 10−7 5.7049 · 10−4

M(1,2,3,4) 1.8827 · 10−4 8.4396 · 10−2 4.4260 · 10−7 5.6994 · 10−4

M(1,2,3,4,5) 1.8827 · 10−4 8.4430 · 10−2 4.4261 · 10−7 5.6998 · 10−4

M(1,2,3,4,5,6) 1.8827 · 10−4 8.4430 · 10−2 4.4261 · 10−7 5.6998 · 10−4

v6(x) v7(x)
α = 0 α = 1 α = 0 α = 1

M(1) 1.2645 · 10−3 8.3822 · 10−3 9.9656 · 10−4 8.8407 · 10−3

M(1,2) 2.5273 · 10−6 4.2022 · 10−3 1.3500 · 10−6 4.4287 · 10−3

M(1,2,3) 1.8058 · 10−7 6.4987 · 10−6 9.6944 · 10−8 4.9026 · 10−6

M(1,2,3,4) 1.5933 · 10−9 1.0984 · 10−6 5.4074 · 10−11 3.5168 · 10−7

M(1,2,3,4,5) 1.5932 · 10−9 1.0954 · 10−6 1.1625 · 10−10 1.0714 · 10−8

M(1,2,3,4,5,6) 1.5933 · 10−9 1.0954 · 10−6 2.2295 · 10−11 1.0712 · 10−8

Table 5: Given v4(x) = x|x|(1 + x4)−1, v5(x) = |x|3(1 + |x|5)−1, v6(x) = x3|x|(1 + x6)−1

and v7(x) = |x|5(1 + |x|7)−1; errors in discrete L∞-norm in s ∈ [0, π] between the exact
and the approximated values of ∂xDαv4(x), ∂xDαv5(x), ∂xDαv6(x), and ∂xDαv7(x), for
α = 0 and α = 1, and for six different-order approximations of ∂xDα. The experiments
have been done respectively with L = 0.1, L = 0.14, L = 0.2 and L = 0.28. In all cases,
N = 256.

with logarithmic growth, and such that its fractional derivative is explicitly
known for all α:

∂xDαv8(x) =
2πα csc(απ)

Γ(1− α)
(1 + x2)−1−α/2

·
[
sin

(απ
2

+ α arctan(x)
)
+ x cos

(απ
2

+ α arctan(x)
)]

;

(44)

As with v1(x), v2(x) and v3(x), we have taken 1001 equally-spaced values of
α ∈ [0, 1], i.e., α = j/1000, j = 0, . . . , 1000. When α = 0, and α = 1, we use
respectively v′8(x) = 2x(1 + x2)−1 and v′′8(x) = (2 − 2x2)(1 + x2)−2, instead
of (44). Table 6 shows the errors for six different approximations of ∂xDα,
taking N = 256, L = 30.4. Even though the accuracy is rather low, it is
nevertheless enough to get a rough idea of the shape of ∂xDαv8.
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v8(x)

M(1) 2.1199 · 10−2

M(1,2) 5.7432 · 10−3

M(1,2,3) 9.6408 · 10−4

M(1,2,3,4) 9.3004 · 10−4

M(1,2,3,4,5) 9.3002 · 10−4

M(1,2,3,4,5,6) 9.3002 · 10−4

Table 6: Given v8(x) = log(1 + x2), we have computed its fractional derivative for six
different-order approximations of ∂xDα, for α = j/1000, j = 0, . . . , 1000. The column

shows maxα∈[0,1]E
(1)
8 (α), maxα∈[0,1]E

(1,2)
8 (α), etc. The experiments have been done with

L = 30.4 and N = 256.

Summarizing, although the method is best suited for regular functions,
it gives acceptable results for functions far less regular, and it can even be of
some utility when applied to unbounded functions with slow growth.

2.3. Discretization in time of the evolution problem (1)

The structure of (1) suggests using a so-called implicit-explicit (IMEX)
scheme, where the leading term is treated implicitly and the other terms are
treated explicitly. In this paper, we have chosen the quite popular second-
order semi-implicit backward differentiation formula (SBDF) [42], which,
when applied to (1), takes the following form:
(
3

2
−∆tτ∂3

x

)
v(n+1) = 2v(n) − 1

2
v(n−1) + 2∆t

[
∂xDαv(n) − ∂x((v

(n))2)
]

−∆t
[
∂xDαv(n−1) − ∂x((v

(n−1))2)
]
,

(45)

where v(n) denotes the approximation of v at time t(n) = n∆t. We approx-
imate the fractional derivative terms by means of [∂xDα](1,2,3,4,5,6); and the
first-order derivative ∂x via (13). Once the right-hand side of (45) has been
obtained, we observe that, from (14), (3/2−∆τ∂3

x) can be seen in the Fourier
side as a very sparse matrix. Therefore, in view of the Fourier representa-
tion (10), it is possible to compute the 2N Fourier coefficients û(n+1)(k),
−N ≤ k ≤ N − 1, in just O(N) operations. Observe also that we need
two initial values to initialize the scheme (45), v(0) and v(1). We take as v(0)

an even extension of the initial data, while v(1) is obtained by a first-order
semi-implicit Euler scheme,

(
1−∆tτ∂3

x

)
v(n+1) = v(n) +∆t

[
∂xDαv(n) − ∂x((v

(n))2)
]
,
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together with fourth-order Richardson extrapolation, in a similar way to, for
instance, (37).

Let us make a couple of observations. The first one is that, although
∂xDα is a linear operator, it is however a non-local one. Therefore, even if
it is of course possible to write ∂xDαv(n+1) implicitly, it requires inverting a
very dense matrix at each time-step, which is very inefficient. The second
observation is that we have also tested the higher-order IMEX schemes in [42],
but they appear to require bigger stability constraints on ∆t. On the other
hand, (45) is very stable. In our numerical experiments, unless otherwise
indicated, we have taken ∆t = 0.01, which is a relatively large value, but
that allows to reach very long times with reasonable accuracy; smaller values
of ∆t give no significant improvement in fact.

3. Numerical experiments

As an illustration of the method presented here, we give examples in
which the initial condition induces the appearance of solutions that approach
traveling wave solutions of (1) as t becomes large.

We recall that traveling wave solutions are solutions of the form v(x, t) =
φ(ξ), where ξ = x− ct, for some constant wave speed c; and φ(ξ) approaches
constant values as ξ tends to +∞ and to −∞. Namely, if φ depends on x
and t only through the traveling wave variable ξ, then Dαφ does too, and φ
must satisfy, integrating once with respect to ξ,

h(φ) = Dαφ+ τφ′′, h(φ) := −c(φ− φ−) + φ2 − φ2
−
, (46)

where
c = φ+ + φ−,

and φ− and φ+ are constants such that

lim
ξ→−∞

φ(ξ) = φ−, lim
ξ→+∞

φ(ξ) = φ+,

and such that the entropy condition

φ− > φ+

is satisfied. For definiteness, we take

φ− = 1, φ+ = 0 (i.e. c = 1),
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and, hence, an initial condition that satisfies these far-field values is needed.
Traveling wave solutions have been studied in [13] with τ = 0, and in

[1] with τ > 0. We recall that traveling waves for τ = 0 are monotone, as
it is the case for the classical (or local) Burgers equation (see [43]). In [1],
the existence of traveling waves for all values of τ is shown, as well as the
dynamic stability of traveling waves, provided that they are monotone. The
analysis guarantees the monotonicity of the waves for small values of the
parameter τ . In addition, we were able to show that the monotonicity in
the tail of the waves is dominated by an algebraic decay of the form ξ−α, as
ξ → +∞, by using results of Fractional Calculus that can be applied to the
equation linearized in the tail (see [44]). We do not have a quantification of
the critical τ for which the transition from monotone to oscillatory behavior
occurs, however. The mechanism of oscillations depends on α and on τ ;
values of α close to 1 damp the oscillations generated by the third order
term at a larger values of τ than do smaller values of α. And, as for the local
case, the larger the value of τ , the larger the amplitude of the oscillations for
any fixed α ∈ (0, 1).

The numerical examples performed in [45] by means of finite difference
methods aim to complement the rigorous study and focus on the traveling
wave equation (46). The method developed in the current paper enables
us to compute solutions for very long times with a relatively small number
of nodes, and thus illustrate the convergence of solutions to traveling waves
even for very large values of τ . To illustrate this, we have simulated (1),
supplemented with the initial datum

v(x, 0) =
1− tanh(x)

2
, (47)

i.e., a function with exponential decay. After applying the change of variable
(6) to the initial datum and getting a function defined over [0, π], we have
considered again an even extension, which is enough for our purposes, in order
to get a function defined over the whole period. Let us mention, however,
that there are extensions of a function defined over half a period that are
smoother than the even extension (see v.g. [46] and [47]), i.e., they make a
more efficient use of the Fourier modes, which decay more quickly. Anyway,
this problem is only posed in the initial data, since we do our simulations
always over the full period.

In order to test (45), we have taken α = 1/3, τ = 1, N = 128, and
L = 20. We have done simulations with different time steps ∆t, until t = 20;
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thus, for a given ∆t, vnum(x, 20,∆t) denotes the numerical approximation of
v(x, 20) using ∆t. In order to apply a formula like (35), we would need the
explicit exact solution of v(x, 20), which is not available; instead, we use the
vnum(x, 20,∆t) obtained for a very small value of ∆t, say, ∆t = 10−4. Thus,
we approximate the error in discrete L∞-norm as

E(∆t) ≡ ‖vnum(x, 20,∆t)− vnum(x, 20,∆t = 10−4)‖∞.

Table 7 shows the evolution of E(∆t) for different values of ∆t. On the
one hand, the errors are very small; on the other hand, the columns with
log2(E(∆t)/E(∆t/2)) confirms clearly the second order of (45).

∆t E(∆t) log2

(
E(∆t)

E(∆t/2)

)

1/5 1.4801 · 10−3 1.9704
1/10 3.7769 · 10−4 1.9941
1/20 9.4811 · 10−5 1.9985
1/40 2.3727 · 10−5 1.9997
1/80 5.9332 · 10−6 2.0002
1/160 1.4831 · 10−6 2.0012
1/320 3.7048 · 10−7

Table 7: Errors in discrete L∞-norm of vnum at t = 20, for different ∆t. Since the exact
solution is not available, we use instead vnum(x, 20,∆t = 10−4) as reference. The results
confirm the quadratic convergence rate of (45).

In Figure 5, we have taken α = 1/3, τ = 10, N = 2048. As mentioned
earlier, the optimal choice of L can be a delicate question. In our case, in
order to simulate for very long times, a sufficiently large value of L is required,
if we want to have a decent resolution. In this example, L = 500 is enough
to reach as far as t = 500, with ∆t = 10−2. Let us recall, however, that we
are using a spectral method and that spatial resolution is not as important
as having a large enough number of Fourier modes. Indeed, if the Fourier
decomposition (10) is known, and the values of û(k) decay fast enough as |k|
grows, it is straightforward to evaluate u at any additional points, getting
spectrally accurate values. Furthermore, known (10), it is even possible to
modify L and the number of nodes at any given time step, if needed.

Finally, in Figure 6, we have taken α = 1/3, τ = 100, N = 4096, with
(47) again as initial datum. For bigger τ , it is necessary to consider longer
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(a) Solutions against x.
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(b) Solutions against x− ct with c = 1.

Figure 5: Results for α = 1/3 with τ = 10. Here L = 500, ∆t = 0.01 and N = 2048.
(a) shows solution profiles at t = 100 (solid blue), t = 300 (solid red), and t = 500 (solid
black). (b) shows solution profiles against x − ct, with c = 1, at t = 490 (blue), t = 495
(red), and t = 500 (black).

times in order to see the stabilization to a traveling wave solution; hence,
we have computed the evolution until t = 2000. We finally remark that the
highest Fourier modes are of the order of O(10−13), which means that we
could continue the simulation for a much longer time.
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Figure 6: Results for α = 1/3 with τ = 100. Here L = 2000, ∆t = 0.01 and N = 4096.
We have plotted the results at times t = 0, 50, . . . , 2000.
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