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Abstract

Reference metrics are used to define the differential structure on multicube representations of
manifolds, i.e., they provide a simple and practical way to define what it means globally for
tensor fields and their derivatives to be continuous. This paper introduces a general procedure
for constructing reference metrics automatically on multicube representations of manifolds with
arbitrary topologies. The method is tested here by constructing reference metrics for compact,
orientable two-dimensional manifolds with genera betweenzero and five. These metrics are
shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which
converges toward zero as the numerical resolution is increased). These reference metrics can be
made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure
is tested on the two-dimensional reference metrics constructed here. These smoothing evolu-
tions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce
reference metrics with constant scalar curvatures (at the level of numerical truncation error).
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1. Introduction

The problem of developing methods for solving partial differential equations numerically on
manifolds with nontrivial topologies has been studied in recent years by a number of researchers.
The most widely studied approach, the surface finite elementmethod, was developed originally
by Gerhard Dziuk and collaborators [1–5]. This method can be applied to manifolds having
isometric embeddings as codimension one surfaces inR

n. Triangular (or higher dimensional
simplex) meshes on these surfaces are used to define discretedifferential operators using fairly
standard finite element methods. The topological structures of these manifolds are encoded in the
simplicial meshes, while their differential structures and geometries are inherited by projection
from the enveloping EuclideanRn. The surface finite element method has been used in a number
of applications on surfaces, including various evolving surface problems [6, 7] and harmonic
map flows on surfaces with nontrivial topologies [8–10]. The method is somewhat restrictive in
that it only applies to manifolds that can be embedded isometrically as codimension one surfaces
in R

n.
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The surface finite element method has been generalized in different ways to allow the possi-
bility of studying problems on larger classes of manifolds,which need not be embedded surfaces
in R

n. For instance, Michael Holst and collaborators [11–13] have developed methods for defin-
ing discrete representations of differential forms on simplicial representations of manifoldswith
arbitrary topologies. The differential structure of a manifold in this approach is determined by
explicitly specifying the set of coordinate overlap maps that cover the interfaces between neigh-
boring simplices. The geometry of the manifold (needed for example to define the covariant
Laplace-Beltrami operator, or the dual transformations ofdifferential forms) is determined in
this approach by a metric on the manifold that must also be explicitly supplied. Oliver Sander
and collaborators [14–18] have introduced a different generalization of the surface finite element
method. Their approach, called the geodesic finite element method, uses the geometry of the
manifold (which must be specified explicitly) to construct discrete differential operators that con-
form more precisely to the manifold. The usual interpolation rule along straight coordinate lines
in the reference element is replaced with geodesic interpolation in a curved manifold. The global
topology and the differentiable structures must be specified explicitly for eachmanifold. These
approaches are very general, but they are somewhat cumbersome to use in practice since they
require a great deal of detailed information to be explicitly provided in order to determine the
differential and geometrical structures for each manifold studied.

Multicube representations of manifolds [19] provide a framework for the development of
simpler methods for solving PDEs numerically on manifolds with arbitrary topologies. This
approach, which we review in the following paragraphs, has several significant advantages over
the finite element methods discussed above. For one, the multicube method represents a manifold
as a mesh of non-overlapping cubes (or hypercubes) rather than simplices. This makes it simpler
to introduce natural bases for vector and tensor fields on these manifolds. The cubic structure is
also better suited for spectral numerical methods, which converge significantly faster than finite
element methods of any (fixed) order. Another distinct advantage of the multicube approach is
that the differential structures on multicube manifolds can be determined by a smooth reference
metric. Therefore one need not specify the differential structure explicitly as would be required
by the earlier generalizations of the surface finite elementmethod. In our previous work involving
the multicube method we specified the needed reference metrics analytically for the few simple
manifolds that we studied [19, 20]. In more complicated cases, however, the problem of finding
an appropriate smooth reference metric is more difficult. The main purpose of this paper is to
develop methods for generating the needed reference metrics automatically.

The multicube representation of a manifoldΣ consists of a collection of non-intersectingn-
dimensional cubic regionsBA ⊂ R

n for A = 1, 2, ...,NR, together with a set of one-to-one invert-
ible mapsΨAα

Bβ that determine how the boundaries of these regions are to be connected together.
The maps∂αBA = Ψ

Aα
Bβ (∂βBB) define these connections by identifying points on the boundary

face∂βBB of regionBB with points on the boundary face∂αBA of regionBA (cf. Ref. [19] and
Appendix B). It is convenient to choose all these cubic regions inR

n to have the same coordinate
sizeL, the same orientation, and to locate them so that regions intersect (if at all) inRn only at
faces that are identified by theΨAα

Bβ maps. Since the regions do not overlap, the global Cartesian
coordinates ofRn can be used to identify points inΣ. Tensor fields onΣ can be represented by
their components in the tensor bases associated with these global Cartesian coordinates.

The Cartesian components of smooth tensor fields on a multicube manifold are smooth func-
tions of the global Cartesian coordinates within each regionBA, but these components may not
be smooth (or even continuous) across the interface boundaries∂αBA between regions. Smooth
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tensor fields must instead satisfy more complicated interface continuity conditions defined by cer-
tain Jacobians,JAαi

Bβ j, that determine how vectorsvi and covectorswi transform across interface

boundaries:vi
A = JAαi

Bβ j v j
B andwAi = J∗Bβ j

Aαi wB j. As discussed in Ref. [19], the needed Jacobians
are easy to construct given a smooth, positive-definite reference metric ˜gi j onΣ.

A smooth reference metric also makes it possible to define what it means for tensor fields
to beC1, i.e., to have continous derivatives across interface boundaries. Tensors areC1 if their
covariant gradients (defined with respect to the smooth connection determined by the reference
metric) are continuous. At interface boundaries, the continuity of these gradients (which are
themselves tensors) is defined by the JacobiansJAαi

Bβ j in the same way it is defined for any tensor
field.

A reference metric is therefore an extremely useful (if not essential) tool for defining and en-
forcing continuity of tensor fields and their derivatives onmulticube representations of manifolds.
Unfortunately there is (at present) no straightforward wayto construct these reference metrics
on manifolds with arbitrary topologies. The examples givento date in the literature have been
limited to manifolds with simple topologies where explicitformulas for smooth metrics were
already known [19]. The purpose of this paper is to present a general approach for constructing
suitable reference metrics for arbitrary manifolds. The goal is to develop a method that can be
implemented automatically by a code using as input only the multicube structure of the manifold,
i.e., from a knowledge of the collection of regionsBA and the way these regions are connected
together by the interface mapsΨAα

Bβ .
In this paper we develop, implement, and test a method for constructing positive-definite

(i.e., Riemannian)C1 reference metrics for compact, orientable two-dimensional manifolds with
arbitrary topologies. WhileC∞ reference metrics might theoretically be preferable,C1 metrics
are all that are required to define the continuity of tensor fields and their derivatives. We show
in Appendix Athat anyC1 reference metric provides the same definitions of continuity of tensor
fields and their derivatives across interface boundaries asa C∞ reference metric. This level of
smoothness is all that is needed to provide the appropriate interface boundary conditions for the
solutions of the systems of second-order PDEs most commonlyused in mathematical physics.
For all practicable purposes, therefore,C1 reference metrics are all that are generally required.

Our method of constructing a reference metric ˜gi j onΣ is built on a collection of star-shaped
domainsSI with I = 1, 2, ...,NS that surround the vertex pointsVI , which make up the corners
of the multicube regions. The star-shaped domainSI is composed of copies of all the regions
BA that intersect at the vertex pointVI . The interface boundaries of the regions that include
the vertexVI are to be connected together withinSI using the same interface boundary maps
ΨAα

Bβ that define the multicube structure. Figure1 illustrates a two-dimensional example of a
star-shaped domainSI whose centerVI is a vertex point where five regions intersect. A region
BA would be represented multiple times in a particularSI if more than one of its vertices is
identified by the interface boundary maps with the vertex point VI at the center ofSI . For
example, consider a one-region representation ofT2. The singleSI in this case consists of four
copies of the single regionBA, glued together so that each of the vertices of the original region
coincides with the center ofSI . The interior of each star-shaped domainSI has the topology of
an open ball inRn, and together they form a set of overlapping domains that cover the manifold:
∪ISI = Σ.

A smooth reference metric is constructed on each star-shaped domainSI by introducing
local Cartesian coordinates on it that have smooth transition maps with the global multicube
coordinates of each regionBA that it contains. LeteI

i j denote the flat Euclidean metric withinSI ,
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Figure 1: Two-dimensional star-shaped domainSI whose centerVI is a vertex point where five regionsBA intersect.

i.e., the tensor whose components are the unit matrix when written in terms of the local Cartesian
coordinates ofSI . These metrics are manifestly free of singularities withineachSI , and they
can be transformed from the local star-shaped domain coordinates into the global multicube
coordinates in eachBA using the smooth transition maps that relate them.

These smooth metrics on the star-shaped domainsSI can be combined to form a global
metric onΣ by introducing a partition of unityuI (~x). These functions must be positive,uI (~x) > 0,
for points~x in the interior ofSI ; they must vanish,uI (~x) = 0, for points outsideSI ; and they
are normalized so that 1=

∑

I uI (~x) at every point~x in Σ. Using these functions, the tensor
ḡi j (~x) =

∑

I uI (~x) eI
i j (~x) is positive definite at each point~x in Σ and can therefore be used as a

reference metric forΣ. Although each metriceI
i j is smooth within its own domainSI , it may

not be smooth with respect to the Cartesian coordinates of the other star-shaped domains that
intersectSI . For this reason the combined metric ¯gi j will generally only be as smooth as the
productsuI (~x) eI

i j .
At the present time we only know how to construct functionsuI (~x) that make the combined

metricḡi j continuous (but notC1) across all the interface boundaries. The metric ¯gi j can be mod-
ified in a systematic and fairly straightforward way, however, to produce a new metric ˜gi j whose
extrinsic curvatureK̃i j vanishes along each multicube interface boundary∂αBA. Continuity of
the extrinsic curvature is the geometrical condition needed to ensure the continuity of the deriva-
tives of the metric across interface boundaries. The modified metricsg̃i j constructed in this way
can therefore be used asC1 reference metrics. In the two-dimensional case, the modification that
converts ¯gi j into g̃i j can be accomplished using a simple conformal transformation. In higher
dimensions, a more complicated transformation is required.

The following sections present detailed descriptions of our procedure for constructing refer-
ence metrics ˜gi j on two-dimensional multicube manifolds having arbitrary topologies. In Sec.2.1
an explicit method is described for systematically constructing the overlapping star-shaped do-
mainsSI ; formulas are given for transforming between the intrinsicCartesian coordinates in each
SI and the global Cartesian coordinates inBA; explicit representations are given (in both local
and global Cartesian coordinates) for the flat metricseI

i j (~x) in each domainSI ; and examples of

usefulC0 partition of unity functionsuI (~x) are given. The resultingC0 metrics are then modified
in Sec.2.2 by constructing an explicit conformal transformation thatproduces a metric having
vanishing extrinsic curvature at each of the interface boundaries∂αBA. The resulting metric is
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C1 and can therefore be used as a reference metric for these manifolds.
We test these procedures for constructing reference metrics on a collection of compact, ori-

entable two-dimensional manifolds in Sec.2.3. New multicube representations of orientable two-
dimensional manifolds having arbitrary topologies are described in detail inAppendix B. These
procedures have been implemented in the Spectral Einstein Code (SpEC, developed by the SXS
Collaboration, originally at Caltech and Cornell [21–23]). Reference metrics are constructed nu-
merically in Sec.2.3for two-dimensional multicube manifolds with generaNg between zero and
five; the scalar curvatures̃Rassociated with these reference metrics are illustrated; and numerical
results are presented which demonstrate that these two-dimensional reference metrics satisfy the
Gauss-Bonnet identity up to truncation level errors (whichconverge to zero as the numerical res-
olution is increased). We also show that the continuous (butnotC1) reference metrics ¯gi j fail to
satisfy the Gauss-Bonnet identity numerically because of the curvature singularities which occur
on the interface boundaries in this case.

The scalar curvatures associated with theC1 reference metrics constructed in Sec.2 turn out
to be quite nonuniform. Section3 explores the possibility of using Ricci flow to smooth out
the inhomogenities in these metrics ˜gi j . In particular we develop a slightly modified version of
volume-normalized Ricci flow with DeTurck gauge fixing. Thisversion is found to perform bet-
ter numerically with regard to keeping the volume of the manifold fixed at a prescribed value. We
describe our implementation of these new Ricci flow equations in SpEC in Sec.3.1. We test this
implementation by evolving a round-sphere metric with random perturbations on a six-region
multicube representation of the two-sphere manifold,S2. These tests show that our numerical
Ricci flow works as expected: the solutions evolve toward constant-curvature metrics, the vol-
umes of the manifolds are driven toward the prescribed values, and the Gauss-Bonnet identities
remain satisfied throughout the evolutions. In Sec.3.2 we use Ricci flow to evolve the rather
nonuniformC1 reference metrics ˜gi j constructed in Sec.2, using these ˜gi j both as initial data
and as the fixed reference metrics throughout the evolutions. We show that all these evolutions
approach constant curvature metrics, as expected for two-dimensional Ricci flow. The volumes
of these manifolds remain fixed throughout the evolutions, and the Gauss-Bonnet identities are
satisfied for all the geometries tested (which include genera Ng between zero and five). These
Ricci-flow-evolved metrics therefore provide smoother andmore uniform reference metrics for
these manifolds.

2. Two-Dimensional Reference Metrics

This section develops a procedure for constructing reference metrics on multicube repre-
sentations of two-dimensional manifolds. Continuous reference metrics are created in Sec.2.1
and then transformed in Sec.2.2 into metrics whose derivatives are also continuous across the
multicube interface boundaries. The resultingC1 reference metrics are tested in Sec.2.3 (on
two-dimensional manifolds with generaNg between zero and five) to ensure that they satisfy the
appropriate Gauss-Bonnet identities.

2.1. Constructing Continuous Reference Metrics

The procedure for creating a continuous (C0) reference metric ¯gi j presented here has three
basic steps. First, a set of star-shaped domainsSI for the multicube manifold is constructed
from a knowledge of the regionsBA and their interface boundary identification maps∂αBA =

ΨAα
Bβ (∂βBB). The interiors of theseSI have the topology of open balls inRn and together they
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form an open cover of the manifoldΣ. The primary task in this first step of the procedure
is to organize the multicube structure in a way that allows usto determine which star-shaped
domainSI is centered around each vertexνAµ of each multicube regionBA, and to determine
how many regionsBA belong to eachSI . In the second step, intrinsic Cartesian coordinates
and metrics are constructed for eachSI . These intrinsic coordinates are chosen to have smooth
transformations with the global Cartesian coordinates in each multicube regionBA. MetricseI

i j
for each star-shaped domain are introduced in this step to bethe Euclidean metric expressed in
terms of the intrinsic Cartesian coordinates in eachSI . In the third step, partitions of unityuI (~x)
are constructed that are positive for points~x insideSI , that vanish for points~x outsideSI , and
that sum to unity at each point in the manifold: 1=

∑

I uI (~x). A global reference metric is then
obtained by taking weighted linear combinations of the flat metrics from each of the domainsSI :
ḡi j (~x) =

∑

I uI (~x) eI
i j (~x). At present we only know how to choose the partition of unityfunctions

uI (~x) in a way that makes ¯gi j continuous across the boundary interfaces.

2.1.1. Step One
The first step is to compose and sort a list of all the verticesνAµ in a given multicube structure.

The indexµ = {1, ..., 2n}, wheren is the dimension of the manifold, identifies the vertices of a
particular multicube regionBA. This list of verticesνAµ can be sorted into equivalence classes
VI whose members are identified with one another by the interface boundary-identificationmaps,
i.e.,νAµ andνBσ belong to the sameVI iff there exists a sequence of mapsΨAα

A1α1
,ΨA1α1

A2α2
, . . . ,ΨAnαn

Bβ

with νAµ =
(

ΨAα
A1α1
◦ΨA1α1

A2α2
◦ . . . ◦ΨAnαn

Bβ

)

(νBσ).
One star-shaped domainSI is centered on each equivalence class of verticesVI . The domain

SI consists of copies of all the multicube regionsBA having vertices that belong to the equiva-
lence classVI . For two-dimensional manifolds, the primary computational task to be completed
in this first step is to determine the numberKI of verticesνAµ that belong to each of theVI classes.
The quantityKI represents the number of multicube regionsBA clustered around the vertexVI

in the star-shaped domainSI . Our code performs this counting process in two dimensions by
using the fact that each vertexνAµ belongs to two different boundaries of the regionBA. The
code arbitrarily picks one of these boundaries, say∂αBA, and follows the identification mapΨBβ

Aα

to the neighboring regionBB. The mapped vertexνBσ = Ψ
Bβ
Aα(νAµ) again belongs to two bound-

aries of the new regionBB: the mapped boundary∂βBB and another one, say∂γBB. The code
then follows the mapΨCδ

Bγ across this other boundary to its neighboring regionBC and to the new

mapped vertexνCρ = Ψ
Cδ
Bγ(νBσ). Continuing in this way, the code makes a sequence of transitions

between regions until it arrives back at the original vertexνAµ of the starting regionBA. The code
counts these transitions and returns the numberKI when the loop is closed. Figure1 illustrates a
two-dimensional star-shaped domain withKI = 5.

2.1.2. Step Two
The second step in this procedure is to construct local Cartesian coordinates that cover each

of the star-shaped domainsSI . We do this by noting that eachSI consists of a cluster of cubes
BA whose vertices coincide with the central pointVI . If these cubes are appropriately distorted
into parallelograms (by adjusting the angles between theircoordinate axes), they can be fitted
together (without overlapping and without leaving gaps between them) to form a domain inRn

whose interior has the topology of an open ball. EachSI can therefore be covered by a single
coordinate chart, which in two-dimensions can be written inthe form x̄i

I = (x̄I , ȳI ). Figure2
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illustrates both the distorted (on the left) and the undistorted (on the right) representations of a
two-dimensionalBA.
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Figure 2: Distorted and undistorted representations of a multicube region. Left side shows one of the two-dimensional
multicube regionsBA that has been distorted to allow it to fit together with the other regions in a particular star-shaped
domainSI . The vectors~ρµ and~σµ are tangent to the boundaries ofBA. Right side is a representation of this sameBA,
showing the associations of the vectors~ρµ and~σµ for its various possible vertices (labeled by the indexµ).

In two dimensions the distortions needed to allow theBA to be fitted around a vertex point
VI are quite simple: adjust the opening anglesθIAµ of the coordinate axes of each cube so they
sum to 2π around each vertex,

∑

Aµ θIAµ = 2π. The optimal way to satisfy this local flatness
condition is to distort all of the two-dimensional cubes that make upSI in the same way, i.e.,
by settingθIAµ = 2π/KI . In higher dimensions the problem of fitting theBA together to form a
smooth star-shaped domain (without conical singularites and without gaps) is more complicated.
The complication in higher dimensions comes from the lack ofuniqueness and a clear optimal
choice, rather than being a fundamental problem of existence. We plan to study the problem of
finding a practical way to perform this construction in higher dimensions in a future paper.

The simplest metric ¯eI
i j to assign to the star-shaped domainSI is the flat Euclidean metric

expressed in terms of the local coordinates ofSI :

ds2 = ēI
i j dx̄i

I dx̄ j
I = dx̄2

I + dȳ2
I . (1)

EachBA that intersectsSI will inherit this flat geometry via the coordinate transformation that
connects them. This fact can be used to deduce the coordinatetransformations between the local
Cartesian coordinates ¯xi

I = (x̄I , ȳI ) of SI and the global coordinatesxi
A = (xA, yA) of BA. The

left side of Fig.2 shows a regionBA in SI that has been distorted into a parallelogram having an
opening angleθIAµ. The vectors~ρµ and~σµ in this figure represent unit vectors (according to the
local flat metric ofSI ) that are tangent to the boundary faces ofBA at this vertex. The indexµ
identifies which of the vertices ofBA these unit vectors belong to. Since the opening angle at this
particular vertex isθIAµ, the inner product of these vectors is just~ρµ · ~σµ = cosθIAµ. The vectors
~ρµ and~σµ are proportional to the coordinate vectors∂x and∂y of the global Cartesian coordinates
used to describe points in the multicube regionBA—exactly which coordinate vectors depends
on which vertex ofBA coincides with this point. The right side of Fig.2 shows these vectors at
each of the vertices ofBA, any of which could be the one that coincides with the center of SI .
Table1 gives the relationships between~ρµ and~σµ and the coordinate basis vectors inBA for each
vertexνµ. Also listed in Table1 are the vectors~vµ that give the location of each vertex relative to
the center of its regionBA.
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Table 1: The vectors~ρµ and~σµ are proportional to the basis vectors~∂x and~∂y at each vertexµ of the regionBA. This
table gives the global Cartesian coordinate representations of~ρµ and~σµ at each vertex, the vertex-dependent constants
ǫµ, and the locations~νµ of the vertices with respect to the center ofBA.

µ ~ρµ ~σµ ǫµ ~vµ

1 (0, 1) (1, 0) +1 1
2L(−1,−1)

2 (1, 0) (0,−1) −1 1
2L(−1,+1)

3 (0,−1) (−1, 0) +1 1
2L(+1,+1)

4 (−1, 0) (0, 1) −1 1
2L(+1,−1)

The inner products~ρµ ·~ρµ, ~σµ ·~σµ, and~ρµ ·~σµ are scalars that are independent of the coordinate
representation of the vectors. Since~ρµ and ~σµ are unit vectors that are (up to signs) just the
coordinate basis vectors in the global Cartesian coordinates, it follows that the components of the
metriceI

i j in the global coordinates ofBA must have the values~ρµ · ~ρµ = ~σµ · ~σµ = eI
xx = eI

yy = 1
and~ρµ · ~σµ = cosθIAµ = ǫµ eI

xy, whereǫµ = ±1 is the vertex-dependent constant defined in Table1.
The flat metriceI

i j of the regionSI ∩ BA therefore has the form

ds2 = eIA
i j dxi

Adxj
A = dx2

A + 2ǫµ cosθIAµ dxA dyA + dy2
A (2)

when expressed in terms of the global Cartesian coordinatesxi
A = (xA, yA) of BA. This metric

can also be written as

ds2 = eIA
i j dxi

Adxj
A = (dxA + ǫµ cosθIAµ dyA)2 + sin2 θIAµ dy2

A. (3)

This is identical to the standard representation of ¯eI
i j in the local coordinates ofSI , Eq. (1), if new

coordinates ˜xIA andỹIA are defined as

x̃IA = xA − cx
A − vx

µ + ǫµ cosθIAµ (yA − cy
A − vy

µ), (4)

ỹIA = sinθAI (y− cy
A − vy

µ). (5)

The constantsci
A represent the global Cartesian coordinates of the center ofregionBA, and the

constantsvi
µ represent the location of theµ vertex of the region relative to its center. These

are included in the transformations in Eqs. (4) and (5) to ensure that the point ˜xIA = ỹIA = 0
corresponds to the point~x = ~cA +~vµ, which is theνAµ vertex ofBA that coincides with the center
of SI . These new coordinates ˜xIA andỹIA are therefore equal to the local Cartesian coordinates
of SI , x̄I andȳI , up to a rigid rotation:

x̄I = cosψIA x̃IA + sinψIA ỹIA, (6)

ȳI = − sinψIA x̃IA + cosψIA ỹIA, (7)

for some angleψIA. The composition of Eqs. (6) and (7) with Eqs. (4) and (5) therefore gives the
transformation between the local Cartesian coordinates ofSI , x̄I andȳI , and the global Cartesian
coordinates,xA andyA, of the multicube representation of the manifold.

The metriceIA
i j given in Eq. (2) must be constructed for each vertexνAµ of each regionBA

in terms of its global Cartesian coordinatesxi
A. These expressions depend only on the opening

anglesθIAµ, which in turn depend only on the parameterKI . The full coordinate transformations
between the global Cartesian coordinatesxA andyA and the local coordinates ¯xI andȳI given in
Eqs. (4)–(7) are not actually needed to evaluate the reference metrics.
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Figure 3: Weight functionsh(w) defined in Eq. (9) are positive for 0≤ w < 1 and vanish forw = 1.

2.1.3. Step Three
The third step in this procedure for constructing a reference metric is to build a partition of

unity uI (~x) that is adapted to the star-shaped domains. We do this by introducing a collection of
weight functionswI (~x) that are positive within a particularSI and that fall to zero at its boundary.
We experimented with a number of different weight functions and found that writing them as
simple separable functions of the global Cartesian coordinates of each regionBA worked far
better than anything else we tried. Thus we let

wI (~x) = h

(

xA − cx
A − vx

µ

L

)

h

(

yA − cy
A − vy

µ

L

)

, (8)

whereL is the coordinate size of each regionBA. The functionsh(w) are chosen to have the value
h(0) = 1, which corresponds to the vertex point at the center of the domainSI , and the value
h(1) = 0 at the points which correspond to the outer boundary ofSI . We find that the simple
class of functions

h(w) = (1− w2k)ℓ, (9)

with integersk > 0 andℓ > 0, works quite well. Some of these functions are illustratedin Fig. 3,
with integer values in the range that worked best in our numerical tests. Figure4 illustrates these
weight functions expressed in terms of the local Cartesian coordinates of one of the star-shaped
domainsSI . This figure shows clearly that this choice ofuI (~x) is continuous but notC1 across the
interface boundaries. We could also make these functionsC1 with respect to the local coordinates
in one of theSI , however it is not possible to make themC1 with respect to all of the overlapping
local star-shaped coordinates at the same time.

A partition of unity uI (~x) is constructed from the weight functionswI (~x) by normalizing
them:

uI (~x) =
wI (~x)
H(~x)

, (10)
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Figure 4: Weight functionwI (~x) illustrated on a star-shaped domainSI where five regionsBA meet. Left illustration
shows countours ofwI (~x), which uses theh(w) functions defined in Eq.9 with k = 1 andℓ = 4. Right illustration shows
the same function in a three-dimensional rendering. This example illustrates the fact that thesewI (~x) are continuous but
notC1 across the region interface boundaries.

whereH(~x) is defined by

H(~x) =
∑

I

wI (~x). (11)

This definition ensures that theuI (~x) satisfy the normalization condition
∑

I uI (~x) = 1 for every
point~x in the manifold.

A global reference metric is constructed by combining the metricseI
i j associated with each of

the star-shaped domainsSI and defined in Eq. (2), using the partition of unity defined in Eq. (10):

ḡi j (~x) =
∑

I

uI (~x) eI
i j (~x). (12)

This metric is positive definite, and it is continuous acrossall of the multicube interface bound-
aries. It can therefore be used as a continuous reference metric.

In an effort to reduce the spatial variation of the metric defined in Eq. (12) and thus reduce
the required numerical resolution, we add additional termsof the formuA(~x) eA

i j , whereeA
i j are

flat metrics with support in a single multicube regionBA. Thus we let

ds2 = eA
i j dxi

Adxj
A = dx2

A + dy2
A (13)

be the flat Euclidean metric expressed in terms of the global Cartesian coordinatesxA andyA. We
define new weight functionswA(~x) associated with the individual multicube regions to be

wA(~x) = h

(

2(xA − cx
A)

L

)

h

(

2(yA − cy
A)

L

)

, (14)

which have the valuewA(~cA) = 1 at the center of the regionBA and the valuewA(~x) = 0 for
points~x on its boundary. These weight functions can be combined withthose assocated with
the star-shaped domains, Eq. (8), to form a new partition of unity. We modify the normalization
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functionH(~x) to be

H(~x) =
∑

I

wI (~x) +
∑

A

wA(~x). (15)

Then we redefine the functionsuI (~x) using Eq. (10) with this newH(~x), and we define functions
uA(~x) using Eqs. (14) and (15):

uA(~x) =
wA(~x)
H(~x)

. (16)

A new metric is then formed by combining these region-centered metrics with the star-shaped
domain metrics constructed above:

ḡi j (~x) =
∑

I

uI (~x) eI
i j (~x) +

∑

A

uA(~x) eA
i j (~x). (17)

The addition of the region-centered metrics does not appearto have a significant impact on the
required numerical resolution. Nevertheless, this is the two-dimensional reference metric that we
use (after conformally transforming as described in the following section) in the numerical work
described in the later sections of this paper.

2.2. Constructing C1 Reference Metrics

The continuous metric ¯gi j has been constructed in a way that ensures the geometry has no
conical singularities at the vertices of the multicube regions. However, ¯gi j is not in generalC1

across the interface boundaries; e.g., the partition of unity that we use is notC1 there. The geom-
etry defined by ¯gi j will therefore have curvature singularities along those interface boundaries.
In order to remove these singularities, our next goal is to modify ḡi j by making itC1, while at
the same time keeping it continuous, positive definite, and free of conical singularities. It should
be possible, for example, to find a tensorψi j that vanishes at the interface boundaries, and whose
normal derivatives are the negatives of those of ¯gi j . In this case the new tensor ˜gi j = ḡi j + ψi j

and its first derivatives should be continuous at the boundaries. There is in fact a great deal of
freedom available in choosingψi j . In particular, it can be changed arbitrarily in the interior of a
region so long as its boundary values and derivatives remainunchanged. The idea is to use this
freedom to keepψi j small enough everywhere that ˜gi j remains positive definite. We plan to find
a practical way to do this for manifolds of arbitrary dimension in a future work. In this paper we
focus on the two-dimensional case, where a simple conformaltransformation is all that is needed
to make the continuous metric ¯gi j C1. We introduce the conformal factorψA for the metric in
multicube regionBA:

g̃A
i j = ψ

4
A ḡA

i j . (18)

The conformal factorψA is chosen to make the resulting metric ˜gA
ab and its derivatives continuous

across interface boundaries.
The extrinsic curvaturēKAα

i j of the∂αBA boundary of cubic regionBA is defined by

K̄Aα
i j = (δk

i − n̄k
Aαn̄Aαi)∇̄kn̄Aα j , (19)

11



wheren̄i
Aα is the unit normal to the boundary and̄∇k is the covariant derivative associated with

the metricḡA
i j . In two dimensions this can be rewritten as

K̄Aα
i j = (ḡA

i j − n̄Aαi n̄Aα j)K̄Aα, (20)

whereK̄Aα = ∇̄kn̄k
Aα is the trace. Since the normal vector ¯ni

Aα depends only on the metric ¯gi j , its
divergence can be written explicitly in terms of derivatives of the metric:

K̄Aα = ∇̄kn̄
k
Aα =

1
2

[

n̄i
Aα(ḡ jk + n̄ j

Aαn̄k
Aα) − 2ḡi j n̄k

Aα

]

∂i ḡ jk. (21)

Under the conformal transformation given in Eq. (18), the trace of the extrinsic curvature
KAα transforms as follows:

K̃Aα = ψ
−2
A (K̄Aα + 2n̄a

Aα∇̄a logψA). (22)

The idea is to choose the conformal factorψA so that it has the valueψA = 1 on each interface
boundary∂αBA, with a normal derivative on each boundary given by

n̄a
Aα∇̄a logψA = − 1

2 K̄Aα. (23)

These boundary conditions ensure that the metric ˜gi j continues to be continuous everywhere and
free of cone singularities at the vertices of each cubic-block region, while also ensuring that the
extrinsic curvature at each interface boundary is zero.

There is no unique conformal factor satisfying the boundaryconditionsψA = 1 and the
normal-derivative condition given in Eq. (23). However, the following expression forψA does
satisfy these conditions:

logψA = − f

(

xA − cx
A

L
+

1
2

)

L K̄A−x(yA)
2 n̄x

A−x(yA)
+ f

(

1
2
−

xA − cx
A

L

)

L K̄A+x(yA)
2 n̄x

A+x(yA)

− f

(

yA − cy
A

L
+

1
2

)

L K̄A−y(xA)

2 n̄y
A−y(xA)

+ f

(

1
2
−

yA − cy
A

L

)

L K̄A+y(xA)

2 n̄y
A+y(xA)

. (24)

The required properties of the functionf (w) are that it has the valuesf (0) = f (1) = 0 and the
derivativesf ′(0) = 1 and f ′(1) = 0. The simple choicef (w) = w h(w) satisfies these conditions,
with h(w) given in Eq. (9). The expression for the conformal factor in Eq. (24) has the property
that logψA = 0 everywhere on the boundary of the cubic-block region, while its derivatives on
the boundary satisfy Eq. (23). The values of the extrinsic curvatures̄KAα and the normal vectors
n̄i

Aα used in Eq. (24) are those associated with the continuous metric ¯gi j given in Eq. (17).
Continuity of the extrinsic curvature across interface boundaries is the necessary and suffi-

cient condition for the metric to beC1 and singularity-free at those interfaces (cf. the Israel
junction conditions [24]). The metrics ˜gi j defined in Eq. (18), with conformal factorψA given by
Eq. (24), will be C1 even across the multicube interface boundaries, since their extrinsic curva-
tures vanish and are continuous there. The reference metrics g̃i j can thus be used to define aC1

differential structure, which defines the continuity of tensor fields and their derivatives.Appendix
A shows that this differential structure is unique in the sense that it is the same as would be pro-
duced by any otherC1 reference metric expressed in the same global multicube coordinates.
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2.3. Testing the Reference Metrics

We have implemented the method outlined in Secs.2.1 and2.2 for constructing aC1 ref-
erence metric ˜gi j in SpEC. This section describes some tests we have performedto verify that
our code correctly constructs reference metrics accordingto these procedures. We begin by con-
structing multicube representations of compact, orientable two-dimensional manifolds having
generaNg between zero and five.Appendix Bgives detailed descriptions of these multicube
representations and also shows explicitly how they can be generalized to compact, orientable
two-dimensional manifolds of any genusNg. These multicube representations consist of lists
of the regionsBA and their specific locations inRn, together with a complete list of the spe-
cific interface boundary identification mapsΨAα

Bβ that define how the regions are to be connected
together.

Any C1 metricgi j , including the reference metric ˜gi j from Eq. (18), must satisfy the Gauss-
Bonnet identity, which relates the scalar curvatureR to the topology of any compact, orientable
two-dimensional Riemannian manifold:

V ||R|| = 8π(1− Ng), (25)

where||R|| is the spatially averaged scalar curvature,

||R|| =
∫

R
√

g d2x

V
, (26)

V is the volume,

V =
∫ √

g d2x, (27)

and whereNg is the genus of the manifold. The Gauss-Bonnet identity therefore provides a
powerful test: The multicube manifold must have the correctgenus or the identity will fail. And
the metric must beC1 across all the interface boundaries, or curvature singularities along those
boundaries will cause the numerical integrals used in the the identity to fail.

We use the quantityEGB, defined by

EGB =

∣

∣

∣V ||R|| − 8π(1− Ng)
∣

∣

∣

8π(1+ Ng)
, (28)

to monitor how well the Gauss-Bonnet identity is satisfied numerically in our tests. Figure5
shows the values ofEGB computed for each of the multicube manifolds described inAppendix
B using theC1 reference metric ˜gi j defined in Eq. (18). Each curve in Fig.5 representsEGB

for a particular multicube manifold as a function of the numerical resolutionN (the number of
grid points along each dimension of each multicube regionBA). The manifolds are identified in
Fig. 5 by their generaNg and the numbers of regionsNR used in their particular representations.
These graphs show that the Gauss-Bonnet identity is satisfied by the reference metrics ˜gi j with
numerical errors that decrease exponentially as the numerical resolutionN is increased. The
numerical errors arise both in the numerical derivatives used in the computation of the scalar
curvatureR and in the numerical integrations used to evaluate||R||. A minimum error ofO(10−9)
is reached at a resolution of aboutN = 46, which corresponds to the level of accumulated
roundoff error in the calculation ofEGB at that resolution.

13



20 30 40 50 60
N

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

E
GB

N
g
 = 0   N

R
 =  6

N
g
 = 0   N

R
 = 10

N
g
 = 1   N

R
 = 10

N
g
 = 2   N

R
 =  8

N
g
 = 2   N

R
 = 10

N
g
 = 3   N

R
 = 20

N
g
 = 4   N

R
 = 30

N
g
 = 5   N

R
 = 40

Figure 5: The error in the Gauss-Bonnet identityEGB, defined in Eq. (28), as a function of resolution for two-dimensional
multicube manifolds having different generaNg and different numbers of multicube regionsNR.

We have also tested the Gauss-Bonnet identity on this same collection of multicube mani-
folds using the scalar curvatures computed from the continuous reference metrics ¯gi j of Eq. (17)
instead of theC1 metricsg̃i j of Eq. (18). Using theseC0 reference metrics, we find thatEGB

is of order unity (with values between about 0.5 and 2) for allof the tests illustrated in Fig.5.
The Gauss-Bonnet identity fails in this case because the curvatures associated with theC0 ref-
erence metrics have singularities along the multicube interface boundaries. This failure, which
was expected in this case, reinforces the conclusion that wehave successfully implemented the
procedure outlined in Secs.2.1and2.2for constructingC1 reference metrics on two-dimensional
manifolds with arbitrary topologies.

3. Smoothing the Reference Metrics Using Ricci Flow

TheC1 reference metrics ˜gi j introduced in Secs.2.1and2.2satisfy the minimal requirements
needed to establish low-order differential structures on two-dimensional manifolds. These struc-
tures allow us to define the continuity of tensors and their derivatives, which is all that is required
for solving the systems of second-order equations of most interest in mathematical physics. Un-
fortunately these metrics exhibit a great deal of spatial structure and consequently require fairly
high numerical resolution to be represented accurately. Figure6 illustrates the scalar curvature
R̃ associated with these reference metrics ˜gi j for the case of a six-region,NR = 6, representation
of the genusNg = 0 multicube manifold (the two-sphere), and also for the caseof a forty-region,
NR = 40, representation of the genusNg = 5 multicube manifold (the five-handled sphere).
While these scalar curvatures appear to be continuous (evenacross the region interface bound-
aries) they have very large spatial variations. The goal of this section is to develop a method of
transforming these metrics into more uniform (and smoother) reference metrics.

The uniformization theorem implies that every orientable two-dimensional manifoldΣ admits
a metric having constant scalar curvature [25]. One approach to making the reference metrics ˜gi j
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Figure 6: Illustration of the scalar curvatureR̃of two multicube manifolds withC1 reference metrics ˜gi j constructed via
the procedure described in Sec.2. Both cases use a numerical resolution ofN = 40 grid points along each dimension
of each multicube region.Top: The genusNg = 0, six-region case. The left side shows the manifold mapped (non-
isometrically) onto a 2-sphere, with radial warping proportional to the scalar curvaturẽR. The right side shows the
same manifold in the multicube Cartesian coordinates, withwarping in thez-direction proportional tõR. Bottom: The
genusNg = 5, forty-region multicube manifold in the multicube Cartesian coordinates, with warping in thez-direction
proportional to the scalar curvaturẽR.

more uniform, therefore, would be to find a way to transform them into metrics having constant
scalar curvatures. Fortunately there is a well-studied technique for doing exactly that. Volume-
normalized Ricci flow is a parabolic evolution equation for the metric whose solutions in two
dimensions all evolve toward metrics having spatially constant scalar curvatures [25–28].

The evolution equation we use for the volume-normalized Ricci flow of a two-dimensional
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metricgi j is given by

∂tgi j = −2Ri j + ||R(t)|| gi j − µ
V(t) − V0

V(t)
gi j + ∇i H j + ∇ jHi . (29)

The quantities||R|| andV(t) in Eq. (29) are the volume-averaged scalar curvature and the volume
of the manifold defined in Eqs. (26) and (27), respectively. The terms containing these quantities
are added to control the volume of the manifold. The term proportional toµ in Eq. (29) is new
to the best of our knowledge. We have found that it makes our numerical solutions of Eq. (29)
track the target volumeV0 more accurately. The DeTurck gauge-fixing covectorHi is defined by

Hi = gi jg
kℓ(Γ j

kℓ − Γ̃
j
kℓ), (30)

whereΓ j
kℓ is the connection associated with the metricgi j , andΓ̃ j

kℓ is any other fixed connection
on the manifold [29]. The DeTurck terms (those containingHi) are added to make Eq. (29)
strongly parabolic, and thus to have a manifestly well-posed initial value problem [30].

Contracting Eq. (29) with the inverse metricgi j gives

∂t log
√

g = −R+ ||R|| − µV(t) − V0

V(t)
+ ∇iH

i . (31)

Integrating this equation over any compact manifold provides the evolution equation for the
volumeV(t) of the manifold:

∂t [V(t) − V0] = −µ [V(t) − V0] . (32)

Without the term proportional toµ, the volume of the manifold would be fixed,∂tV(t) = 0, at the
analytical level. In numerical simulations, however, discretization and roundoff error give rise
to slow, approximately linear drifts in the volume. With thedamping term we have added, the
volume of the manifold is driven toward the target valueV0 at a rate determined by the constant
µ. In our numerical tests, we find that a value ofµ = 10 works well.

3.1. Numerical Ricci Flow
We have implemented the volume-normalized Ricci flow equation with DeTurck gauge fix-

ing, Eq. (29), in SpEC. This code evolves PDEs using pseudo-spectral methods to evaluate spatial
derivatives, and it performs explicit time integration at each collocation point using standard or-
dinary differential equation solvers (e.g., Runge-Kutta). Boundary conditions are imposed at
multicube interface boundaries to enforce continuity of the metricgi j and its normal derivative
ñk∇̃kgi j . The vector ˜nk is the unit normal to the boundary and∇̃k is the covariant derivative
associated with the reference metric ˜gi j .

Boundary conditions are imposed in SpEC using penalty methods. The desired boundary
conditions are added to the evolution equations at the boundary collocation points. The evolution
equations on the∂αBA boundary, which is identified with the∂βBB boundary, for example, have
the form

∂tgi j = Fi j + α
(

gA
i j − 〈gB

i j 〉A
)

+ β ñk
A

(

∇̃kg
A
i j − 〈∇̃kg

B
i j 〉A

)

, (33)

whereFi j represents the right side of Eq. (29), andα andβ are positive constant penalty factors.
The quantities〈gB

i j 〉A and〈∇̃kgB
i j 〉A represent the transformations ofgB

i j and∇̃kgB
i j into the tensor

basis of regionBA using the interface boundary Jacobians:

〈gB
i j 〉A = J∗Bβa

Aαi J∗Bβb
Aα j gB

ab, (34)

〈∇̃kg
B
i j 〉A = J∗Bβa

Aαi J∗Bβb
Aα j J∗Bβc

Aαk ∇̃cg
B
ab. (35)
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If the penalty factorsα andβ are chosen properly, these additional terms drive the evolution at
the boundary in a way that reduces any small boundary condition error [31]. There is a range of
constantsα andβ that work well—too small can lead to instability, while too large may make
the system overly stiff. Empirically, we have found that the following values work well in most
cases:1

α = 1
2N3(N + 1), β = 1

2N(N + 1). (36)

In some cases the penalty factors (particularlyα) can be decreased below the values given in
Eq. (36) without sacrificing stability. Using smaller values allows a less restrictive condition
on the size of the maximum time step and therefore allows moreefficient numerical evolutions.
In rare cases, we have found it necessary to increaseβ above the value given in Eq. (36). For
example, in the low-resolutionN = 16, ten-region,NR = 10, genusNg = 0 case, a value ofβ
at least twice that given in Eq. (36) was needed for stability. Hesthaven and Gottlieb [31] have
derived rigorous lower bounds on the penalty factors neededfor stable evolution of a simple,
second-order parabolic equation in one dimension. They show that when Robin-type boundary
conditions are used (like those we use here), penalty factors that scale likeα ∼ O(N2) and
β ∼ O(N2) are required. Our results agree with theirs forβ, but we have found it necessary to use
much larger values ofα that scale asα ∼ O(N4) in most cases.

We test the stability and robustness of our implementation of these Ricci flow evolution
equations on a six-region,NR = 6, multicube representation of the two-sphere manifold,S2,
which is described in detail inAppendix B.1. As initial data for these tests we use the standard
round-sphere metric with pseudo-random white noise of amplitude 0.1 added to each component
of the metricgi j at each collocation point. The reference metric ˜gi j used in these tests is the
usual smooth, unperturbed round-sphere metric, which is given explicitly in global Cartesian
multicube coordinates in Ref. [19].

We use several measures to determine whether our implementation of numerical Ricci flow
is working properly and whether it actually drives the metric toward a constant-curvature state,
as it is expected to do in two dimensions. First, we measure how well the numerical Ricci
flow evolves toward geometries having uniform scalar curvatures. One possible dimensionless
measure of this scalar-curvature uniformity is the quantity ẼR, defined by

Ẽ2
R =

∫

(R− ||R||)2√g d2x

V||R||2 . (37)

For the two-dimensional manifolds studied here, the volume-averaged scalar curvature||R|| is
given by the Gauss-Bonnet identity:||R|| = 8π(1 − Ng)/V. The scalar-curvature uniformity
measure can therefore be rewritten in the form

Ẽ2
R =

V
∫

(R− ||R||)2√g d2x

[8π(1− Ng)]2
. (38)

This measure is singular forNg = 1, so we define an alternative measureER as follows:

E2
R =

V
∫

(R− ||R||)2√g d2x

[8π(1+ Ng)]2
. (39)

1We use the factorN + 1 in Eq. (36), instead of the simplerN, because it is natural to writeα andβ as multiples of
the inverse of the Legendre quadrature weight at the endpoints,ω = 2/N(N+ 1), sinceω enters the proofs of stability for
these penalty methods. In terms ofω, we useα = N2/ω andβ = 1/ω.
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This alternative measure is well defined for all compact, orientable two-dimensional manifolds.
It differs fromẼR by the factor|1− Ng|/(1+ Ng), which is of order unity, except for the singular
caseNg = 1. We use the measureER to monitor the uniformity of the scalar curvature in all of
our Ricci flow evolutions. Second, we monitor the volume of the manifold to determine whether
the volume-normalized flow is working properly. We do this using the dimensionless quantity
EV, defined by

EV =
|V(t) − V0|

V0
, (40)

to measure the fractional change in the volume relative to the target volumeV0. Third, we use
the quantityEH to measure the evolution of the DeTurck gauge-source covector:

E2
H =

∫

gi j Hi H j
√

g d2x
∫

∑

i j

(

|gi j |2 +
∑

k |∂kgi j |2
) √

g d2x
. (41)

And finally, we assess how well the geometries produced by this Ricci flow satisfy the Gauss-
Bonnet identity, using the quantityEGB defined in Eq. (28).

Figure7 shows the results of our Ricci flow evolutions using initial data constructed from the
round-sphere metric with random noise perturbations. Thisfigure plots the time evolutions of the
four error measuresER, EV, EH, andEGB, defined in Eqs. (39), (40), (41), and (28), respectively,
for evolutions performed with several different numerical resolutionsN. As evidenced in these
figures, the Ricci flow evolutions are stable and convergent as the numerical resolutionN is
increased. Nonuniformities in the random initial scalar curvature, as measured byER and shown
in the upper left part of Fig.7, decay exponentially in time as the geometry evolves towardthe
constant-curvature round-sphere metric until the differences are dominated by truncation level
errors at each resolution. The upper right part of Fig.7 shows that the volume-controlling terms
in Eq. (29) are effective at driving the volume of the manifold to the valueV0, as measured by
EV. The target volumeV0 in these tests was taken to be the volume measured by the smooth
round-sphere reference metric, rather than the volume of the initial random metric. The lower
left part of Fig.7 shows that the gauge source one-formHi , measured byEH, is effectively driven
to zero by the DeTurck term, and the lower right part of Fig.7 shows that the Gauss-Bonnet error
EGB decays very quickly to truncation level at each resolution.Random noise was added to the
initial data in these tests at each grid point, so the precisestructure of the initial data is different
at each resolution. Therefore, numerical convergence withincreasing resolutionN at the initial
and very early times was not expected (or observed).

3.2. Smoother Reference Metrics

We have used volume-normalized Ricci flow to construct smoother and more uniform ref-
erence metrics for several multicube manifolds in two dimensions. In particular we have per-
formed Ricci-flow smoothing of the reference metrics for multicube representations of compact,
orientable two-dimensional manifolds with genera betweenNg = 0 (the two-sphere) andNg = 5
(the five-handled two-sphere). In each case, initial data for the evolution are prepared by con-
structing the metric ˜gi j according to the procedure described in Sec.2. These ˜gi j use the polyno-
mial generating functionsh(w) of Eq. (9), with k = 1 andℓ = 4, both for the partition of unity
and for the functionsf (w) = w h(w) that appear in the conformal factor in Eq. (24). Although
this choice of powers appears to give the best results, we have found that other choices often
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Figure 7: Ricci flow evolutions of a six-region,NR = 6, multicube representation of the 2-sphere, with random noise
added to the round-sphere metric as the initial data. Graphsshow the evolutions of the scalar-curvature uniformity
measureER, the volume-normalization errorEV, the DeTurck gauge-covector normEH , and the Gauss-Bonnet identity
errorEGB. These quantities are defined in Eqs. (39), (40), (41), and (28), respectively. The reference metric used in these
tests is the usual unperturbed round-sphere metric. The numerical resolution in each spatial dimension of each square
region is denoted byN.

work nearly as well. We use the metric ˜gi j not only as initial data for these Ricci flow evolutions,
but also as the fixed reference metric, which defines the continuity of all tensor fields and their
derivatives throughout the evolutions, including the Ricci-flow-evolvedgi j (t).

We have performed Ricci flow evolutions on all the multicube manifolds described inAp-
pendix B, and the results look very similar to one another. For this reason we describe only
one of these cases in detail, and then we summarize and compare the results of our highest-
resolution evolutions from all of the cases. We show detailed results for our most complex case:
a forty-region,NR = 40, representation of a genusNg = 5 multicube manifold (the five-handled
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Figure 8: Ricci flow evolutions of a genusNg = 5, forty-region,NR = 40, multicube manifold. Graphs show the evo-
lutions of the scalar-curvature uniformity measureER, the volume-normalization errorEV , the DeTurck gauge-covector
normEH , and the Gauss-Bonnet identity errorEGB. These quantities are defined in Eqs. (39), (40), (41), and (28), respec-
tively. The reference metric, which is identical to the initial metric in this case, is constructed according to the procedure
described in Sec.2. The numerical resolution in each spatial dimension of eachmulticube region is denoted byN.

two-sphere). The scalar curvature for the reference metricg̃i j in this case is illustrated in the
bottom part of Fig.6. The details of the multicube structure for this case (and all our other cases)
are given inAppendix B.

Figure8 shows the results of these genusNg = 5 evolutions for several different numerical
resolutionsN. The graphs in Fig.8 indicate that the evolutions are stable and convergent, demon-
strating our ability to evolve PDEs on arbitrary, complicated two-dimensional manifolds using
theC1 reference metrics developed in Sec.2. These evolutions differ from the random-metric
evolutions shown in Fig.7 in several ways. First, these initial data are much smootherthan the
random metrics (which are unresolved by construction). Consequently, the Gauss-Bonnet error
EGB is much smaller at early times. Second, the initial metric inthese tests is identical to the
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Figure 9: High-resolution (N = 40) results of Ricci flow evolutions on a variety of different multicube manifolds. The
genusNg and the number of multicube regionsNR of each case are indicated in the legends. Graphs show the evolutions
of the scalar-curvature uniformity measureER, the volume-normalization errorEV , the DeTurck gauge-covector norm
EH , and the Gauss-Bonnet identity errorEGB. These quantities are defined in Eqs. (39), (40), (41), and (28), respectively.
In each case, the reference metric is identical to the initial metric and is constructed according to the procedure described
in Sec.2.

reference metric, and accordingly the error measuresEV andEH are much smaller (about trun-
cation level) at early times. These error measures remain close to these initial truncation-error
levels throughout the evolutions. We also note that the morecomplicated spatial structures of the
reference metrics in these simulations require somewhat higher numerical resolutions in order to
obtain the same level of truncation errors as the random-metric S2 tests described in Sec.3.1.

Figure9 compares the highest-resolution Ricci flow evolutions fromeach of the multicube
manifolds described inAppendix B(up to and including the forty-region representation of a
genus 5 manifold). All of these cases are found to be stable and convergent, with qualitatively
similar results to the genusNg = 5 evolutions shown in Fig.8. The only significant difference

21



between the cases is the rate at which nonuniformities in thescalar curvatures decay. The refer-
ence metrics that we construct on these different multicube manifolds have nonuniformities on
different length scales, and these nonuniformities correspondingly decay at different rates under
the Ricci flow. There are also differences in the levels of the truncation errors for these cases
at the same numerical resolution. The ten-region,NR = 10, representation of the genusNg = 1
multicube manifold (the two-torus), for example, has the highest level of truncation error among
the examples we have studied.

4. Discussion

This paper presents a method for constructing reference metrics on multicube representa-
tions of manifolds having arbitrary topologies. The methodwas implemented and successfully
tested, as described in Sec.2, for a variety of compact, orientable two-dimensional Riemannian
manifolds with genera between 0 and 5. The reference metricsconstructed in this way are not
smooth, but they have continuous derivatives, which is sufficient to define theC1 differential
structures needed for solving the systems of second-order PDEs of most interest in mathematical
physics. We have demonstrated in Sec.3, for example, that theseC1 reference metrics can be
used successfully to solve systems of second-order parabolic evolution equations.

The reference metrics constructed using the methods in Sec.2 have large spatial variations,
which are not easy to resolve numerically. We demonstrate inSec.3 that these metrics can be
made more uniform by evolving them with Ricci flow. The two-dimensional reference metrics
studied in our tests all evolve under Ricci flow to metrics having constant scalar curvatures.

Ricci flow also has smoothing properties similar to the heat equation: solutions to the Ricci
flow equation on compact manifolds become smooth, in fact real-analytic, for t > 0 provided
the initial curvature is bounded (which is the case for ourC1 reference metrics) [32, 33]. Our
numerical evolutions show smoothing of the metrics that is consistent with this fact. The presence
of the DeTurck gauge-fixing terms, however, somewhat obfuscates this question of smoothness.
Our evolutions show that the DeTurck gauge-fixing covectorHi is zero, up to truncation level
errors, throughout the evolutions. The connectionΓk

i j of the metricgi j at the end of our Ricci flow
evolutions could (in principle) therefore retain some of the non-smooth features of the reference
connectionΓ̃k

i j , sinceHi = 0 = gi jgkℓ(Γ j
kℓ − Γ̃

j
kℓ). However, the vanishing ofHi shows that the

evolved metric satisfies the original Ricci flow equation without the DeTurck terms, and thus
must be smooth by the aforementioned theorems [32, 33]. Hence any non-smoothness of the
connection must just reflect the (non-smooth) coordinate transitions at the interface boundaries.

We made some effort to avoid even the potential effects of the non-smoothness of the con-
nection associated with the DeTurck terms by modifying the basic Ricci flow Eq. (29) in various
ways. For example, we attempted to carry out numerical Ricciflow evolutions without includ-
ing the DeTurck terms at all, i.e., simply by settingHi = 0 in Eq. (29). All of these evolutions
were unstable. The DeTurck terms were added to the Ricci flow equation to make it strongly
parabolic and thereby manifestly well-posed [25]. Without the DeTurck terms, the basic Ricci
flow equations may simply be ill-suited for numerical solution. We also tried modifying the De-
Turck terms in a way that would attempt to drive the solution to harmonic gauge, i.e., to a gauge
in which 0= gi jΓk

i j . We did this by changing the definition ofHi to give the reference connection

an explicit time dependence, as inHi = gi j gkℓ(Γ j
kℓ − e−µt Γ̃

j
kℓ), for example. Unfortunately all of

these runs failed as well. While these runs appeared to be stable, the Ricci flows in these cases
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did not evolve toward metrics having constant scalar curvatures, and the DeTurck gauge-source
covectorHi did not remain small during the evolutions.

We plan to continue to search for effective and efficient ways to construct reference metrics
on manifolds with arbitrary spatial topologies. In two dimensions the remaining questions are re-
lated to finding better gauge conditions for the reference metrics. In three and higher dimensions
the challenge will be to find efficient ways to implement the general techniques developed here.
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Appendix A. Uniqueness of the C1 Multicube Differential Structure

The traditional definition of aCk differential structure on a manifold consists of an atlas of
coordinate charts having the property that the transition maps between overlapping charts are
Ck+1 functions.2 Tensor fields are defined to beCk with respect to this differential structure if
their components when represented in terms of this atlas areCk functions. In a multicube rep-
resentation of a manifold, we define the continuity of tensorfields and their derivatives instead
using the Jacobians and the connection determined by a reference metric. This enables us to de-
fine these concepts without needing an overlappingCk+1 atlas. The two definitions of differential
structure are equivalent on any manifold having both a multicube structure and aCk+1 atlas. In
this appendix we consider the technical question of the uniqueness of the multicube method of
specifying the differential structure.

The purpose of this appendix is to show that theC1 differential structure of a multicube
manifold defined by a particularC1 reference metric is independent of the choice of reference
metric. In particular, we show that the definitions of continuity of tensor fields and their covariant
derivatives based on aC1 reference metric ˜gab are the same as those based on any otherC1 metric
ǧab, i.e., any metric ˇgab that is continuous and whose covariant gradient∇̃aǧbc is continuous with
respect to the differential structure defined by ˜gab. Since anyCk metric withk ≥ 1 is alsoC1, this
argument implies that theC1 differential structure defined by theC1 metricg̃ab is also equivalent
to theC1 differential structure defined by anyCk metricǧab.

We have shown [19] how the differential structure for a multicube representation of a man-
ifold may be specified by giving aC1 metric g̃ab represented in the global Cartesian multicube

2We use the slightly non-standard terminology that aCk differential structure is needed to defineCk tensor fields.
This choice implies that the transition maps between overlapping domains in the atlas must beCk+1.
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coordinate basis.3 This method of defining the differential structure constructs JacobiansJ̃Aαa
Bβb

and their dualsJ̃∗Bβb
Aαa that transform tensors from the∂βBB face of cubic regionBB to the∂αBA

face of cubic regionBA. These Jacobians are determined by the metric ˜gab and the rotation matri-
cesCAαa

Bβb that define the identification maps (cf.Appendix B) between neighboring regions. The
expressions for these Jacobians are given by Lindblom and Szilágyi [19]:

J̃Aαa
Bβb = CAαa

Bβc

(

δc
b − ñc

BβñBβb

)

− ña
AαñBβb, (A.1)

J̃∗Bβb
Aαa =

(

δc
a − ñAαañc

Aα

)

CBβb
Aαc − ñAαañb

Bβ. (A.2)

The vectors ˜na
Aα andña

Bβ that appear in these expressions represent the outward directed unit nor-
mal vectors to the∂αBA face of regionBA and the∂βBB face of cubic regionBB, respectively.
These normals are unit vectors with respect to the ˜gab metric, i.e., 1= g̃Aabña

Aαñb
Aα = g̃Babña

Bβñ
b
Bβ.

These Jacobians, defined in Eqs. (A.1) and (A.2), determine the way continuous tensor fields
transform across interface boundaries. The reference metric also determines a covariant deriva-
tive ∇̃a that, together with the Jacobians, defines howC1 tensor fields transform across interface
boundaries. These definitions of continuity for tensor fields and their derivatives determine the
C1 differential structure of the manifold. The question of the uniqueness of theC1 differential
structure reduces therefore to the questions of the uniqueness of the Jacobians̃JAαa

Bβb , and of the

uniqueness of the continuity of the derivatives determinedby the covariant derivativẽ∇a.
The normal covectors ˜nAαa that appear in Eqs. (A.1) and (A.2) are proportional to the gradi-

ents of thex|α|A =constant coordinate surfaces that define the particular boundary face of the region
(i.e., in this case theα face of regionA):

ñAαa = ÑAα∂ax|α|A . (A.3)

The indexα can have either sign, e.g., to represent the+x or the−x coordinate boundary face.
The notationx|α|A indicates the coordinate associated with either case—i.e., both the+x and the
−x faces are surfaces of constantxx

A. The proportionality constant̃NAα in Eq. (A.3) is determined
by the requirement that ˜nAαa is a unit covector with respect to the reference metric ˜gAab:

Ñ−2
Aα = g̃ab

A ∂ax|α|A ∂bx|α|A . (A.4)

The sign ofÑAα is chosen to ensure that ˜nAαa is the outward directed normal. The normal vector
is defined as the dual to this normal covector: ˜na

Aα = g̃ab
A ñAαb.

The Jacobians defined in Eqs. (A.1) and (A.2) transform these normals across interface
boundaries in the appropriate way:

ña
Aα = −J̃Aαa

Bβb ñb
Bβ, (A.5)

ñAαa = −J̃∗Bβb
Aαa ñBβb. (A.6)

They also transform vectorstaBβ that are tangent to the interface, ˜nAαataAα = 0, by the rotations
CAαa

Bβb used to define the interface boundary maps (cf.Appendix B):

taAα = J̃Aαa
Bβb tbBβ = CAαa

BβbtbBβ. (A.7)

3While the global Cartesian multicube coordinates are severely constrained (e.g., the faces of the cubic-block regions
are required to be constant coordinate surfaces on which thevalues of the surface coordinates have particular fixed
values), they are not fixed uniquely. The remaining coordinate freedom is discussed at the end of this appendix, but for
the first part of this discussion we assume that all tensor fields are represented in one particular choice of these global
Cartesian multicube coordinates.
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These Jacobians and dual Jacobians are inverses of each other as well (cf. Ref. [19]):

δa
b = J̃Aαa

Bβc J̃∗Bβc
Aαb . (A.8)

Now consider a second positive-definite metric ˇgab that isC1 with respect to the differential
structure defined by the metric ˜gab. This second metric can be used to define alternate normal
covectors ˇnAαa = ŇAα∂ax|α|A and vectors ˇna

Aα = ǧab
A ňAαb, with Ň−2

Aα = ǧab
A ∂ax|α|A ∂bx|α|A . It follows

from Eq. (A.6) and the continuity of ˇgab that the norm of ˜nAαa with respect to ˇgab is continuous
across interface boundaries:

ǧab
A ñAαañAαb = ǧab

B ñBβañBβb. (A.9)

This norm can be rewritten as

ǧab
A ñAαañAαb = Ñ2

Aαǧab
A ∂ax|α|A ∂bx|α|A =

(

ÑAα

ŇAα

)2

. (A.10)

Equation (A.9) therefore implies the continuity of the ratiõNAα/ŇAα across interface boundaries.
The alternate normal ˇnAαa, which can be written as ˇnAαa = (ŇAα/ÑAα)ñAαa, is therefore contin-
uous (up to a sign flip) across interface boundaries. This also implies that the alternate normal
vector ňa

Aα = ǧab
A ňAαb is continuous. These alternate normals must therefore satisfy the same

continuity conditions (up to the sign flips) across interface boundaries as any continuous tensor
field:

ňa
Aα = −J̃Aαa

Bβb ňb
Bβ, (A.11)

ňAαa = −J̃∗Bβb
Aαa ňBβb. (A.12)

The normal vector ˜na
Aα together with a collection of linearly independent tangentvectors, i.e.,

vectorstaAα(k) satisfying 0= taAα(k)ñAαa, can be used as a basis of vector fields on the boundary.
Therefore any vector field, including ˇna

Aα, can be expressed as a linear combination of the form

ňa
Aα = Qña

Aα +
∑

k

ck taAα(k). (A.13)

Contracting this expression with ˜nAαa and using Eq. (A.10), it follows thatQ = ÑAα/ŇAα. Note
that the tangent vectorstaAα(k), which are orthogonal to ˜nAαa by definition, are also orthogonal
to ňAαa. Therefore, the alternate normal ˇna

Aα together with a linearly independent collection of
tangent vectors can also be used as a basis of vectors on the boundary.

Next define alternate JacobiansJ̌Aαa
Bβb andJ̌∗Bβb

Aαa using the alternate metric ˇgab:

J̌Aαa
Bβb = CAαa

Bβc

(

δc
b − ňc

BβňBβb

)

− ňa
AαňBβb, (A.14)

J̌∗Bβb
Aαa =

(

δc
a − ňAαaňc

Aα

)

CBβb
Aαc − ňAαaňb

Bβ. (A.15)

These alternate Jacobians transform the alternate normal ˇna
Aα and any tangent vectortaAα(k) in the

following way:

ňa
Aα = −J̌Aαa

Bβb ňb
Bβ, (A.16)

taAα(k) = J̌Aαa
Bβb tbBβ(k) = CAαa

Bβb tbBβ(k). (A.17)
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The alternative Jacobian and its dual are also inverse of each other:

δa
b = J̌Aαa

Bβc J̌∗Bβc
Aαb . (A.18)

The action of the alternate JacobiansJ̌Aαa
Bβb on the basis of vectors consisting of ˇna

Aa and a collection
of tangent vectorstaAα(k), Eqs. (A.16) and (A.17), is identical to the action of the original Jacobians

J̃Aαa
Bβb on this basis, Eqs. (A.7) and (A.11). It follows that the alternate Jacobians must be identical

to the originals:

J̌Aαa
Bβb = J̃Aαa

Bβb . (A.19)

Since the alternate dual JacobiansJ̌∗Bβb
Aαa are the inverses of the alternate Jacobians, they must

also be identical to the original dual Jacobians (which are the inverses of the original Jacobians).
We have shown therefore that the Jacobians used to define the continuity of tensor fields across
boundary interfaces do not depend on which metric is used to construct them. This argument
depends only on the continuity of those metrics (not their derivatives).

Now consider the uniqueness of the multicube definition of the continuity of the derivatives
of tensor fields. Let̃∇a and∇̌a denote the covariant derivatives defined by theC1 reference metric
g̃ab and theC1 reference metric ˇgab, respectively. Letva andwa denote vector and covector fields
that are continuous across the interface boundaries, as defined by the Jacobians constructed from
either of the reference metrics. Assume that∇̃avb and ∇̃awb are also continuous across inter-
face boundaries. The differences between these tensors and those computed using the alternate
covariant derivativě∇a are tensors:

∇̃avb − ∇̌avb = ∆b
acv

c, (A.20)

∇̃awb − ∇̌awb = −∆c
abwc. (A.21)

The quantity∆b
ac = Γ̃

b
ac − Γ̌b

ac, being the difference between connections, is also a tensor. It is
continuous across interface boundaries as long as the two metrics g̃ab andǧab used to construct
it are bothC1. Continuity of the derivatives̃∇avb and∇̃awb across interface boundaries therefore
implies the continuity of the alternative derivatives∇̌avb and∇̌awb.

The equality of the Jacobians̃JAαa
Bβb and J̌Aαa

Bβb , together with the continuity of the covariant

derivatives∇̃a and∇̌a, implies that theC1 differential structure constructed from theC1 metricg̃ab

is equivalent to the one constructed from any alternateC1 metricǧab. In dimensions two and three
there is only one differential structure on a particular manifold [34]. In those cases, this argument
shows that theC1 differential structures determined by any twoC1 metrics are equivalent. In
higher dimensional manifolds, however, there can be multiple inequivalent differential structures
[34]. The argument given here only establishes the independence of the multicube differential
structure constructed from reference metrics belonging tothe same differential structure in those
cases.

The uniqueness of the JacobiansJAαa
Bβb discussed above assumed a particular fixed choice

of global Cartesian multicube coordinates. Although theseCartesian multicube coordinates are
severely restricted, they are not unique. The two assumptions made about them are the follow-
ing. First, the faces of each cubic-block region are assumedto be constant-coordinate surfaces.
And second, the interface boundary maps identify points in the manifold across boundaries in
a particular way (cf.Appendix B). The global Cartesian multicube coordinates on these mani-
folds can therefore be modified in any way that leaves their interface boundary values and the
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identification of points on the interface boundaries unchanged. The coordinates can be modified
smoothly in the interior of each cubic-block region, for example, while keeping their values fixed
on their faces. More generally, the coordinates can be adjusted smoothly even on the boundary
faces as long as complementary adjustments are made to the corresponding coordinates in the
neighboring region.

Let xa
A denote one particular choice of coordinates on regionA, and letx̄a

A denote another set
of smoothly related coordinates that satisfy the restrictions described above. Also assume that
the Jacobians∂x̄a

A/∂xb
A are everywhere nonsingular and nondegenerate. Letva

A andwAa denote
a smooth vector and covector fields in regionA. The representations of these fields within this
region using the ¯xa

A coordinates are given by the standard expressions

v̄a
A =

∂x̄a
A

∂xb
A

vb
A, (A.22)

w̄Aa =
∂xb

A

∂x̄a
A

wAb. (A.23)

Analogous changes of coordinates can be made in each of the cubic-block regions. The resulting
Jacobians̄JAαa

Bβb needed to transform tensor fields represented in the ¯xa
A coordinates are related to

those of the original fixed coordinatesJAαa
Bβb by the following transformations:

J̄Aαa
Bβb = JAα c

Bβd

∂x̄a
A

∂xc
A

∂xd
B

∂x̄b
B

. (A.24)

This multicube coordinate freedom does not require∂x̄a
A/∂xb

A to be the identityδa
b on the faces

of the multicube regions, and consequently the JacobiansJ̄Aαa
Bβb need not be identical toJAαa

Bβb .
Nevertheless, the formulas for the Jacobians, Eqs. (A.1) and (A.2), have the same form in any
particular multicube coordinate system. When the individual elements (e.g.,na

Aα) that enter these
equations forJAαa

Bβb are transformed to a different coordinate basis using Eqs. (A.22) and (A.23),

the resultingJ̄Aαa
Bβb is related to the original Jacobian by Eq. (A.24). This equation represents

the coordinate freedom that exists in the expressions for the interface Jacobians on multicube
manifolds within a particular differential structure. Every two- and three-dimensional manifold
has a unique global differential structure, and therefore Eq. (A.24) represents all the freedom that
exists in the boundary interface Jacobians on those manifolds.

Appendix B. Two-Dimensional Multicube Manifolds

The purpose of this appendix is to present explicit multicube representations of compact,
orientable two-dimensional manifolds with genera betweenzero and three. A straightforward
procedure allows us to extend these examples to arbitrary genus by gluing together copies of the
Ng = 2 multicube structures. The topologies of all these two-dimensional manifolds are uniquely
determined by their genusNg, which can have non-negative integer values. The caseNg = 0 is
the two-sphere,S2, andNg = 1 is the two-torus,T2. Larger values ofNg can be thought of as
two-spheres withNg handles attached.

A multicube representation of a manifold consists of a collection of multicube regionsBA

together with mapsΨAα
Bβ that determine how the boundaries∂αBA of these regions are connected

together. We choose multicube regionsBA that have uniform coordinate sizeL and that are all
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aligned inRn with the global Cartesian coordinate axes. We position theseBA in R
n in such a

way that regions intersect (if at all) only along boundariesthat are identified with one another
by one of theΨAα

Bβ maps. For each multicube manifold, we provide a table of vectors~cA that
represent the global Cartesian coordinates of the centers of each of the multicube regionsBA.
These tables serve as lists of the regionsBA that are to be included in each particular multicube
representation. We also provide tables of all of the interface boundary identifications for each
multicube representation. A typical entry in one of these tables is an expression of the form
∂+xB2 ↔ ∂−yB3, which would indicate that the+x boundary of multicubeB2 is to be identified
with the−y boundary of multicubeB3.

The boundary identification maps used in our multicube manifolds are simple linear transfor-
mations of the form

xi
A = ci

A + f i
α +CAα i

Bβ j(x
j
B − c j

B − f j
β ). (B.1)

This transformation takes points labeled by the global Cartesian coordinatesx j
B on the bound-

ary ∂βBB to points labeled by the global Cartesian coordinatesxi
A on the boundary∂αBA. The

constantsci
A represent the location of the center of multicube regionBA, while the constantsf i

α

represent the position of the center of theα face relative to the center of the region. Since we
have chosen the regions to have uniform sizes and orientations, the constantsf i

α have the same
form in each multicube region:

f i
±x = 1

2L(±1, 0), (B.2)

f i
±y = 1

2L(0,±1). (B.3)

The matrixCAα
Bβ which appears in Eq. (B.1) is the combined rotation and reflection matrix needed

to reorient the∂βBB boundary with∂αBA. Our specification of a particular multicube representa-
tion includes the matricesCAα

Bβ for each interface boundary identification map. The list of possible
matrices is quite small in two-dimensions, consisting of the identityI, various combinations of
90-degree rotationsR±, and reflectionsM. Explicit representations of these matrices in terms of
the global Cartesian coordinate basis are given by

I =
(

1 0
0 1

)

, R± =
(

0 ∓1
±1 0

)

, M =
(

−1 0
0 1

)

. (B.4)

In the following sections we give the specific matricesCAα
Bβ and their inversesCBβ

Aα needed for
each interface boundary identification∂αBA ↔ ∂βBB of each multicube manifold. The methods
and the notation used here are the same as those developed in Ref. [19].

Appendix B.1. Six-Region, NR = 6, Representation of the Genus Ng = 0 Multicube Manifold

The locations of the six square regions used to construct this representation ofS2 are illus-
trated in Fig.B.1. The values of the square-center location vectors~cA for this configuration are
summarized in TableB.1. The inner edges of the touching squares in the right side of Fig. B.1are
connected by identity maps. The identifications of all the edges of the regions are described in
TableB.2, and the corresponding transformation matrices are given in TableB.3. This six-region
representation ofS2 is equivalent to the standard two-dimensional cubed-sphere representation
of S2 [35–37].
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Figure B.1: Six-region,NR = 6, multicube representation of the genusNg = 0 manifold, the two-sphere,S2. Left
figure shows a multicube representation using distorted squares to indicate as many interfacial connections as possible.
Greek letters indicate identifications between external edges. Right figure shows the same multicube representation using
uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.1: Region center locations for the six-region,NR = 6, genusNg = 0 multicube manifold.

~cA = (x, y)

~c1 = (0, 0) ~c2 = (L, L) ~c3 = (L, 0)

~c4 = (L,−L) ~c5 = (2L, 0) ~c6 = (3L, 0)

Table B.2: Region interface identifications∂αBA ↔ ∂βBB for the six-region,NR = 6, representation of the genusNg = 0
manifold, the two-sphere,S2.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB3 ∂−xB1↔ ∂+xB6 ∂+yB1↔ ∂−xB2 ∂−yB1↔ ∂−xB4

∂+xB2↔ ∂+yB5 ∂+yB2↔ ∂+yB6 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB5

∂−yB3↔ ∂+yB4 ∂+xB4↔ ∂−yB5 ∂−yB4↔ ∂−yB6 ∂+xB5↔ ∂−xB6

Table B.3: Transformation matricesCAα
Bβ for the interface identifications∂αBA ↔ ∂βBB in the six-region,NR = 6,

representation of the genusNg = 0 manifold, the two-sphere,S2. All transformation matricesCAα
Bβ are assumed to be the

identity I, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1↔ ∂−xB2 R+ R− ∂−yB1↔ ∂−xB4 R− R+

∂+xB2↔ ∂+yB5 R+ R− ∂+yB2↔ ∂+yB6 R2
+ R2

−

∂−yB4↔ ∂−yB6 R2
+ R2

− ∂+xB4↔ ∂−yB5 R− R+

Appendix B.2. Ten-Region, NR = 10, Representation of the Genus Ng = 0 Multicube Manifold

The locations of the ten square regions used to construct this representation ofS2 are illus-
trated in Fig.B.2. The values of the square-center location vectors~cA for this configuration are
summarized in TableB.4. The inner edges of the touching squares in the right side of Fig. B.2
are assumed to be connected by identity maps. The identifications of all the edges of the regions
are described in TableB.5, and the corresponding transformation matrices are given in TableB.6.
This ten-region representation ofS2 is a simple generalization of the standard two-dimensional
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cubed-sphere representation ofS2. It is constructed by splitting the four “equatorial” squares
in the standard six-region representation into eight squares with the new interface boundaries
running along the equator.
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Figure B.2: Ten-region,NR = 10, multicube representation of the genusNg = 0 manifold, the two-sphere,S2. Left
figure shows a multicube representation using distorted squares to indicate as many interfacial connections as possible.
Greek letters indicate identifications between external edges. Right figure shows the same multicube representation using
uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.4: Region center locations for the ten-region,NR = 10, genusNg = 0 multicube manifold.

~cA = (x, y)

~c1 = (0, 0) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L) ~c5 = (2L, 0)

~c6 = (3L, 0) ~c7 = (4L, L) ~c8 = (4L, 0) ~c9 = (4L,−L) ~c10 = (5L, 0)

Table B.5: Region interface identifications∂αBA ↔ ∂βBB for the ten-region,NR = 10, representation of the genus
Ng = 0 manifold, the two-sphere,S2.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB3 ∂−xB1↔ ∂+xB10 ∂+yB1↔ ∂−xB2 ∂−yB1↔ ∂−xB4

∂+xB2↔ ∂+yB5 ∂+yB2↔ ∂+yB7 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB5

∂−yB3↔ ∂+yB4 ∂+xB4↔ ∂−yB5 ∂−yB4↔ ∂−yB9 ∂+xB5↔ ∂−xB6

∂+xB6↔ ∂−xB8 ∂+yB6↔ ∂−xB7 ∂−yB6↔ ∂−xB9 ∂+xB7↔ ∂+yB10

∂−yB7↔ ∂+yB8 ∂+xB8↔ ∂−xB10 ∂−yB8↔ ∂+yB9 ∂+xB9↔ ∂−yB10

Appendix B.3. Ten-Region, NR = 10, Representation of the Genus Ng = 1 Multicube Manifold

The locations of the ten square regions used to construct this representation ofT2 are illus-
trated in Fig.B.3. The values of the square-center location vectors~cA for this configuration are
summarized in TableB.7. The inner edges of the touching squares in the right side of Fig. B.3
are connected by identity maps. The identifications of all the edges of the regions are described
in TableB.8, and the corresponding transformation matrices are given in TableB.9. This ten-
region representation ofT2 is a simple generalization of the standard one-region representation.
The outer edges of the squares in the left illustration in Fig. B.3 are identified with the opposing
outer edges using identity maps, just as in the standard one-region representation ofT2. This
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Table B.6: Transformation matricesCAα
Bβ for the interface identifications∂αBA ↔ ∂βBB in the ten-region,NR = 10,

representation of the genusNg = 0 manifold, the two-sphere,S2. All transformation matricesCAα
Bβ are assumed to be the

identity I, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1↔ ∂−xB2 R+ R− ∂−yB1↔ ∂−xB4 R− R+

∂+xB2↔ ∂+yB5 R+ R− ∂+yB2↔ ∂+yB7 R2
+ R2

−

∂−yB4↔ ∂−yB9 R2
+ R2

− ∂+xB4↔ ∂−yB5 R− R+

∂+yB6↔ ∂−xB7 R+ R− ∂−yB6↔ ∂−xB9 R− R+

∂+xB7↔ ∂+yB10 R+ R− ∂+xB9↔ ∂−yB10 R− R+

ten-region representation merely subdivides the single-region representation into ten regions, as
shown in Fig.B.3.
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Figure B.3: Ten-region,NR = 10, multicube representation of the genusNg = 1 manifold, the two-torus,T2. Left
figure shows a multicube representation using distorted squares to indicate as many interfacial connections as possible.
Greek letters indicate identifications between external edges. Right figure shows the same multicube representation using
uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.7: Region center locations for the ten-region,NR = 10, genusNg = 1 multicube manifold.

~cA = (x, y)

~c1 = (0, 0) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L) ~c5 = (2L, 0)

~c6 = (3L, 0) ~c7 = (4L, L) ~c8 = (4L, 0) ~c9 = (4L,−L) ~c10 = (5L, 0)

Appendix B.4. Eight-Region, NR = 8, Representation of the Genus Ng = 1 Multicube Manifold

The locations of the eight square regions used to construct this representation ofT2 are illus-
trated in Fig.B.4. The values of the square-center location vectors~cA for this configuration are
summarized in TableB.10. The inner edges of the touching squares in Fig.B.4 are connected by
identity maps. The identifications of all the edges of the regions are described in TableB.11. All
of the interface identification maps have transformation matricesCAα

Bβ that are the identity matrix
I, so they are not included in a table for this case. This eight-region,NR = 8, representation
of T2 is constructed by gluing a handle onto the ten-region representation ofS2 described in
Appendix B.2. The two inner regions (3 and 8 in Fig.B.2) are removed, and the holes created in
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Table B.8: Region interface identifications∂αBA ↔ ∂βBB for the ten-region,NR = 10, representation of the genus
Ng = 1 manifold, the two-torus,T2.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB3 ∂−xB1↔ ∂+xB10 ∂+yB1↔ ∂−xB2 ∂−yB1↔ ∂−xB4

∂+xB2↔ ∂+yB5 ∂+yB2↔ ∂−yB4 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB5

∂−yB3↔ ∂+yB4 ∂+xB4↔ ∂−yB5 ∂+xB5↔ ∂−xB6 ∂+xB6↔ ∂−xB8

∂+yB6↔ ∂−xB7 ∂−yB6↔ ∂−xB9 ∂+xB7↔ ∂+yB10 ∂+yB7↔ ∂−yB9

∂−yB7↔ ∂+yB8 ∂+xB8↔ ∂−xB10 ∂−yB8↔ ∂+yB9 ∂+xB9↔ ∂−yB10

Table B.9: Transformation matricesCAα
Bβ for the region interface identifications∂αBA ↔ ∂βBB in the ten-region,NR = 10,

representation of the genusNg = 1 manifold, the two-torus,T2. All transformation matricesCAα
Bβ are assumed to be the

identity I, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1↔ ∂−xB2 R+ R− ∂−yB1↔ ∂−xB4 R− R+

∂+xB2↔ ∂+yB5 R+ R− ∂+xB4↔ ∂−yB5 R− R+

∂+yB6↔ ∂−xB7 R+ R− ∂−yB6↔ ∂−xB9 R− R+

∂+xB7↔ ∂+yB10 R+ R− ∂+xB9↔ ∂−yB10 R− R+

this way are connected together to form a handle. The outer edges in this eight-region,NR = 8,
representation ofT2 are therefore connected together, as shown in the left side of Fig. B.4, using
the same identification maps as in the ten-region representation of S2 shown in the left side of
Fig. B.2. The inner edges that make up the handle in this new representation are identified as
indicated by the Greek letters in Fig.B.4.
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Figure B.4: Alternative eight-region,NR = 8, multicube representation of the genusNg = 1 manifold, the two-torus,
T2. Left illustration shows a multicube representation usingdistorted squares to indicate as many interfacial connections
as possible. Greek letters indicate identifications between external edges. Right illustration shows the same multicube
representation using uniformly sized, undistorted squares, including their relative locations in the background Euclidean
space. The locations of the regions in the right illustration were chosen to show explicitly as many nearest neighbor
identifications as possible.
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Table B.10: Region center locations for the eight-region,NR = 8, genusNg = 1 multicube manifold.

~cA = (x, y)

~c1 = (L, 2L) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L)

~c5 = (0,−L) ~c6 = (0, 0) ~c7 = (0, L) ~c8 = (0, 2L)

Table B.11: Region interface identifications∂αBA ↔ ∂βBB for the eight-region,NR = 8, representation of the genus
Ng = 1 manifold, the two-torus,T2.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB8 ∂−xB1↔ ∂+xB8 ∂+yB1↔ ∂−yB4 ∂−yB1↔ ∂+yB2

∂+xB2↔ ∂−xB7 ∂−xB2↔ ∂+xB7 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB6

∂−xB3↔ ∂+xB6 ∂−yB3↔ ∂+yB4 ∂+xB4↔ ∂−xB5 ∂−xB4↔ ∂+xB5

∂+yB5↔ ∂−yB6 ∂−yB5↔ ∂+yB8 ∂+yB6↔ ∂−yB7 ∂+yB7↔ ∂−yB8

Appendix B.5. Eight-Region, NR = 8, Representation of the Genus Ng = 2 Multicube Manifold

The locations of the eight square regions used to construct this representation of the genus
Ng = 2 manifold, the two-handled sphere, are illustrated in Fig.B.5. The values of the square-
center location vectors~cA for this configuration are summarized in TableB.12. The inner edges
of the touching squares in Fig.B.5 are connected by identity maps. The identifications of all the
edges of the regions are described in TableB.13, and the corresponding transformation matrices
are given in TableB.14. This representation of the two-handled sphere is constructed by starting
with the ten-region representation of the two-torus shown in Fig.B.3, removing the two internal
regions (3 and 8 in Fig.B.3), and then connecting together the holes created in this wayto form
the second handle. The outer edges in this eight-region representation of the genusNg = 2
manifold are therefore connected together, as shown in the left side of Fig.B.5, using the same
identification maps as in the ten-region representation ofT2 shown in the left side of Fig.B.3.
The inner edges that make up the handle in this new representation are identified as indicated by
the Greek letters in Fig.B.5.

Table B.12: Region center locations for the eight-region,NR = 8, genusNg = 2 multicube manifold.

~cA = (x, y)

~c1 = (L, 2L) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L)

~c5 = (0,−L) ~c6 = (0, 0) ~c7 = (0, L) ~c8 = (0, 2L)

Appendix B.6. Ten-Region, NR = 10, Representation of the Genus Ng = 2 Multicube Manifold

The locations of the ten square regions used to construct this representation of the genus
Ng = 2 manifold, the two-handled sphere, are illustrated in Fig.B.6. The values of the square-
center location vectors~cA for this configuration are summarized in TableB.15. The inner edges
of the touching squares in Fig.B.6 are connected by identity maps. The identifications of all the
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Figure B.5: Eight-region,NR = 8, multicube representation of the genusNg = 2 manifold, the two-handled sphere. Left
illustration shows a multicube representation using distorted squares that are arranged to indicate the association of this
case with theNR = 10 representation of theNg = 1 manifold. Greek letters indicate identifications betweenexternal
faces. Right illustration shows the same multicube representation using uniformly sized, undistorted squares, including
their relative locations in the background Euclidean space. The locations of the regions in the right illustration were
chosen to show explicitly as many nearest neighbor identifications as possible.

Table B.13: Region interface identifications∂αBA ↔ ∂βBB for the eight-region,NR = 8, representation of the genus
Ng = 2 manifold, the two-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB8 ∂−xB1↔ ∂+xB8 ∂+yB1↔ ∂−yB4 ∂−yB1↔ ∂+yB2

∂−xB2↔ ∂+xB7 ∂+xB2↔ ∂+xB4 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB6

∂−xB3↔ ∂+xB6 ∂−yB3↔ ∂+yB4 ∂−xB4↔ ∂+xB5 ∂−xB5↔ ∂−xB7

∂+yB5↔ ∂−yB6 ∂−yB5↔ ∂+yB8 ∂+yB6↔ ∂−yB7 ∂+yB7↔ ∂−yB8

Table B.14: Transformation matricesCAα
Bβ for the region interface identifications∂αBA ↔ ∂βBB in the eight-region,

NR = 8, representation of the genusNg = 2 manifold, the two-handled sphere. All transformation matrices CAα
Bβ are

assumed to be the identityI, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2↔ ∂+xB4 R2
− R2

+

∂−xB5↔ ∂−xB7 R2
+ R2

−

edges of the regions are described in TableB.16, and the corresponding transformation matrices
are given in TableB.17. This representation of the two-handled sphere is constructed by starting
with the eight-region representation shown in Fig.B.5 and adding additional squares to separate
more distinctly the ends of the second handle on the torus. The outer edges in this ten-region rep-
resentation of the genusNg = 2 manifold are therefore connected together as shown in Fig.B.6.
This representation has the advantage that it reduces the maximum number of squares meeting
at a single vertex from eight to six. The reference metric in this case therefore requires less
distortion of the flat metric pieces that go into its construction.
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Figure B.6: Ten-region,NR = 10, multicube representation of the genusNg = 2 manifold, the two-handled sphere. Left
illustration shows a multicube representation using distorted squares that are arranged to indicate the association of this
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faces. Right illustration shows the same multicube representation using uniformly sized, undistorted squares, including
their relative locations in the background Euclidean space. The locations of the regions in the right illustration were
chosen to show explicitly as many nearest neighbor identifications as possible.

Table B.15: Region center locations for the ten-region,NR = 10, genusNg = 2 multicube manifold.

~cA = (x, y)

~c1 = (L, 2L) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L) ~c5 = (0,−L)

~c6 = (0, 0) ~c7 = (0, L) ~c8 = (0, 2L) ~c9 = (−L, 0) ~c10 = (−L, 2L)

Table B.16: Region interface identifications∂αBA ↔ ∂βBB for the ten-region,NR = 10, representation of the genus
Ng = 2 manifold, the two-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB10 ∂−xB1↔ ∂+xB8 ∂+yB1↔ ∂−yB4 ∂−yB1↔ ∂+yB2

∂−xB2↔ ∂+xB7 ∂+xB2↔ ∂+xB4 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB9

∂−xB3↔ ∂+xB6 ∂−yB3↔ ∂+yB4 ∂−xB4↔ ∂+xB5 ∂−xB5↔ ∂−xB7

∂+yB5↔ ∂−yB6 ∂−yB5↔ ∂+yB8 ∂−xB6↔ ∂+xB9 ∂+yB6↔ ∂−yB7

∂+yB7↔ ∂−yB8 ∂−xB8↔ ∂+xB10 ∂+yB9↔ ∂−yB9 ∂+yB10↔ ∂−yB10

Table B.17: Transformation matricesCAα
Bβ for the region interface identifications∂αBA ↔ ∂βBB in the ten-region,NR =

10, representation of the genusNg = 2 manifold, the two-handled sphere. All transformation matricesCAα
Bβ are assumed

to be the identityI, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2↔ ∂+xB4 R2
− R2

+

∂−xB5↔ ∂−xB7 R2
+ R2

−

Appendix B.7. Representations of Genus Ng ≥ 3 Multicube Manifolds Using10(Ng−1) Regions

Multicube representations of two-dimensional manifolds with generaNg ≥ 3 can be con-
structed by gluing together copies of the genusNg = 2 multicube manifold depicted in Fig.B.6.
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This is done by breaking the interface identifications denotedγ andκ in Fig. B.6 and then at-
taching in their place additional copies of the same multicube structure, as shown in Fig.B.7
for the genusNg = 3 case. Each copy of the genusNg = 2 multicube structure added in this
way increases the genus of the resulting manifold by one. Theaddition of one copy, as shown in
Fig. B.7, produces a multicube manifold of genusNg = 3. The values of the square-center loca-
tion vectors~cA for this genusNg = 3 case are summarized in TableB.18. The inner edges of the
touching squares in Fig.B.7 are connected by identity maps. The identifications of all the edges
of the twenty square regions are described in TableB.19, and the corresponding transformation
matrices are given in TableB.20.
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Figure B.7: Twenty-region,NR = 20, multicube representation of the genusNg = 3 manifold, the three-handled sphere.
The touching edges of adjacent squares in this figure are identified, while Greek letters indicate identifications between
external edges. This representation of the genusNg = 3 manifold was constructed by connecting together two copies of
theNg = 2 manifold illustrated in Fig.B.6.

Table B.18: Region center locations for the twenty-region,NR = 20, genusNg = 3 multicube manifold, the three-handled
sphere.

~cA = (x, y)

~c1 = (L, 2L) ~c2 = (L, L) ~c3 = (L, 0) ~c4 = (L,−L) ~c5 = (0,−L)

~c6 = (0, 0) ~c7 = (0, L) ~c8 = (0, 2L) ~c9 = (−L, 0) ~c10 = (−L, 2L)

~c1′ = (4L, 2L) ~c2′ = (4L, L) ~c3′ = (4L, 0) ~c4′ = (4L,−L) ~c5′ = (3L,−L)

~c6′ = (3L, 0) ~c7′ = (3L, L) ~c8′ = (3L, 2L) ~c9′ = (2L, 0) ~c10′ = (2L, 2L)
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Table B.19: Region interface identifications,∂αBA ↔ ∂βBB, for the twenty-region,NR = 20, representation of the genus
Ng = 3 manifold, the three-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1↔ ∂−xB10′ ∂−xB1↔ ∂+xB8 ∂+yB1↔ ∂−yB4 ∂−yB1↔ ∂+yB2

∂−xB2↔ ∂+xB7 ∂+xB2↔ ∂+xB4 ∂−yB2↔ ∂+yB3 ∂+xB3↔ ∂−xB9′

∂−xB3↔ ∂+xB6 ∂−yB3↔ ∂+yB4 ∂−xB4↔ ∂+xB5 ∂−xB5↔ ∂−xB7

∂+yB5↔ ∂−yB6 ∂−yB5↔ ∂+yB8 ∂−xB6↔ ∂+xB9 ∂+yB6↔ ∂−yB7

∂+yB7↔ ∂−yB8 ∂−xB8↔ ∂+xB10 ∂+yB9↔ ∂−yB9 ∂+yB10↔ ∂−yB10

∂+xB1′ ↔ ∂−xB10 ∂−xB1′ ↔ ∂+xB8′ ∂+yB1′ ↔ ∂−yB4′ ∂−yB1′ ↔ ∂+yB2′

∂−xB2′ ↔ ∂+xB7′ ∂+xB2′ ↔ ∂+xB4′ ∂−yB2′ ↔ ∂+yB3′ ∂+xB3′ ↔ ∂−xB9

∂−xB3′ ↔ ∂+xB6′ ∂−yB3′ ↔ ∂+yB4′ ∂−xB4′ ↔ ∂+xB5′ ∂−xB5′ ↔ ∂−xB7′

∂+yB5′ ↔ ∂−yB6′ ∂−yB5′ ↔ ∂+yB8′ ∂−xB6′ ↔ ∂+xB9′ ∂+yB6′ ↔ ∂−yB7′

∂+yB7′ ↔ ∂−yB8′ ∂−xB8′ ↔ ∂+xB10′ ∂+yB9′ ↔ ∂−yB9′ ∂+yB10′ ↔ ∂−yB10′

Table B.20: Transformation matricesCAα
Bβ for the region interface identifications∂αBA ↔ ∂βBB in the twenty-region,

NR = 20, representation of the genusNg = 3 manifold, the three-handled sphere. All transformation matricesCAα
Bβ are

assumed to be the identityI, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2↔ ∂+xB4 R2
− R2

+ ∂−xB5↔ ∂−xB7 R2
+ R2

−

∂+xB2′ ↔ ∂+xB4′ R2
− R2

+ ∂−xB5′ ↔ ∂−xB7′ R2
+ R2

−
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