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Abstract 

A hybrid model for simulating rogue waves in random seas on a large temporal and 

spatial scale is proposed in this paper. It is formed by combining the derived fifth order 

Enhanced Nonlinear Schrödinger Equation based on Fourier transform, the Enhanced Spectral 

Boundary Integral (ESBI) method and its simplified version. The numerical techniques and 

algorithm for coupling three models on time scale are suggested. Using the algorithm, the 

switch between the three models during the computation is triggered automatically according 

to wave nonlinearities. Numerical tests are carried out and the results indicate that this hybrid 

model could simulate rogue waves both accurately and efficiently. In some cases discussed, 

the hybrid model is more than 10 times faster than just using the ESBI method, and it is also 

much faster than other methods reported in literature. 
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1 Introduction 

1.1 Background 

The study of surface ocean waves has a long history [1, 2, 3, 4, 5], however, rogue waves 

didn’t draw extensive attentions until recent decades. The rogue waves are extraordinarily 

large water waves in ocean and have been recognized as great threats to the safety of offshore 

structures [6, 7]. It is commonly defined as the wave with maximum wave height exceeding 2 

times of significant wave height (Hs) and/or the maximum wave amplitude exceeding 1.25 Hs 

[8]. Their occurrence is in fact more frequent than rare [9]. The rogue waves might be caused 

by many factors, such as the energy focusing due to the seabed geometry, wind-wave 

interaction, wave-current interaction, modulation instability, etc., which have been discussed 

and reviewed by researchers [9, 10].  

The most distinguished feature of rogue wave is its transience, which means that it can 

happen and disappear very rapidly [9]. Due to that reason, it cannot be modeled by using 

steady wave theories, e.g., Stokes waves [4], cnoidal waves [11] or solitary wave [12], which 

describe such waves with permanent profiles not evolving in time. Furthermore, due to the 

rapid appearance of rogue waves and the persistently changing sea state, the statistical 

stationarity condition also breaks down [9]. Therefore, studies need be carried out in time 

domain to explore the physics of rogue waves.  

Meanwhile, rogue waves can also have large steepness and strong nonlinearity. As 

pointed out by Kriebel [13, 14], Onorato, et al. [15] and Phillips [16], the linear and second 



2 
 

order wave theories significantly underestimate the rogue wave dynamics, thus third or higher 

order or fully nonlinear theories are required [16], which also has been confirmed by 

numerical simulations in [17, 18]. In addition, the nonlinearities of rogue waves are so strong 

that sometimes breaking occurs in many occasions. In order to deal with these cases, the 

Navier-Stokes (NS) equations may be numerically solved, as has been done by, e.g., Harlow 

and Welch [19] and Hirt and Nichols [20]. However, this class of methods is so inefficient 

that it is impossible to be employed for a large scale simulation even with the very powerful 

computer available today.  

On top of that, the studies on rogue waves have already been carried out extensively on 

the local scale, such as rogue wave interaction with wind [21, 22], current [23, 24] and 

structures [25, 26], etc. The work significantly contributed to our understanding of the local 

effects of rogue waves over a short window of time. However, the formation of rogue waves 

in random seas is not fully explained by using the knowledge of the local effects [9]. To fully 

understand the formation for rogues, simulations of wave fields in large and long time scale 

with sufficient nonlinear effects are needed as indicated by [27].  

The statistical studies have suggested that the rogue waves usually have exceedance 

probabilities ranging from 10-3 to 10-5 [10]. Unquestionably, it may take long duration to 

observe an occurrence of the rogue wave directly from random sea simulation either 

physically or numerically. For example, within the range of real observation, one may need to 

record 103 ~ 105 individual waves to collect reliable statistics, e.g. 3000 waves based on 

Rayleigh distribution [9]. Most importantly, in such a way, the occurrence of the rogue waves 

is random and unpredictable. It may appear after a sufficient long-time evolution due to 

nonlinearity, thus the duration of the numerical simulation must be long enough, e.g., 

covering the life span of one random sea state. Duration shorter than this may not well 

represent the evolution of random seas. Since the real sea states averagely last for 3 hours [28], 

and a typical peak period  in North Sea [29, 30], the duration of the simulation may 

need to last as long as approximately . 

In addition, traditional statistical model only looks at the surface time history at a fixed 

location. While rogue waves can occur at arbitrary position during the nonlinear evolution, so 

that regional statistics must be considered [31]. According to Forristall’s study on the air gap 

under the deck of a platform [32], the maximum crest height in the whole working area 

( ) is almost 20% higher than the one expected at a single point. This further 

addresses the importance for developing a statistical model describing wave probability over 

a specific area, instead of just looking at a fixed location [9]. However, very few studies on 

regional statistics of rogue waves have been carried out so far, although researchers are aware 

that higher crests appear in radar images [32]. Meanwhile, instead of directly using such 

statistical model, random seas may be simulated numerically so that the free surface can be 

obtained at every time step, which can later be used for regional statistics. To do so, the 

domain should be large enough to account for the possible locations where rogue waves may 

occur as the location of rogue waves are unpredictable. For long-crest waves, i.e., in 2D 

situations, a domain of 128  is used in [29]. Many attempts in literature have been made in 

order to develop the various simulation methods which can be employed to study the rogue 
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waves in a large temporal and spatial scale. A brief review on them will be given in the 

following subsections. 

1.2 Numerical models for large scale simulations 

Phase-averaged or the so called third generation wind wave models, such as WAM, 

SWAN, WAVEWATCH etc., have long been suggested and widely adopted in engineering and 

applied sciences. However, only the statistic features of the waves could be obtained, such as 

the peak frequency, significant wave height and so on. The space-time information of the 

specific wave dynamics is lost by using them, which however is very important for 

considering the dynamics of rogue waves for different purposes. Thus, phase-resolved models 

have been sought after. Among them, numerical models based on the NS equation are not 

computationally economical for large scale simulations as pointed out above and such 

applications in literatures are rare. The potential theory assumes that the fluid is inviscous and 

irrotational, which makes numerical simulations much faster. Therefore, we will only consider 

potential models in the present study to simulate non-breaking waves, and so the review 

below will be focused on the work related to using potential models. 

1.2.1 Weakly nonlinear models  

The simplified mathematical models, such as the Boussinesq, KdV, and Schrödinger 

equations have been widely used to study weakly nonlinear waves. The Boussinesq equation 

[12] and KdV equation [11] were derived by assuming small steepness and water depth to 

study shallow water waves. Both the equations are obtained by assuming the Ursell number 

 [33]. Thus they are mainly used for studying weakly nonlinear waves 

in shallow water situations. Although improved models which could be used in deep water are 

suggested, such as the higher order Boussinesq equation by Wei et al. [34] and. Madsen et al 

[35], as well as multi-layered Boussinesq model by Lynett and Liu [36], they are relatively 

computational expensive so that are hardly used in large scale simulations. Nevertheless, both 

the KdV and Boussinesq equations are only accurate when used to simulate waves in shallow 

and finite water depth, so that they will not be further discussed in this paper. A detailed 

review about the KdV and Boussinesq equation could be found in [37]. 

The nonlinear Schrödinger equation (NLSE) is another tool to study the dynamics of the 

gravity water waves in deep and finite water depth. The third order weakly nonlinear equation 

was first derived from the Zakharov equation [38], which is referred as the cubic NLSE 

(shortened as CNLSE) in this paper. Subsequently, Benny and Roskes [39], Hasimoo and Ono 

[40], Davey and Stewartson [41] also came up with the similar equations by using 

perturbation method. Based on the previous studies, Dysthe [42] extended this theory to the 

fourth order for narrow bandwidth waves and proposed what is referred to the Dysthe 

equation. Trulsen and Dysthe [43] further extended the work and derived an equation for 

broader bandwidth waves. Later, Trulsen et al [44] corrected the linear terms to the exact 

linear solution, and named their model as the fourth order Enhanced Nonlinear Schrödinger 

Equation (shortened as ENLSE-4 in this paper). Meanwhile, Stiassnie [45] applied the narrow 

bandwidth assumption to the Zakharov equation and derived the same equation as Dysthe 
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[42], which indicates that the Dysthe equation is a special case of the Zakharov equation.  

Debsarma and Das [46] used the same technique and obtained a fifth order equation called the 

Higher Order Dysthe Equation in terms of Hilbert transform. Similarly, by introducing 

Trulsen et al.’s approach [44], the linear operation of this equation could be enhanced and we 

refer it as the fifth order Enhanced Nonlinear Schrödinger Equation based on Hilbert 

transform (shortened as ENLSE-5H) in this paper.  

Applications of Schrödinger type equations in large scale simulations are extensive. 

Dysthe et al. [47] investigated free surface evolution by directly simulating random waves 

based on the Dysthe equation in a domain covering 100 100 peak wave lengths for 150 peak 

periods. Onorato et al. [48] brought the effects of current into the CNLSE and showed that 

rogue waves can be generated naturally when a stable wave train enters a region of an 

opposing current flow based on a numerical simulation in a domain of 60 peak wave lengths 

lasting for 60 peak periods. In addition, Shemer et al. [49] studied the probability of rogue 

waves in random wave simulations based on both the CNLSE and the Dysthe equation in a 

domain of 77 peak wave lengths during 100 peak periods. More studies can also be found in 

[50, 51]. 

1.2.2 Fully nonlinear models 

Besides, studies of rogue waves have also been carried out by using the fully nonlinear 

potential theory. Some papers employed Boundary Element Method (BEM) [52, 53], and 

others used Finite Element Method (FEM) [54, 55] or Quasi Arbitrary Lagrangian-Eulerian 

Finite Element Method (QALE-FEM) [26, 56]. Some of these methods can simulate waves 

with overturning (e.g. [53, 56]) but they are relatively expensive, so they have not been 

applied to modelling wave in vary large scale so far. Another category of nonlinear potential 

methods is based on the FFT. One of them is the Higher-Order Spectral (HOS) method 

proposed by West et al. [57], and subsequently by Dommermuth and Yue [58] to simulate 

propagating waves. This method applied the Taylor expansion of the velocity potential on the 

free surface with respect to vertical coordinate. It is accurate and efficient when the waves to 

be studied are not very steep ( ) [58]. Nicholls [59] suggested a numerical 

model called Spectral Continuation method to study the traveling water wave problems. The 

Dirichlet-Neumann operator is approximated by a limited Taylor series. Due to the fact that 

evaluating the higher order terms is highly recursive and impractical, they chose to use the 

expansions to the fifth order in practice. As a consequence, this method is incapable to capture 

the higher order nonlinearities and only accurate when the nonlinearities are weak. Clamond 

and Grue [60] suggested another method combing boundary integral equations and FFT 

technique in two and three dimensions. The formulations for 3D situation was later 

implemented and numerically tested by Fructus et al. [61] and Grue [62], named as the 

Spectral Boundary Integral (SBI) method. This method is recently improved and enhanced by 

Wang and Ma [63] in three aspects including provision of new techniques for anti-aliasing 

and de-singularization, and a new algorithm for automatically including or excluding integral 

terms involved in the method. It has been observed that the new technique can help the 

method being more than 35 time faster than the method without the techniques in some cases. 
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The method presented by Wang and Ma [63] with the new techniques will be referred as to 

Enhanced Spectral Boundary Integral (ESBI) method in this paper for convenience. 

The FFT based fully nonlinear methods have been successfully applied in large scale 

simulations. Clamond et al. [64] simulated the evolution of wave groups by using the SBI 

method in a 2D NWT covering 128 peak wave lengths up to 2000 peak periods. Ducrozet et 

al. [29] had investigated the occurrence of rogue waves in 2D and 3D large open seas of 

 peak wave lengths for 250 peak periods by direct simulation of random waves using 

HOS method. Xiao et al. [65] also studied the dynamics of rogue waves in 3D NWT covering 

 peak wave lengths which lasts for 150 peak periods based on HOS to account for 

the directional spreading effects.  

1.3 Issues to be addressed 

As indicated above, the literature reveals that rogue waves need to be modelled in a large 

temporal and spatial scale with full consideration of nonlinearity. In addition, a large number 

of parameter studies are required to quantify the behaviors of rogue waves as shown Xiao et 

al. [65] and in engineering design. This inheritably demands the modelling methods to be 

efficient. Although versatile versions of NLSE have been suggested and are computationally 

efficient, they are only accurate when waves are moderate. Henderson et al. [66] simulated 

traveling waves based on the CNLSE and fully nonlinear Higher-Order BEM, and concluded 

that there was good agreement between the results of these two models only for waves with 

small steepness ( ). Clamond et al. [64] investigated the evolution of the 

envelope soliton with an initial steepness of  using the ENLSE-4 and their fully 

nonlinear approach separately. Through comparing the free surface profiles, they concluded 

that the former was only valid for a limited period at the beginning of the simulation before 

rogue waves are formed, and indicated that the ENLSE-4 became inaccurate when wave 

steepness evolved to be . Slunyaev et al. [67] have compared the analytical solution 

of the CNLSE with the numerical results of the Dysthe equation and the fully nonlinear Euler 

equations for simulating rogue waves. They concluded that the CNLSE was not accurate for 

waves with initial steepness .  

On the other hand, the fully nonlinear models are more accurate than the weakly 

nonlinear models for dealing with strong nonlinear waves, one should note that they are 

relatively more computationally expensive. It was reported, for example, by Ducrozet et al. 

[29] that the simulation of a 3D random sea covering  peak wave lengths and 

propagating for 250 peak wave periods costs 10 CPU days on a 3 GHz-Xeon single processor 

PC by using the fifth order High-order Spectral method! It is far longer than a sea state 

( ). That indicates that the existing fully nonlinear models are not sufficiently efficient 

for a large scale simulation and for use in design where a large number of parameter studies 

may be necessary.    

In summary, there is currently a lack of numerical methods which can model rogue 

waves in a large scale with full nonlinearity and with sufficient efficiency. In this paper, we 

will propose a new hybrid model coupling the models with different levels of approximations 

and efficiencies. The basic idea is that when waves are not steep, the simplified but efficient 
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models are used; only when necessary, the fully nonlinear but less efficient models are 

employed. In this way, one can achieve higher efficiency without loss of accuracy. The ESBI 

described in [63] will be selected as the fully nonlinear model. The ENLSE-5H suggested by 

Debsarma and Das [46], will be used as the simplified and efficient model but will be 

reformulated to overcome some of its drawbacks. As well known, the ENLSE is accurate only 

with relatively narrow bandwidth waves, but may not be accurate for broad bandwidth waves 

even their steepness is not very large. A proper alternation is needed to replace the ENLSE for 

modelling waves of broad bandwidth with moderate steepness. This will be obtained by a 

reduced form of the ESBI. The relevant techniques for coupling the models will be detailed in 

the following sections.   

2 Mathematical formulations 

2.1 The Spectral Boundary Integral Method 

This method has been suggested by Clamond and Grue [60], Fructus et al. [61] and Grue 

[62], and improved by Wang and Ma [63]. So details will not be given here. However the 

summary of main equations is just presented for completeness. Based on the potential theory, 

the governing equation together with all boundary conditions are given as 

 (1) 

 
(2) 

 
(3) 

 
(4) 

where  is the Laplacian and  is the horizontal gradient 

operator, and  is the elevation of the free surface,  is the velocity potential. Among the 

variables in the equations above, ,  and  have been non-dimensionalized by 

multiplying ,  by multiplying  and  by multiplying , where  

is the representative circular frequency and  is the gravity acceleration.  

In order to derive the equations for numerical simulation, the Fourier transform  and 

the inverse transform  are employed and defined as 

 
(5) 

 
(6) 

where the wave number . Fast Fourier Transform (FFT) is adopted to perform the 

Fourier and inverse transform (IFFT) numerically. 
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 The boundary conditions on the free surface could be reformulated as 

 
(7) 

 

(8) 

after introducing  and the velocity potential at free surface . This is 

referred as the Dirichlet to Neumann operation. Applying Fourier transform to both the 

boundary conditions leading to the skew-symmetric prognostic equation 

 
(9) 

where 

, ,  (10) 

and the circular frequency , wave number . Then the solution 

is given as 

 
(11) 

where 

 
(12) 

 On the other hand, the boundary integral of Green’s theorem based on Eq. (1) follows as 

 
(13) 

where S is the area of the instantaneous free surface, the variables with the prime indicate 

those at source point , the variables without the prime are those at field point , 

 and ,  denotes the segment of . 

Using , the above integral can be written as 

 
(14) 

where  is the projection of  to the horizontal plane. Then a variable  is 

introduced and the equation above is reformulated as 
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(15) 

The velocity  can be split into four parts, i.e., . Each part is 

given by 

 
(16) 

 (17) 

 

(18) 

 

(19) 

where  and  could be estimated directly by applying the Fourier and its inverse 

transforms. Fructus et al. [61] has rewritten the kernel of , and the dominant part could be 

expanded into the third order convolutions, say 

 

(20) 

The calculation of the convolutions is very fast owing to the algorithm of FFT. Otherwise, 

the remaining integration part of  and the whole expression of  are estimated through 

numerical integration, which is the most time consuming part of the numerical method. In 

addition, the numerical integration is estimated at nodes  and shifted back to 

regular points through Fourier interpolation in order to avoid explicit singularity for 

calculating the integrand in [61]. It is found that the resolution needs to be well refined in 

order to obtain accurate results by using this method. Grue [62] made one step further, 

expanded the kernels of  and  and wrote the dominant parts into the convolutions up to 

the sixth and seventh order respectively. Both the remaining integration parts of  and  

are neglected. The numerical scheme is significantly accelerated due to the most time 

consuming parts are excluded. However, it is based on the assumption that the gradient 

parameter . If the condition is not met, such as the cases where the wave free surface is 

quite steep even in a local area, the integration parts can be important to the accuracy of 

estimating  and  and could not be neglected.  

 In the study by Wang and Ma [63], some numerical techniques on improving the 
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computational efficiency of this numerical model have been proposed. Firstly, a new 

numerical de-singularity technique was introduced. It is found that to reach the same level of 

accuracy, one could use much less points if the new method is applied. The second 

contribution of that paper was to propose a new technique to deal with anti-aliasing problem 

associated with FFT/IFFT. The other contribution they made was to reformulate the equation 

for  and  as 

 
(21) 

 
(22) 

During their simulation, the gradient of wave surface is monitored. When the waves 

satisfy a condition that they are moderate or their gradient is small, the velocity components 

will be evaluated through only estimating convolutions up to the seventh order with the 

integration parts neglected. The integration parts are estimated only when the condition is not 

met. For regular waves, the condition is , where can be taken as 0.5. For 

random waves, the condition is , where  is the eighth order 

convolution part. With the three new techniques, the method becomes much faster. It has been 

observed to be more than 35 time faster than the method without the techniques in some cases. 

The method presented by Wang and Ma [63] will be referred to as Enhanced Spectral 

Boundary Integral (ESBI) method in this paper for convenience. 

Built on that paper, another computational efficient method may be formed, in which 

only the third order convolution terms, neglecting the integration terms in the vertical velocity, 

i.e.,  are considered. The difference between this approximate approach 

and the ESBI lies in the vertical velocity estimation. All others, including the prognostic 

equation and full nonlinear free surface conditions, are the same as the ESBI. It is expected 

that this approximate approach will be as accurate as the ESBI when the waves are not 

strongly nonlinear. This approximate approach will be referred as the Quasi Spectral 

Boundary Integral (QSBI) method in this paper for convenience. Both the QSBI and ESBI 

methods are solved by using embedded fifth order Runge-Kutta method with adaptive time 

step. The details of the numerical scheme could be found in [63]. The QSBI will be formed as 

a part of the hybrid method developed in this paper. 

2.2 The ENLSE based on FFT  

In this section, the formulations of the ENLSEs will be presented. In the first subsection, 

the various forms of existing ENLSEs are outlined. The second subsection then explains the 

ENLSE based on FFT, newly proposed in this paper. Details are given below.  

2.2.1 Existing ENLSEs 

As the NLSE has been studied extensively, the basic equations are only given here for 

completeness without the details of derivation. The surface elevation and the velocity 
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potential could be written in the form of the summation of harmonics by introducing the 

concept of envelope  

 
(23) 

 
(24) 

where  and  are complex envelops of the first harmonic of surface elevation and velocity 

potential respectively,  and  are the  harmonic coefficients,  and  are real 

functions representing the mean surface deflection and mean flow,  is the complex 

conjugate, and  with  being the main direction of wave propagation. ,  

and  have been non-dimensionalized by multiplying , while ,  and  

non-dimensionalized by multiplying , similar to what have been done for the variables 

in Eqs. (1)-(4). Subjected to the assumption that steepness  and spectrum 

width is of order , one can introduce the slow modulation variables ,   and 

, and assume  and  are slowly modulated by such variables. Using the perturbation 

approach to the fourth order , one can obtain the Dysthe equation [42, 45], which is in 

terms of . One can also obtain the Dysthe equation of the second kind [68] in term of wave 

envelope , which is employed in this paper: 

 

(25) 

 
(26) 

 (27) 

 
(28) 

where the superscript  denotes its complex conjugate. The order (I) of the equation is 

defined in the way that 

,  

,  and  
(29) 

Trulsen et al. [44] later pointed out that the linear operators could be replaced by the 

exact linear solution, and proposed the following form  

 
(30) 
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where  and  is the peak wave number. Note that we have 

assumed that the mean wave direction points to the positive x-axis. The linear terms on the 

left hand side now become the exact representation of linear propagation and no longer 

subject to the narrow spectrum assumption. The nonlinear terms on the right hand remain the 

same. The method based on Eq. (30) is named as ENLSE-4 in this paper for convenience. The 

term  needs to be determined before the equations can be solved numerically, which is 

given by Eq. (A. 8) in Appendix-I. Substituting Eq. (A. 8) into Eq. (30), we have the other 

form of the ENLSE-4 

 
(31) 

where 

 

(32) 

 
(33) 

and  is the Fourier transform defined by Eq. (5) and (6). Eq.(31) is equivalent to the 

equation of first kind in terms of  derived by Clamond et al. [64], and is easy to be solved 

numerically if the initial condition  is given.  

Zakharov [38] had pointed out that the CNLSE could be derived from the Zakharov 

equation with narrow spectrum assumption. Later, Stiassinie [45] found that the Dysthe 

equation could also be derived from Zakharov equation by expanding the nonlinear terms to 

the specific order. Based on the same idea, Dabsarma and Das [46] made one step further and 

obtained the Higher Order Dysthe equation in terms of the Hilbert transform. Specifically, 

they gave the following equations 

 
(34) 

where the nonlinear part 

 

(35) 

 

(36) 
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and the Hilbert transform is  

 
(37) 

 
(38) 

For convenience, this formulation is named as ENLSE-5H. 

2.2.2 The ENLSE-5F 

In order to estimate the Hilbert transform, i.e., the Cauchy integral, involved in , 

numerical integration should be used. The difficulties with performing the numerical 

integration for these Cauchy integrals exist in two aspects. Firstly, the range of the integration 

is from  to , although it could be optimized to a limited range, a large number of 

numerical tests may need to be carried out in order to determine this range and the tests may 

be needed for different cases as the range may depend on the specific value of envelope. 

Secondly, the integrals are weakly singular at  and so they require de-singular 

technique. Although the techniques can be developed, they need extra computational effort. In 

order to eliminate the difficulties, we suggest an equivalent formulation by introducing the 

following substitution (refer to Appendix-II) 

 
(39) 

 
(40) 

Using the definitions, Eqs. (34) to (36) are then replaced by 

 
(41) 

where 

 

(42) 
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The new form (Eq.(41) and (42)) is referred as the fifth order Enhanced Nonlinear 

Schrödinger Equation based on Fourier transform, shortened as ENLSE-5F. 

Through comparing  and , it is found that the difference between the ENLSE-5H 

and ENLSE-5F is that the terms involving the Hilbert transform are now replaced with these 

in terms of the Fourier transform. The benefit by this substitution is that it is much easier to 

perform the Fourier transform than the Hilbert transform. In the ENLSE-5F, there are no 

difficulties described above associated with ENLSE-5H. Another benefit of using the 

ENLSE-5F is that it is also solved by FFT technique, same as for the ESBI and QSBI 

methods. If the ENLSE-5H would be coupled with them, extra FFT analysis must be 

performed after numerically estimating the Hilbert transform, which needs extra 

computational time. Nevertheless, it requires performing FFT twice for each corresponding 

term in Eq. (42), so that further investigations are needed in order to compare the 

computational efficiency with estimating  by using numerical integration. Furthermore, 

the periodical boundary condition needs to be imposed in the new formulation. However, 

following other studies on large scale random sea simulations [29, 31, 50, 65], the random sea 

states are usually reconstructed by assuming periodical boundary condition.  

In addition, comparing the nonlinear part of the ENLSE-4, i.e., Eq. (32) with that of 

ENLSE-5F, i.e., (42), it is found that, apart from  and , there are 

also  and the rest parts in terms of the Fourier transform of order  in Eq. (42). That 

means that the nonlinear effects in the ENLSE-5F are one order higher than the ENLSE-4.  

3 Numerical techniques for coupling the ENLSE-5F, QSBI and ESBI 

Table 1  

Short summary of the three models 

 ENLSE-5F QSBI ESBI 

Efficiency Super-fast. Most 

efficient among the 

three models.  

Very fast. Efficiency 

between the ENLSE-5F 

and ESBI. 

Fast. Least efficient 

among the three models 

Accuracy Accurate for small 

steepness and narrow 

spectrum waves. Least 

accurate among the 

three models 

Accurate for small and 

mild steepness waves. 

Accuracy between the 

ENLSE-5F and ESBI 

Accurate for small, mild 

and large steepness 

waves. Most accurate 

among the three models 

 

Three methods (ESBI, QSBI and ENLSE-5F) described above are summarized in Table 1. 

The ESBI is the most accurate among the three as it is a fully nonlinear model without 

ignoring any necessary terms. Although QSBI only gives the solution of vertical velocity to 

the third order, the boundary conditions and governing equations remain to be fully nonlinear. 

There will not be significant difference between the ESBI and QSBI when the wave steepness 

is not high. The ENLSE-5F like other NLSE models is derived from simplified boundary 

conditions and subjected to limitations on both steepness and spectrum width. So the 
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ENLSE-5F is the least accurate model among all. On the other hand, the ENLSE-5F is the 

most efficient model. Due to the complexities in solving for the vertical velocity, the QSBI 

costs more computational efforts than the ENLSE-5F. Furthermore, the involvements of 

higher order nonlinear parts in solving for the vertical velocity make the ESBI less efficient 

than the QSBI. In terms of accuracy there is a relation: ESBI > QSBI > ENLSE-5F while 

ENLSE-5F > QSBI > ESBI in terms of efficiency, where ‘>’ means superior. Based on this, a 

hybrid method will be formed using the three methods, which is both accurate and efficient, 

making use of the advantages of the three methods. For this purpose, the three methods (ESBI, 

QSBI and ENLSE-5F) should be alternatively and automatically employed according to the 

instantaneous wave information. That is, the simulation of the hybrid method will involve the 

switching from one model to another. To do so, the following challenges need to be tackled. 

a) The conditions need to be found out to determine which model is employed during 

simulation and when switching to others. This will be discussed in Section 3.2. 

b) To employ the three models alternatively, exchanging data from the ENLSE-5F to the 

QSBI and ESBI is necessary, i.e., the outputs of the ENLSE-5F need to be 

transformed to the forms accepted by the QSBI and ESBI as their input. The solution 

obtained from the ENLSE-5F at each time step is the free surface envelope . To use 

them as the input for the QSBI and ESBI, the expressions for the free surface 

elevation and velocity potential in terms of  needs to be derived. This will be 

discussed in Subsection 3.1.1.  

c) On the other hand, in order to exchange data from the QSBI and ESBI to the 

ENLSE-5F, their outputs need to be transformed to the forms of the input for the 

ENLSE-5F, which will be resolved in subsection 3.1.2.  

3.1 Relationship between  and  

3.1.1 Transformation from  to  and  

As can be seen from equations given in previous sections, the solution of the ENLSE-5F 

is given in terms of envelop , but  and  are required to start the QSBI or ESBI. 

Therefore, there is a need to transform  to  and  when switching from the ENLSE-5F 

simulation to the QSBI or ESBI simulations. According to Eq. (23) and (24), we just need to 

estimate the harmonic coefficients , , , , , and the term of . As shown in 

Appendix-III, they can be determined by using Eq.(A. 21), (A. 22), (A. 30), (A. 31), (A. 19) 

and (A. 24) respectively.  

It is worth of noting that (A. 30) is different from Hogan’s formulation [69], i.e., 

, which only considers the approximate linear evolution of  and 

nonlinear effects are neglected. In contrast, (A. 30) involves the nonlinear effects up to the 

third order. After all the harmonic coefficients above are evaluated, the surface elevation  

and velocity potential  are estimated by using Eq. (23) and (24).  
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3.1.2 Transformation from  to  

When switching the modelling from the QSBI or ESBI simulations to the ENLSE-5F 

simulations, one needs to obtain the expression for envelop  used for the input to the latter. 

That means that the spatial solution of the free surface elevation from the QSBI or ESBI 

needs to be transformed to the envelop . In order to do so, we rewrite Eq.(23) as 

 (43) 

where 

 

 

(44) 

are the 1st, 2nd and 3rd harmonics of the free surface elevation, respectively. The relationship 

between  and  is established by using (A. 38) in Appendix-IV. In addition, ,  and 

 could be estimated with the help of Eq.(A. 21), (A. 22) and (A. 24). However, it is the 

value of  that is given from the solution of the QSBI or ESBI instead of , ,  and . 

To overcome this dilemma, iterations are carried out for obtaining the solution  from , 

which is graphically illustrated in Fig. 1. It is noted that  and  are in the same order, 

which are normally much larger than ,  and , and so the iterative procedure starts 

from .   
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Fig. 1. Flow chart of estimating the envelope  by iterations 

The error represents the difference between the target surface  and the approximated 

surface  is given as 

 
(45) 

We have found that  is enough to give very precise results.  

3.2 Methodology for combining three methods  

In order to form a hybrid method, the three methods ─ ENLSE-5F, QSBI and ESBI need 

to be combined together. To do so, the key thing is the conditions under which the simulation 

is switched from one to another. For this purpose, we introduce four conditions:  

a) Condition 1: ,  and 

 

b) Condition 2: ,  and 
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c) Condition 3:  

d) Condition 4:  

where 

 
(46) 

 

(47) 

The basic idea of the four conditions aforementioned is to measure the intensity of the 

nonlinearities, i.e., the stronger the waves are, the larger  and  are. The first two 

conditions are used to control the switch between the ENLSE-5F and QSBI. If the waves keep 

growing, and finally the steepness is larger than the initial steepness and , 

Condition 1 is met and the waves are no longer weakly nonlinear, which means actions should 

be taken to replace the ENLSE-5F by using the QSBI. Vice versa, if Condition 2 is met, the 

ENLSE-5F will be recovered. Similarly, the last two conditions are used to control the switch 

between the QSBI and ESBI. If , the nonlinearities become so strong that the 

QSBI should be replaced with the ESBI, and vice versa.  

With the four conditions and the formulas for the errors above, the flow chart for the 

hybrid method is given in Fig. 2. It shows that the procedure starts with ENLSE-5F for waves 

with small steepness; when Condition 1 is met (the wave being steep enough), FLAG will be 

assigned to be 2 and so the process will be switched to QSBI in the next time step; after the 

waves become steeper and so Condition 3 is met, the process will be switched to ESBI in the 

next time step. During the simulation, if the waves become less steep (or Condition 4 is met), 

FLAG will be assigned to be 2 from the ESBI and so the process will be switched back to 

QSBI, then may be to ENLSE-5F if Condition 2 is met. As can be understood, the switch is 

always through QSBI and there is no direct switch between the ENLSE-5F and the ESBI. It is 

noted that the process can start from any one of the three methods, as long as the initial value 

of FLAG is assigned properly. For example, if one knows that the wave spectrum is not 

narrow-banded and/or the wave steepness is quite large, the initial value of FLAG may be 

given as 3 and so the process will start from ESBI. Of course, the representation of the initial 

condition will be different if the starting method is different. Actually, the initial condition is 

usually given in terms of the free surface elevation and the velocity potential on the free 

surface as shown in [63], which can be employed directly to start QSBI or ESBI. For start 

with ENLSE-5F, the initial condition information in terms of the free surface elevation and 

the velocity potential needs to be transformed to the wave envelope in the similar way to that 

discussed in Section 3.1.2.    
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Initialization: Prepare η(T=0), estimate A(T=0), determine ϕ(T=0)

FLAG = 1

Output data to files

Simulation terminated?

End

No

T=T+ΔT

Yes

ENLSE-5F QSBI ESBI

FLAG = 1

FLAG = 2

FLAG = 3
FLAG = ?

IF CONDITION 1

      FLAG = 2

      Transform A to η 

      and ϕ

ENDIF 

IF CONDITION 3

      FLAG = 3

ELSEIF CONDITION 2

      FLAG = 1

      Transform η to A

ENDIF

IF CONDITION 4

      FLAG = 2

ENDIF

 

Fig. 2. Flow chart for the new hybrid method 

3.3 Effects of  and  by numerical simulations 

In order to control the switch between the three models and guarantee the final results are 

acceptable, proper values for  and  need to be specified. Thus in this section we 

will discuss how the values for  and  are determined. For this purpose, numerical 

simulations of random waves in a two-dimensional domain of  and duration of 

will be performed by using the ENLSE-5F, QSBI and ESBI separately.  

Two most frequently used spectra, JONSWAP and Wallops, will be considered. As well 

known, the JONSWAP spectrum is proposed for developing sea states while the Wallops 

spectrum is more suitable for fully developed and decaying sea states [70]. The JONSWAP 

spectrum in terms of the wave number in dimensionless form is given as [28] 

 
(48) 

where the wave number  has been non-dimensionalized by dividing the peak wave number 

, the significant wave height  by multiplying ,  by multiplying , 

,  is 

the peak enhancement factor and . The peak 

enhancement factor  controls the width of the spectrum, and the larger  is, the narrower 
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the spectrum is.  

Meanwhile, the Wallops spectrum is reformulated by Goda [71] and its dimensionless 

form is 

 
(49) 

where  and 

 is the width parameter. The spectrum becomes narrower when  increases.   

Different combinations of the significant wave height and width parameter are tested 

based on both the JONSWAP and Wallops spectrum, in order to find proper resolution and 

tolerance for time marching. The domain covers 128 peak wave lengths and is resolved into 

8192 points. The spectrum is discretized by using interval  (  is the domain 

length), and the cut-off wave number . According to Goda [71], a cut-off frequency 

chosen as the 1.5 to 2.0 times the peak frequency, is enough for engineering purpose, which is 

equivalent to the cut-off wave number , and is covered by that we have 

suggested. The errors of wave elevations will be estimated by  

 
(50) 

where  is obtained by using a specific numerical model, and  is the reference solution of 

wave elevations, which may be analytical solution or evaluated by using a relatively more 

accurate method.   

3.3.1 Investigation on effects of  

Firstly, we carry out numerical simulations based on both JONSWAP and Wallops 

spectrum with different significant wave heights and spectrum width parameters spanning in 

the practical range in order to find a proper value for . Because this parameter only 

controls the switch between the QSBI and the ESBI,  and  are given 

during the initialization in the process described in Fig. 2 in all the cases for testing effects of 

.  

The simulations are carried out to  in a two-dimensional domain of  for 

random waves. The errors in the wave elevation are estimated by Eq. (50), in which  is the 

free surface at the end of the simulation obtained by only using the ESBI model and  is that 

obtained by using the hybrid model with different values of  specified. Some results are 

presented in Fig. 3, in which only the cases of narrowest and widest bandwidth are shown. 

From this figure, one can see that the trend of the error in wave elevations is very similar for 

the cases with different spectra, different significant wave heights and spectrum widths. It is 

also seen that for a fixed  and spectrum width, the error grows when  increases. This 

is because that the larger value of  allows more involvement of the QSBI during the 

simulation even when the QSBI is not quite accurate at some instance.  
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According to tests by Wang and Ma [63], the wave elevations become invisibly different 

if their error estimated by Eq. (50) is less than 5%. Based on this and also other tests when 

preparing this paper,  5% is acceptable. Nevertheless, to be conserved and 

considering that the ENLSE-5F has not been involved yet, we may accept the error ( ) of 

the hybrid model to be not larger than 3% from the point of view of accuracy. On the other 

hand, we also hope that the value of  is as large as possible. That is because the larger 

the value of  is, the longer the QSBI is involved and so more computational time it 

saves. By examining all the curves in Fig. 3, one may find that the hybrid model with 

 leads to the error ( ) of less than 3% in all the cases with with different 

spectra, different significant wave heights and spectrum widths. Therefore, generally, 

 will be adopted for controlling the switch between QSBI and ESBI.  

 

 

(a)                                 (b) 

 

(c)                                 (d) 

Fig. 3.  against . (a)(b) are based on JONSWAP spectrum and (c)(d) on Wallops 

spectrum  
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3.3.2 Investigation on effects of  

By using , the numerical tests are carried out for the same cases again in 

order to find the appropriate tolerance of  to control the switch between the ENLSE-5F 

and the QSBI. In these tests, all three models are involved in calculating the cases with 

different values of specified. 

The results for the error (  are shown in Fig. 4. Again, it is found that the trend of 

the error in wave elevations is very similar for the cases with different parameters, and that 

for a fixed  and spectrum width, the error grows when  increases. 

As all three models are involved in these tests,  5% may be considered to be 

acceptable in terms of accuracy and efficiency. By examining Fig. 4, one may find that the 

condition of  5% can be satisfied if  for all the cases. Therefore, 

 for  can be used for controlling the exchange between the ENLSE-5F and 

QSBI.  

 

  

(a)                                 (b) 

 

(c)                                 (d) 

Fig. 4.  against . (a)(b) are based on JONSWAP spectrum and (c)(d) on Wallops 
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spectrum 

It is worth of noting that the tolerance  and  are obtained 

based on large numbers of two dimensional (2D) simulations. However, it can be applied to 

three dimensional (3D) simulations as Eq. (46) and (47) can still be used. Next, numerical 

tests will be carried out to validate the hybrid model for both 2D and 3D simulations by using 

the tolerances obtained in this section for switching between models.    

3.4 Validation  

In order to validate the present model for larger domain and longer simulations, we 

compare the results of the hybrid model with the results in [64]. The free surfaces at several 

time steps obtained by this hybrid method and that in [64] are shown in Fig. 5. The difference 

between them is almost invisible, with its value at the maximum free surface being about 

3.02% occurring at the end of the simulation. The comparison again indicates that the profiles 

by using the present method and the fully nonlinear method described in [64] are consistent. 

In addition, the switch between the models is shown in Fig. 6. It is found that after the first 

extreme wave event, the maximum free surface elevation never drops below the initial status, 

so that the ENLSE-5F is not involved again in the simulation after the first 100 periods. The 

rest of the simulation is completed by the switch between the QSBI and ESBI models. 

Nevertheless, the about 40% CPU time is saved in this case compared to that using the ESBI 

model alone. 
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Fig. 5. Free surface at different instant. ‘—’: Hybrid method; ‘x’ Method in [64] 
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Fig. 6. The exchange between the models. Solid line represents the values of  

Moreover, in order to validate the hybrid model for three dimensional (3D) problems, the 

numerical tests for directional focusing wave described by Bateman et al. [72] is repeated 

here with the same setups. A focusing wave of steepness  as in [73] is generated 

at the center of the domain, and the profiles of the free surface along  at the 

focusing time for both the hybrid model and results in [72] are shown in Fig. 7. The error of 

the maximum surface elevation is about 2.02%, which means that the hybrid model 

successfully captured the occurrence of the focusing wave in the 3D case.  

In order to show the effectiveness of the numerical technique for controlling the switch 

between models, the maximum free surface elevation against time is shown in Fig. 8 with 

indicators of each model used at that instant. It is found that the ENLSE-5F is only involved 

in the first 1.5 peak periods, while the majority of the simulation is run by QSBI and ESBI. 

However, it shows that the hybrid model successfully switched from the ENLSE-5F, to QSBI 

and then ESBI, when the maximum surface becomes larger and larger. This case with the 

parameters in Section 3.3 demonstrates that the hybrid model is also suitable for 3D wave 

problems.    

 

 

Fig. 7. The Profiles of free surface at . ‘—’: Hybrid model; ‘o’: Fully nonlinear 

model in [72] 
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Fig. 8. The exchange between the models (solid line represents the values of ) 

 

In addition, a simulation of the crescent wave pattern is also carried out in order to 

further validate the hybrid model for 3D cases. The test by Fructus et al. [74] is repeated here 

with the same setups. The following quantity is introduced to measure the ratio of the 

amplitude of component  over the initial Stokes wave amplitude.  

 
(51) 

The results are presented in Fig. 9 for the components of peak wave component  

and perturbation component . It shows that the results obtained by using 

the hybrid model is highly correlated with that obtained by using the method in [74] in this 

3D case, which again confirms that the tolerance values obtained by using the 2D cases are 

suitable for the 3D cases. Similar to Fig. 6, the switch between the models is shown in Fig. 10, 

where it is found that the ENLSE-5F is not involved and only the QSBI and ESBI are used 

during the simulation for this case. And it shows that the hybrid model successfully switched 

from the QSBI to ESBI when the maximum wave steepness became large, which further 

confirms that the hybrid model can be used for simulating waves in three dimensions.  

 

 

Fig. 9. Evolution of perturbation components and peak wave components: ‘—’  

by using hybrid model; ‘--’  by using hybrid model; ‘x’  by 

using method in [74]; ‘+’  by using method in [74] 
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Fig. 10. The exchange between the models (solid line represents the values of ) 

4 Discussions on the overall performance of the hybrid model 

In this section, more numerical examples will be tested on the new hybrid model with 

 and , which are determined in Section 3.3.  

We introduce the CPU time ratio that is the CPU time of the ESBI divided by that of the 

hybrid model. All the simulations are implemented by using a single core on the same 

workstation equipped with the Intel Xeon E5-2630 v2 (Intel Corporation, Santa Clara, CA, 

USA) of 2.6GHz processor. Pre-tests have been carried out based on the JONSWAP spectrum 

with , , and it takes the ESBI 10638s ~ 3h, the QSBI 5404s ~ 1.5h (about a 

half of CPU time for the ESBI), and the ENLSE-5F only 734s ~ 12min (only 7% of CPU time 

for the ESBI), to finish one sea state simulation ( ) covering a two dimensional domain 

of 128  domain by a resolution of  per  independently.  

Although the main purpose to develop the efficient hybrid method is for simulating the 

evolution of random seas with rogues wave occurrence, our simulations in this section will be 

mainly focused on the cases with tailored rogue waves embedded in random background for 

testing the performance of the new hybrid method and its applicability in various scenarios. 

That is because real rogue waves are unpredictable and could happen at arbitrary time and 

location, and so directly testing on them may not be able to check the performance of the new 

hybrid in various scenarios. The technique of embedding rogues waves in random background 

is commonly used in experiments. Different methods for embedding rogue waves in random 

background are suggested in literature. In order to constrain the occurrence of a rogue wave in 

a limited space during a predictable timeframe, Taylor, et al. [73] proposed a Constrained 

NewWave theory. Clauss and Steinhagen [75] has adopted a Sequential Quadratic 

Programming method to optimize the location and time instance of the maximum crest in 

space and time domain respectively so that an expected asymmetric wave profile is created. 

Kim [76] suggested a method to deform the largest crest wave by time and crest distortions in 

order to produce an asymmetric profile of the free surface. Their methods directly adjust the 

wave profiles through iterations until the criterions for rogue waves are satisfied. Furthermore, 

Kriebel and Alsina [77] proposed a different method to generate rogue waves in random sea 

by dividing the spectrum into two parts, one of which produces the rogue waves by 

superposition based on linear dispersion relation and the other forms the random background. 

Wang, et al. [78] have improved this method, which will be adopted in this study. The details 

are omitted for simplicity but could be found in [78].  
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4.1 Different rogue waves heights 

Next, we keep the significant wave height unchanged, i.e., , and test on 

different rogue wave heights, i.e., ,  and . The basic set-ups are the same with 

that for Fig. 3 and Fig. 4. Similar to these in the previous section, the errors of the free surface 

together with the CPU ratios are presented in Fig. 11 for the cases with different spectrum and 

different parameters.  

 

1 3 5 7 9
0

1

2

3

4

5

6

7

8



E
rr

 (

%
)

JONSWAP, Hs = 0.05

 

 

2Hs

3Hs

4Hs

 
1 3 5 7 9

0

0.5

1

1.5

2

2.5

3

3.5

4



C
P

U
 R

a
ti

o

JONSWAP, Hs = 0.05

 

 

2Hs

3Hs

4Hs

 

(a)                                 (b) 

5 10 15 20 25
0

1

2

3

4

5

6

7

8

m

E
rr

 (

%
)

Wallops, Hs = 0.05

 

 

2Hs

3Hs

4Hs

 
5 10 15 20 25

0

2

4

6

8

10

12

m

C
P

U
 R

a
ti

o

Wallops, Hs = 0.05

 

 

2Hs

3Hs

4Hs

 

(c)                                 (d) 

Fig. 11.  and CPU ratio (CPU time of ESBI/CPU time of hybrid model) for the cases 

with different rogue wave heights 

It shows that the errors in the cases for both the JONSWAP and Wallops spectra with 

different width parameters are less than 5%, which confirms that the values for the  and 

 controlling the switch between the models are appropriate for the cases with different 

embedded rogue waves. It can be seen from Fig. 11(b) that the CPU time ratio is 

approximately 1.9 in all cases with the JONSWAP spectrum, except for the cases with 

 and . That is because the ENLSE-5F is involved only in these cases. When 

the ENLSE-5F is not involved, the calculation is switched only between the QSBI and ESBI 

models. As indicated above, the QSBI use about a half of CPU time used by ESBI, which 

implies that the QSBI are implemented in most of time steps for the cases except for these 

with   and . 
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On the other hand, for the simulations based on the Wallops spectrum, the story is 

different in particular when . In these cases, the CPU time ratio is more than 8 or 

even 10, Fig. 11 (d), implying that the new hybrid method is very much more efficient than 

the ESBI only. When , the ratio is not so high, though it is still larger than 2.   

In order to illustrate how the models switch during the simulation, Fig. 12 is presented in 

a similar way to that for Fig. 6. It shows that in some case, the process starts with ENLSE-5F, 

then goes to QSBI and ESBI, ending with QSBI, e.g, Fig. 12 (a). In some other cases, the 

process starts with ENLSE-5F, then goes to QSBI and ESBI, ending with ENLSE-5F, e.g, Fig. 

12(d). The various scenarios illustrated in Fig. 12 demonstrate that the automatic switch 

between the three models works well.  

Furthermore, the profiles with the rogue wave height of  at focusing time and 

location are shown in Fig. 13. It is found that the results obtained by using the hybrid model 

are almost identical with that obtained by using the ESBI only. However, the hybrid model 

significantly save the CPU time with different degrees as indicated above.  

 

 

(a):  

 

(b):  
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(c):  

 

(d):  

Fig. 12. Maximum wave elevations with indicators for which model is used for the cases with 

different rogue wave heights 

 

  

(a)                                  (b) 

Fig. 13. The profiles of the rogue wave with height of for the cases with different rogue 

wave heights 

4.2 Different numbers of rogue waves in time domain 

There are possibilities that more than one rogue wave events happen during one sea state 
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[9] at different times. Therefore, cases with different numbers of rogue wave events in a tie 

domain are investigated in this section. In addition to one rogue wave event , 

the cases with two rogue wave events at  and three rogue wave events 

 are studied by using the same set-ups with that for Fig. 3 and Fig. 4. 

The rogue wave height is fixed to  as there will not be energy left to generate the random 

background if three successive rogue waves higher than  are generated by using the 

method explained in [78]. Similarly, the errors and CPU time ratios are presented in Fig. 14.  
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(c)                                 (d) 

Fig. 14.  and CPU ratio (CPU time of ESBI/CPU time of hybrid model) for the cases of 

different amount of rogue waves on temporal scale 

As shown in Fig. 14 (a) and (c), the errors for all the cases considered in this section are 

less than 5%, which again confirms effectiveness of the values of  and  for 

controlling the switching in the cases with different amount of rogue waves on temporal scale.  

It is shown in Fig. 14(b) that for the simulations based on the JONSWAP spectrum, the 

maximum CPU time ratio appears to be 2.5 for the case  with , and the 

ratio is about 2 in most other cases, which is largely similar to what has been observed in Fig. 

11. The explanation there also applies to this figure. Besides, another two cases of 
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 and  with  are simulated mostly by the 

ESBI, so that the CPU time ratio is approximately 1.2, but a little higher than 1 due to the 

involvement of the QSBI and ENLSE-5F.  

For the simulations based on the Wallops spectrum, the CPU time ratios are all larger 

than 4 except for the cases with , which are however approximately 2. Roughly 

speaking, the CPU time ratio increases when the spectrum becomes narrower (  increases). 

Among all the cases, the most efficient case is the one that rogue wave only occurs once at 

 with , which leads to the CPU ratio of 9.2.  

In addition, in order to examine how the hybrid model switching between each model for 

the numerical examples in this section, similar graphs with Fig. 6 are presented in Fig. 15. It 

shows that for the cases based on the JONSWAP spectrum, the hybrid model can effectively 

switch from QSBI to ESBI, and then back to QSBI during each occurrence of rogue wave, 

e.g., Fig. 15(a)(b). For these based on the Wallops spectrum, the hybrid model starts with 

ENLSE-5F, then to QSBI and/or ESBI, and switches back to ENLSE-5F before the end of the 

simulations, e.g., Fig. 15(c)(d). It reveals again that the numerical technique for controlling 

the automatic switch between the three models is also effective for the more complicated 

cases. 

Furthermore, in order to show that the hybrid model successfully captured the movement 

of the free surface when rogue waves occur, the free surface elevation at focusing time and 

location for the case , are shown in Fig. 16. It is seen that no visible 

difference can be observed between the results obtained by using the hybrid model and the 

ESBI, which indicates that the hybrid model is very accurate. 

 

 

(a):  
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(b):  

 

(c):  

 

(d):  

Fig. 15. Maximum wave elevations with indicator which model is used for the cases of 

different numbers of rogue waves in time domain 
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(a):                      (b):  

  

(c):                      (d):  

  

(e):                      (f):  

Fig. 16. The profiles of the rogue waves for the cases of different numbers of rogue waves in 

time domain 

4.3 Different numbers of rogue waves in spatial domain 

Moreover, there are possibilities that several rogue waves can occur simultaneously but 

at different locations [9]. Thus in this section, different numbers of rogue waves are generated 

at , but at different locations. In addition to the case in which a single rogue 

wave occurs at , two more cases of the twins occur at  and the 

triplets at  are investigated. As aforementioned, the rogue wave height 
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is fixed to  as there will not be energy left to generate the random background if three 

rogue wave higher than  are generated at the same time by using the method explained in 

[78]. The basic set-ups are the same with that for Fig. 3 and Fig. 4. Again, the errors and the 

CPU time ratios are shown in Fig. 17.  
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(c)                                 (d) 

Fig. 17.  and CPU ratio (CPU time of ESBI/CPU time of hybrid model) for the cases of 

different amount of rogue waves on spatial scale 

It is seen again that errors of all simulations considered in this section are less than 5%, 

which confirms that the values for the  and  controlling the switch between the 

models are appropriate for the cases with different embedded rogue waves on spatial scale.  

According to Fig. 17(b), for the simulations based on the JONSWAP spectrum, the CPU 

time ratios reach the highest, i.e., nearly 2.4~2.5, only for the cases  and 

 with , due to the involvement of ENLSE-5F for a limited time 

steps and QSBI for the most time steps. While for the cases  and 

 with , the majority of the duration is simulated by the ESBI, so 

that the computational efficiency of the hybrid model is similar to that with the ESBI model 
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alone, which leads to the CPU time ratios approximated equal to 1.3~1.4. In other cases, the 

majority of the duration is taken over by the QSBI, thus the CPU time ratios are about 1.8, 

which indicates that the hybrid model still saves almost half the CPU time than the ESBI. 

Meanwhile, the situations are totally again different for the simulations based on the 

Wallops spectrum, as shown in Fig. 17(d), like what has been seen in Fig. 11. The hybrid 

model is at least 8 time faster than the ESBI alone when . In spite of the cases for 

 and  with , in which the CPU time ratios are 

between 1~1.5, the rest of the cases when have the CPU time ratios of 2.5~4.5.  

The similar graphs to Fig. 6 are also presented in Fig. 18 for these cases, in order to 

illustrate the effectiveness of the numerical techniques for controlling the switch between 

each model. It shows that the hybrid model starts with the QSBI and switch to ESBI, then 

back to QSBI before the end of the simulation in Fig. 18(a). Otherwise, the hybrid model 

begins with ENLSE-5F, switching to QSBI and/or ESBI when rogue waves occur, then ends 

with ENLSE-5F or QSBI, e.g., Fig. 18(b)-(d). The various situations shown in Fig. 18 

indicate that the hybrid model can start with different models and effectively switch between 

each other according to the nonlinearities to achieve the highest computational efficiency.  

Additionally, the free surface profiles at each focusing location for the case 

 are shown in Fig. 19. Although the fully focusing is not achieved at 

 in Fig. 19(b), rogue waves are observed at the rest locations. Most importantly, 

the results obtained by using the hybrid model is consistent with these obtained by using the 

ESBI, which implies that the hybrid model has successfully captured the movement of the 

free surface in the complex case.  

 

 

(a):  
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(b):  

 

(c):  

 

(d):  

Fig. 18. Maximum wave elevations with indicator which model is used for the cases of 

different numbers of rogue waves in spatial domain 
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(a) 

 

(b) 

Fig. 19. The profiles of the rogue waves for the cases of different numbers of rogue waves in 

spatial domain 

4.4 3D random waves simulation 

As indicated above, Ducrozet et al. [29] simulated a 3D random sea covering  

peak wave lengths and lasting for 250 peak wave periods by using 10 CPU days on a 3 

GHz-Xeon single processor PC based on the fifth order High-order Spectral method. In order 

to further illustrate the computational efficiency of the present hybrid model, the 3D random 
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wave simulation in [29] is repeated here, i.e., the computational domain and the duration of 

wave propagation in our simulation are all the same as in [29]. The free surface elevation is 

outputted every peak period and it is shown in Fig. 20 for that at , and the 

statistics of the free surface at  in comparison with [79] is shown in Fig. 21, 

which indicates that the results obtained by using the hybrid model is consistent with that in 

[79]. It is noted that the statistics in [29] for the same case is different from these in [79]. By 

personal communication with the authors, we are informed that the data in [79] is correct for 

the case. The simulation of this case is performed by using a single core on a workstation 

equipped with Intel(R) Xeon(R) CPU E5620@2.4GHz. It is found that only the QSBI and 

ESBI are involved in the simulation. The total CPU time costed by the hybrid method is 11.9 

hours, which is only about 1/20 of the CPU time reported by [29]. In addition, the clock speed 

of the processor used here is slower than that used by Docrozet et al. [29], which means that 

the CPU time of the hybrid method can be further reduced if using higher performance 

computers. It is noted that it is impossible to directly compare our wave elevation with [29] 

because the phase of each wave component is assigned randomly in both simulations. 

 

 

Fig. 20. Free surface elevation at  

 

Fig. 21. Probability distribution of free surface elevation at . ‘—’ Gaussian 
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distribution; ‘---’ Results in [79]; ‘-■’ Results by using hybrid model 

Furthermore, two cases of the 3D random sea simulation in [80] (cases (b) and (d) shown 

in Figure 8 of that paper) are repeated by using the present hybrid model. Following the study 

in [80], the JONSWAP spectrum and a  (with N=50 and 200, respectively) type 

directional distribution function are used to generate the spreading seas. As an example, the 

free surface for  at the end of the simulation (after about 60 peak periods) is shown 

in Fig. 22. The kurtosis estimated by the hybrid method, all larger than 3, is presented in Fig. 

23, altogether with the results based on the broader-bandwidth Dysthe equation, HOS method 

and experimental data in [80]. As well known, the kurtosis represents the contribution of big 

waves in the statistical distribution, and the contribution of the big waves is significant if it is 

larger than 3 [9]. It shows in Fig. 23 that the results obtained by using the hybrid model in this 

paper agrees very well with that obtained based on the HOS method and experimental data in 

[80]. While the results obtained by using the broader-bandwidth Dysthe equation [80] are 

significantly smaller. It indicates that the nonlinearities cannot be fully resolved in the 

simulations based only on the broader-bandwidth Dysthe equation, and in such cases, the 

fully nonlinear or the hybrid model suggested in this study should be employed.  

 

 

 

Fig. 22. Free surface elevation at  for  

 
Fig. 23. Kurtosis against time. ‘—’ Hybrid model; ‘o’ Broader-bandwidth Dysthe equation in 

[80]; ‘+’ HOS in [80]; ‘◊’ Experiment in [80] 
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5 Conclusions 

This paper presents a new hybrid model for simulating rogue waves in random seas on a 

large temporal and spatial scale. Firstly, a new formulation (ENLSE-5F) of fifth order 

Enhanced Nonlinear Schrödinger Equation based on Fourier transform is proposed. The 

coupling algorithm between the ENLSE-5F, QSBI (Quasi Spectral Boundary Integral) and 

ESBI (Enhanced Spectral Boundary Integral) methods is then suggested with the techniques 

for data transfer. The tolerances for controlling the switch between the three models are 

investigated through numerical tests on the cases corresponding to different spectra with a 

wide range of parameters. The hybrid method is validated in 2D and 3D cases with the results 

in literature and these obtained by the fully nonlinear model (ESBI) only. Good agreement 

between the results is achieved. Various cases are simulated to investigate the effectiveness of 

the new hybrid method, which include one rogues waves, two rogues and three rogues in time 

domain and in spatial domain based on two popular wave spectra – Wallops and JONSWAP 

spectra. The results show that for the same level of accuracy, the hybrid model significantly 

improved the computational efficiency, especially when the spectrum is narrow. In some cases, 

the coupled model is more than 10 times faster than just using the ESBI method. For example, 

in the case with dimensionless significant wave height of  and dimensionless 

spectrum bandwidth of  based on the Wallops spectrum embedded with a rogue 

wave of , the ESBI only requires  while the hybrid model only need  to 

finish the simulation. For 3D random waves, we have carried out the simulation of the same 

case as that in [29], it is found that the CPU time costed by our hybrid method is only about 

1/20 of that reported by [29]. 

Appendix 

I. Analytical solution to the mean flow  

Apply Fourier transform to the last three equations of the system, Eq. (25)-(28), one has 

 

(A. 1) 

 

(A. 2) 

 

(A. 3) 

The second equation admits the solution 

 
(A. 4) 

Then  and  could be given from the boundary conditions as 
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(A. 5) 

and 

 

(A. 6) 

Thus  

 

(A. 7) 

On the surface , so that 

 

(A. 8) 

II. Relationship between the Hilbert and Fourier transforms 

Note that Eq. (37) could be rewritten as 

 

(A. 9) 

One also has the Fourier transform 

 

(A. 10) 

where  and , thus 

 

(A. 11) 

Similarly 

 

(A. 12) 

Replace the Hilbert transform coefficients in both the expressions in Eq. (37) and (38) after 

applying Fourier transform on both sides, one has 

 

 

(A. 13) 
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(A. 14) 

III. The harmonic coefficients in terms of  

Trulsen and Dysthe [43] have given the coefficients for each harmonic of the surface 

elevation and velocity potential, corresponding to the first kind of NLSE in terms of , 

which follow as 

 

(A. 15) 

 

(A. 16) 

 

(A. 17) 

 

(A. 18) 

 
(A. 19) 

 

(A. 20) 

 However, since the ENLSE-5F in this study is an equation in terms of , the solution by 

using Eq.(A. 15) - (A. 20) is not straightforward. According to Hogan’s substitution [69], i.e., 

, replace which into the expression for each harmonic coefficient and 

keep the appearance to the fourth order, then we have for Eq. (A. 16) 

 

(A. 21) 

For Eq. (A. 17) 

 

(A. 22) 

For Eq.(A. 20), where 

 

(A. 23) 

Substitute Eq.(A. 23) and Eq.(A. 8) into Eq. (A. 20) and neglecting higher order terms  



42 
 

 

(A. 24) 

 Now all the harmonic coefficients are obtained for transforming  to , next the 

coefficients for transforming  to  will be introduced. Since  has already been obtained 

as given by Eq. (A. 8), and , the first and second harmonic coefficient for velocity 

potential are the only variables remain unknown, which will be formulated.  

Based on the NLSE of first kind to the 3rd order [38], i.e., 

 

(A. 25) 

substitute which into Eq. (A. 15), one has 

 

(A. 26) 

This expression is consistent with Mei’s deduction [68]. Meanwhile, the exact linear 

solution admits 

 

(A. 27) 

substitute which into Eq. (A. 26),  

 

(A. 28) 

Re-arrange Eq. (A. 28)   

 

(A. 29) 

and make  explicit 

 

(A. 30) 

Now the first harmonic coefficient  for velocity potential is obtained. Similarly, the second 

harmonic coefficient for the velocity potential can be reformulated as 

 

(A. 31) 

IV. Transformation from free surface  to envelope  

It is known that 

 

(A. 32) 

The 1st harmonic could also be described as the summation of various components 
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(A. 33) 

If we assume , where  and  are real functions of . Then 

 

(A. 34) 

Applying 1D Hilbert transform  to  gives  

 

(A. 35) 

Therefore 

 

(A. 36) 

Thus 

 
(A. 37) 

Note that , then the equation above becomes 

 

(A. 38) 
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