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Abstract

A hybrid LDG-HWENO scheme is proposed for the numerical solution of KdV-type
partial differential equations. It evolves the cell averages of the physical solution and its
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HWENO methods, including the ability to deal with high order spatial derivatives and
the use of a small number of global unknown variables. The latter is independent of
the order of the scheme and the spatial order of the underlying differential equations.
One and two dimensional numerical examples are presented to show that the scheme
can attain the same formal high order accuracy as the LDG method.

Keywords: local discontinuous Galerkin method; third order equations; high order

method; HWENO; KdV equation.

AMS(MOS) subject classification: 65M60, 35L65

1The research was supported by NSFC grants 11328104 and 11571290.
2School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and

High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005, China. E-mail: lu-
odongmi@126.com.

3Department of Mathematics, University of Kansas, Lawrence, Kansas 66045, U.S.A. E-mail:
whuang@ku.edu.

4School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling
and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005, China. E-mail:
jxqiu@xmu.edu.cn.

1

ar
X

iv
:1

51
1.

04
50

5v
1 

 [
m

at
h.

N
A

] 
 1

4 
N

ov
 2

01
5



1 Introduction

We consider the numerical solution of KdV-type equations in one and two spatial dimen-

sions. The local discontinuous Galerkin (LDG) method for this type of partial differential

equations (PDEs) has been studied in [25, 27]. The LDG method is an extension of the

discontinuous Galerkin (DG) method aimed at solving PDEs containing higher than first

order spatial derivatives. The DG method was first introduced by Reed and Hill [19] for

solving linear hyperbolic problems for neutron transfer. A major development of the DG

method was carried out by Cockburn et al. in a series of papers [2, 3, 4, 5].

The basic idea of the LDG method is to rewrite a PDE with high order spatial derivatives

into a system of first order PDEs and then discretize it by the DG method. It can achieve

nonlinear stability without slope limiters when carefully designed. The sub-optimal error

estimates in L2 norm were obtained for the smooth solution of linear equations and the

cell entropy inequality was proven in [27]. While the LDG method also has many other

advantages, it has the disadvantage of employing a large number of unknown variables and

the number increases rapidly as the order of the method increases especially in multiple

dimensions and for high order PDEs. On the other hand, the essentially non-oscillatory

(ENO) schemes of Shu and Osher [22, 23], the weighted ENO (WENO) schemes of Liu et al.

[14] and Jiang and Shu [11], and Hermite WENO (HWENO) schemes of Qiu and Shu [17, 18]

have the advantage of employing a small number of unknown variables. But they have the

disadvantage that the stencil used in reconstruction is becoming wider with an increasing

order of accuracy.

To avoid the disadvantages of DG/LDG and WENO schemes, based on the reconstruction

procedure for HWENO limiter by Qiu and Shu [17, 18] a hybrid RKDG-HWENO scheme

was proposed by Balsara et al. [1] for hyperbolic conservation laws. It has intrinsic ro-

bustness and smaller stencils of the RKDG scheme and takes the advantage of the WENO

scheme with a small number of unknown variables. The scheme evolves lower moments while

reconstructing the higher moments of the solution. Dumbser et al. [8] extended the scheme
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to a new family of in-cell recovery DG method, referred to as PNPM methods, where PN

indicates that a piecewise polynomial of degree N is used to represent a DG solution, and

PM stands for a reconstructed polynomial solution of degree M (M ≥ N) that is used to

compute the numerical fluxes. This approach yields a general, unified framework that con-

tains two important special cases, classical high order finite volume (FV) schemes (N = 0)

and the conventional discontinuous Galerkin (DG) method (N = M), and has been applied

successfully to simulate the Euler equations of compressible gas dynamics and the equations

of ideal magnetohydrodynamics (MHD). PNPM methods were extended to the numerical

solution of the compressible Navier-Stokes equations [7, 15].

Motivated by the hybrid RKDG-HWENO and PNPM methods, we propose a hybrid

LDG-HWENO scheme for the numerical solution of KdV-type PDEs. To our best knowledge,

those methods have not been studied for higher order PDEs like KdV-type equations contain-

ing third order spatial derivatives. The new scheme employs LDG to approximate higher

than first order spatial derivatives contained in the PDEs. Also different from HWENO

methods in [17, 18], where the cell averages of both the solution u and its first derivative

ux are evolved in time and used in the reconstruction, we use the cell averages of u (the

solution) and u
x−xj
∆x

(the first moment(s)) which are used in the reconstruction procedure for

HWENO limiter [17, 18]. The new scheme employs only a small number of (global) unknown

variables and uses a small stencil in the reconstruction. Numerical examples show that the

new scheme can attain the same formal high order accuracy as the LDG method.

An outline of the paper is given as follows. The hybrid LDG-HWENO scheme is described

in Sections 2 and 3 for one and two dimensional KdV-type equations, respectively. In Section

4, a selection of one and two dimensional numerical examples are presented to demonstrate

the accuracy and the capability of the scheme. Conclusions are drawn in Section 5.
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2 The hybrid LDG-HWENO scheme in one dimension

We consider the numerical solution of one dimensional KdV-type problems in the general

form,

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0, a < x < b, t > 0 (2.1)

with the initial condition

u(x, 0) = u0(x), a ≤ x ≤ b

where f(u), r(u), and g(r) are given smooth functions. In this work, we consider a uniform

mesh of cell size ∆x. Denote the cells by Ij = (xj− 1
2
, xj+ 1

2
), where xj+ 1

2
= 1

2
(xj + xj+1). As

for the HWENO scheme [17, 18], we want to find the approximations for the cell averages

of u and u
x−xj
∆x

of the solution of (2.1), i.e.,

ūj ≈
1

∆x

∫
Ij

udx, v̄j ≈
1

∆x

∫
Ij

u
x− xj

∆x
dx.

Similar to the procedure of HWENO limiter for DG in [17, 18], we use here the first moment

v̄j instead of the cell average of ux which was used for HWENO scheme in [17, 18]. This is

more consistent with the basis functions of LDG (see (2.5) below). We employ LDG (e.g.,

see [25, 27]) for the discretization of high order spatial derivatives in (2.1). We first introduce

the new variables

q = r(u)x, p = g(q)x,

and rewrite (2.1) as a system of first order differential equations,

ut + (f(u) + r′(u)p)x = 0, (2.2)

p = g(q)x, (2.3)

q = r(u)x. (2.4)

Next, we consider the discretization of (2.3) and (2.4). Let p and q be approximated by

ph =
k∑
l=0

p
(l)
j φ

(j)
l (x), qh =

k∑
l=0

q
(l)
j φ

(j)
l (x), ∀x ∈ Ij
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where φ
(j)
l (x)’s are the orthogonal basis functions and k is the highest degree of polynomials

used in the basis functions. The first five basis functions are

φ
(j)
0 (x) = 1, φ

(j)
1 (x) =

x− xj
∆x

, (2.5)

φ
(j)
2 (x) = (

x− xj
∆x

)2 − 1

12
, φ

(j)
3 (x) = (

x− xj
∆x

)3 − 3

20

x− xj
∆x

,

φ
(j)
4 (x) = (

x− xj
∆x

)4 − 3

14
(
x− xj

∆x
)2 +

3

560
.

Multiplying (2.3) and (2.4) by test functions w and z, respectively, integrating over the

interval Ij, integrating by parts, and replacing function values at cell boundaries by their

numerical fluxes (those quantities with “hats”) which we will define in the below, we obtain∫
Ij

phwdx+

∫
Ij

g(qh)wxdx− ĝj+ 1
2
w−
j+ 1

2

+ ĝj− 1
2
w+
j− 1

2

= 0, (2.6)∫
Ij

qhzdx+

∫
Ij

r(u)zxdx− r̂j+ 1
2
z−
j+ 1

2

+ r̂j− 1
2
z+
j− 1

2

= 0, (2.7)

where

w±
j± 1

2

= lim
x→x

j± 1
2
±0
w(x), z±

j± 1
2

= lim
x→x

j± 1
2
±0
z(x).

The test functions w and z in (2.6) and (2.7) are taken as the basis functions φ
(j)
l (x), l =

0, 1, · · · , k, successively. The integrals in (2.6) and (2.7) are computed numerically using a

Gaussian quadrature rule. For the (k + 1)th order accuracy, the integration must achieve

(2k + 2)th order as the DG method. Thus, we use the (k + 1)−point Gaussian quadrature,

namely, ∫
Ij

g(qh)wxdx ≈ ∆x
∑
G

g(qh(xG))wx(xG)wG,∫
Ij

r(u)zxdx ≈ ∆x
∑
G

r(u(xG))zx(xG)wG,

where wG’s are the weights and xG’s are the Gauss points. The function qh used in the

first integral is obtained by solving (2.7) while the value u(xG) used in the second integral

is reconstructed from the cell averages {ūj, v̄j}. For example, the sixth order reconstruction

procedure includes following five steps.
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Step 1. Define the small stencils

S0 = {Ij−1, Ij, I
′
j−1, I

′
j}, S1 = {Ij, Ij+1, I

′
j, I
′
j+1}, S2 = {Ij−1, Ij, Ij+1, I

′
j}

and a bigger stencil S = {S0, S1, S2}, where Ij and I ′j stand for intervals chosen for ūj and

v̄j, respectively. These stencils are used to construct polynomials p0(x), p1(x), and p2(x) of

degree three and polynomial Q(x) of degree five,

1

∆x

∫
Ij+l

p0(x)dx = ūj+l,
1

∆x

∫
I′j+l=Ij+l

p0(x)
x− xj

∆x
dx = v̄j+l, l = −1, 0

1

∆x

∫
Ij+l

p1(x)dx = ūj+l,
1

∆x

∫
I′j+l=Ij+l

p1(x)
x− xj

∆x
dx = v̄j+l, l = 0, 1

1

∆x

∫
Ij+l

p2(x)dx = ūj+l,
1

∆x

∫
I′j=Ij

p2(x)
x− xj

∆x
dx = v̄j, l = −1, 0, 1

1

∆x

∫
Ij+l

Q(x)dx = ūj+l,
1

∆x

∫
I′j+l=Ij+l

Q(x)
x− xj

∆x
dx = v̄j+l, l = −1, 0, 1.

Step 2. Compute the smoothness indicators, denoted by βl for each stencil Sl. They

measure how smooth p0(x), p1(x), and p2(x) are in the target cell Ij. Following [11], we

define

βl =
3∑

m=1

∫
Ij

∆x2m−1(
dmpl(x)

dxm
)2dx, l = 0, 1, 2.

Step 3. For a given point x̂ ∈ Ij, we find the linear weights, denoted by γ0, γ1 and γ2,

such that

Q(x̂) =
2∑
i=0

γipi(x̂).

For example, for x̂ = xj+ 1
2

we have

γ0 =
25

189
, γ1 =

14

27
, γ2 =

22

63
.

Step 4. The nonlinear weights based on the smoothness indicators are computed as

ωm =
ω̄m
2∑
l=0

ω̄l

, ω̄l =
γl

(λ+ βl)2
, m = 0, 1, 2,

where λ is a small positive number to avoid the denominator to become zero.
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Step 5. Finally, the HWENO reconstruction is given by

u(x̂) =
2∑
i=0

ωipi(x̂). (2.8)

Step 3 to Step 5 are repeated for each point x̂ ∈ {{xG}, xj− 1
2
, xj+ 1

2
}, where {xG} denotes

the set of the Gauss points.

It is remarked that the reconstructed values of u at both ends of Ij are denoted by u+
j− 1

2

and u−
j+ 1

2

, respectively. Moreover, the linear weights for some points can become negative.

For example, for xG = xj− 0.5384693101056831
2

, the linear weights are γ0 = −1.19876833424689,

γ1 = −0.189130224626382, and γ2 = 2.38789855887328. The negative weights may lead to

instability of the reconstruction. The technique developed by Shi et al. [20] can be used to

treat reconstruction procedure with negative weights; the interested reader is referred to [20]

for the detail.

Multiplying (2.2) with 1 and
x−xj
∆x

and integrating them by parts over Ij, we have

dūj
dt

= − 1

∆x
(f(u) + r′(u)p)|Ij , (2.9)

dv̄j
dt

= − 1

∆x
(f(u) + r′(u)p)

x− xj
∆x

|Ij +
1

∆x2

∫
Ij

(f(u) + r′(u)p)dx. (2.10)

The integral term in (2.10) is approximated by the (k + 1)-point Gaussian quadrature rule

as for (2.6) and (2.7). We obtain the numerical scheme as

dūj
dt

= − 1

∆x
[(f̂j+ 1

2
+ r̂′

j+ 1
2
p̂j+ 1

2
)− (f̂j− 1

2
+ r̂′

j− 1
2
p̂j− 1

2
)], (2.11)

dv̄j
dt

= − 1

2∆x
[(f̂j+ 1

2
+ r̂′

j+ 1
2
p̂j+ 1

2
) + (f̂j− 1

2
+ r̂′

j− 1
2
p̂j− 1

2
)] +

1

∆x2
Fj, (2.12)

where

Fj = ∆x
∑
G

(f(u(xG)) + r′(u(xG))ph(xG))wG ≈
∫
Ij

(f(u) + r′(u)ph)dx.

A key component of the above described hybrid LDG-HWENO scheme is to define the

numerical fluxes in (2.6), (2.7), (2.11), and (2.12) to ensure the accuracy and stability of the
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scheme. We define

f̂j+ 1
2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

), ĝj+ 1
2

= ĝ(q−
j+ 1

2

, q+
j+ 1

2

),

p̂j+ 1
2

= p+
j+ 1

2

, r̂j+ 1
2

= r(u−
j+ 1

2

),

r̂′
j+ 1

2
=
r(u+

j+ 1
2

)− r(u−
j+ 1

2

)

u+
j+ 1

2

− u−
j+ 1

2

,

where

p±
j+ 1

2

= ph(xj+ 1
2
± 0), q±

j+ 1
2

= qh(xj+ 1
2
± 0),

and u±
j+ 1

2

are the reconstructed values of u by the HWENO method as described in Step 1-

Step 5. It is noted that the choice of the numerical fluxes is not unique. The key part is that

p̂ and r̂ must be taken from the opposite sides. The numerical flux f̂(a, b) for f(u) should

satisfy the following conditions:

(i) f̂(a, b) is a Lipschitz continuous function in both arguments a and b;

(ii) f̂ is consistent with f(u), namely, f̂(u, u) = f(u);

(iii) f̂(a, b) is a monotone flux, i.e., it is non-decreasing in a and non-increasing in b.

In this paper, we use the local Lax-Friedrichs(LLF) flux,

f̂(a, b) =
1

2
[f(a) + f(b)− α(b− a)], α = max

u∈[min(a,b),max(a,b)]
|f ′(u)|.

The numerical flux ĝ(c, d) for g(q) should also satisfy conditions (i) and (ii) but the

condition (iii) should be replaced by

(iii)’ −ĝ(q−, q+) is a monotone flux for −g(q), namely, ĝ(c, d) is non-increasing in c and

non-decreasing in d.

Corresponding to the LLF flux, we have

ĝ(c, d) =
1

2
[g(c) + g(d)− α(c− d)], α = max

q∈[min(c,d),max(c,d)]
|g′(q)|.
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We note that (2.7) can be solved independently on each cell for qh in terms of the cell

averages {ūj, v̄j}. Similarly, (2.6) can be solved on each cell for ph in terms of qh. As a

consequence, the global unknown variables involve only ūj and v̄j, which are governed by

a system of ordinary differential equations. In our computation, the system is integrated

in time using an explicit TVD Runge-Kutta method, such as the 3rd TVD Runge-Kutta

method for solving

ut = L(u, t),

where L(u, t) is a spatial discretization operator,

u∗ = un + ∆tL(un, tn)

u∗∗ =
3

4
un +

1

4
(u∗ + ∆tL(u∗, tn + ∆t))

un+1 =
1

3
un +

2

3
(u∗∗ + ∆tL(u∗∗, tn +

1

2
∆t)).

From the construction of the scheme, it is not difficult to show formally that the method

is of (k + 1)th order in space (k ≤ 4) and third order in time, i.e.,

enh = O(∆t3) +O(∆xk+1).

Since an explicit scheme is used, the time step is subject to the CFL condition and should be

taken as ∆t = O(∆x3). For this choice, the error is dominated by the spatial discretization

error.

3 The hybrid LDG-HWENO method in two dimen-

sions

In this section we describe the method for two dimensional problems. We consider the

general form

ut + f1(u)x + f2(u)y + [r′1(u)(g11(r1(u)x)x + g12(r1(u)x)y)]x

+ [r′2(u)(g21(r2(u)y)x + g22(r2(u)y)y)]y = 0, (x, y) ∈ (a, b)× (c, d) (3.1)
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subject to a periodic boundary condition and the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ (a, b)× (c, d)

where fm(u), rm(u), and gmn(r) are given smooth nonlinear functions.

We use a rectangle mesh of cell size ∆x and ∆y in x and y directions, respectively. We

denote the cells by

Iij = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
),

where

xi+ 1
2

=
1

2
(xi + xi+1), yj+ 1

2
=

1

2
(yj + yj+1).

We approximate the cell averages of u, ux−xi
∆x

, u
y−yj
∆y

and ux−xi
∆x

y−yj
∆y

by

ūij ≈
1

∆x∆y

∫
Iij

udxdy,

v̄ij ≈
1

∆x∆y

∫
Iij

u
x− xi

∆x
dxdy,

w̄ij ≈
1

∆x∆y

∫
Iij

u
y − yj

∆y
dxdy,

Z̄ij ≈
1

∆x∆y

∫
Iij

u
x− xi

∆x

y − yj
∆y

dxdy.

For the discretization of high order spatial derivatives using LDG, we introduce the new

variables

q1 = r1(u)x, q2 = r2(u)y, p1 = g11(q1)x + g12(q1)y, p2 = g21(q2)x + g22(q2)y, (3.2)

and rewrite (3.1) as a first order system

ut + (f1(u) + r′1(u)p1)x + (f2(u) + r′2(u)p2)y = 0, (3.3)

coupled with (3.2). We approximate pm, qm(m = 1, 2) by polynomials,

pm =
k∑
l=0

p
(ij)
m,lφ

(ij)
l (x, y), qm =

k∑
l=0

q
(ij)
m,lφ

(ij)
l (x, y), m = 1, 2 ∀(x, y) ∈ Iij
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where φ
(ij)
l (x, y)’s are the basis functions,

φ
(ij)
0 = 1, φ

(ij)
1 =

x− xi
∆x

, φ
(ij)
2 =

y − yj
∆y

, φ
(ij)
3 = (

x− xi
∆x

)2 − 1

12

φ
(ij)
4 = (

x− xi
∆x

)(
y − yj

∆y
), φ

(ij)
5 = (

y − yj
∆y

)2 − 1

12
, · · ·

To discretize (3.2), we multiply it by test functions wm and zm, respectively, and integrate

the resulting equations by parts over the cell Iij. Using numerical fluxes for quantities on

the boundary of the cell, we have∫
Iij

p1w1dxdy +

∫
Iij

g11(q1)(w1)xdxdy +

∫
Iij

g12(q1)(w1)ydxdy

−
∫ y

j+1
2

y
j− 1

2

[
ĝ11(q1(xi+ 1

2
, y))w1(x−

i+ 1
2

, y)− ĝ11(q1(xi− 1
2
, y))w1(x+

i− 1
2

, y)
]
dy

−
∫ x

i+1
2

x
i− 1

2

[
ĝ12(q1(x, yj+ 1

2
))w1(x, y−

j+ 1
2

)− ĝ12(q1(x, yj− 1
2
))w1(x, y+

j− 1
2

)
]
dx = 0, (3.4)

∫
Iij

p2w2dxdy +

∫
Iij

g21(q2)(w2)xdxdy +

∫
Iij

g22(q2)(w2)ydxdy

−
∫ y

j+1
2

y
j− 1

2

[
ĝ21(q2(xi+ 1

2
, y))w2(x−

i+ 1
2

, y)− ĝ21(q2(xi− 1
2
, y))w2(x+

i− 1
2

, y)
]
dy

−
∫ x

i+1
2

x
i− 1

2

[
ĝ22(q2(x, yj+ 1

2
))w2(x, y−

j+ 1
2

)− ĝ22(q2(x, yj− 1
2
))w2(x, y+

j− 1
2

)
]
dx = 0, (3.5)

∫
Iij

q1z1dxdy +

∫
Iij

r1(u)(z1)xdxdy

−
∫ y

j+1
2

y
j− 1

2

[
r̂1(u(xi+ 1

2
, y))z1(x−

i+ 1
2

, y)− r̂1(u(xi− 1
2
, y))z1(x+

i− 1
2

, y)
]
dy = 0, (3.6)

∫
Iij

q2z2dxdy +

∫
Iij

r2(u)(z2)ydxdy

−
∫ x

i+1
2

x
i− 1

2

[
r̂2(u(x, yj+ 1

2
))z2(x, y−

j+ 1
2

)− r̂2(u(x, yj− 1
2
))z2(x, y+

j− 1
2

)
]
dx = 0. (3.7)
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This leads to equations including double integrals and line integrals on the cell Iij. As for

the one dimensional case, the volume integrals can be approximated by the tensor product

Gaussian quadrature rule with (k+ 1) points in each direction, and the line integrals can be

computed by the (k + 1)-point Gaussian quadrature rule.

The final discrete equations are obtained by replacing those the volume and line integrals

by the Gaussian quadrature formulas. To save space, we omit these equations here. Instead,

we point out that p1, p2, q1, q2 are obtained by solving (3.4)-(3.7) and the values of u at

(x̂, ŷ) with x̂ ∈ {xi− 1
2
, xi+ 1

2
, {xG1}} and ŷ ∈ {yj− 1

2
, yj+ 1

2
, {yG2}} are reconstructed from the

cell averages as in the one dimensional case. For reconstruction on Cartesian meshes, one

can adopt either a direct two dimensional procedure or a dimension-by-dimension strategy

[20]. In this paper, we use the dimension-by-dimension strategy. First, we perform two

y-direction reconstructions, i.e.,

{ūmn, w̄mn} −→ ūi+l,j(ŷ) ≈ 1

∆x

∫
Ii+l,j

u(x, ŷ)dx, l = −1, 0, 1, ŷ ∈ {yj− 1
2
, yj+ 1

2
, {yG2}}

{v̄mn, Z̄mn} −→ ūx,i+l,j(ŷ) ≈ 1

∆x

∫
Ii+l,j

ux(x, ŷ)dx, l = −1, 0, 1, ŷ ∈ {yj− 1
2
, yj+ 1

2
, {yG2}}.

Then we use ū(ŷ) and ūx(ŷ) to perform x-direction reconstruction to get an approximation

to u(x̂, ŷ), i.e.,

{ūmn(ŷ), ūx,m,n(ŷ)} −→ ũ(x̂, ŷ) ≈ u(x̂, ŷ), x̂ ∈ {xi− 1
2
, xi+ 1

2
, {xG1}}, ŷ ∈ {yj− 1

2
, yj+ 1

2
, {yG2}}.

The values ũ(x̂, ŷ) are used in computing the volume and line integrals.

Multiplying (3.3) with 1, x−xi
∆x

,
y−yj
∆y

and x−xi
∆x

y−yj
∆y

, integrating over Iij by parts, and using

numerical fluxes on the cell boundary, we get

dūij
dt

=− 1

∆x∆y

∫ y
j+1

2

y
j− 1

2

Ĥ1(xi+ 1
2
, y)− Ĥ1(xi− 1

2
, y)dy

− 1

∆x∆y

∫ x
i+1

2

x
i− 1

2

Ĥ2(x, yj+ 1
2
)− Ĥ2(x, yj− 1

2
)dx, (3.8)
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dv̄ij
dt

=− 1

2∆x∆y

∫ y
j+1

2

y
j− 1

2

Ĥ1(xi+ 1
2
, y) + Ĥ1(xi− 1

2
, y)dy

− 1

∆x∆y

∫ x
i+1

2

x
i− 1

2

(Ĥ2(x, yj+ 1
2
)− Ĥ2(x, yj− 1

2
))
x− xi

∆x
dx

+
1

∆x2∆y

∫
Iij

H1dxdy, (3.9)

dw̄ij
dt

=− 1

∆x∆y

∫ y
j+1

2

y
j− 1

2

(Ĥ1(xi+ 1
2
, y)− Ĥ1(xi− 1

2
, y))

y − yj
∆y

dy

− 1

2∆x∆y

∫ x
i+1

2

x
i− 1

2

(Ĥ2(x, yj+ 1
2
) + Ĥ2(x, yj− 1

2
))dx

+
1

∆x∆y2

∫
Iij

H2dxdy, (3.10)

dZ̄ij
dt

=− 1

2∆x∆y

∫ y
j+1

2

y
j− 1

2

(Ĥ1(xi+ 1
2
, y) + Ĥ1(xi− 1

2
, y))

y − yj
∆y

dy

− 1

2∆x∆y

∫ x
i+1

2

x
i− 1

2

(Ĥ2(x, yj+ 1
2
) + Ĥ2(x, yj− 1

2
))
x− xi

∆x
dx

+
1

∆x2∆y

∫
Iij

H1
y − yj

∆y
dxdy +

1

∆x∆y2

∫
Iij

H2
x− xi

∆x
dxdy, (3.11)

where H1 = f1(u) + r′1(u)p1 and H2 = f2(u) + r′2(u)p2.

The volume integrals and line integrals are approximated by a Gaussian quadrature rule

as for (3.4)-(3.7). If we use Gb to stand for a boundary point (x̂, ŷ), then the numerical fluxes

Ĥi(Gb), r̂i(Gb), and ĝij(Gb) (i = 1, 2, j = 1, 2) can be defined similarly as in one dimension,

viz.,

f̂i(u(Gb)) = f̂i(u
−(Gb), u

+(Gb)), ĝij = ĝij(q
−
i (Gb), q

+
i (Gb)),

p̂i = p+
i (Gb), r̂i = ri(u

−(Gb)),

r̂′i(u(Gb)) =
ri(u

+(Gb))− ri(u−(Gb))

u+(Gb)− u−(Gb)
, Ĥi = f̂i + r̂′ip̂i,

13



where u±(Gb), q
±
i (Gb), and p±i (Gb) are the left (or “in”) and right (or “out”) limits of the

solutions u, qi, and pi at the cell interface Gb, respectively. As in one dimension, f̂i(u(Gb))

is a monotone flux for f̂i(u, u) = fi(u) and −ĝij is a flux for −ĝij(qi, qi) = −gij(qi). Also, the

choice of the fluxes is not unique. We must take p̂ and r̂ from the opposite sides.

Once again, the discrete equations can be obtained accordingly. To save space, they are

omitted here.

The resultant ODE system is integrated in time with an explicit third order TVD Runge-

Kutta method.

4 Numerical examples

In this section we present numerical results obtained with the hybrid LDG-HWENO

scheme described in the previous sections for four examples each in one and two dimensions.

4.1 One dimensional examples

Example 4.1 We compute the solution of the linear equation

ut + uxxx = 0, 0 < x < 2π, t > 0

subject to the initial condition u(x, 0) = sin(x) and the periodic boundary condition. The

equation is in the form of (2.1) with f(u) = 0, r(u) = u, g(r) = r. The exact solution

is given by u(x, t) = sin(x+ t). The L1, L2, and L∞ norm of the error and the convergence

order are shown in Table 4.1. It can be seen that the scheme with P k elements in DG gives

at least a (k + 1)th order of accuracy.

Example 4.2 In order to see the accuracy of the scheme for nonlinear problems, we

compute the classical soliton solution of the KdV equation

ut − 3(u2)x + uxxx = 0, −10 ≤ x ≤ 12.

14



Table 4.1: Example 4.1: periodic boundary conditions, and T = 1.0.

k n 10 20 40 80 160

2

L1 2.668e-3 1.830e-4 1.904e-5 2.285e-6 2.833e-7
Order 3.87 3.26 3.06 3.01
L2 2.751e-3 1.959e-4 2.078e-5 2.516e-6 3.135e-7

Order 3.81 3.24 3.05 3.00
L∞ 3.593e-3 2.571e-4 2.854e-5 3.522e-6 4.412e-7

Order 3.80 3.17 3.02 3.00

3

L1 2.772e-4 6.544e-6 1.805e7 9.452e-9 5.755e-10
Order 5.40 5.18 4.26 4.04
L2 2.973e-4 6.886e-6 2.102e-7 1.063e-8 6.412e-10

Order 5.43 5.03 4.31 4.05
L∞ 4.321e-4 9.798e-6 3.305e-7 1.605e-8 9.207e-10

Order 5.46 4.89 4.36 4.12

4

L1 9.220e-4 2.399e-5 5.009e-7 1.037e-8 2.216e-10
Order 5.26 5.58 5.59 5.55
L2 1.139e-3 2.545e-5 5.251e-7 1.097e-8 2.387e-10

Order 5.48 5.60 5.58 5.53
L∞ 1.655e-3 3.416e-5 6.987e-7 1.657e-8 3.762e-10

Order 5.60 5.61 5.40 5.46

The initial condition is given by

u(x, 0) = −2sech2(x),

and the exact solution is

u(x, t) = −2sech2(x− 4t).

For this example, f(u) = −3u2, r(u) = u, g(r) = r. Table 4.2 gives the error of the

numerical solution at t = 0.5. We can see that the (k+ 1)th order of accuracy of the scheme

is achieved for this nonlinear problem.

Example 4.3 In this example we compute several classical soliton solutions of the KdV

equation

ut + (
u2

2
)x + εuxxx = 0.

Here, f(u) = u2

2
, r(u) = u, g(r) = εr.

15



Table 4.2: Example 4.2: periodic boundary conditions and T = 0.5.

k n 40 80 160 320 640

2

L1 1.303e-2 1.126e-3 9.841e-5 1.103e-5 1.205e-6
Order 3.53 3.52 3.28 3.07
L2 2.569e-2 1.937e-3 1.514e-4 1.548e-5 1.843e-6

Order 3.73 3.68 3.29 3.07
L∞ 7.996e-2 8.245e-3 5.926e-4 5.992e-6 7.115e-6

Order 3.28 3.80 3.31 3.07

3

L1 9.391e-3 1.527e-4 5.075e-6 1.586e-7 7.290e-9
Order 5.94 4.91 5.00 4.44
L2 1.154e-2 2.443e-4 8.117e-6 2.567e-7 1.169e-8

Order 5.56 4.91 4.98 4.46
L∞ 2.425e-2 1.244e-3 3.427e-5 1.002e-6 4.141e-8

Order 4.28 5.18 5.10 4.60

4

L1 2.634e-2 1.986e-3 1.402e-5 3.708e-7 1.024e-8
Order 3.73 7.15 5.24 5.18
L2 6.395e-2 3.346e-3 2.247e-5 5.747e-7 1.656e-8

Order 4.26 7.22 5.29 5.12
L∞ 2.906e-1 1.197e-2 1.001e-4 2.587e-6 7.374e-8

Order 4.60 6.90 5.27 5.13

The single soliton case has the initial condition

u(x, 0) = 3csech2(k(x− x0))

with c = 0.3, x0 = 0.5, k = 1
2

√
c
ε
, and ε = 5× 10−4. The solution is computed in x ∈ (0, 2)

with periodic boundary conditions and shown in Fig. 4.1.

The double soliton collision case has the initial condition

u(x, 0) = 3c1sech2(k1(x− x1)) + 3c2sech2(k2(x− y))

with c1 = 0.3, c2 = 0.1, x1 = 0.4, y = 0.8, ki = 1
2

√
ci
ε

for i = 1, 2, and ε = 4.84× 10−4. The

solution shown in Fig. 4.2 is computed in x ∈ (0, 2) with a periodic boundary condition.

The triple soliton splitting case has the initial condition

u(x, 0) =
2

3
sech2(

x− 1√
108ε

)
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with ε = 10−4. The solution shown in Fig. 4.3 is computed in x ∈ (0, 3) with a periodic

boundary condition.

(a) t=1 (b) t=2

(c) t=1 (d) t=2

Figure 4.1: Example 4.3: Single soliton case. Top: P 2 elements are used with 160 cells;
Bottom: P 4 elements are used with 160 cells.

Example 4.4 We compute in this example the KdV zero dispersion limit of conservation

laws. The equation is

ut + (
u2

2
)x + εuxxx = 0, x ∈ (0, 1)

subject to the periodic boundary condition and the initial condition

u(x, 0) = 2 + 0.5sin(2πx).

We compute the solution to t = 0.5 with ε = 10−4, 10−5, 10−6, and 10−7. These numerical

solutions are shown in Figs. 4.4 and 4.5.
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(a) t=1 (b) t=2

(c) t=1 (d) t=2

Figure 4.2: Example 4.3: Double soliton collision case. Top: P 2 elements are used with 320
cells; Bottom: P 4 elements are used with 320 cells.
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(a) t=1 (b) t=2

(c) t=1 (d) t=2

Figure 4.3: Example 4.3: Triple soliton splitting case. Top: P 2 elements are used with 320
cells; Bottom: P 4 elements are used with 320 cells.
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(a) ε = 10−4, t = 0.5, n = 200 (b) ε = 10−5, t = 0.5, n = 200

(c) ε = 10−6, t = 0.5, n = 1000 (d) ε = 10−7, t = 0.5, n = 3400

Figure 4.4: Example 4.4: Zero dispersion limit of conservation laws. P 2 elements are used.
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(a) ε = 10−4, t = 0.5, n = 200 (b) ε = 10−5, t = 0.5, n = 200

(c) ε = 10−6, t = 0.5, n = 1500 (d) ε = 10−7, t = 0.5, n = 1800

Figure 4.5: Example 4.4: Zero dispersion limit of conservation laws. P 4 elements are used.
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Table 4.3: Example 4.5: periodic boundary conditions and T = 1.

k n× n 10× 10 20× 20 30× 30 40× 40 50× 50

2

L1 6.411e-3 4.351e-4 1.058e-4 4.123e-5 2.030e-5
Order 3.88 3.49 3.28 3.18
L2 6.360e-3 4.563e-4 1.131e-4 4.454e-5 2.207e-6

Order 3.80 3.44 3.24 3.15
L∞ 7.974e-3 5.973e-4 1.521e-4 6.093e-5 3.041e-5

Order 3.74 3.37 3.18 3.11

3

L1 5.993e-4 1.537e-5 1.839e-6 4.445e-7 1.571e-7
Order 5.29 5.24 4.94 4.66
L2 5.923e-4 1.572e-5 1.950e-6 4.821e-7 1.726e-7

Order 5.24 5.15 4.86 4.60
L∞ 6.745e-4 1.969e-5 2.703e-6 7.006e-7 2.554e-7

Order 5.10 4.90 4.69 4.52

4.2 Two dimensional examples

Example 4.5 In this example we compute the solution of the linear equation

ut + uxxx + uyyy = 0, (x, y) ∈ (0, 2π)× (0, 2π)

with the initial condition u(x, y, 0) = sin(x + y) and the periodic boundary condition in

both directions. Here, f1(u) = f2(u) = 0, g12 = g21 = 0, g11(r) = g22(r) = r, r1(u) =

r2(u) = u. The exact solution is given by u(x, y, t) = sin(x + y − 2t). The L1, L2, and L∞

norm of the error and the convergence order of the scheme are shown in Table 4.3. It can be

seen clearly that the scheme with P k elements in DG gives the (k+1)th order of convergence.

Example 4.6 In this example we consider the Zakharov-Kuznetsov (ZK) equation

ut + uux + ε(uxxx + uyyx) = 0. (4.1)

Here, f1(u) = u2

2
, f2(u) = 0, g12 = g22 = 0, g11(r) = g21(r) = εr, r1(u) = r2(u) = u.

The steady progressive wave solution is of the form

u(x, y, t) = 3csech2(0.5

√
c

ε
((x− ct− x0)cosθ + (y − y0)sinθ)), (4.2)
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Table 4.4: Example 4.6: periodic boundary condition in both directions, c = 0.01, ε = 0.01,
θ = 0, x0 = 0, y0 = 0, T = 1.

k n× n 40× 40 50× 50 60× 60 70× 70 80× 80

2

L1 1.515e-6 4.671e-7 2.202e-7 1.120e-7 6.404e-8
Order 5.27 4.12 4.39 4.19
L2 4.128e-6 1.527e-6 7.131e-7 3.887e-7 2.189e-7

Order 4.46 4.18 3.94 4.30
L∞ 1.747e-5 7.278e-6 4.573e-6 2.659e-6 1.449e-6

Order 3.92 2.55 3.52 4.55

3

L1 1.046e-6 2.796e-7 1.249e-7 5.814e-8 2.785e-8
Order 5.91 4.42 4.96 5.51
L2 2.376e-6 8.512e-7 3.663e-7 1.869e-7 9.563e-8

Order 4.60 4.62 4.37 5.02
L∞ 8.766e-6 4.474e-6 1.866e-6 1.112e-6 5.968e-7

Order 3.01 4.80 3.36 4.66

where θ is an inclined angle with respect to the x-axis and (x0, y0) is the location of the peak

of the initial u. We can see in Tables 4.4 and 4.5 that the method with P k elements gives

the (k+ 1)th order of convergence. The computational domains are (−16, 16)× (−16, 16) in

Table 4.4 and (0, 32)× (0, 16) in Table 4.5, respectively.

Example 4.7 In this example we show the steady progressive wave propagation of the

ZK equation (4.1). First, we show the single steady progressive wave in Figs. 4.6 and 4.7

with the initial condition

u(x, y, 0) = 3csech2(0.5

√
c

ε
((x− x0)cosθ + (y − y0)sinθ)), (4.3)

where θ is the inclined angle with respect to the x-axis. The periodic boundary condition in

both x- and y-directions are used when θ = 0. Since the solution cannot be periodic in y-

direction when θ 6= 0, we use for this case the Dirichlet boundary condition in the y-direction

and a periodic boundary condition in the x-direction.

The double soliton collision case has the initial condition

u(x, y, 0) =
2∑
j=1

3cjsech2(0.5

√
cj
ε

((x− xj)cosθ + (y − yj)sinθ)), (4.4)
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Table 4.5: Example 4.6: periodic boundary condition in the x-direction and Dirichlet bound-
ary condition in the y-directions, c = 0.01, ε = 0.01, θ = π

12
, x0 = 16, y0 = 8, and T = 1.

k n× n 40× 40 50× 50 60× 60 70× 70 80× 80

2

L1 1.583e-6 5.111e-7 2.366e-7 1.088e-7 5.919e-8
Order 5.07 4.22 5.04 4.56
L2 5.009e-6 1.802e-6 8.382e-7 3.922e-7 1.966e-7

Order 4.58 4.20 4.93 5.17
L∞ 3.623e-5 1.538e-5 6.424e-6 3.400e-6 1.592e-6

Order 3.84 4.79 4.13 5.68

3

L1 1.523e-6 3.564e-7 1.800e-7 6.543e-8 2.846e-8
Order 6.51 3.75 6.56 6.23
L2 4.014e-6 1.164e-6 5.582e-7 2.337e-7 1.009e-7

Order 5.55 4.03 5.65 6.29
L∞ 3.094e-5 9.814e-6 4.009e-6 2.211e-6 8.719e-7

Order 5.15 4.91 3.86 6.97

where c1 = 0.45, c2 = 0.25, ε = 0.01, θ = 0, x1 = 2.5, y1 = 0, y = 3.3, y2 = 0. The results

with periodic boundary conditions in both coordinate directions in (0, 8) × (0, 8) using P 2

elements with 150× 150 uniform cells are shown in Fig. 4.8.

Example 4.8 In this example we show the numerical results for the equation

ut + (3u2)x + uxxx + uxyy = 0. (4.5)

Here, f1(u) = 3u2, f2(u) = 0, g12 = g22 = 0, g11(u) = g21(u) = u, r1(u) = r2(u) =

u. A cylindrically symmetric solitary solution was obtained and its evolutions as well as

interactions were investigated numerically in [10]. This type of solitary solution, also called

the bell-shaped pulse, can be expressed as

u(x, y, t) =
c

3

10∑
n=1

a2n(cos(2n arccot(

√
c

2
r))− 1), (4.6)

where c is the velocity of the solitary wave solution and r =
√

(x− ct)2 + y2. The coefficients

are collected in Table 4.6 . We use the Dirichlet boundary condition given by the exact

solution. The stable propagation of a single pulse is shown in Fig. 4.9.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 4.6: Example 4.7: The single steady progressive wave propagation with the initial
condition (4.3). c = 1, ε = 0.01, θ = 0, x0 = 2.5, y0 = 4. Periodic boundary condition in
both coordinate directions in (0, 8) × (0, 8). P 2 elements with 150 × 150 uniform cells are
used.
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(a) t = 0 (b) t = 15

(c) t = 30 (d) t = 45

Figure 4.7: Example 4.7: The single steady progressive wave propagation with the initial
condition (4.3). c = 0.1, ε = 0.01, θ = π

6
, x0 = 16, y0 = 8. Periodic boundary condition in

the x-direction and Dirichlet boundary condition in the y-direction in (0, 32) × (0, 16). P 2

elements with 150× 150 uniform cells are used.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 4.8: Example 4.7: Double soliton collision profiles and periodic boundary condition
in both coordinate directions in (0, 8)× (0, 8). P 2 elements with 150× 150 uniform cells are
used.
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Then, we proceed to show the collision of two pulses with the initial condition

u(x, y, 0) =
2∑
j=1

cj
3

10∑
n=1

a2n(cos(2n arccot(

√
cj

2
rj))− 1), (4.7)

where c1 and c2 are the velocities of the solitary wave solutions, ri =
√

(x− xi)2 + (y − yi)2

(i = 1, 2), and (xi, yi)’s are the locations of the peaks of u. When the centers of the two

pulses are situated on the same line with y = const, the collision is called a direct collision

and otherwise called a deviated collision [10]. The numerical solutions obtained for the cases

of a direct collision and a deviated collision of two pulses are shown in Figs. 4.10 and 4.11,

respectively.

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 4.9: Example 4.8: Evolution of a single bell-shaped pulse solution for (4.5) with c = 4,
x0 = 10, and y0 = 16. The used domain is (0, 32) × (0, 32). P 2 elements with 100 × 100
uniform cells are used.
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Table 4.6: Example 4.8: Coefficients for the solitary wave solution of the equation (4.5).

n a2n n a2n

1 -1.25529873 6 -0.00281281
2 0.21722635 7 -0.00138352
3 0.06452543 8 -0.00070289
4 0.00540862 9 -0.00020451
5 -0.00332515 10 -0.00003053

(a) t = 0 (b) t = 0

(c) t = 2 (d) t = 2

Figure 4.10: Example 4.8: Direct collision of two bell-shaped pulses solution for (4.5) with
the initial condition (4.7) and c1 = 4, c2 = 1, x1 = 32, y1 = 32, y = 40, y2 = 32, and
Dirichlet boundary condition. The computational domain is (0, 64) × (0, 64). P 2 elements
with 200× 200 uniform cells are used.
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(e) t = 4 (f) t = 4

(g) t = 6 (h) t = 6

Figure 4.10: (continued)
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(a) t = 0 (b) t = 0

(c) t = 2 (d) t = 2

Figure 4.11: Example 4.8: Deviated collision of two bell-shaped pulses solution for (4.5)
with the initial condition (4.7) and c1 = 4, c2 = 1, x1 = 8, y1 = 14, y = 16, y2 = 16. and
Dirichlet boundary condition. The computational domain is (0, 32) × (0, 32). P 2 elements
with 150× 150 uniform cells are used.
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(e) t = 3 (f) t = 3

(g) t = 5 (h) t = 5

Figure 4.11: (continued)

32



5 Conclusions

In the previous sections we have studied a hybrid LDG-HWENO scheme for solving

KdV-type equations. The scheme uses the cell averages of the physical solution and first

moment(s) as unknown variables (a feature of HWENO) while approximates high order

spatial derivatives using the local DG method. It has less unknown variables than a pure LDG

method and can be applied to problems involving high order spatial derivatives. Numerical

results have been presented for a selection of one and two dimensional linear and nonlinear

examples. They confirm the designed convergence order of the scheme.

The new scheme employs an explicit TVD Runge-Kutta method for time integration and

is subject to the CFL condition which requires an extremely small time step restriction of the

form ∆t ≤ C∆x3. How to avoid this restriction using suitable implicit time discretization

will be the subject of future work.
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