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We present a set of multi-scale interlinked algorithms to model the dynamics of evolving 
foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin 
film drainage, and membrane rupture. For each of the mechanisms, we construct consistent 
and accurate algorithms, and couple them together to work across the wide range of space 
and time scales that occur in foam dynamics. These algorithms include second order finite 
difference projection methods for computing incompressible fluid flow on the macroscale, 
second order finite element methods to solve thin film drainage equations in the lamellae 
and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected 
membrane boundaries and capture topological changes, and Lagrangian particle methods 
for conservative liquid redistribution during rearrangement and rupture. We derive a 
full set of numerical approximations that are coupled via interface jump conditions and 
flux boundary conditions, and show convergence for the individual mechanisms. We 
demonstrate our approach by computing a variety of foam dynamics, including coupled 
evolution of three-dimensional bubble clusters attached to an anchored membrane and 
collapse of a foam cluster.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Physics of foams

In this paper, we introduce, implement, and test a suite of numerical algorithms for computing solutions to a mathemat-
ical model of multi-scale foam dynamics.

Foams have a wide variety of applications in industry and materials design. For example, liquid foams, characterized by 
fluid-filled membranes separating gaseous regions, include soapy detergents and substances to separate out hydrophobic 
molecules; solid foams, formed by solidifying liquid foams, include lightweight materials such as metallic and plastic foams. 
Understanding the dynamics of foam evolution is a key step in controlling the structure and properties of foam-like mate-
rials. Deriving models to quantitatively predict foam evolution is challenging since the underlying physics takes place over 
vastly different time and space scales.

As a model of foam, consider common soap bubbles. A single isolated bubble consists of a thin membrane of fluid, known 
as the lamella, separating the inside gas from the outside. In a cluster of such bubbles, multiple lamellae meet at junctions 
known as Plateau borders, forming a network of interconnected thin-film membranes and borders. The dynamics of foam is 
intricate [57], and depends on a complex interaction between microscale fluid flow inside the lamellae and Plateau borders, 
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Fig. 1. (Reproduced from [44] and reprinted with permission from AAAS.) (A) A foam of soap bubbles made with common washing detergent. (B) Drainage 
and thin-film interference: A keyring suspended in soap solution makes a film, which then drains due to gravity. The subsequent variations in film thickness 
create interference patterns when lit with white light. (C, D) Rupture of a lamella; reproduced from [8] by permission from Macmillan Publishers Ltd.,
Nature, copyright 2010. (E, F, G) Rearrangement: A lamella (center of (E)) bursts, leading to macroscopic rearrangement of a foam.

Fig. 2. Scale separated multiscale model of foam dynamics cycling between three stages: rearrangement, drainage, and rupture.

and the macroscale motion of the gas inside the bubbles. To illustrate, consider a foam whose macroscopic configuration 
appears to be in equilibrium, such as the foam in Fig. 1A. While seemingly stable, liquid inside the films drains over time, 
due to effects of gravity and surfactant. When one of the membranes becomes too thin, it ruptures and its liquid contents 
is redistributed, destroying the macroscopic equilibrium of the remaining membranes. Driven by macroscale gas dynamics 
and surface tension, these other membranes, as well as their film thicknesses, further change as they contort, stretch, and 
settle into a new equilibrium, setting the stage for continued fluid drainage.

These processes take place over six orders of magnitude in space and time. The liquid in the thin films, while only 
micrometers thick, drains over tens or hundreds of seconds (Fig. 1B) until a membrane ruptures (Figs. 1C, D). Membranes 
burst at hundreds of centimeters per second [8], causing macroscopic rearrangement of bubble geometry through surface 
and fluid forces occurring over less than a second (Figs. 1E, F, G).

This wide range of time and space scales leads to considerable algorithmic complexity. The resolution required to capture 
the microphysics associated with rupture becomes fundamentally impractical for resolving the large macroscale bubble 
evolution and rearrangement, even with today’s advanced computing hardware and the most optimistic proposed future 
architectures.

1.2. A multiphysics scale separation approach

Fortunately, details at one space or time scale are not necessarily important at another scale. Exploiting this “scale-
separation” can lead to models in which algorithms compute physics at different resolutions, and allow these different 
components to communicate across the scales.

In [44], we presented a scale-separated model for computing foam dynamics. The multi-scale model separates foam 
dynamics into a cycle of three distinct stages acting over different space and time scales (see Fig. 2): (i) a rearrangement 
phase, in which a foam out of macroscopic balance undergoes rearrangement due to surface tension and gas dynamics, 
leading to an equilibrium; (ii) a liquid drainage phase, in which the foam is essentially in macroscopic equilibrium, and 
the microscopic flow of liquid in the interconnected membranes is modelled until a lamella becomes too thin; and then 
(iii) a rupture phase, in which a lamella ruptures, sending the foam out of macroscopic balance, after which step (i) is 
invoked and the process repeated. Together, the dynamics of each phase affect the next, leading to a multi-scale model 
which captures the key effects of foam rearrangement, liquid drainage, and rupture.
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1.3. Current work

In this paper, we provide the algorithmic and numerical details of the approach presented in [44], as well as a collection 
of new simulations. In particular, new aspects of this paper include:

• Second order finite difference projection methods for incompressible fluid flow, coupled to multiphase interface evolu-
tion using the Voronoi Implicit Interface Method;

• Derivation and implementation of a particle-based Lagrangian method to track and conserve fluid within the lamellae 
and Plateau borders, driven by the macroscale velocity field produced by the incompressible Navier–Stokes solver;

• Algorithms for generating high-quality finite element meshes of curved lamellae and Plateau borders;
• Finite element methodologies for thin-film drainage in the lamellae;
• Finite element methodologies for drainage in the Plateau borders;
• Numerical treatment of flux boundary conditions coupling the lamellae and Plateau borders;
• Numerical details of algorithms for thin-film membrane rupture.

We also discuss parallelization issues in performing different types of domain decomposition, and perform several conver-
gence tests of various numerical methods. In addition, our results include

• Tests of individual mechanisms (macroscale rearrangement of membranes and thin film drainage) with physically ap-
propriate parameters, and comparison with experiment;

• Modelling of a coupled multiscale model for a cluster of bubbles attached to an anchoring membrane, showing experi-
mentally well-studied bubble cascades;

• Evolution of a large (27 bubble) foam bubble cluster coupling all physical effects, characterized through additional 
calculation of thin film optical interference based on lamellae thickness.

1.4. Background

The modeling of foams has been a topic of substantial interest for decades. Considerable mathematical analyses as well as 
numerical and experimental studies have focused on individual components. These include studying the geometry of stable 
foams, for example in Plateau’s laws [37], which state that lamellae meeting at Plateau borders make 120◦ angles, as well 
as computational methods to find minimal surfaces [12,38]. Evolutionary laws for foam geometry have also been examined, 
such as the two-dimensional von Neumann–Mullins law [55,31], its extension to three dimensions [29], and statistical 
variations [20]. Statistics on the frequency and distribution of rupture events in two-dimensional and three-dimensional 
foams have been experimentally studied [53,54,39], as have been some of the key mechanisms driving topological changes 
[16]. Mathematical theory for small-scale capillary-driven oscillations of soap bubbles have been developed [30], and these 
have been compared to experiment using high-speed cameras [27]. Meanwhile, thin-film equations have been derived to 
model drainage in stationary films [34,32] as well as in moving curved surfaces [21] and drainage equations have been 
formulated for stationary networks of Plateau borders [56,33,26]. In addition, computational tools aimed at specific aspects 
of macroscopic rearrangement include numerical studies of multiphase fluid flow separated by massless and vanishingly 
thin interfaces that do not drain or rupture [42,43]; foam studies based on two-dimensional hydrodynamics [23,24]; and 
contributions made by the Surface Evolver software [10] in computing minimal energy states of complex configurations.

1.5. Outline

The outline of this paper is as follows.

• Section 2 – Scale-separated model and equations of motion
• Section 3 – Algorithms and numerical schemes

– Algorithms for multiphase interface evolution
– Algorithms for multiphase incompressible fluid flow

• Second order fixed grid finite difference projection methods for incompressible flow
• Lagrangian particle transport methods for membrane fluid advection

– Algorithms for thin-film drainage
• Mesh generation
• Numerical schemes for lamellae thin film equations
• Numerical schemes for Plateau border thin film equations
• Treatment of quadruple point and flux boundary conditions

– Approximation and algorithms for membrane rupture
– Parallelization

• Section 4 – Convergence studies
• Section 5 – Results
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2. Model and equations of motion

Our scale-separated model assumes that the gas and liquid flow are incompressible within the time/space scales under 
consideration, that liquid evaporation in the lamellae occurs during a longer time scale than rearrangement, drainage, and 
rupture, and that the liquid–gas interface has a no-slip boundary condition with a uniformly constant surface tension. We 
describe the multi-scale model in the following parts:

• Part A: Multiphase interface evolution. Mathematical formulation and description of multiphase interface evolution.
• Part B: Rearrangement phase. Incompressible fluid flow driven by surface tension exerted by the network of lamellae 

and Plateau borders drives the system toward an equilibrium configuration. Throughout the process, Plateau’s laws are 
satisfied (i.e., lamellae meet at Plateau borders at 120◦ angles). Additionally, fluid in the lamellae and Plateau borders 
is conservatively redistributed according to the deformation of the membranes.

• Part C: Thin-film drainage phase. Liquid inside the (now stationary) lamellae and Plateau borders drains due to effects of 
surface tension, gravity, and suction of liquid from lamellae into Plateau borders.

• Part D: Rupture phase. A lamella ruptures due to its film thickness decreasing below a critical threshold; consequently 
its liquid contents is redistributed and the membrane is removed from the bulk network of interfaces, with large-scale 
macroscopic motion ensuing.

In our model, each lamella is idealized as infinitely thin, but carries with it a film thickness function, denoted by η, which 
varies along the extent of the lamella and in time. These thickness functions are evolved by different mechanisms according 
to which of the above phases is being executed, e.g., conservative transport, or solution of certain thin-film (lubrication) 
equations. Similarly, each Plateau border has an associated “thickness” function, λ, which defines its cross-sectional area as 
a function of time and space.

Before discussing numerical algorithms and approximations, we first provide the relevant equations of motion, repeating 
some of the discussion in [44].

2.1. Part A: characterization and evolution of interconnected membranes

The position and motion of the lamellae play a critical role in the model formulation. Identifying each bubble as a 
different “phase”, this is a multiphase problem in which a large number of different phases meet and create complex triple 
junction structures.

Because of topological changes in the evolving foam, we need to rely on a mathematical formulation of multiphase 
interface evolution. Here we make use of the Voronoi Implicit Interface Method, first introduced in [42] and analyzed in 
[43]. The Voronoi Implicit Interface Method has several key features:

• The formulation uses a single function, plus an indicator, to describe the entire multiphase system.
• It handles multiple junctions, topological change, and works in any number of dimensions.
• It provides a consistent formulation in which no vacuums or overlaps can develop.
• The formulation leads to an initial value problem with a time component that couples naturally with associated physics.
• For surface tension driven motion, the formulation correctly produces Plateau’s laws for the junction triple-point angle 

conditions.

Here, we briefly discuss this formulation.

2.1.1. Components of the Voronoi Implicit Interface formulation
As background, the level set formulation [35] describes an interface using a function φ : Rn × [0, T ) → R, whose zero 

level set is an (n − 1)-dimensional hypersurface � corresponding to the location of the interface between two phases at 
time t = 0. One way to construct this implicit function φ is through a signed distance function φ(x, t = 0) = ±d(x), where 
d(x) is the distance from x to the interface �, with the sign chosen to be positive in one region and negative inside the 
other. Together with a speed function F or velocity u defined on the interface,1 and then extended away from the interface 
into the domain Rn , the associated equation of motion is an initial value PDE which evolves φ in time in such a way that 
the zero level set always corresponds to the evolving interface, namely

φt + F |∇φ| = 0 or φt + u · ∇φ = 0. (1)

The equation on the left is the update equation if F is given as the velocity normal to the interface, whereas the equation 
on the right corresponds to the update equation with underlying velocity field u. In either case, the velocity most typically 
depends on a host of factors, including local geometry (normal, curvature, etc.) and global interface properties (length, 

1 In the present work, the solution of the incompressible Navier–Stokes equations determines the velocity of the interface motion.
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Fig. 3. (Left) Voronoi diagram of three points in the plane. (Right) The Voronoi interface �V = �12 ∪�13 ∪�23 corresponding to three given regions �1, �2, 
and �3. Here, R2 is divided into three cells (i.e. phases) separated by �V .

enclosed areas, etc.), as well as the underlying physics in the domain, which may depend on boundary conditions, force 
terms, etc., supplied by the interface itself.

This formulation embeds the interface in a higher-dimensional function φ defined throughout the entire domain and, 
hence, adds unnecessary computational labor. More sophisticated versions employ the Narrow Band Level Set Method in-
troduced in [1], which limits the signed distance function to a small neighborhood around the evolving front, and hence 
reduces the computational complexity to roughly the number of elements on the front. For details, including numerical 
methods and applications of the level set method, see [47].

2.1.2. The Voronoi Implicit Interface formulation
Recall now that the Voronoi diagram of a set of nodes in Rn is a tessellation of Rn into Voronoi cells, defined so that 

all the points in each cell are closer to one particular node than to any other node. The boundary between these cells is 
therefore the set of points that are equidistant to at least two nodes, and no closer to any other node. In more generality, 
instead of nodes we may have a collection of non-overlapping regions in Rn . A similar subdivision of Rn exists in this 
case as well, based on proximity to the nearest region: letting {�i}m

i=1 denote the m non-overlapping regions, we can 
define m cells such that cell i consists of all points x such that x ∈ �i or else d(x, �i) < d(x, � j) for all j �= i. The Voronoi 
interface, �V (see Fig. 3) is defined to the boundary of these cells and corresponds to the set of points equidistant to two 
regions and no closer to any other – it can be characterized as �V = ⋃

i, j �i j , where �i j is the set of points x such that 
d(x, �i) = d(x, � j) ≤ d(x, �k) for all k �= i, j.

The key idea of the Voronoi Implicit Interface formulation is to exploit the fact that the motion of a level set (including 
the zero level set) is bracketed by the motion of the surrounding neighboring level sets. This property is an immediate 
consequence of the comparison theorem under suitable restrictions on the speed function that moves the level sets, and 
these restrictions are often satisfied through the construction of extension velocities developed in [3].

The Voronoi Implicit Interface Method utilizes this property by letting the evolution of a multiphase system be deter-
mined by hypersurfaces that are nearby the interface. These hypersurfaces are obtained as the set of points that are a small 
but fixed distance away from the interface, and form a collection of individual surfaces each existing solely in one phase. 
While an interface in a multiphase system may have intricate complexity where multiple phases touch (such as at triple 
points, triple lines, etc.), neighboring hypersurfaces will be well behaved as the system evolves. The motion of the interface 
between the evolving phases is constructed from the position of these nearby hypersurfaces, using the Voronoi interface of 
these hypersurfaces, as follows.

2.1.3. The Voronoi Implicit Interface formulation: equations of motion
To begin, at each point of the computational domain, we define the unsigned distance function φ(x, t = 0), which is 

the distance from the point x to the closest interface. We also assign an indicator function χ(x, t = 0) which specifies 
which phase x is located in. If we evolve the initial value level set PDE for short period of time, the zero level set of 
φ will generally not remain a codimension-one surface, however nearby level sets (with value ε > 0, say) will remain 
codimension-one surfaces. One can then reconstruct the interface after time 	t as the Voronoi interface of these nearby 
level sets of φ with value ε .

Thus, we can now define the evolution of a multiphase system in any number of dimensions. We shall do so by tem-
porarily considering a fractional step approach, and defining the solution to the evolution equation as the converged limit 
of the fractional step process. Let Vε (φ) be the operator that reconstructs the unsigned distance function from the ε-level 
sets of φ using the Voronoi interface. Let E	t(φ) be the evolution operator which evolves a given level set function φ for a 
time step 	t . Fix a particular final time T > 0 and let n be the number of time steps required to reach that time, so that 
	t = T /n. For some ε > 0, we apply n time steps, each step consisting of an evolution and a reconstruction. In the limit as 
n goes to infinity, this defines a ε-smoothed solution φε , given by

φε = lim
	t→0,n→∞(Vε ◦ E	t)

n(φ(t = 0)
)
,

where φ(t = 0) is the initial condition. We point out that this construction defines φε at intermediate times 0 ≤ t ≤ T as 
well as the final time T .

We can now take the limit of these ε-smoothed solutions as ε → 0 from above, to obtain a solution given by
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φε=0+ = lim
ε→0+ φε.

This is the formal definition of multiphase interface evolution, as defined by the VIIM algorithm. For complete details, see 
[42,43].

2.2. Part B: macroscopic rearrangement and fluid flow

2.2.1. Multiphase Navier–Stokes incompressible flow
In the macroscopic rearrangement phase, the foam structure is out of equilibrium. Surface tension exerted by the net-

work of lamellae and Plateau borders drives fluid motion in the gas pockets, rearranging the system of bubbles until a 
macroscopic equilibrium is reached. During this process, liquid contained in the thin films and Plateau borders is conserved 
and transported during this readjustment.

At this macroscopic level, we idealize the membranes as massless and vanishingly thin, and thus inertial effects are taken 
as negligible. This is known as the “idealized dry-foam limit”, and leads to the incompressible Navier–Stokes equations for 
the gas phase, with continuity of the velocity field across the liquid–gas interface �, and an effective surface tension of 2σ
(i.e., twice the coefficient of a single liquid–gas interface). The interface is thus advected by the velocity field u of the gas, 
satisfying

ρg(ut + u · ∇u) = −∇p + μg	u − 2σκnδ(�),

∇ · u = 0,
(2)

where μg is the viscosity of the gas, ρg is its density, κ is the curvature of the interface, p is the pressure, n is the normal 
to the interface, and δ is a delta function with support on the interface �. Later, we discuss how to solve these equations 
using a finite difference projection method.

2.2.2. Transport of fluid in membranes
Although the interfaces are taken as massless and mathematically of zero thickness in terms of the incompressible 

Navier–Stokes equations, we assign a fluid thickness to each point, and require that this liquid is conserved and passively 
transported during rearrangement. This leads to a local conservation equation for a scalar function defining the film thick-
ness, defined on each lamella and each Plateau border. For the lamella, its half-thickness is defined as η, and for the Plateau 
border, we define λ as the cross-sectional area at any particular location in space. For liquid contained in the lamellae, 
conservative transport is modelled by requiring that

d

dt

∫
S(t)

η = 0,

where S(t) is any surface patch on �(t) passively advected by the velocity field u. This model conserves the mass of liquid 
in the lamellae by measuring the amount of stretching in the interface, and it allows surface currents at the interface to 
move the liquid tangentially. Liquid in the Plateau borders is conserved with an analogous conservation law.

2.3. Part C: thin-film drainage

During drainage, fluid within the lamellae drains into Plateau borders in response to pressure differentials. This drainage 
takes place over the entire course of the foam dynamics. Producing corresponding equations of motion would entail deriving 
thin film equations over a moving collection of lamellae and Plateau borders, which are codimension-one and codimension-
two objects within the computational domain.

However, the vast majority of drainage occurs after a macroscopic equilibrium has been reached, at which time the 
surface area is locally minimal, and hence each individual lamella is a surface with constant mean curvature. By capitalizing 
on the inherent scales involved, and following the construction of “thin-film approximations” [34,32] which describe the 
evolving membrane thickness in a single lamella, in [44] we built thin-film approximations for drainage in the curved 
lamellae, as well as the Plateau borders, and devised interrelated boundary conditions which couple the regions together. 
Here, we repeat these equations, before introducing our methodology for their numerical solution.

2.3.1. Lamella drainage
For each lamella with surface �� , the lamella thin-film equation is

ηt + ∇s · Q = 0 on ��, where

Q = 1
3μ

(
ση3∇s

(
(k2

1 + k2
2)η + 	sη

) + ρgs η
3
)
,

(3)

where μ is the viscosity of the liquid, ρ is its density, and gs is the component of gravity tangential to the surface. Here, 
∇s is the surface gradient, ∇s· is the surface divergence and 	s is the surface Laplacian on the curved surface of the lamella, 
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while k1 and k2 are its principal curvatures. In this model, we are including effects of surface tension, the curved surface of 
the lamella, and gravity.

This is a fourth order PDE and needs two boundary conditions on the boundary of the lamella. One is a zero Neumann 
condition, relating to the model of the cross-sectional shape of Plateau borders and the thin-film approximations which 
couple together the different length scales of the lamellae and Plateau borders, see [44]. The other is provided by a flux 
boundary condition [11,22] that implements suction of liquid into the Plateau borders of thickness λ at its boundary. Thus, 
we have for boundary conditions that

∂η

∂ν
= 0 and Q · ν = 1

2 Q (η,λ) on ∂��, (4)

where ν is the outwards-pointing unit vector orthogonal to ∂�� and tangential to �� . Here, Q is the vector flux of liquid 
in the lamella, defined in (3), while Q is a function that determines the flux of liquid between a lamella and its adjoining 
Plateau border. The amount of flux is determined by matching the thickness of the lamella to the cross-sectional curvature 
of the Plateau border under a local Stokes flow argument. The value of λ in (4) thus changes along each piece and between 
pieces on the boundary of �� .

2.3.2. Plateau border drainage
A similar PDE is derived for the thickness of a Plateau border:

λt + C	

μ

∂

∂�

(
−1

2
(
√

3 − π

2
)1/2σλ1/2∂�λ + λ2ρgτ

)
= S, (5)

where C	 is a constant associated with the cross-sectional shape of the Plateau border, gτ is the tangential component of 
gravity, � is a coordinate measuring length along the curved border, and S is a source term representing the incoming liquid 
from the three lamellae connected to the Plateau border, determined by the sum of fluxes according to

S =
3∑

i=1

Q (ηi, λ),

where ηi is the thickness of lamella i.
The set of Plateau borders forms a network of fibres. Linking the flow of liquid in this network requires boundary 

conditions where Plateau borders meet at quadruple junctions,2 and these are provided by conservation of liquid mass and 
quasi-static pressure balance. Therefore, (5) is supplemented by a quadruple point boundary condition where four Plateau 
borders meet. With λi , i = 1, . . . , 4, denoting the four Plateau border thickness functions, at each quadruple point we have{

λ1 = λ2 = λ3 = λ4, and∑4
i=1

1
2 (

√
3 − π

2 )
1
2 σλ

1
2
i ∂�λi − λ2

i ρgτi = 0.
(6)

For each quadruple point, this is a nonlinear system of five equations in five unknowns (the common value of λ and the 
four fluxes).

2.4. Part D: rupture

Rupture within a lamella occurs when drainage causes the fluid thickness to decrease below a critical level. A small 
tear appears and rapidly opens up as surface tension causes the membrane to retract. This rapid process occurs on a much 
smaller time scale (and with much larger velocities) than seen in the rest of foam mechanics. Depending on surface coatings 
and geometry, the fluid in this torn membrane can retract into the Plateau borders or disperse into the ambient gas [8].

Our model assumes an instantaneous rupture, which is handled in the above Voronoi Implicit Interface formulation. We 
note that a more intricate model could be developed within this implicit framework:

• On each membrane, calculate the rupture location where the membrane thickness has fallen below the prescribed 
critical level.

• Initiate a small hole, mathematically characterized as the zero level set of a function implicitly defined on the entire 
surface.

• Solve the resulting equations of motion on that stationary surface for the evolving interface, moving according to a 
normal speed law that retracts from the hole.

Further details of the approach used here are given later in the discussion of numerical methods.

2 In this work, foams are considered in isolation, i.e., contact with walls or other boundaries is not considered. Consequently, if a Plateau border termi-
nates, it does so at a junction consisting of four Plateau borders, see Fig. 1A. If a foam is in contact with a wall, then a Plateau border may terminate at 
the wall without forming a junction; a different drainage model and set of boundary conditions would be required in this case.
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2.5. Comments on our model

Our scale-separation model contains several idealizations. First, we assume that drainage occurs only after macroscopic 
equilibrium is reached and the configuration is stable. Second, we are not accounting for the inertial effects of fluid mass in 
the lamellae during the macroscopic motion. Third, we assume rupture takes place instantaneously.

We also note that additional forces, scales and regimes, beyond those included here, play an important role in foam 
dynamics, although they can be added to this framework. Diffusive coarsening, which results from gas exchange between 
bubbles separated by permeable membranes, is important over very long time scales (minutes to hours) [57]; although our 
macroscale Navier–Stokes fluid solver easily allows such permeability effects (see [43]), our thin-film equations are derived 
assuming a static equilibrium, and thus we do not include coarsening effects. At the liquid–gas interface, we idealize that 
Marangoni forces, which act to equilibriate surfactant concentration, occur quickly enough to produce a uniformly constant 
surface tension, while the no-slip boundary condition assumption ignores some effects of surface rheology which can be 
important for surfactant solutions exhibiting mobile boundary conditions. Finally, we focus on dry foams, i.e. foams with 
liquid occupying less than approximately 10% of the total volume [57], though the methodology below has extensions to 
wet foam modelling as well.

3. Algorithmic approach: numerical approximation and schemes

Thus, our equations of motion are as follows:

• Multiphase interconnected interface evolution:

φε=0+ = lim
ε→0+

[
lim

	t→0,n→∞(Vε ◦ E	t)
n(φ(t = 0)

)]
.

• Navier–Stokes incompressible fluid flow:

ρg(ut + u · ∇u) = −∇p + μg	u − 2σκnδ(�), ∇ · u = 0.

• Liquid transport in membranes:

d

dt

∫
S(t)

η = 0 and
d

dt

∫
L(t)

λ = 0.

• Drainage in lamellae and Plateau borders:

ηt + 1

3μ
∇s ·

(
ση3∇s

(
(k2

1 + k2
2)η + 	sη

) + ρgs η
3
)

= 0,

λt + C	

μ

∂

∂�

(
−1

2
(
√

3 − π

2
)1/2σλ1/2∂�λ + λ2ρgτ

)
= S.

In this section, we discuss our algorithmic approach and numerical schemes for each of the above equations.
Before doing so, we take a high level perspective as to the steps in the algorithm (see Fig. 4). We imagine an initial 

multiphase configuration of gas pockets separated by fluid-filled lamellae linked together through a network of Plateau 
borders. The initial velocities of the gases and membranes, the thickness of the fluid at each point of each lamella and 
Plateau border, and the geometric configuration of the multiphase system, are all input parameters. We do not assume that 
the initial system is in macroscopic equilibrium. The algorithmic sequence of events is then as follows:

• Step 1: We evolve the system under the incompressible Navier–Stokes equations, including transport of fluid in the 
connective membranes, until a near equilibrium is reached, established by examining the change in geometric structure 
from one time step to the next.

• Step 2: Given this near-equilibrium, we freeze the macroscale motion and solve the thin film equations in the mem-
branes, using the positions and film thickness at the end of Step 1 as initial conditions.

• Step 3: When the film thickness within any lamella, as computed under Step 2, falls below a user-supplied critical value, 
that membrane ruptures: the membrane is removed, and the accompanying fluid is deposited in the nearby borders. 
The positions of and fluid in the connective membranes are then supplied as input to the macroscopic dynamics of 
Step 1, and the algorithm returns to Step 1.

The individual approximation schemes are as follows.



R.I. Saye, J.A. Sethian / Journal of Computational Physics 315 (2016) 273–301 281
Fig. 4. A schematic of the coupled multiscale model and equations of motion. The model cycles between three stages: rearrangement, drainage, and 
rupture. During rearrangement, gas dynamics and surface tension drives rearrangement of lamellae and Plateau borders, affecting their film thicknesses in 
the process. During drainage, these thicknesses, characterized by the functions η and λ defined on individual membranes and junctions, change according 
to thin-film evolution equations. Upon rupture, liquid inside the ruptured film is conservatively redistributed, and the cycle repeats.

3.1. Multiphase interface evolution

We use the Voronoi Implicit Interface Method (VIIM) to track the motion of the network of interfaces (i.e., the lamellae 
and Plateau borders) in the foam. Here, the bubbles and the exterior region are considered separate regions (“phases”) in 
the multiphase interface evolution. We will use the velocity field u of the gas obtained from the Navier–Stokes solution (see 
below) to evolve the interface.

The essential operation of the numerical method is as follows (for details, see [42,43]). We begin by initializing a multi-
phase problem using the unsigned distance function. That is, at every grid point xi in the domain, we assign a non-negative 
number φ(xi) and an integer flag χ(xi). Here, φ(xi) is the distance from xi to the interface, and χ(xi) denotes which phase 
contains the point xi . Thus, the zero level set of this unsigned distance function φ is the interface, which may include triple 
junctions, quadruple points, etc.

Let us assume for now that the physics, described by the underlying velocity u, is known on the interface. The level 
set update equation given by (1) requires that the velocity be defined away from the interface. Here, we use the extension 
velocity approach given in [3] to build values away from the interface, using a method based on pre-sorted values of the 
distance function obtained through a fast marching strategy.

The key is to now appropriately update and evolve the unsigned distance function. First, we advance φ for one time 
step according to the underlying physics, i.e., the extended speed function. For a short time, and away from the zero level 
set, this is a well-posed update. The key observation, introduced in [42], is that the Voronoi interface of the nearby ε-level 
sets of φ approximate the new position of the interface, and this in turn can be used to establish a new updated unsigned 
distance function. Finally, through judicious use of a fast Eikonal solver, see [46,13], one can construct the new updated 
unsigned distance function without ever explicitly finding the interface (see also [41]).

Thus, for a general multiphase interface evolution problem, we can summarize the algorithm as follows:

• Initialization: Choose 	t and a fixed regular Cartesian grid with spacing h. Also choose kreinit , which is the number of 
time steps taken before rebuilding the unsigned distance function using the Voronoi reconstruction. Then:
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• Given a multiphase problem, defined by regions in space belonging to different phases, compute the unsigned dis-
tance function φ at each grid point.

• At each grid point, also assign a value for the indicator function χ reporting the phase for that point.
• Time stepping:

• Use the position of the Voronoi interface to compute an extension velocity u, depending on geometry and physics.
• Advance the level set function φ one time step by solving the update equation φt + u · ∇φ = 0.
• After kreinit time steps, use the Voronoi reconstruction to rebuild the unsigned distance function from the Voronoi 

interface of the ε-level sets.
• Loop to top.

For our particular application, a few comments are in order.

• Since the viscosity of a typical gas species is relatively low, the velocity field u computed by Navier–Stokes is often 
not smooth. Consequently, rather than use the fluid velocity itself, we use the extension velocity methodology [3]
discussed above. This significantly reduces the effect of currents that exist nearby the interface, and leads to minimal 
mass loss.3 For each grid point in a small initial band surrounding the Voronoi interface, an extension velocity is 
calculated at the grid point by interpolating the velocity field at the corresponding closest point on the mesh (using 
trilinear interpolation), see [13,41]. This procedure determines a velocity field uext, which is then used in the level set 
update φt + uext · ∇φ = 0. We use high-order accurate upwinding finite difference schemes for the advection.

• We can use one-sided differences to make sure that finite difference stencils used in the level set update stay completely 
in one phase and do not reach across the interface. Alternatively, we can build suitable extensions of the unsigned 
distance function across the interface. In this fashion, finite difference stencils can reach across the interface without 
seeing discontinuities in the gradient of the unsigned distance function. With additional programming complexity, ε
can effectively be taken as zero. Regardless of which approach is taken, we are essentially computing φε=0+ , i.e., the 
formal definition of multiphase interface evolution discussed in §2.1.

• For complete details, including convergence studies of the effect of ε on accuracy, see [42,43].

3.2. Multiphase incompressible flow

We now turn to the algorithms and approximations required to model the macroscale fluid mechanics of the multiphase 
system.

3.2.1. Second order fixed grid finite difference projection methods for incompressible flow
We wish to approximate the multi-phase incompressible Navier–Stokes equations given by (2). To do so, we employed a 

second order approximate projection method [4], which is based on Chorin’s projection method [14]. We used a Godunov 
scheme for the advection term to better treat the low-viscosity gas dynamics, and Crank–Nicolson for the diffusion term. 
Surface tension is computed as a body force with a regularized three-dimensional Dirac delta function.

In more detail, the second order approximate projection method finds an intermediate velocity u∗ such that

ρg

(u∗ − un

	t
+ (u · ∇u)n+ 1

2

)
= −∇pn− 1

2 + μg
	u∗ + 	un

2
+ stς . (7)

Here, the advection term (u · ∇u)n+ 1
2 is implemented with a second order unsplit Godunov scheme (see [51]), while the 

diffusion term is implemented with a standard Crank–Nicolson scheme.
Surface tension is computed as a body force with a regularized three-dimensional Dirac delta function, such that

stς (x) = σ
∑

i

∫
�i

(κn)(y)δς (x − y)dS,

using the method described in [43]. Here, �i is the surface of bubble i and κn is the mean curvature times the unit normal 
of the surface.

This method of calculating surface tension results in a smoothed body force that is similar to other approaches [9,52,49]. 
However, it differs in that we formulate the force in terms of a convolution over the surface of each bubble and leads to 
better treatment of the force at junctions (such as Plateau borders and quadruple points), as discussed further in [43]. This 
method of calculating surface tension is physically consistent, since in the case of a dry foam, each bubble is separated 

3 Since the incompressible Navier–Stokes equations determine the interface evolution and there is no gas diffusion across bubble membranes, the volume 
of each bubble is conserved in the theoretical model. On a discrete level, exact volume conservation is obtained in the limit of mesh refinement. For coarse 
grids, we found that conservation was considerably improved through the use of extension velocities. Experiments indicated that mass loss was only of 
concern for bubbles a handful of grid points in diameter. In these cases, we ensured volume conservation by using the volume-constrained time stepping 
methods for the VIIM described in [43].
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from the others by a thin membrane. Moreover, the method automatically recovers Plateau’s laws, i.e. lamellae make 120◦
angles at Plateau borders and quadruple points have symmetric angle conditions. To complete the projection step, once the 
intermediate velocity in (7) is found, the velocity at the next time step is determined by performing a projection

un+1 − un

	t
= P

(u∗ − un

	t

)
. (8)

Here, P is a projection operator which takes a velocity field and projects it onto the space of divergence-free velocity fields, 
and in so doing, determines the pressure pn+ 1

2 at the next time interval; for more details, including a discussion on the 
merits of projecting ut (as is done in (8)) rather than projecting u∗ , see [51].

3.2.2. Lagrangian particle transport methods for membrane fluid advection
The fluid within the lamellae and Plateau borders is transported by the motion of the gas produced from the solution of 

the above incompressible Navier–Stokes solver. As discussed above, this results in a local conservation equation for evolving 
the lamellae film thickness η, namely

d

dt

∫
S(t)

ηdS = 0

for any surface patch S(t) on a lamella � that is passively advected by the velocity field u. In [2,48], this is written in strong 
form as a PDE by extending η off the interface � to produce an equation in all of space. Their resulting conservation law 
can be shown to be equivalent to (see also [50])

ηt + u · ∇η =
(

n · ∂u

∂n
− ∇ · u

)
η.

Here, n is the normal vector field for the interface �, while the term in parentheses measures the local stretching and 
compression of the interface in the directions tangential to the surface. In [2,48], this PDE is solved on a background grid.

In our case, we have an interconnected network of lamellae with individually-defined η functions, and this makes an 
implicit formulation at the junctions somewhat difficult. Instead, we take a Lagrangian particle approach, based on the 
method of characteristics, to determine fluid transport. Consider a specific lamella with surface �. On �, a set of particles 
is uniformly seeded with positions xi , i = 1, . . . , N , and each particle carries a thickness ηi . A specific particle’s coordinates 
and thickness values are evolved in time by solving the ODE system

d

dt
xi = u,

d

dt
ηi =

(
n · ∂u

∂n
− ∇ · u

)
ηi .

Note that ∇ · u = 0 due to incompressibility. A simple forward Euler scheme for each particle yields:

xn+1
i − xn

i

	t
= un(xn

i ),
ηn+1

i − ηn
i

	t
= n̂ · un

(
xn

i + hn̂
) − un

(
xn

i − hn̂
)

2h
.

Here, un is evaluated from a trilinear interpolation of the values defined on the grid, and the normal of the interface at xn
i , 

denoted by n̂ in the above, is evaluated by a finite difference approximation based on the level set function used in the 
VIIM.

A similar algorithm is used to track the thickness of the Plateau borders. In this case, the local conservation law states 
that

d

dt

∫
L(t)

λds = 0

for any line segment L(t) on the Plateau border that is passively advected by the velocity field. Particles on a specific 
Plateau border are seeded with positions xi and carry thickness values λi . By considering infinitesimal line segments, it is 
straightforward to derive the corresponding differential equations for the particles, which are given by

d

dt
xi = u,

d

dt
λi = −

(
τ · ∂u

∂τ

)
λi .

Here, τ = τ (xi) is a unit tangent vector to the Plateau border, and in analogy with the case of the lamella, the term 
in parentheses measures the local stretching and compression of the Plateau border. A similar forward Euler and finite 
difference scheme is used to update the λ thickness values for particles on the Plateau border.

Depending on the interface dynamics, over time, particles on the surface of the lamellae and Plateau borders can be-
come dispersed in some areas and concentrated in others. This then requires intermittent reseeding through interpolation. 
Briefly, our reseeding procedure: (i) uses the contouring procedure described in [43] to extract the multiphase interface 
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as a triangulated mesh, (ii) samples particles on this mesh approximately uniformly in space, and (iii) calculates thickness 
values with an algorithm that bins existing particles into grid cells, yielding efficient local lookup, combined with a linear 
interpolation procedure. The interpolation algorithm is second order, so the bulk of the error in our numerical methods for 
conservatively advecting lamellae and Plateau border film thickness is contained in the first order forward Euler scheme. 
For further details, see [45].

3.3. Thin-film drainage

Next, we discuss the algorithms required to approximate the thin film drainage equations in both the lamellae and the 
Plateau borders. Abstractly, we need to solve a PDE system on a set of interconnected curved surfaces. There are essentially 
two approaches for solving such equations:

• Explicit representation: Here, the surfaces are tessellated, typically producing a triangulated mesh, and the resulting 
equations of motion are solved using a finite element method (see, for example, [17]).

• Implicit representation: Here, the surfaces are represented as zero level sets of a higher dimensional function, following 
the typical level set approach, transforming a two-dimensional surface PDE into a three-dimensional PDE extended off 
the surface, and solved with associated equations that capture the 2D dynamics on the curved surface, see, for example, 
[2,48,6,18].

Because we have an interconnected network of surfaces, an explicitly meshed tessellation of the lamellae and adjoining 
Plateau borders seems to be the most natural approach.

Once a discretized representation of the interface structures is chosen, we must solve the degenerate non-linear fourth 
order PDEs associated with thin film evolution. In the case of flat surfaces, there are a variety of approaches, see, for 
example [19,5,58], that describe finite element, finite volume and finite difference-based schemes, respectively. Because 
these equations are fourth order, explicit time-step schemes usually entail restrictive time steps for stability. As an alter-
native, in [7], semi-implicit methods and convexity-splitting schemes are given. In particular, convergence is proved for a 
semi-implicit biharmonic-modified forward time stepping scheme, based on the Laplace-modified forward time stepping 
scheme introduced in [15]. For a specific class of fourth-order nonlinear parabolic PDEs, it is possible to prove that this 
biharmonic-modified time-stepping scheme is unconditionally stable. This method is straightforward to implement, and has 
been adopted here to time-step the lamella thin-film equation.

We also need to address the boundary conditions that link the lamellae and Plateau borders together. Implementing the 
boundary conditions implicitly with the equations describing each individual lamella and Plateau border leads to a very 
large non-linear system requiring some form of iterative procedure. Instead, we adopt an essentially explicit approach that 
aligns the various components together at the beginning of each time step.

From an overall perspective, the sequence of events for solving the thin film drainage step are as follows:

• Given a near-equilibrium configuration of the complete system, generate a mesh of the geometric configuration, and 
interpolate the fluid film thicknesses from the connective membranes to this mesh.

• Solve the drainage equations by advancing in time the following iteration:
1. Solve the Plateau border conditions at each quadruple point to obtain Neumann boundary conditions for each Plateau 

border.
2. Calculate the flux Q , used as a boundary condition for the lamellae and as a source for the Plateau borders.
3. Using a finite element discretization, solve for ηn+1 and λn+1 for each lamella and Plateau border.
4. If a lamella becomes too thin, simulate rupture and terminate loop, otherwise continue time stepping.

• Use the final thickness functions of the remaining lamellae and Plateau borders as input to the macroscopic rearrange-
ment phase.

We now develop approximations for each of these steps.

3.3.1. Mesh generation
First, we wish to discretize the interconnected lamellae into triangles that are approximately uniform in size and as 

close to equilateral as possible, and discretize each Plateau borders into a set of connected line segments such that each 
line segment is an edge of three triangles corresponding to different lamellae. This is important for consistency in the 
finite element formulation, as the “communication” between adjoining lamellae and Plateau borders only occurs through 
the Plateau borders. Each Plateau border should be made of smooth curves, though the borders may meet at quadruple 
junctions.

The algorithm we use was introduced in [40], and is partially based on the DistMesh algorithm [36] which was de-
signed to generate unstructured meshes from implicitly defined geometries using force-based smoothing of mesh elements, 
together with a Delaunay tessellation algorithm. DistMesh takes as input a mesh with arbitrary quality and topology as 
might be generated from, for example, a standard Delaunay algorithm from a set of randomly chosen vertices, or from 
a standard contouring algorithm such as Marching Cubes for extracting level sets. Using a user-defined forcing function, 
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Fig. 5. An example of a triangular mesh generated automatically from the network of connected lamellae. Individual lamellae are colored differently and 
triangles meet consistently at junctions to form segmented line curves at Plateau borders.

DistMesh moves the vertices of the mesh, based on the current topology of the mesh, to spread vertices apart. This process 
is intertwined with a Delaunay algorithm, which is applied iteratively to update the topology (through a series of “edge 
flipping” operations), favoring good quality triangles. The result is a simple algorithm that converges relatively efficiently to 
a mesh with high quality elements.

DistMesh was originally applied to a single implicitly defined surface without junctions. Here, we briefly describe the 
approach detailed in [40] that extends some of the ideas in DistMesh to produce a mesh for multiply-connected lamellae 
with our desired properties. We begin by extracting an initial mesh from the implicit representation given as input from 
the VIIM algorithm, as was discussed in [43]. These initial mesh vertices are moved according to force laws, similar to as is 
done in DistMesh, but with one type of force law near junctions and another away from junctions. This is combined with a 
locally adaptive time step approach, and in practice generates a good quality mesh in as few as 20 iterations, each iteration 
having approximately the same computational cost as creating the initial mesh. As an example, Fig. 5 illustrates a typical 
mesh obtained by this algorithm. For details, see [40].

3.3.2. Numerical schemes for lamellae thin film equations
Next, we discuss the finite element method for the thin film equations in the set of connected lamellae. We begin with 

the scheme for an individual specific lamella �. We first consider the time discretization, followed by the variational form 
of the governing PDE and its discrete counterpart.

Time discretization
Since (3) is a fourth order, nonlinear parabolic PDE, explicit time stepping schemes typically entail severe time step 

constraints for stability (e.g., 	t = O(h4)). Instead, we use a biharmonic-modified forward time stepping scheme, derived 
by applying forward Euler and adding a term of the form α	2

s (η
n+1 − ηn), where α is a constant, and for (3), corresponds 

to the scheme

ηn+1 − ηn

	t
+ α

σ

3μ
	2

s (η
n+1 − ηn) + 1

3μ
∇s ·

(
σ(ηn)3∇s

(
(k2

1 + k2
2)η

n + 	sη
n) + ρgs (ηn)3

)
= 0. (9)

Since 	2
s (η

n+1 − ηn) is O(	t) in magnitude, this term does not alter the first order convergence rate of the forward Euler 
time scheme, and the error depends on the size of α. For any α > 0, the scheme becomes implicit and leads to a symmetric 
positive definite system of equations to solve at each time step, the matrix of which is a discretization of I + 	tα σ

3μ	2
s . 

Choosing α large enough, we have shown that the resulting scheme is stable (see [7] for a proof for a similar PDE). For the 
scheme (9), α needs to bound η3; in this work, at each time step α is set to be α = 2 max� η3.

In addition, (9) is supplemented by boundary conditions (i.e., (4)) such that ∇sη
n+1 · ν = 0 and

2

3μ

(
ασ∇s	s(η

n+1 − ηn) + σ(ηn)3∇s
(
(k2

1 + k2
2)η

n + 	sη
n) + ρ gs (ηn)3

)
· ν = Q (ηn, λn) on ∂�,

where ν is the outwards-pointing unit vector orthogonal to ∂� and tangential to �. Note that the flux boundary condition 
is a mixture of implicit and explicit terms that takes the same form as the biharmonic-modified time stepping scheme; for 
the most part the flux boundary condition is evaluated explicitly (at the current time step) with the α modification making 
it semi-implicit. This form of the boundary condition is suitable for the finite element formulation used below.

Finite element method for spatial terms
The finite element method used here is based on the formulation and theory presented in [17] for parabolic PDEs on 

surfaces.

Weak form. On a smooth surface, there exist analogues of the usual integration-by-parts formulas, including 
∫
�

∇s f · ∇s g =
− 

∫
�

f 	s g + ∫
∂�

f ∇s g · ν , and, if f is everywhere tangential to the surface, 
∫
�

g ∇s · f = − 
∫
�

f · ∇s g + ∫
∂�

g f · ν . Using these 
formulas, a suitable variational form of the governing PDE (3) is to find two functions η and p satisfying∫

ηtφ = 1

3μ

∫ (
ση3∇s

(
(k2

1 + k2
2)η + p

) + ρgs η
3
)

· ∇sφ −
∫

φ Q · ν, and
� � ∂�
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∫
�

p ψ = −
∫
�

∇sη · ∇sψ,

for all test functions φ ∈ C([0, T ]; H1(�)), ψ ∈ H1(�). This formulation introduces a second function p satisfying p = 	sη in 
the weak sense and creates a coupled system of equations to solve for both η and p. This weak form requires less regularity 
on η, and this carries over to the discrete setting, since then linear finite elements can be used for both η and p.

Discrete variational form. A finite element scheme using linear elements is as follows. The smooth surface of the lamella 
is approximated by a triangulation Th such that �h = ⋃

t∈Th
t . The vertices (xi)

n
i=1 are assumed to lie on � so that �h is 

a Lipschitz continuous surface interpolating �. Here, h denotes the maximum circumdiameter of the triangles in Th . The 
error due to approximating the surface � by the triangulation �h introduces an error that is no worse than second order 
as h → 0 [17]. Let Vh be the linear finite element space consisting of all continuous functions defined on �h that are linear 
when restricted to an element of Th . Let {χ j} be the associated standard Lagrange basis functions so that if v ∈ Vh , then 
v = ∑

i v(xi)χi .
Using this finite element, together with the forward time stepping scheme, the discrete variational form is as follows. 

Given ηn, pn ∈ Vh at the current time step, find ηn+1, pn+1 ∈ Vh at the next time step, such that∫
�h

ηn+1 − ηn

	t
φ = α

σ

3μ

∫
�h

∇s(pn+1 − pn) · ∇sφ

+ 1

3μ

∫
�h

[
σ(ηn)3∇s

(
kηn + pn) + ρgs(η

n)3
]
· ∇sφ

− 1

2

∫
∂�h

Q (ηn, λn)φ, (10)

for all φ ∈ Vh , and∫
�h

pn+1ψ = −
∫
�h

∇sη
n+1 · ∇sψ,

for all ψ ∈ Vh . Here, gs and Q are defined to be the piecewise linear interpolant of their values defined on mesh vertices (in 
the case of Q , they are given by (16)), while k is defined to be the piecewise linear function whose value on mesh vertices 
is k2

1 + k2
2; see later for additional remarks. This choice of interpolation allows the integral quantities to be calculated with 

straightforward quadrature schemes. In particular, many of the integrals reduce to the form of 
∫

T f 3 g where T is a triangle 
and f and g are linear functions on T . This in turn reduces to a function of the three values of f and g on the vertices of 
the triangle, a closed form expression of which can be found by, e.g., symbolic computer algebra.

The variational form leads to a linear solve for ηn+1 in the usual way, as follows. Let ηn+1
i denote the value of ηn+1 at 

vertex i, let M be the mass matrix defined by Mij = ∫
�h

χi χ j , and let K = ∫
�h

∇sχi · ∇sχ j be the usual stiffness matrix. 
Abusing notation and considering ηn+1 and pn+1 as a vector, we thus require that{

Mηn+1−Mηn

	t = α σ
3μ Kpn+1 + f , and

Mpn+1 = −Kηn+1,
(11)

where f = f (ηn) contains the explicit terms, i.e.

f i = −α
σ

3μ

∫
�h

∇s pn · ∇sφi + 1

3μ

∫
�h

[
σ(ηn)3∇s

(
kηn + pn) + ρgs(η

n)3
]
· ∇sφi − 1

2

∫
∂�h

Q (ηn, λn)φi .

According to (11), it follows that pn+1 = −M−1 Kηn+1, however this requires inversion of the full mass matrix. It is simpler 
and more efficient to make an approximation using instead the lumped mass matrix, i.e. M̃ = diag(Mii), and write pn+1 =
−M̃−1 Kηn+1. Experiments indicated this approximation did not alter the overall convergence rate of the finite element 
scheme. Eliminating pn+1 from (11), we obtain(

M + α	t
σ

3μ
K M̃−1 K

)
ηn+1 = Mηn + 	t f (ηn).

This is a symmetric positive definite system for the unknown ηn+1, whose matrix (left-multiplied by M−1) approximates 
the operator I + α	t σ

3μ	2
s . To solve this equation, we have used a simple Conjugate Gradient method, although more 

sophisticated methods such as multigrid would lead to more efficient solvers.
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Additional comments
The curvature function k containing the principal curvatures k1 and k2 in (10) is defined to interpolate k2

1 + k2
2 at mesh 

vertices. To calculate the vertex values, we must calculate the principal curvatures of the interface � given implicitly by 
the function φ in the VIIM. We can use the VIIM indicator function χ to construct a signed level set function ψ , and 
then calculate k with simple finite differences, as follows. Since n = ∇ψ/|∇ψ | is a normal vector field of �, its gradient 
has eigenvalues {0, k1, k2} and is related to the shape operator on �. The mean curvature of � can be calculated with 
κ = k1 + k2 = ∇ · n = tr(∇n). A similar relation can be used to calculate k through k = k2

1 + k2
2 = tr

(
(∇n)2

)
. This quantity 

is calculated at grid points using standard second order finite differences, after which the grid point values are trilinearly 
interpolated onto the vertices of the triangulation �h , thereby yielding k at mesh vertices.

Similarly, the tangential component of gravity gs in (10) is also defined to be the piecewise linear interpolant of gs

defined at mesh vertices. Through a similar procedure as above, we can construct gs = g − (g · n)n at grid points, and then 
use trilinear interpolation to define gs on mesh vertices.

3.3.3. Numerical schemes for Plateau border thin film equations
We solve the Plateau border thin-film equation (5) in a manner similar to that used for the lamella. An analogue of the 

biharmonic-modified forward time stepping scheme is adopted, however, the forward Euler step is now modified by a term 
of the form α∂�� . Provided α is large enough, this time stepping scheme is expected to be a stable, first order accurate time 
stepping scheme for the second order nonlinear parabolic PDE. In addition, a finite element-based spatial discretization 
has been used, but since there is only one spatial dimension, this can also be viewed as a conservative finite difference 
approximation.

Numerical discretization
Let � denote the curve of a Plateau border. In the triangulated mesh, � is approximated by a set of connected line 

segments Sh such that �h = ⋃
e∈Sh

e. The vertices (xi)
n
i=1 are assumed to lie on � so that �h is a Lipschitz continuous 

curve interpolating �. Let Vh be the linear finite element space consisting of all continuous functions defined on �h that 
are linear when restricted to an element of Sh . Let {χ j} be the standard Lagrange basis functions so that if v ∈ Vh , then 
v = ∑

i v(xi)χi .
Using the analogue of a Laplace-modified forward time stepping scheme, the finite element method is as follows. Given 

λn ∈ Vh at the current time step, find λn+1 ∈ Vh at the next time step, such that∫
�h

λn+1 − λn

	t
φ = C	

μ

∫
�h

[
− 1

2σ(
√

3 − π
2 )

1
2
(√

λn∂�λ
n + α∂�(λ

n+1 − λn)
) + (λn)2ρgτ

]
∂�φ

+
∫

∂�h

W φ +
∫
�h

Snφ, (12)

for all φ ∈ Vh . Here, W is the Plateau border flux boundary condition that is derived from the quadruple point boundary 
condition (as given later by (15)), while Sn is defined to be the piecewise linear interpolant of the source term defined at 
the vertices given by (17). The tangential component of gravity is calculated on a per-edge basis, such that gτ = g · τ is 
piecewise constant. Finally, the stabilization factor used in the Laplace-modified forward time stepping scheme has been set 
to α = 2 max�h

√
λn , evaluated at the beginning of each time step.

Similar to the case of the lamella, the discrete variational form (12) leads to a symmetric positive definite system for 
λn+1. In fact, the associated matrix can be made tridiagonal if the Lagrange basis functions are ordered by position along the 
Plateau border. However, despite the possibility of using an efficient tridiagonal solver, a simple Conjugate Gradient method 
has again been used to solve this system.

3.3.4. Quadruple point and flux boundary conditions
Finally, we need to address the boundary conditions that link the structures together.

Discretization of Plateau border boundary conditions
The boundary conditions at quadruple points (6) are a set of nonlinear simultaneous equations combining Dirichlet and 

Neumann boundary condition types. This boundary condition has been implemented in an explicit fashion: viewed as a 
type of domain decomposition, the approach decouples the Plateau borders for a short amount of time at each time step. It 
was found that it is possible to maintain first order accuracy (in time), as well as conservation of mass, by combining both 
Dirichlet and Neumann boundary conditions in an alternating fashion, as follows.

Consider a specific quadruple point. On the mesh, the quadruple point is a single vertex from which emanates four 
Plateau borders, which are four curves in space made up of line segments; let i = 1, 2, 3, 4 index these Plateau borders. 
Let λi,0 denote the value of the thickness function for Plateau border i at the quadruple point, let λi,1 denote its value 
at the position at precisely one edge length of size hi,0 away from the quadruple point, and let λi,2 denote its value two 
edge lengths away, the second edge having length hi,1; see Fig. 6. Also let xi, j denote the position of the vertices, so that 
x1,0 = · · · = x4,0 =: x0. The strategy is to:
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Fig. 6. Schematic of a quadruple point and the four Plateau borders emanating from it. Here, hi,0 and hi,1 are edge lengths and λi, j are thickness values at 
mesh vertices xi, j .

1. Use the values of λi,1 and λi,2, i = 1, . . . , 4, together with the quadruple point boundary condition, to obtain a common 
value of λ0 at the quadruple point.

2. Use λ0 to calculate fluxes λ′
i , used as Neumann boundary conditions for the Plateau border time stepping scheme.

3. Time step each Plateau border according to the finite element method described above. In general, due to the decou-
pling, this yields different values of λi,0 at the quadruple point at the next time step.

4. Project these values onto a common value, in such a way that the total mass is conserved.

In essence, this strategy uses the quadruple point boundary condition to obtain flux boundary conditions for each Plateau 
border in such a way as to conserve the total mass in the system, at the expense of obtaining discontinuities in λ at each 
quadruple point after each time step. At the end of each time step, this discrepancy is resolved via a projection procedure 
that conserves mass. Altogether, the procedure leads to a first order accurate time stepping scheme that conserves the total 
mass of liquid in the network of Plateau borders.

In more detail, by approximating the derivatives in (6) with second order finite differences, the quadruple point boundary 
condition, with common value λ0, leads to

4∑
i=1

1
2 (

√
3 − π

2 )
1
2 σλ

1
2
0

[
λi,1 − λ0

hi,0
+ hi,1(λi,1 − λ0) + hi,0(λi,1 − λi,2)

hi,1(hi,0 + hi,1)

]
− λ2

0ρgi = 0. (13)

Here, gi is a second order approximation of the tangential component of gravity evaluated at the quadruple point for Plateau 
border i, computed as4

gi = gĝ ·
( xi,1 − x0

hi,0
+ hi,1(xi,1 − xi,0) + hi,0(xi,1 − xi,2)

hi,1(hi,0 + hi,1)

)
.

Equation (13) reduces to a cubic equation, as follows. We seek a physical solution and so may assume that λ0 > 0. Letting 
z := √

λ0, the summation in (13) leads to the equation

C(a − bz2) − dz3 = 0, (14)

where C = 1
2 (

√
3 − π

2 )
1
2 σ , d = ∑4

i=1 ρgi , and

a =
4∑

i=1

λi,1

hi,0
+ hi,1λi,1 + hi,0(λi,1 − λi,2)

hi,1(hi,0 + hi,1)
, b =

4∑
i=1

1

hi,0
+ 1

hi,0 + hi,1
.

If d = 0, there is exactly one positive solution of (14). If d �= 0, it can be shown that if hi, j = O(h) and h is sufficiently 
small, then there is exactly one positive solution of the same order as λ1/2

i,1 . In practice, it was observed that an appropriate 
solution of the cubic equation could always be found, after which the sought after solution to the quadruple point boundary 
condition is simply λ0 = z2.

Equipped with this value of λ0, flux values for each Plateau border can be calculated as the summands in (13):

W i := 1
2 (

√
3 − π

2 )
1
2 σλ

1
2
0

[
λi,1 − λ0

hi,0
+ hi,1(λi,1 − λ0) + hi,0(λi,1 − λi,2)

hi,1(hi,0 + hi,1)

]
− λ2

0ρgi . (15)

These values are used in the finite element method for advancing in time each Plateau border discussed above, and since 
they satisfy 

∑
i W i = 0, it follows that the (discrete) mass in the network of Plateau borders is conserved (ignoring the 

source term S). After one time step of the finite element method for each Plateau border, four not necessarily equal thickness 
values λ̃n+1

i,0 are obtained at the quadruple point at time step n + 1. They are replaced via a simple projection:

4 The equation for gi may be viewed as calculating ĝ · τ = ĝ · d
d�

x(�) where � is the arc length and x(�) parameterizes the Plateau border.



R.I. Saye, J.A. Sethian / Journal of Computational Physics 315 (2016) 273–301 289
Fig. 7. (Left) Three lamellae meet at a Plateau border. (Right) After removal of the indicated lamella, the associated Plateau border ceases to exist as well 
and what remains is a sharp ridge that will quickly smooth due to macroscopic effects of surface tension.

λn+1
i,0 =

∑4
j=1 λ̃n+1

j,0 h j,0∑4
j=1 h j,0

.

This projection conserves mass since 
∑

i λ
n+1
i,0 hi,0 = ∑

i λ̃
n+1
i,0 hi,0.

Flux boundary condition
The flux boundary condition is calculated at the beginning of each time step, and used as a boundary condition for the 

lamella thin-film equation, and as a source term for the Plateau border thin-film equation. Consider a specific Plateau border, 
and let i = 1, 2, 3 index the three lamellae connected to the Plateau border. At a mesh vertex x j belonging to the Plateau 
border, let ηi, j and λ j be the value of the thickness functions at that particular mesh vertex. Given these film thicknesses, 
a per-lamella flux value is calculated with (see [44])

Q i, j = 1
2 (

√
3 − π

2 )
3
4
ση

5/2
i, j

μλ
3/4
j

. (16)

The sum of the three flux values defines the source term for the Plateau border:

S j =
3∑

i=1

Q i, j . (17)

Once calculated, the three flux values Q i, j , i = 1, 2, 3, and the source term S j are used in the finite element methods above.

3.4. Coupling drainage and rearrangement via rupture

In the drainage phase, the coupled system of thin-film equations are evolved until the minimum lamellae thickness falls 
below a critical threshold η < ηthreshold. Rupture is then modelled as a three-step process that couples the results of the 
drainage phase with reinitializing the rearrangement phase. In the first step, the membrane which had minimal thickness 
is removed and the liquid mass it contained is uniformly distributed around the Plateau borders to which it was once 
connected. However, once it is removed, the associated Plateau borders are no longer the intersection of three lamellae and 
instead become ridges in adjacent lamellae, as shown in Fig. 7. Hence, in the second step, the liquid mass in these Plateau 
borders is locally “injected” into the adjacent lamellae, and this is accomplished in the same process as reinitializing the 
rearrangement phase. In more detail:

(i) In the first step, liquid mass in the ruptured lamella is temporarily reassigned to the Plateau borders. This is accom-
plished with a simple update of the appropriate Plateau border thickness functions: let �L denote the lamella which has 
ruptured, and let {�PBi }N

i=1 denote the set of Plateau borders (with thickness functions λi ) that were on the boundary 
of �L . An adjustment factor δ is computed with the formula

δ = 2
∫
�L

η∑N
i=1

∫
�PBi

1

and is used to update λi ← λi + δ. This update conserves liquid mass.
(ii) In the second step, the Lagrangian particle scheme described in §3.2.2 is reinitialized with the updated thickness func-

tions η and λ obtained from the final step of the drainage phase. This uses an identical procedure to that used to 
re-seed the Lagrangian particle scheme: the mesh elements used in the finite element formulation are used as lo-
cations to seed {ηi} and {λi} particles with thickness values obtained from the finite element solver. Such particles 
are generated for all lamellae and Plateau borders which have not been removed by the rupture event. Fictitious {λi }
particles are also generated for the removed Plateau borders {�PBi }; however these are immediately injected onto the 
adjacent lamellae. This is done by imagining each of these particles to be a “ball of liquid” of finite radius, and collaps-
ing this ball onto the adjacent lamellae in such a way that mass is conserved. In this work, these balls were chosen to 
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have radius h where h is the grid cell size, such that they have a radially symmetric density that decays to zero at the 
boundary of the ball.

(iii) Finally, to complete the coupling between the drainage phase and rearrangement phase, the VIIM is notified of the 
removal of a lamella by merging the two bubbles on either side of the lamella. This is done with a simple update of the 
indicator function χ used in the VIIM, which re-identifies the two bubbles on either side of the lamella as now being 
the same, now larger, bubble. The rearrangement phase can now be re-executed with new system of interconnected 
interfaces and film thicknesses.

3.5. Parallelization

3.5.1. Macroscopic evolution
The macroscopic incompressible Navier–Stokes solver has been parallelized using a simple domain decomposition ap-

proach, in which the background rectangular Cartesian grid is subdivided into smaller grids that are assigned to individual 
processors in an MPI implementation. Synchronization of grid-based data on the subdomains is performed using ghost 
layers of sufficient size, while the Lagrangian particles are assigned ownership to individual processors according to the 
subdomain in which they are located, and their ownership is transferred whenever particles cross processor boundaries. 
The Crank–Nicolson step in the Navier–Stokes solver has been implemented with a simple parallelized Conjugate Gradient 
algorithm, while the pressure Poisson problem (for the projection step) is solved with a parallelized multigrid algorithm. 
Our parallelization approach scales well up to thousands of processors. Further comments about parallelizing the VIIM are 
given in [43].

3.5.2. Thin film drainage
To parallelize the finite element code, the inherent domain decomposition in the problem has been utilized: each lamella 

and Plateau border is assigned in its entirety to individual processors in an MPI implementation. To do this, the cost of 
solving the symmetric positive definite systems is estimated for each lamella and Plateau border (via a simple function of 
the number of mesh elements), and based on this, a simple load balancing algorithm is designed so that each processor had 
approximately the same amount of work to do, when possible. (For example, one processor might be responsible for a single, 
large lamella, while another processor may have a few small lamellae and several Plateau borders.) This greatly simplifies 
parallelization since the associated matrix equation solvers do not need to be parallelized. Synchronization among processors 
is only necessary for mesh vertices shared by multiple Plateau borders and/or lamellae, and is used to determine flux 
boundary conditions and quadruple point boundary conditions, and can be performed with MPI’s global gather operations. 
Overall, the scaling efficiency of this approach depends heavily on the number and size of lamellae and Plateau borders, 
and how they are distributed to the processors. In the work presented here, this approach gave good parallel efficiency 
in most cases. Efficiency is less when the drainage phase is applied to relatively few bubbles, in which case many of the 
processors are idle. Usually, however, the computational cost of the macroscopic rearrangement phase dominates the cost 
of the drainage phase.

4. Convergence tests

Next, we test convergence of the various components in our multi-scale framework.

4.1. Convergence of multiphase incompressible Navier–Stokes algorithm

The Voronoi Implicit Interface Method and its coupling to a second order projection method for macroscopic incom-
pressible Navier–Stokes flow have been tested extensively in [43], and we refer the reader there.

4.2. Convergence of Lagrangian schemes for conservative transport of membrane liquid

We have tested the numerical accuracy of the Lagrangian particle-based scheme for conservatively advecting fluid in the 
lamellae and Plateau borders, and confirmed that the presented algorithms are first order accurate in time and second order 
accurate in space. Details are omitted; see [45].

4.3. Convergence of thin-film drainage in membranes

Next, we discuss convergence of the thin-film drainage algorithms for the lamellae and Plateau borders.

4.3.1. Lamella
Two tests are performed: one in which an exact solution is manufactured, and another in which the solution is unknown 

and grid convergence is used. In both cases, we use a catenoid-shaped lamella, which is a surface of revolution with 
zero mean curvature but nontrivial Gaussian curvature, and thus k2

1 + k2
2 varies in space. The surface is parameterized by 

u ∈ [0, 2π) and v ∈ [− 5 , 5 ] such that x = cosh v cos u, y = cosh v sin u, z = v , and is shown in Fig. 8.
4 4
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Fig. 8. Time evolution of the exact solution for the lamella thin-film equation convergence test on a catenoid.

Table 1
Results for the lamella convergence test using a known solution.

n h 	t ∝ h 	t ∝ h2

e∞ Order e2 Order e∞ Order e2 Order

8 0.843 0.15422 – 0.27302 – 0.15422 – 0.27302 –
16 0.445 0.06780 1.3 0.11975 1.3 0.04255 2.0 0.07190 2.1
32 0.229 0.03631 0.9 0.06287 1.0 0.01139 2.0 0.01895 2.0
64 0.117 0.01952 0.9 0.03263 1.0 0.00284 2.0 0.00482 2.0

128 0.059 0.01013 1.0 0.01663 1.0 0.00071 2.0 0.00121 2.0

In the first test, we create an exact solution of the lamella thin-film equation by choosing η = η(u, v, t) = 1 +
1
4 sin(u + t) cos(4π v/5) and calculating f such that

ηt + 1

3μ
∇s ·

(
ση3∇s

(
(k2

1 + k2
2)η + 	sη

) + ρgĝs η
3
)

= f .

This is supplemented by the implied flux boundary condition Q · ν = Q that the exact solution satisfies. A closed-form 
expression for f and Q is most easily obtained by using computer algebra software, together with the curvilinear coordinate 
expressions for the surface Laplacian, etc., in the (u, v) coordinate system. The result is too involved to repeat here, but poses 
no problem in evaluating numerically. In the following, ĝ = ẑ, and the parameters were chosen such that μ = 1, σ = 0.2
and ρg = 0.5. Altogether, this choice of exact solution η and parameters lead to a solution that is relatively smooth and has 
competing effects of gravity and diffusion. (Different values of parameters, solutions, and geometries were also tested, and 
results similar to the following were obtained.) The time evolution of this exact solution is shown in Fig. 8.

For the convergence test, we first generate a finite element mesh by dividing the interval v ∈ [− 5
4 , 54 ] into n equal 

sections and u ∈ [0, 2π ] into 2n equal sections, and cut each resulting quadrilateral into two triangles. While the curvature 
term k2

1 + k2
2 can be shown to equal 2 sech2 v , we instead calculate this term and the gravitational term ĝs by using a level 

set function that implicitly defines the catenoid geometry, together with the procedure outlined earlier in §3.3.2. Thus, in 
the following, we are testing the combined effects of the finite element method in computing η and the finite difference 
method in computing k2

1 + k2
2 and ĝs . The error in the computed solution ηh is measured with

ep = max
0≤t≤π

‖ηh − η‖L p

for p = 2 and p = ∞. Two time stepping schemes are considered: (i) 	t = π/4n = O(h) and (ii) 	t = 2π/n2 = O(h2). The 
results are shown in Table 1 and agree with our expectation that the finite element scheme is first order in time and second 
order in space.

In the second test, the lamella thin-film equation is solved on the same catenoid, with Q ≡ 0, f ≡ 0, and the initial 
condition η(t = 0) ≡ 1. In this example, the direction of gravity is chosen to be ĝ = ŷ, and all other parameters identical to 
the previous test. The resulting evolution of film thickness is shown in Fig. 9 (computed using n = 128), and shows that the 
liquid drains in the direction of gravity, but also collects in regions of high curvature. Since the solution is unknown, grid 
refinement is used to measure convergence: with the difference between solutions on two different grid sizes defined as

dp = max
0≤t≤2

‖η2h − ηh‖L p ,

the convergence rate can be estimated with ratios of dp . For a time step 	t = 4/n2 =O(h2), the results are given in Table 2
and show second order convergence.

4.3.2. Plateau borders
Next, we test convergence of the scheme for the Plateau border drainage through a system of four Plateau borders 

meeting at two quadruple points (as shown in Fig. 10) with the aim of testing all aspects of the scheme, including coupling 
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Fig. 9. Evolution of film thickness on a catenoid with initially uniform thickness η ≡ 1 at time t = 0 (gravity points directly down). The white lines are 
contour lines of the thickness function η.

Table 2
Corresponding to Fig. 9, results for the lamella convergence test with unknown solu-
tion, using grid refinement.

n h d∞ Order d2 Order

16 0.445 0.06782 – 0.07931 –
32 0.229 0.01344 2.5 0.02018 2.1
64 0.117 0.00434 1.7 0.00665 1.7

128 0.059 0.00107 2.1 0.00161 2.1

Fig. 10. Geometry of the Plateau border convergence test, consisting of four Plateau borders meeting at two quadruple points x0 and x1.

of solutions via the quadruple point boundary condition as well as surface tension and gravity. For each Plateau border we 
have the evolution equations

∂tλi + C	

μ

∂

∂�

(
− 1

2 (
√

3 − π
2 )

1
2 σλ

1
2
i ∂�λi + λ2

i ρg ĝτi

)
= Si, i = 1,2,3,4, (18)

coupled via the quadruple point boundary condition 
∑4

i=1
1
2 (

√
3 − π

2 )
1
2 σλ

1
2
i ∂�λi − λ2

i ρg ĝτi = 0 and λ1 = λ2 = λ3 = λ4 at 
the two quadruple points.

Two different tests are considered: one in which an exact solution is constructed, and another in which the solution is 
unknown and grid convergence is used. For the first case, an exact solution of this system is designed by substituting known 
expressions for λ1, λ2, and λ3 into their respective evolution equations, thereby determining S1, S2, and S3. The quadruple 
point boundary condition is then used to find a cubic polynomial in � for λ4 that has the correct value and derivative at 
each quadruple point, and this in turn generates S4. Using the expressions for Si , the numerical method is used to solve 
the system of PDEs, with the aim of recovering the exact solutions.

In more detail, with reference to Fig. 10, Plateau borders number 1, 2, and 3 are circular arcs of arc length π while 
Plateau border number 4 is a straight line of arc length 2. The parameterization is such that � = 0 at quadruple point x0, 
and � = π or � = 2 at quadruple point x1. Gravity points from the middle of Plateau border 4 to the middle of Plateau 
border 3. Let

λ0(�, t) = 2 + cos(3� + t), λ1(�, t) = 2 + cos(3� + t) + 3 sin �, λ2(�, t) = 2 + cos(3� + t) + 1
2 sin 2�.

These were chosen to be nontrivial smooth solutions that are strictly positive for all time t . Using the quadruple point 
boundary condition, we can solve for both λ3(�, t) and λ′

3(�, t) at � = 0 and � = 2. For each point in time, these four values 
uniquely determine a cubic polynomial in �, which is chosen to be the remaining solution λ3(�, t). This yields
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Fig. 11. (Left pair) Exact solution for the Plateau border convergence test at times t = 0 and t = 2. (Right) Numerical solution at time t = 10 for the case 
when Si ≡ 0 and λi(t = 0) ≡ 1 for all i.

Table 3
Results for the Plateau border convergence test using a known solution.

n 	t ∝ h 	t ∝ h2

e∞ Order e2 Order e∞ Order e2 Order

32 0.06374 – 0.05624 – 0.06374 – 0.05624 –
64 0.03212 1.0 0.02846 1.0 0.01597 2.0 0.01415 2.0

128 0.01612 1.0 0.01433 1.0 0.00400 2.0 0.00354 2.0
256 0.00808 1.0 0.00720 1.0 0.00100 2.0 0.00089 2.0
512 0.00404 1.0 0.00361 1.0 0.00025 2.0 0.00022 2.0

λ3(�, t) = 2 + cos t + x
f1(t)

C1
√

2 + cos t
− 1

2 x2
(

3 cos t − f2(t)

C1
√

2 − cos t
+ 2 f1(t)

C1
√

2 + cos t

)

+ 1
4 x3

(
2 cos t − f2(t)

C1
√

2 − cos t
+ f1(t)

C1
√

2 + cos t

)
where

C1 = 1
2 (

√
3 − π

2 )
1
2 σ ,

f1(t) = ρg(2 + cos t)2 + C1
√

2 + cos t(9 sin t − 4),

f2(t) = ρg(2 − cos t)2 + C1
√

2 − cos t(9 sin t − 2).

Substituting the expressions for λ1, . . . , λ4 into (18) we can find closed-form expressions of S1, . . . , S4. These are too cum-
bersome to repeat here, but pose no problem when evaluating numerically. Now we must choose specific values for the 
physical parameters, and we set μ = σ = ρ = g = 1. These values were chosen to (i) make surface tension and gravity 
equally important effects for the purposes of convergence tests, and (ii) guarantees that λ4 is strictly positive for all time t . 
Fig. 11 (left pair) illustrates the exact solutions λ1, . . . , λ4 at a two example points in time.

For the numerical method, each Plateau border is discretized with n equal sized line segments, so that h ≈ π/n for 
Plateau borders 1, 2, and 3, and h = 2/n for Plateau border 4. The system of PDEs and the quadruple point boundary 
conditions are solved using the methods described above. The error of the numerical solution is defined as

ep = max
i=1,2,3,4

max
t∈[0,1] ‖λ

h
i − λi‖L p ,

i.e., the maximum error over all (discrete) points in time of all Plateau borders, measured in the L p norm for p = 2 and 
p = ∞, where λh

i denotes the numerical solution. To determine the order of accuracy, two time stepping schemes are 
considered: (i) one in which 	t = 1/n ∝ h; and (ii) 	t = 32/n2 ∝ h2. The convergence results are shown in Table 3, and 
confirms our expectation that the scheme is first order accurate in time and second order accurate in space.

For the second convergence test, the same Plateau border geometry and numerical discretization is used, and the case 
when Si ≡ 0 for all time is investigated. In particular, the Plateau borders are initialized with a uniform thickness so that 
λi ≡ 1 for all i at time t = 0. In this case, the system conserves mass, i.e. d

dt

∑
i

∫
�i

λi = 0. Since the exact solution is 
unknown, grid refinement is used to study convergence by defining

dp(h) = max
i=1,2,3,4

max
t∈[0,10] ‖λ

2h
i − λh

i ‖L p ,

and then estimating the convergence rate by using ratios of dp with log2
(
d(2h)/d(h)

)
. As before, two time stepping schemes 

are considered: (i) 	t = 5/n ∝ h and (ii) 	t = 320/n2 ∝ h2. The results are shown in Table 4, and a plot of the solution at 
time t = 10 is shown in Fig. 11 (right). The results indicate first order accuracy in time and second order in space. It was 
also confirmed that mass of the discrete solution was conserved, independent of the grid size.
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Table 4
Results for the Plateau border convergence test with unknown solution, using grid refinement.

n 	t ∝ h 	t ∝ h2

d∞ Order d2 Order d∞ Order d2 Order

64 0.01136 – 0.00308 – 0.01877 – 0.00482 –
128 0.00569 1.0 0.00119 1.4 0.00697 1.4 0.00141 1.8
256 0.00170 1.7 0.00038 1.6 0.00121 2.5 0.00031 2.2
512 0.00062 1.4 0.00016 1.2 0.00027 2.2 0.00008 2.0

1024 0.00028 1.1 0.00008 1.0 0.00007 2.0 0.00002 2.0

Table 5
Physical parameters used in the numerical simulations.

Parameter and units Notation Fig. 12 Fig. 13 Fig. 15 Fig. 16 Fig. 17a Fig. 18

Surface tension (kg s−2) σ 0.034 0.034 0.034 0.034 0.034 0.034
Gas density (kg m−3) ρg 1.15 1.15 – 1.15 1.15 1.15
Gas viscosity (kg m−1 s−1) μg 1.8 × 10−5 3.42 ×10−5 – 1.8 × 10−5 5 × 10−5 5 × 10−5

Liquid density (kg m−3) ρ – – 1000 1000 1000 1000
Liquid viscosity (kg m−1 s−1) μ – – 0.001 0.001 0.001 0.001
Gravity (m s−2) g – – 9.8 9.8 9.8 9.8
Initial lamellae thickness (μm) η (t = 0) – – 5 5 10 1
Initial Plateau border (mm2) 

cross-sectional area
λ (t = 0) – – 0.05 0.05 0.002 0.05

Typical bubble diameter (mm) 10 40 2 3 0.1–0.4 3
Rupture threshold (nm) – – – 10 40 10

a For the purposes of limiting bubble rearrangement to the lamellae cluster, in the simulation of Fig. 17, rupture of the background membrane was 
inhibited by including an additional diffusion term of the form 	2

s η into its thin-film equation.

5. Results

In the previous set of sections, several numerical schemes have been developed for use in the rearrangement, drainage, 
and rupture phases of the multiscale model of foam dynamics. For each of these phases, the corresponding methods have 
been designed to accurately solve the underlying evolution equations, with the ability to couple to the other phases. Here, 
several results of the framework are presented. In the first set of results, individual components of the foam model are 
tested and verified, demonstrating various physical mechanisms of the model. The entire system is then coupled to study 
two problems exhibiting nontrivial foam dynamics that involve foam collapse via bubble rupture cascades. We note that 
some of these figures first appeared in [44].

In all of these results, the physical parameters have been chosen to represent a typical soap bubble foam: the density 
and viscosity of the liquid is similar to that of water, gravity is normal Earth gravity, and the gas phase represents typical 
ambient air at room temperature. The precise values of the physical parameters used in the following results are given in 
Table 5.

5.1. Rearrangement phase

To demonstrate rearrangement and surface area minimization, Fig. 12 shows the effect of removing a specific lamella 
from a cluster which is otherwise in macroscopic equilibrium. After removal, surface tension drives the cluster into a new 
configuration, undergoing various topological changes in the process. Fig. 12 (top) plots the total surface area as a function 
of time and shows that it reaches a local minimum; the bottom figures illustrate how the “hole” made by removing the 
lamella is filled-in, generating capillary waves as it does so, with 120◦ angle conditions satisfied throughout the process, 
ultimately leading to an equilibrium where each lamella has constant mean curvature.

To test the accuracy of the Navier–Stokes solver, in Fig. 13, numerical results are compared to that of a bubble oscillation 
experiment by Kornek et al. [27]. In that work, several high-speed movies were captured of bubbles colliding and merging 
together; once merged, the resulting larger bubbles oscillate due to effects of surface tension. One of these movies was used 
to determine the radii of two slightly overlapping bubbles, as shown by the t = 0 inset in Fig. 13. Experimental parameters 
quoted in [27] were then used as parameters for the Navier–Stokes solver. In particular, the density of the gas was quoted 
as 1.2 kg m−3, however the authors were uncertain as to precisely what percentage of butane was contained in the gas 
mixture. It was found that better agreement between numerical results and the experiment were obtained by slightly 
altering the density to 1.15 kg m−3. Overall, the numerical results illustrated in Fig. 13 show good qualitative agreement 
with the experiment. It is possible to more carefully analyze the results by measuring modes and frequencies of oscillation, 
as well as dampening rates, as was done in [27], however this has not been considered here.

In the next example, the effect of rearrangement on changes in film thickness is demonstrated by considering an oscillat-
ing soap bubble, as shown in Fig. 14. A bubble with an initial shape of an ellipsoid (semi-principal axes of lengths of 20

3 mm, 
5 mm and 4 mm) is initialized with a uniform lamella thickness of η ≡ 0.3 μm. Fig. 14 (top) shows the evolution of the 
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Fig. 12. A small cluster, initially in equilibrium, undergoes rearrangement due to the removal of a lamella (orange) at time t = 0. (Top) Total surface area 
as a function of time. (Bottom) Evolution of cluster during rearrangement. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 13. Comparison of numerical results with experiment. Two spherical soap bubbles merge at t = 0, subsequently causing surface tension driven oscil-
lations that eventually lead to a larger spherical bubble. Images of experimental results reproduced from [27] (by permission); numerical simulation uses 
identical physical parameters and time scale, and was computed on a 64 × 64 × 96 grid.

Fig. 14. Evolution of lamella thickness for an oscillating bubble. (Top row) Colors indicate thickness η of the lamella and the white curves are contour lines 
of η. (Bottom row) The same bubble oscillation visualized with thin-film interference. Simulation computed on a 256 × 256 × 256 grid in a cubic domain 
of side length 20 mm with periodic boundary conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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Fig. 15. Solution of the coupled lamella and Plateau border thin-film equations on a pyramid of four spherical bubbles. Colors indicate thickness η of the 
lamellae and cross-sectional area λ of the Plateau borders, the black curves are contour lines of η, and (except for the top and bottom views) gravity points 
down. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

subsequent variations in film thickness: areas where the bubble has “compressed” tend to increase in thickness, while the 
thickness decreases near points of expansion. In Fig. 14 (bottom), the same results are shown using thin-film interference: 
constructive and destructive interference of reflected light, together with variations in film thickness, lead to interference 
patterns (“rainbows”) seen in everyday soap films. Here, the physically-based ray tracing rendering engine LuxRender [28]
has been used to solve the Fresnel equations to obtain reflection, refraction, and thin-film interference effects. In particular, 
the bubble has been globally illuminated by a beach scene: in the reflected image, one can see two suns (from the front 
and back surfaces of the bubble), with the sky in the upper half. Comparison of the interference patterns with the film 
thickness shown in the top row reveals a correlation between the two.

5.2. Drainage phase

In this example, liquid drainage in a coupled lamellae and Plateau border system is demonstrated. Fig. 15 shows a 
pyramid of four spheres with diameters 2 mm, forming a network of six lamellae and ten Plateau borders. The lamellae are 
initialized at time t = 0 with a uniform thickness of η = 5 μm and the Plateau borders with uniform cross-sectional area 
λ = 0.05 mm2. Fig. 15 shows the thickness after draining for 16.1 s. The effect of gravity is seen with the accumulation of 
liquid at the bottom of the lamellae and Plateau borders, while the effect of the flux boundary condition can be observed 
with the reduced thickness of the lamellae at the junctions. In the case of the Plateau borders, the thickness profile has 
essentially attained an equilibrium – as the liquid drains to the bottom due to gravity, the Plateau borders become thin at 
the top, thereby reducing the liquid pressure, which in turn leads to a pressure gradient opposing the force of gravity.

5.3. Rupture and redistribution of mass

To demonstrate rupture and redistribution of liquid mass, in Fig. 16, a cluster of bubbles with non-uniform thickness has 
been draining, and the internal lamella separating the two front facing bubbles ruptures immediately after time t = 0. The 
liquid originally contained in the lamella and the Plateau borders to which it was once connected is locally distributed to 
the remaining lamellae, as shown by the sudden increase in thickness. The system, driven by macroscopic rearrangement, 
quickly moves into a new configuration.

5.4. Coupled rearrangement, drainage, and rupture

By assembling the complete physical system, the multiscale model can be used to predict the evolution of foam cluster 
dynamics, under the combined effects of rearrangement, drainage, and rupture. This is demonstrated here with two foam 
collapse problems.

The first example serves to highlight how foam dynamics can crucially depend on the interaction between the three 
phases. In other words, while the drainage phase determines which lamellae rupture, both the rupture phase and rearrange-
ment phase contribute significantly to this process as well, through nontrivial transport of membrane liquid. To motivate 
the design of this example, suppose that the lamellae start with a uniform thickness of η0. As seen in the drainage example 
in Fig. 15, it is often the case that as lamellae drain over time, a boundary layer in their thickness develops near the Plateau 
borders, due in part to the flux boundary condition. Scaling arguments applied to the lamella thin-film equation together 
with the flux boundary condition suggest that the width of the boundary layer after a fixed amount of time is O(η

1/2
0 λ

1/4
0 ), 

where λ0 is a typical cross-sectional area of the Plateau border. For typical film thicknesses and drainage times, the length 
predicted by the scaling is on the order of 0.1 mm, and this was confirmed by numerical tests, as is the result that Plateau 
borders tend to have the same order of magnitude thickness across the entire network. It follows that for a cluster of bub-
bles which initially have the same lamellae thickness, all lamellae drain at approximately the same rate, and thus those 
bubbles smaller than the boundary layer will thin more rapidly and rupture first.
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Fig. 16. Evolution during rupture. An internal lamella joining the two front facing bubbles ruptures and is removed, leading to rearrangement of bubbles 
and varying film thicknesses.

Fig. 17. Results of the coupled multiscale model for a cluster of bubbles attached to a membrane. In the top-left frame, a side-view of the initial config-
uration is shown, using semi-opaque lamellae and emphasizing the Plateau borders, to highlight the 3D structure of the results. In the rest of the frames, 
a top-down view is given, showing the lamellae film thickness η, corresponding to the indicated color scale. The background membrane absorbs some of 
the drainage, but is chosen not to rupture. As the system evolves, rupture events can be identified by the localized increases in lamellae thickness. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To demonstrate this behavior, and how it effects rearrangement of bubbles, an example is shown in Fig. 17. A cluster 
of 17 bubbles is suspended by a membrane, so that bubbles protrude below and above the membrane. This configuration 
was designed in order to make the rearrangement simpler to visualize with a top-down perspective. The cluster has a range 
of bubble sizes, from 0.1 to 0.5 mm in diameter, and at time t = 0 is initially in equilibrium, such that each lamella has 
a uniform thickness of 10 μm, and each Plateau border a uniform cross-sectional area of 0.002 mm2. After draining for a 
time of 182 ms, some of the smallest lamellae rupture in quick succession. As this occurs, adjacent bubbles grow in size 
and increase in thickness. Initially, many of the rupture events are associated with the smaller lamellae, but because rupture 
affects the macroscopic dynamics of the bubbles, larger lamellae can rupture due to membrane stretching. On this small 
spatial scale, the rearrangement phase typically takes 0.1 ms to equilibriate, while drainage takes tens of milliseconds. The 
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Fig. 18. Collapse of a foam cluster, visualized with thin-film interference. See also the supplementary material of [44] for the corresponding movie.
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results show how a nontrivial sequence of rupture events is obtained, and how bubble rearrangement affects rupture events, 
both locally and globally, due to changes in film thickness and macroscopic hydrodynamics.

Finally, in the last example, Fig. 18 shows the results for a larger cluster of 27 bubbles with a typical bubble diameter of 
3 mm. In this example, a cluster starts in macroscopic equilibrium with a uniform lamellae thickness of 1 μm, and for each 
Plateau border a uniform cross-sectional area of 0.05 mm2. Compared to the case in Fig. 17, in this example the typical 
bubble size is much larger. As a result, the rupture of a single lamella can have a greater impact on the global dynamics. 
We see this in Fig. 18 – after draining for 6.3 s, a single lamella ruptures, causing a rapid collapse of the entire structure.

6. Conclusions

A multiscale model of the dynamics of a foam has been developed, permitting the study of the effects of fluid prop-
erties, topology, bubble shape, and distribution, on drainage, rupture, and rearrangement. Several numerical methods were 
developed to accompany this model, ranging from Lagrangian-based schemes for transporting film thickness during rear-
rangement, to biharmonic-modified finite element methods and techniques for treating the coupled boundary conditions 
in the system of thin-film equations in the drainage phase. Using two foam collapse problems, it was demonstrated how 
rupture, liquid drainage, and gas hydrodynamics each affect one another on both local and global scales.

Both the scale-separated model and the underlying numerical algorithms are general enough to allow extension of the 
physics at individual scales to include other phenomena. For example, some types of surfactant solution give rise to films 
with long lifetimes. In such films, disjoining pressures and van der Waals force can be important in liquid drainage and rup-
ture initiation; these additional physics can be modelled by altering the thin-film equations. Diffusive coarsening, which can 
also be important for long lifetime foams, could be added by generalizing the thin-film equations to allow slow movement 
of the membranes, using equations similar to those derived in [21]. In other types of surfactant solution, mobile/stress-free 
boundary conditions at the liquid–gas interface are more appropriate than the no-slip boundary conditions used here [22,
26,25]. In principle, it is possible to derive different thin-film equations on the curved lamellae, taking into account these 
boundary conditions. In so doing, it is expected that this would lead to coupled PDEs for film thickness evolution: one for 
the film thickness, which is coupled to a second equation for the tangential velocity field of the liquid inside the membrane. 
Similar approaches may also allow surface viscosities, evaporation dynamics, and heating of a foam to be modelled.

Additional future work could include more detailed considerations of some of the assumptions made in this model. 
For example, in the macroscopic rearrangement phase, the films were idealized as massless and infinitely thin, so that the 
liquid was essentially passively advected by the gas dynamics. Thus, inertial and viscous effects of the liquid inside the films 
were neglected. Some experimental studies indicate that such effects can dampen the motion of the films. In the work of 
[27], several experiments were performed which indicated that the dampening rate for soap bubble oscillations is 40%–60% 
faster in practice, compared to small-scale perturbation theory and numerical experiments. Nevertheless, the frequency of 
oscillation of the experimental data matches theoretical and numerical predictions. To address the difference in dampening, 
it may be possible to suitably modify the surface tension force in Navier–Stokes, and/or the local viscosity of the gas, to 
take into account these inertial effects.
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