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Abstract

We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on
hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely
energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral
Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by
bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov
inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including
new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics
Processing Units.

1. Introduction

Highly efficient solution techniques exist for high order finite element and Galerkin discretizations on
hexahedral meshes. Presently, producing high quality hexahedral meshes for complex domains is a difficult
and non-robust procedure. Hybrid meshes, which consist of wedge and pyramidal elements in addition to
hexahedra and tetrahedra, have been proposed to leverage the efficiency of hexahedral elements for more
general geometries. Such meshes are commonly produced by adding a transitional layer of wedges and
pyramids to a structured hexahedral mesh and constructing an unstructured tetrahedral mesh to fill in the
remaining space [40]. Recently, techniques have been developed to automatically generate conforming hex-
dominant hybrid meshes with a high percentage of hexahedral elements [2], which we aim to leverage to
develop efficient solvers on more general geometries. We note that the utility of high order time-explicit DG
using hybrid (including polygonal) meshes has been explored for polynomial physical frame discretizations
in [18]. We consider in this work approximation spaces defined under a reference-to-physical mapping.

Spectral and hp-finite element methods on hybrid meshes were explored early on by Sherwin, Karniadakis,
Warburton, and Kirby [41, 43, 25] using orthogonal polynomial basis functions constructed for hexahedral,
wedge, pyramidal, and tetrahedral elements. While approximation spaces for the hexahedron, wedge, and
tetrahedron have remained relatively unchanged since their introduction, more recent work has focused
on the construction of alternative basis functions and approximation spaces for the pyramid. Bedrosian
introduced a set of low-order vertex functions for the pyramid which yielded polynomial traces, allowing for
conformity with low order finite elements for other shapes [3]. Unlike other elements, however, his pyramidal
shape functions were rational in nature. Bergot, Cohen, and Durufle extended this construction in [4, 7] to
produce a high order basis for the pyramid (which we refer to as the rational basis). It was additionally
shown that, under non-affine mappings of the reference pyramid, the mapped rational basis contains a
complete polynomial space. As a result, the rational basis provides optimal high order convergence rates
on vertex-mapped elements, which is not true of the polynomial pyramid basis. Rational pyramidal bases
were also adapted to the H(curl), H(div) setting and exact sequence spaces in [6, 5, 35]. The construction
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of exact sequence high order bases for elements of all types (including pyramids) is addressed in recent work
by Fuentes, Keith, Demkowicz, and Nagaraj [16].

Our focus is on high order discontinuous Galerkin (DG) methods on hybrid meshes. We pay particular
attention to the efficient implementation of solvers on hardware accelerators. The computation-intensive
nature of time-explicit methods lends itself well to modern accelerator architectures such as Graphics Pro-
cessing Units (GPUs), and was exploited by Klöckner, Warburton, Bridge and Hesthaven to construct an
efficient high order DG solver on tetrahedral meshes using a single GPU [26]. Exposing both coarse and fine-
grained parallelism resulted in several times speedup for meshes with around a hundred thousand elements at
high orders of approximation. Increases in on-board memory in modern GPUs have allowed for the solution
of even larger problems on a single unit. Additional gains in efficiency and problem size may be achieved
via multi-rate timestepping and distributed-memory parallelism [21, 20]. However, these technologies have
been developed on all-hex or all-tetrahedra meshes, and while hetergeneous computing on hybrid meshes
has been explored in the context of fluid dynamics and the closely related Flux Reconstruction method [48],
GPU-accelerated DG methods on hybrid meshes have not yet been analyzed in detail.

Crucial to the efficiency of GPU-accelerated DG methods is limiting the memory required. Since each
GPU has a relatively small amount of on-device storage, maximum problem sizes are typically memory-
bound. Classical techniques for hexahedral and tetrahedral elements limit the amount of data that must be
stored, and recent developments in the construction of basis functions [45, 46, 11] make it possible to develop
low-storage DG methods on pyramids and wedges as well. This work leverages each of these technologies
to construct a low-memory GPU-accelerated high order DG solver on hybrid meshes for the acoustic wave
equation. Additionally, order-dependent global and local timestep restrictions for general hybrid meshes are
derived using constants in discrete trace inequalities for each element.

The structure of this paper is as follows: Section 2 introduces a low-storage DG method for hybrid
meshes. The low-storage treatment of mass matrices is addressed through a careful choice of basis functions
for each specific type of element. The variational formulation and element-specific operations are given, and
a computational implementation on many-core architectures is described. Section 3 derives order-dependent
timestep restrictions for each type of element based on the constants in discrete trace inequalities. Finally,
Section 4 reports numerical and computational results.

2. A Low-storage DG method on hybrid meshes

Typical DG methods result in a system of ordinary differential equations of the form

du

dτ
= M−1Au,

where τ is time, A is a linear operator defined by the discretization, and M is the global mass matrix, which
is block diagonal in nature. Efficient implementations of DG must account for the inverse of M in a fast
and memory-efficient manner. One common strategy is to store the factorization or explicit inverse of each
block of M−1; however, on GPU and other accelerator architectures, on-device memory is typically limited
to a few gigabytes. Explicit storage of factorizations can rapidly exhaust available memory and limit the
maximum problem size on a single GPU at high orders of approximation. For example, assuming a mesh of
1 million planar tetrahedra in single precision, at order N = 4, storage of M−1 already exceeds the 1 GB
of memory available on early GPUs used to accelerate DG methods [26], without accounting for the storage
cost of other relevant data.

We consider meshes consisting of hexahedra, wedges, pyramids, and tetrahedra. Given an order N = 1
basis on each element, we may then define low-order vertex functions. A map from the reference element to a
physical element may then be defined by interpolating physical vertex positions with these vertex functions.
We refer to such elements as vertex-mapped elements, and restrict ourselves to meshes consisting of such
elements in this work. Furthermore, we define J to be the the determinant of the mapping Jacobian, such
that ∫

K

u =

∫
K̂

uJ,
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Figure 1: Types of elements present in hex-dominant meshes. From left to right: reference hexahedra, wedge,
pyramid, and tetrahedra.

where K, K̂ are the physical and reference elements, respectively.

2.1. Basis functions

We will sidestep the cost of storage of M−1 by tailoring our choice of basis functions for each element.
Assuming that all elements are vertex-mapped, we will construct basis functions for the hexahedron, wedge,
and pyramid which yield diagonal mass matrices. For vertex-mapped tetrahedra, the mass matrix will not
be diagonal, but will be a scalar multiple of the reference mass matrix.

2.1.1. Hexahedra

We take the reference hexahedron to be the bi-unit cube, with coordinates (a, b, c) ∈ [−1, 1]3. The
approximation space of order N on the hexahedron is simply the tensor product space of polynomials of
order N in each direction. For a vertex-mapped hexahedra H, this space and its dimension Np are given as
follows

PN (H) =
{
xiyjzk, 0 ≤ i, j, k ≤ N

}
, Np = (N + 1)3.

We also have that J ∈ P1(Ĥ), and an appropriate quadrature rule can be constructed using a tensor product
of standard 1D Gauss-Legendre rules. If we take the orthogonal basis

φijk(a, b, c) = `i(a)`j(b)`k(c) 0 ≤ i, j, k ≤ N,

where `i is the ith Lagrange polynomial at the ith Gauss-Legendre node, the mass matrix defined by

Mijk,lmn =

∫
H
φijkφlmn dx =

∫
Ĥ
φijkφlmnJ dx̂

is diagonal for J ∈ P1(Ĥ). To apply M−1, we store only of the inverse of the diagonal of the full mass
matrix, which requires the storage of NpK values, instead of storing the O(N2

pK) entries required for the
factorization of the global block-diagonal mass matrix.

We may also achieve a diagonal mass matrix by taking Lagrange polynomials at tensor product Gauss-
Legendre-Lobatto nodes, which includes points at both −1 and 1. Applying Gauss-Legendre-Lobatto quadra-
ture results in a diagonal mass matrix, and is the basis behind the Spectral Element Method [37, 24]. We
refer to the choice of basis using Gauss-Legendre nodes as the GL basis, and the basis using Gauss-Legendre-
Lobatto nodes as the SEM basis. We will compare both of these choices in this work.

2.1.2. Tetrahedra

For the reference tetrahedron, an orthogonal basis may be given as the product of Jacobi polynomials on
the bi-unit cube [38, 27, 14]

φijk(a, b, c) = P 0,0
i (a)(1− b)iP 2i+1,0

j (b)(1− c)i+jP 2(i+j+1),0
k (c).

3



(a) SEM nodes (b) GL nodes

Figure 2: SEM and GL nodes on the quadrilateral. For GL nodes, additional surface nodes must be specified
(shown as squares).

The tetrahedral basis is then given by the Duffy mapping from the bi-unit cube to the bi-unit right tetrahe-
dron with coordinates (r, s, t)

r = (1 + a)

(
1− b

2

)(
1− c

2

)
− 1, s = (1 + b)

(
1− c

2

)
− 1, t = c.

The approximation space for a vertex-mapped tetrahedra is the space of polynomials of total order N with
dimension Np

P (T ) =
{
xiyjzk, i+ j + k ≤ N

}
, Np =

(N + 1)(N + 2)(N + 3)

6
.

A convenient fact about vertex-mapped (planar) tetrahedra is that J is constant on each element. Thus,
each local mass matrix is simply a constant scaling of the reference mass matrix, and only the reference mass
matrix is stored. In our implementation, we choose a nodal Lagrange basis (defined implicitly using the
above orthogonal basis) where the nodes are placed at optimized interpolation points on the simplex [44].

2.1.3. Wedges

An orthogonal basis for the reference wedge may be given in terms of Jacobi polynomials on the bi-unit
cube

φijk(a, b, c) = P 0,0
i (a)P 0,0

j (b)

(
1− c

2

)i
P 2i+1,0
k (c), 0 ≤ i, j ≤ N, 0 ≤ k ≤ N − i.

Applying a Duffy-type transform gives a basis on the reference bi-unit wedge with coordinates (r, s, t)

r = (1 + a)

(
1− c

2

)
− 1, s = b, t = c.

For a vertex-mapped wedge W, J ∈ P1(Ŵ), and the approximation space of order N on the wedge and its
dimension are

PN (W) =
{
xiyjzk, 0 ≤ i, j ≤ N, 0 ≤ k ≤ N − i

}
, Np =

(N + 1)2(N + 2)

2
.

We may construct an appropriate quadrature rule on the reference wedge based on the tensor product of
Gauss-Legendre rules in the r, s coordinate, and a Gauss-Legendre rule with weights (1, 0) in the t coordinate.
Alternatively, a wedge cubature may be constructed by taking the tensor product of an optimized cubature
on the triangle with Gauss-Legendre cubature in the s coordinate. We take the latter approach in this work,
using rules from Xiao and Gimbutas [49]. The triangle quadrature is chosen such that the rule is exact for
polynomials of total order 2N + 1, similar to Gauss-Legendre quadrature.

Decreasing storage costs for the wedge mass matrix is less straightforward. One common approach is
to construct a basis using the tensor product of triangular basis functions with Lagrange polynomials at

4



N + 1 Gauss-Legendre points. The resulting mapped basis is orthogonal in the b direction, and the local
mass matrix becomes block diagonal, with each block corresponding to a triangular slice of the wedge.
Unfortunately, for general vertex-mapped wedges, J is bilinear on each triangular slice, and each block of
the local mass matrix corresponds to a J-weighted L2 inner product on a triangle. Since there is clear basis
which is orthogonal in this inner product for an arbitrary bilinear J , the blocks of each local mass matrix
are typically dense and distinct from element to element. Factorizations of each block are required in order
to efficiently apply the mass matrix inverse, resulting in increased storage costs.

We may address this storage cost by using a Low-Storage Curvilinear DG (LSC-DG) approach [45, 46],
where we define the H1 non-conforming basis φ̃ijk

φ̃ijk =
φijk√
J
,

such that

Mijk,lmn =

∫
Ŵ
φ̃ijkφ̃lmnJ dx̂

∫
Ŵ

φijk√
J

φlmn√
J
J dx̂ = M̂ijk,lmn.

As a result, each mass matrix is identical to the reference mass matrix, allowing us to apply M−1 while
accounting for only a single mass matrix inverse over all elements.

The use of LSC-DG results in a rational basis; consequentially, standard quadratures are not exact and
aliasing errors may result from underintegration. To sidestep these issues, we restrict ourselves to variational
formulations that may be written in a skew-symmetric fashion, such that DG is energy stable irregardless of
the choice of quadrature [46]. Additionally, since our approximation space now contains rational functions,
standard polynomial approximation results do not hold for LSC-DG wedges. Under a quasi-regular scaling
assumption on elements in our mesh, we recover instead an L2 approximation bound of the form

‖u−Πwu‖L2(K) ≤ Ch
N+1

∥∥∥∥ 1√
J

∥∥∥∥
L∞(K)

∥∥∥√J∥∥∥
WN+1,∞(K)

‖u‖WN+1,2(K) ,

where the weighted projection Πwu is the projection onto the LSC-DG space, h is the size of the element K,
and ‖·‖WN+1,∞(K) denotes the L∞ Sobolev norm of order N+1 over K. For comparison, the projection error
bound for curvilinear mappings using standard mapped bases replaces the Soblev in the above bound with
an L∞ norm. In other words, while the approximation error for standard curvilinear elements depends only
on the extremal values of J , it depends additionally on the smoothness of J when using rational LSC-DG
basis functions.

2.1.4. Pyramids

Unlike hexahedral, wedge, and tetrahedral elements, the basis functions for the pyramid are rational in
nature. For a vertex-mapped pyramid P, the approximation space and dimension Np are

BN (P) = PN (P)⊕
N−1∑
k=0

{(
xy

1− z

)N−k
xiyj , 0 ≤ i+ j ≤ k

}
, Np =

(N + 1)(N + 2)(2N + 3)

6
,

where PN (P) is the space of polynomials of total order N on the physical pyramid. For a vertex-mapped

pyramid, we have that the change of variables factor J ∈ B1(P̂). An appropriate quadrature rule is defined
on the reference pyramid using a tensor product of Gauss-Legendre rules in the r, s coordinate, and a Gauss-
Legendre rule with weights (2, 0) in the t coordinate.

Since J is again non-constant, each local mass matrix is distinct and dense, increasing storage costs for
DG methods on pyramids. However, it was shown in [11] that there exists an orthogonal basis φijk on
vertex-mapped pyramids which spans BN (P). This basis is defined on the bi-unit cube as

φijk(a, b, c) =

√
CNN−k
wiwj

`ki (a)`kj (b)

(
1− c

2

)k
P 2k+3
N−k (c), 0 ≤ i, j ≤ k, 0 ≤ k ≤ N,

5



where `ki (a), `kj (b) are order k Lagrange polynomials at (k + 1) Gauss-Legendre nodes, and P 2k+3
N−k (c) is the

Jacobi polynomial of degree k with order-dependent weight 2k+ 3. wi is the ith Gauss-Legendre quadrature
weight, and the normalization constant CNN−k = (N + 2)/(22k+2(2k+ 3)). The pyramid basis is then defined
under the Duffy-type mapping from the bi-unit cube to the bi-unit right pyramid

r = (1 + a)

(
1− c

2

)
− 1, s = (1 + b)

(
1− c

2

)
− 1, t = c.

The mass matrix is diagonal for vertex-mapped pyramids under such a basis, and the entries of the mass
matrix are the evaluation of J at the quadrature points aki , b

k
j . As with hexahedral elements, the application

of M−1 requires only storage of the diagonals of each local mass matrix.

2.2. Variational formulation

We consider the acoustic wave equation on domain Ω with a free surface boundary condition p = 0 on
the boundary of the domain ∂Ω. This may be written in first order form

1

κ

∂p

∂τ
+∇ · u = f

ρ
∂u

∂τ
+∇p = 0,

where p is acoustic pressure, u is velocity, and ρ and κ are density and bulk modulus, respectively. We
assume also a triangulation of the domain Ωh consisting of elements K with faces f , and that ρ and κ are
piecewise constant on each element. We will denote the union of the faces f as Γh. Let (p−,u−) denote the
solution fields on the face of an element K, and let (p+,u+) denote the solution on the neighboring element
adjacent to that face. We may then define the jump of p and the normal jump and average of the vector
velocity u componentwise

[[p]] = p+ − p−, [[u]] = u+ − u−, {{u}} =
u+ + u−

2
.

Defining n− as the outward unit normal on a given face, the (local) variational formulation for the discon-
tinuous Galerkin method is then∫

K

1

κ

∂p

∂τ
φ− dx =

∫
K

u · ∇φ− dx+

∫
∂K

(
1

2
τp [[p]]− n− · {{u}}

)
φ− dx (1)∫

K

ρ
∂u

∂τ
ψ− dx = −

∫
K

∇p ·ψ− dx+

∫
∂K

1

2

(
τu [[u]] · n− − [[p]]

)
ψ− · n− dx, (2)

where τp = 1/ {{ρc}}, τu = {{ρc}}, and c2 = κ/ρ is the speed of sound. Only one equation has been integrated
by parts, resulting in a skew-symmetric and energy-stable formulation (the choice of which equation to
integrate by parts is arbitrary; both produce skew-symmetric formulations). Proofs of energy stability
typically rely on the exact evaluation of integrals [32]. Due to the use of LSC-DG on wedges, physical basis
functions become rational in nature and are not exactly integrable using standard quadrature rules. The
skew-symmetry of the variational form guarantees energy stability irregardless of quadrature rule [46].

While we adopt a skew-symmetric variational formulation when necessary for energy stability, we do not
always compute with it. Instead, we use the fact that the skew-symmetric form (2) is sometimes equivalent
to the twice integrated-by-parts “strong form” [22]∫

K

1

κ

∂p

∂τ
φ− dx = −

∫
K

∇ · uφ− dx+

∫
∂K

1

2
(τp [[p]]− n · [[u]])φ− dx∫

K

ρ
∂u

∂τ
ψ− dx = −

∫
K

∇p ·ψ− dx+

∫
∂K

1

2

(
τu [[u]] · n− − [[p]]

)
ψ− · n− dx.

6



(a) SEM (b) Gauss-Legendre

Figure 3: The choice of nodal basis for the hexahedron determines the quadrature rule on quadrilateral faces
of both pyramids (shown above) and wedges.

This holds, for example, if integration by parts holds when volume and surface integrals are replaced with
quadrature approximations, and is related to the “summation-by-parts” property in finite differences.

The choice between the strong/skew formulations is governed by the choice between GL and SEM nodal
bases for the hexahedron, which determines the quadrature rule on quadrilateral faces (see Figure 3). When
SEM quadrature is used, surface integrals over the quadrilateral face are computed inexactly; as a result,
the strong formulation may not be equivalent to the weak formulation, and may not be energy stable.

For hexahedral elements, the strong and skew-symmetric forms are equivalent under both GL and SEM
bases. This was shown by Kopriva and Gassner in [28] and for SEM, relies on the exact cancellation
of Gauss-Legendre-Lobatto quadrature errors in volume and surface integrals. We may thus exploit the
improved computational efficiency of the strong form for hexahedra for both SEM or GL nodal bases. For
tetrahedra, since the mapping is constant for planar simplices, volume integrals are computed exactly using
quadrature free techniques, and surface integrals are computed exactly using quadrature. Thus, the skew-
symmetric and strong forms are equivalent for vertex-mapped tetrahedra, and we adopt the strong form for
improved computational efficiency.

For the wedge, we are restricted to the skew symmetric form, since integrals over the rational LSC-DG
basis are inexact for any polynomial cubature rule. For the pyramid, the energy stability of the variational
form depends on the choice of SEM or GL quadrature for the quadrilateral face. Under Gauss-Legendre
quadrature, surface integrals for the pyramid are exact, and both the strong and skew-symmetric form are
equivalent. However, if SEM quadrature is used for the quadrilateral face, the surface integral is inexact and
we must use the skew-symmetric form for stability.

We may now choose freely between a SEM or GL nodal basis for the hexahedron, which also determines
the choice of quadrature on quadrilateral faces. SEM nodes tends to be more efficient than Gauss-Legendre
nodes — with Gauss-Legendre quadrature, since the nodal points lie in the interior of the hexahedron, an
additional evaluation step is necessary to compute the solution at points on the surface. Since the SEM
nodal basis contains both volume and surface quadrature points as degrees of freedom, evaluation of the
solution on the surface requires only retrieval of a single degree of freedom, and this extra step is avoided.
Additionally, due to the Lagrange property of the SEM nodal basis functions, the surface contributions are
sparser for the SEM formulation than for the GL formulation.

However, it is also known that the inexact integration in SEM quadrature reduces the accuracy of the
resulting solution [28], though the inner products generated by both underintegrated SEM quadrature and
full Gauss-Legendre quadrature are known to be equivalent (with constants that do not grow in N). We will
also show in Section 4.1 that SEM underintegration can reduce the observed order of convergence for smooth
solutions. Additionally, the use of SEM on hybrid meshes also restricts the pyramid to the skew-symmetric
form, which is typically less computationally efficient than the strong form, while the use of Gauss-Legendre
nodes on the hex allows for the use of the strong form for the pyramid.

We naturally arrive at two energy stable formulations based on the two nodal bases for the hexahedron,
which are summarized for each element type in Table 1. We refer to the formulation using SEM hexahedra
as the “SEM formulation”, and the formulation using Gauss-Legendre hexahedra as the “GL formulation”.
We will compare the accuracy and efficiency of each formulation in Section 4.

7



SEM Formulation GL Formulation
Tetrahedra Nodal, strong form Nodal, strong form
Pyramid Semi-nodal, skew-symmetric form Semi-nodal, strong form
Wedge Modal LSC-DG, skew-symmetric form Modal LSC-DG, skew-symmetric form

Hexahedra Nodal SEM, strong form Nodal Gauss-Legendre, strong form

Table 1: Summary of stable bases and formulations for element type-specific variational forms.

2.3. Element-specific operations

Our numerical implementation tailors both the local variational formulation and computational opera-
tions to each specific type of element. For each element type, we construct three kernels

1. Volume kernel: compute the volume contribution (integrals over the interior of the element K).

2. Surface kernel: compute the surface contribution (integrals over the surface of the element ∂K).

3. Update kernel: apply the inverse of the mass matrix where necessary, execute a step of Adams-
Bashforth, and evaluate/store the solution at cubature points on the surface.

Algorithms describing the implementation of relevant kernels for each element type are given in the
following sections. For the wedge, pyramid, and tetrahedron, surface and update kernels are very similar to
those given in [11] for evaluation of the solution at surface cubature points. Their implementation differs
only by the specific surface cubature, which is constructed by combining appropriate cubatures for triangular
and quadrilateral faces. For triangular faces, we use quadrature rules for the triangle computed by Xiao and
Gimbutas [49] that are exact for polynomials of degree 2N . For quadrilateral faces, we use a tensor product
Gauss-Legendre or Gauss-Legendre-Lobatto (SEM) cubature rule with (N + 1)2 points, depending on which
hexahedral nodal basis is chosen.

2.3.1. Hexahedral elements

The volume contribution for the hexahedron may be computed efficiently by exploiting both the Lagrange
property of the nodal basis and the tensor-product form of the basis functions. Basis functions for the
hexahedron are constructed

φijk(r, s, t) = `i(r)`j(s)`k(t),

where `i(r) is the Lagrange polynomial at the ith node in the r direction, and similarly for `j(s), `k(t). This
implies that the evaluation of volume integrals using quadrature reduces to∫

K̂

φlmn
∂u

∂x
J =

N+1∑
l′,m′,n′=1

wl′,m′,n′Jl′,m′,n′
∂u

∂x

∣∣∣∣
l′,m′,n′

φlmn|l′,m′,n′ = wlmnJlmn
∂u

∂x

∣∣∣∣
l,m,n

due to the Lagrange property of φlmn at quadrature nodes. The values of derivatives ∂u
∂x require computation

of ∂u
∂r ,

∂u
∂s ,

∂u
∂t at nodal points, which reduces to the computation of 1D derivatives

∂u

∂r

∣∣∣∣
lmn

=

N+1∑
i=1

∂`i(rl)

∂r

N+1∑
j=1

`j(sm)

N+1∑
k=1

uijk`k(tn) =

N+1∑
i=1

∂`i(rl)

∂r
uimn.

The integral is then scaled by M−1
lmn,lmn = (wlmnJlmn)

−1
, removing the weight and geometric factor multi-

plying the derivative. This implementation is described in detail in Algorithm 1.
The computation of numerical fluxes requires the evaluation of the solution on the surface of a hexahedron.

This is done in the update kernel for the hexahedron, and is described in Algorithm 2. For a 1D nodal basis
at GL points, we may evaluate the solution at endpoints ±1 via

u(−1) =

N+1∑
k=1

`k(−1)uk, u(−1) =

N+1∑
k=1

`k(1)uk = `N−k(−1)uk,

8



Algorithm 1 Algorithm for the hexahedron volume kernel (both SEM and GL).

1: procedure Hexahedron Volume kernel
2: Load nodal values uijk (for 1 ≤ i, j, k ≤ N + 1) and the 1D operator Dij into shared memory.
3: for each node xijk do
4: Compute derivatives with respect to reference coordinate r, s, t.

∂u(xijk)

∂r
=

N+1∑
l=1

Diluljk,
∂u(xijk)

∂s
=

N+1∑
l=1

Djluilk,
∂u(xijk)

∂t
=

N+1∑
l=1

Dkluijl.

5: Scale by change of variables factors ∂rst
∂xyz to compute ∂u

∂x ,
∂u
∂y ,

∂u
∂z at point xijk.

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂s

∂s

∂x
+
∂u

∂t

∂t

∂x
.

where we have used symmetry of the GL points across 0. We store values of `k(−1) in an array V fk = `k(−1).
For a SEM basis, `k(−1) = δk1, and the evaluation of the basis on the boundary reduces to the loading of

Algorithm 2 Algorithm for the GL hexahedron update kernel.

1: procedure Update kernel
2: Load nodal values uijk (for 1 ≤ i, j, k ≤ N + 1) and V f into shared memory.
3: for each 1 ≤ i, j, k ≤ N + 1 do
4: For face cubature points xjk (face r = ±1), xik (face s = ±1), and xij (face t = ±1).

u(xjk; r = −1) =

N+1∑
m=1

V fmumjk, u(xjk; r = 1) =

N+1∑
m=1

V fN−mumjk,

u(xik; s = −1) =

N+1∑
m=1

V fmuimk, u(xik; s = 1) =

N+1∑
m=1

V fN−muimk,

u(xij ; t = −1) =

N+1∑
m=1

V fmuijm, u(xij ; t = 1) =

N+1∑
m=1

V fN−mumjk.

the proper nodal degrees of freedom on each face.
The computation of the hex surface contribution differs slightly between SEM and Gauss-Legendre nodal

bases. We compute contributions face by face, mapping surface integrals to the reference quadrilateral. For
example, on the face corresponding to t = −1, this gives∫

r

∫
s

`ijkuJ
s =

∫
r

∫
s

`i(r)`j(s)`k(−1) uJs|r,s,−1 = wiwj`k(−1) uJs|ri,sj ,−1 .

where wi, wj are 1D quadrature weights and Js is the determinant of the Jacobian mapping from the physical
to reference quadrilateral face. For a Gauss-Legendre basis, `k(−1) must be evaluated explicitly. For the
SEM formulation, the evaluation of `k(±1) may be skipped, and further optimizations may be done by
noting that by the inverse mass matrix may be premultiplied into the geometric factors, and that due to
the Lagrange property of nodal polynomials, surface RHS contributions for interior nodes are zero. This
quantity is then scaled by the inverse mass matrix to compute the surface contribution to the RHS, and the
full procedure is outlined in Algorithm 3.
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Algorithm 3 Algorithm for the hexahedron GL surface kernel.

1: procedure Hexahedron Surface kernel( replace u with an appropriate numerical flux.)
2: for each 1 ≤ i, j, k ≤ N + 1 do
3: For faces r ± 1, compute the surface RHS contribution

M−1
ijk,ijkwjwk J

s|sj ,tk `i(±1)u(±1, sj , tk).

4: Compute similar contributions for faces s, t± 1

M−1
ijk,ijkwiwk J

s|ri,tk `j(±1)u(ri,±1, tk), M−1
ijk,ijkwiwj J

s|ri,sj `k(±1)u(ri, sj ,±1).

2.3.2. Tetrahedral elements

Assuming Lagrange polynomials `j(r, s, t) defined by Np nodal points (ri, si, ti) on a tetrahedron, we may
define operators which evaluate derivatives at those same nodal points

Dr
ij =

∂`j(ri, si, ti)

∂r
, Ds

ij =
∂`j(ri, si, ti)

∂s
, Dt

ij =
∂`j(ri, si, ti)

∂t
.

As shown in [22], RHS contributions may be computed using only the above derivative operators

Sxij =

∫
K

`i
∂`j
∂x

, M−1Sxu =
∂u(x)

∂x
,

where x,u are vectors of the nodal positions xi and nodal degrees of freedom uj .

Algorithm 4 Algorithm for the tetrahedron volume kernel.

1: procedure Tetrahedron Volume kernel
2: Load nodal degrees of freedom uj into shared memory.
3: for each node xi, i = 1, . . . , Np do
4: Compute derivatives with respect to reference coordinates r, s, t

∂u(xi)

∂r
=

Np∑
j=1

Dr
ijuj ,

∂u(xi)

∂s
=

Np∑
j=1

Ds
ijuj ,

∂u(xi)

∂t
=

Np∑
j=1

Dt
ijuj

5: Scale by change of variables factors ∂rst
∂xyz to compute ∂u

∂x ,
∂u
∂y ,

∂u
∂z at point xi.

In the update kernel, we evaluate solution fields at cubature points on the surface. For nodal tetrahedra,
this evaluation may also be done face-by-face to reduce cost at high orders, since traces of solution fields
depend only on face nodal values.

2.3.3. Wedge elements

Evaluation of the skew-symmetric form involves the computation of two types of volume integrals∫
K

φ̃i
∂u

∂x
,

∫
K

∂φ̃i
∂x

u, φ̃i =
φi√
J
.

Since derivatives in x (and similarly for y, z) of the LSC-DG basis are given by

∂φ̃

∂x
=
∂
(
φ/
√
J
)

∂x
=

1√
J

(
∂φ

∂x
− φ

2J

∂J

∂x

)
,

10



we precompute and store the values of the physical gradient ∇xyzJ at each cubature point. Derivatives of u

and the first volume integral
∫
K
φ̃i
∂u
∂x reduce to integrals over the reference element

u =

Np∑
j=1

uj
φj√
J
,

∂u

∂x
=

Np∑
j=1

uj

(
∂φj
∂x
− φj

2J

∂J

∂x

)
,

∫
K

φ̃i
∂u

∂x
=

∫
K̂

φi√
J

∂u

∂x
J =

∫
K̂

φi
∂u

∂x
.

Similarly, the second volume integral
∫
K
∂φ̃i

∂x u reduces to∫
K

∂φ̃i
∂x

u =

∫
K̂

(
∂φi
∂x
− φi

2J

∂J

∂x

)
u =

∫
K̂

(
∂φi
∂r

∂r

∂x
+
∂φi
∂s

∂s

∂x
+
∂φi
∂t

∂t

∂x
− φi

1

2J

∂J

∂x

)
u

=

∫
K̂

[
∂φi
∂r

,
∂φi
∂s

,
∂φi
∂t

, φi

]
·
[
u
∂r

∂x
, u
∂s

∂x
, u
∂t

∂x
,−u 1

2J

∂J

∂x

]
.

For LSC-DG, we split the evaluation of the skew-symmetric formulation into the computation of the trial
integrand (involving the solution) and the test integrand (involving test functions φi). Intermediate values
used in the test integrand are stored in global memory. In the first step, derivatives of the solution are
computed, and values of the solution at cubature points are premultiplied by appropriate change of variable
factors, as indicated in the computation of the second volume integral above. In the second step, test functions
and their derivatives in the reference r, s, t coordinates are evaluated at cubature points and summed up to
compute all integrals.

The splitting of the wedge volume kernel into two steps allows us to load geometric factors and derivatives
of J only in the first step, while maintaining fast coalesced memory access patterns. Additionally, splitting
into two kernels and writing intermediate values to global memory avoids the overuse of shared memory,
which can reduce workgroup occupancy.

Finally, since the wedge is a tensor product of triangle and line elements, we may additionally decompose
interpolation and derivative operators into 2D triangle and 1D operators. Exploiting the tensor product
nature of these operators on the wedge leads to a reduction in the cost of quadrature. We assume that wedge
basis functions may be decomposed as φi(r, t)φj(s), where φi(r, t) are basis functions over the triangle. Then,

u(r, s, t) =

Ntri
p∑

i=1

N+1∑
j=1

uijφi(r, t)φj(s)

where uij are coefficients for the wedge, decomposed into triangle and 1D indices i and j, respectively. Our
cubature is defined also as a tensor product of a triangle and 1D cubature rule with N tri

c and (N + 1) points,
respectively. For cubature points xkl and weights wkl, where k is the index for a triangle cubature point and
l is the index for a 1D cubature rule, we precompute the values of φi(r, t), φj(s) (as well as their derivatives)

Vik = φi(rk, tk), V r,tik =
∂φi(rk, tk)

∂r, t
0 ≤ k ≤ N tri

c ,

V 1D
jl = φj(sl), D1D

jl =
∂φj(sl)

∂s
0 ≤ l ≤ N + 1,

which are used in Algorithms 5 and 6.
Compared to a sum-factorization approach, the tensor product sum in Algorithms 5, 6 does not decrease

the total number of computations. We found that implementations of sum factorization required larger
amounts of either shared or register memory, both of which decrease occupancy. Instead, we exploit the fact
that triangle operators are constant for each 1D summation, increasing data reuse.

For Algorithm 6, we again reuse loaded triangle operators, which are constant for each 1D summation.
Additionally, we may load premultiplied information and execute dot products in the summation using
float4 data and operations, which are pipelined for faster execution on certain GPUs.
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Algorithm 5 Algorithm for part 1 of the wedge volume kernel.

1: procedure Wedge volume kernel Part 1
2: Load coefficients uij and 1D interpolation/derivative operators V 1D, Ds

1D into shared memory.
3: for each cubature point xk, k = 1, . . . Nc do
4: Compute (using the tensor product form) the solution and reference coordinate derivatives

u(xk) =

Ntri
p∑

i=1

Vki

N+1∑
j=1

V 1D
kj uij ,

∂u(xk)

∂r, t
=

Ntri
p∑

i=1

Dr,t
ki

N+1∑
j=1

V 1D
kj uij ,

∂u(xk)

∂s
=

Ntri
p∑

i=1

Vki

N+1∑
j=1

D1D
kj uij .

5: Scale by change of variables factors ∂rst
∂xyz to compute ∂u

∂x ,
∂u
∂y ,

∂u
∂z at cubature point xk.

6: Write (to global memory) intermediate derivatives and premultiplied values at cubature points

∇xyzu,
[
u
∂r

∂x
, u
∂s

∂x
, u
∂t

∂x
,−u 1

2J

∂J

∂x

]
.

Algorithm 6 Algorithm for part 2 of the wedge volume kernel.

1: procedure Wedge Volume kernel part 2
2: for each cubature point xk, k = 1, . . . Nc do
3: Load intermediate values at cubature points

∇xyzu,
[
u
∂r

∂x
, u
∂s

∂x
, u
∂t

∂x
,−u 1

2J

∂J

∂x

]
.

4: Compute integrals via cubature

∫
K̂

φij
∂u

∂x
=

Ntri
c∑

k=1

(Vki)
T
N+1∑
l=1

(
V 1D

)T
li

∂u(xkl)

∂x
wkl

∫
K̂

∂φij
∂x

u =

Ntri
c∑

k=1

N+1∑
l=1

wkl
[
Dr
kiV

1D
lj , VkiD

1D
lj , D

t
kiV

1D
lj , VkiV

1D
lj

]
·
[
u
∂r

∂x
, u
∂s

∂x
, u
∂t

∂x
,−u 1

2J

∂J

∂x

]
.

2.3.4. Pyramidal elements

The form of the pyramid mapping and the semi-nodal pyramid basis lend themselves to simpler evaluation
of integrals. We introduce a quadrature-free method of computing volume contributions, which improves
upon the quadrature-based method for the pyramid basis described in [11]. Let u be a function in the span

of the pyramid basis on the bi-unit reference pyramid P̂; then,∫
P̂
u(r, s, t)φlmn(r, s, t) =

∫
a

`nl (a)√
wnl

∫
b

`nm(b)
√
wnm

∫
c

u(a, b, c)
P 2n+3
N−n (c)√
CNN−n

(
1− c

2

)2+n

=

√
wnl w

n
m

CNN−n

∫
c

u(anl , b
n
m, c)P

2n+3
N−n (c)

(
1− c

2

)2+n

. (3)

Since we assume u is in the pyramidal space, it may be represented with degrees of freedom uijk. Eval-
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uating ∂u
∂r using the chain rule gives

∂u

∂a

∂a

∂r
=

(
2

1− c

) N∑
k=0

k∑
i=0

k∑
j=0

1√
wki w

k
j

∂`ki (a)

∂a
`kj (b)

P 2k+3
N−k (c)

(
1−c

2

)k√
CNN−k

uijk.

Putting this together with (3), we have∫
P̂
φlmn

∂u

∂r
=

N∑
k=0

∫
c

P 2k+3
N−k P

2n+3
N−n

(
1−c

2

)1+k+n√
CNN−nC

N
N−k

k∑
i=0

k∑
j=0

√
wnl w

n
m

wki w
k
j

∂`ki (anl )

∂a
`kj (bnm)uijk.

Denoting

Dr
lmn,ijk =

√
wnl w

n
m

wki w
k
j

∂`ki (anl )

∂a
`kj (bnm)M c

nk, M c
nk =

∫
c

P 2k+3
N−k P

2n+3
N−n

(
1−c

2

)1+k+n√
CNN−nC

N
N−k

,

we have that Dr behaves as a weak derivative operator over the reference element∫
P̂
φlmn

∂u

∂r
=

N∑
k=0

k∑
i=0

k∑
j=0

Dr
lmn,ijkuijk.

We may similarly define Ds such that∫
P̂
φlmn

∂u

∂s
= Ds

lmn,ijk =

√
wnl w

n
m

wki w
k
j

`ki (anl )
∂`kj (bnm)

∂b
M c
nk.

To take derivatives with respect to the t coordinate, we use the chain rule for ∂u
∂t

∂u

∂t
=
∂u

∂a

∂a

∂t
+
∂u

∂b

∂b

∂t
+
∂u

∂c
=
∂u

∂a

(
1 + a

2

)(
2

1− c

)
+
∂u

∂b

(
1 + b

2

)(
2

1− c

)
+
∂u

∂c

=

(
1 + a

2

)
∂u

∂r
+

(
1 + b

2

)
∂u

∂s
+
∂u

∂c

An operator for the t derivative is constructed similarly. We first define a derivative operator in c

Dc
lmn,ijk =

√
wnl w

n
m

wki w
k
j

`ki (anl )`kj (bnm)

∫
c

∂
[
P 2k+3
N−k (c)

(
1−c

2

)k]
∂c

P 2n+3
N−n (c)

(
1−c

2

)2+n√
CNN−nC

N
N−k

.

Using this, Dt may then be defined as

Dt
lmn,ijk =

(
1 + aki

2

)
Dr
lmn,ijk +

(
1 + bkj

2

)
Ds
lmn,ijk +Dc

lmn,ijk.

We now exploit the fact that both geometric factors ∂rst
∂xyz and the determinant of the Jacobian J are constant

in the c (and thus t) direction for all vertex-mapped pyramids [6, 11]. As a result, geometric factors are
constant in the index n. This implies that the integral of a derivative in the x coordinate over a physical
pyramid may be given as∫
P
φlmn

∂u

∂x
=

∫
P̂
φlmn

(
∂u

∂r

∂r

∂x
+
∂u

∂s

∂s

∂x
+
∂u

∂t

∂t

∂x

)
J

= Jlm


(
∂r

∂x

)
lm

∑
ijk

Dr
lmn,ijkuijk +

(
∂s

∂x

)
lm

∑
ijk

Ds
lmn,ijkuijk +

(
∂t

∂x

)
lm

∑
ijk

Dt
lmn,ijkuijk

 .
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The above expression is simply multiplication by (square) semi-nodal operators Dr, Ds, Dt and entry-wise
scalings by geometric factors, similarly to nodal methods for hexahedral or tetrahedral elements. Further-
more, the scaling by Jlm is removed when applying the inverse of the diagonal mass matrix

M−1
lmn,lmn =

1

Jlm
.

When computing integrals in the skew-symmetric form, we may simply apply the transpose of each operator∫
P̂

∂φlmn
∂r

uJ =
∑
ijk

(Dr)
T
lmn,ijk Jijuijk.

and similarly for (Ds)
T
, (Dt)

T
. In this case, the factor of J is not cancelled out after multiplying by M−1.

The pyramid kernel is described in detail in Algorithm 7. Similarly to the wedge, the algorithm is made up
of two parts (computation of the trial and test portion). However, unlike the wedge, the semi-nodal nature
of the pyramid basis allows us to store intermediate values efficiently in shared memory.

Algorithm 7 Algorithm for the (skew-symmetric) pyramid volume kernel.

1: procedure Pyramid Volume kernel
2: Load semi-nodal degrees of freedom ui into shared memory.
3: for each semi-nodal basis function j = 1, . . . , Np do
4: Store premultiplied uj by geometric change of variables and mapping factors

urj =
∂r(xj)

∂x
ujJ(xj), usj =

∂s(xj)

∂x
ujJ(xj), utj =

∂t(xj)

∂x
ujJ(xj)

5: for each semi-nodal basis function i = 1, . . . , Np do
6: Compute weak derivatives (no integration by parts) with respect to reference coordinates (r, s, t)

using semi-nodal derivative operators

∫
K̂

φi
∂u

∂r
=

Np∑
j=1

Dr
ijuj ,

∫
K̂

φi
∂u

∂s
=

Np∑
j=1

Ds
ijuj ,

∫
K̂

φi
∂u

∂t
=

Np∑
j=1

Dt
ijuj .

7: Scale by change of variables factors ∂rst
∂xyz to compute weak physical derivatives and RHS contri-

butions. ∫
K̂

φi
∂u

∂x
=

∫
K̂

φi

(
∂u

∂r

∂r(xi)

∂x
+
∂u

∂s

∂s(xi)

∂x
+
∂u

∂t

∂t(xi)

∂x

)
8: Compute weak derivatives (integrated by parts) with respect to physical coordinates (x, y, z) using

transposed semi-nodal derivative operators and premultiplied degrees of freedom. Scale by the inverse
mass matrix to compute RHS contributions.

M−1
ii

∫
K

∂φi
∂x

u = M−1
ii

∫
K̂

(
∂φi
∂r

∂r

∂x
+
∂φi
∂s

∂s

∂x
+
∂φi
∂t

∂t

∂x

)
uJ

=
1

J(xi)

Np∑
j=1

(
(Dr)

T
ij u

r
j + (Ds)

T
ij u

s
j +

(
Dt
)T
ij
utj

)

2.4. Many-core implementation

The low-storage DG method described above has been implemented in hybridg, a portable, GPU ac-
celerated solver for the acoustic wave equation on hybrid meshes. Portability between OpenMP, OpenCL
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and CUDA platforms is achieved through the OCCA programming model [33]. The solution is evolved in
time using a multi-rate Adams-Bashforth (MRAB) scheme. Support for multiple GPUs is facilitated through
MPI, though load-balancing strategies for scalability remain to be investigated. The kernels for each element
type are optimized according to the operations described above. Additional optimizations may be done by
tuning the number of elements processed per workgroup (batching). In Section 4.3, we give results where
optimal batch sizes are determined experimentally for each element type and approximation order N .

Due to large variations in element sizes, as well as variations in element type-dependent trace con-
stants, local timestep restrictions may vary significantly over the mesh. To sidestep overly restrictive global
timesteps, we use multi-rate timestepping in the form of a 3rd order Adams-Bashforth scheme. The local
timestep dτK for each element is derived in Section 3, and the global timestep dτmin is taken as the minimum
over all local timesteps. For the MRAB scheme, Nlevels timestep levels are determined via

dτlev = 2Nlevels−levdτmin, 1 ≤ lev ≤ Nlevels.

Elements are then binned into each timestep level — a given element K is assigned a timestep of dτlev

if dτlev−1 ≤ dτK ≤ dτlev. A second sweep through the mesh moves elements from coarser timesteps to a
finer timesteps in order to guarantee that neighboring elements differ only by one level at most (or that the
timesteps of neighboring elements differ only by a factor of 1 or 2). The solution is then updated according
to the coarsest timestep, and each timestep level is evolved 2lev−1 times for every coarse timestep.

Since the details of the implementation are independent of element type, we refer the reader to [21, 17, 34]
for a description of the multi-rate scheme on triangular and tetrahedral meshes.

3. Timestep restrictions

Stable local and global timesteps are necessary for multi-rate schemes. We derive here timestep re-
strictions for hybrid meshes by bounding the DG operator norm. These bounds are given in terms of
order-dependent constants and physical/geometric quantities for each element type.

To simplify notation, we define group trial and test variables U, V

U =

(
p
u

)
, V =

(
v
τ

)
.

Under time-explicit DG methods, the discretized acoustic wave equation results in a system of ODEs

dU

dτ
= M−1A(U), V TMU =

∑
K∈Ωh

(∫
K

1

κ
pv +

∫
K

ρuτ .

)
where M is the scaled mass matrix. The global matrix A is given as the sum of local matrices A =∑
K∈Ωh

AK , where AK is given by the local spatial discretization over an element K ∈ Ωh

V TAKU =

∫
K

u · ∇φ− dx−
∫
K

∇p ·ψ− dx (4)

+

∫
∂K

(
1

2
τp [[p]]− n− · {{u}}

)
φ− dx+

∫
∂K

n−
1

2

(
τu [[u]] · n− − [[p]]

)
ψ− dx.

We are interested in deriving bounds on the real and imaginary parts of the spectra of the DG operator in
order to accurately determine a stable timestep restriction. For example, we may bound the timestep by
dτ < 1/ρ(M−1A), the inverse of the spectral radius of M−1A.

Prevous work has been done in estimating stable timesteps for structured grids [31, 42], and explicit
information about the spectra of the discrete DG operator has been derived by Krivodonova and Qin in 1D
[29, 30]. We use an approach similar to Cohen, Ferrieres, and Pernet in [13] and derive bounds for ρ(M−1A)
that depend on explict expressions for the constants in discrete trace and Markov inequalities. The first
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bounds the L2 norm of a function on the boundary ∂K of an element K by the L2 norm of the function
over the element

‖u‖2L2(∂K) ≤ CT (N,K) ‖u‖2L2(K)

while the latter bounds the L2 norm of the gradient of a function by the L2 norm of the function in the
interior

‖∇u‖2L2(K) ≤ CM (N,K) ‖u‖2L2(K) .

For SEM, the L2 norm is replaced by the equivalent discrete norm computed using GLL quadrature. The
mesh and order-dependent constants CT (N,K), CM (N,K) determine the timestep restriction required for
stability. Since we wish to take the timestep as large as possible, we require sharp expressions for these
constants in order to accurately estimate ρ(M−1A).

We note that the bounds we derive assume polynomial basis functions. This assumption is violated for
non-affine mappings of the wedge, where we use rational LSC-DG basis functions. However, for such bases,
we may use weighted Markov and trace inequalities from [45] in place of standard polynomial inequalities.

3.1. Bounds on the spectra

We derive here bounds on the spectra of the DG operator based on the constants in trace and Markov
inequalities over reference elements. These bounds apply for both the GL formulation with full mass matrix
M (or true L2 inner product) and the SEM lumped mass matrix MSEM (or discrete inner product based on
GLL quadrature); the difference between the two is reflected in the constants in each inequality.

The eigenvalues λ and corresponding eigenvectors v of M−1A are given by the generalized eigenvalue
problem Av = λMv. We may derive a more detailed bound on the spectra of M−1A by decomposing the
matrix into symmetric and skew-symmetric parts

A =
(
As +Ak

)
, As =

1

2
(A+AT ), Ak =

1

2
(A−AT ).

From [1], we have that

λmin(M−1As) ≤ Re
(
λ(M−1A)

)
≤ λmax(M−1As)

λmin(M−1Ak) ≤ Im
(
λ(M−1A)

)
≤ λmax(M−1Ak),

In other words, the magnitude of the real and imaginary parts of the spectra are bounded by ρ(M−1As) and
ρ(M−1Ak). Since As is symmetric and real, its spectral radius is given by the generalized Rayleigh quotient

ρ(M−1As) = max

∣∣∣∣UTAsUUTMU

∣∣∣∣ .
From the definition of AK in (4), we can show that

∣∣UTAsU ∣∣ =

∣∣∣∣∣∣−1

2

∑
f∈Γh

∫
f

{
τp [[p]]

2
+ τu [[un]]

2
}∣∣∣∣∣∣ ≤ 1

2

∑
f∈Γh

{
τp ‖[[p]]‖2L2(f) + τu ‖[[un]]‖2L2(f)

}
, (5)

where we have used the normal jump [[un]] = u+n+ + u−n−. We may bound the norm of the jumps

1

2
‖[[p]]‖2L2(f) ≤

∥∥p+
∥∥2

L2(f)
+
∥∥p−∥∥2

L2(f)
,

1

2
‖[[un]]‖2L2(f) ≤

∥∥u+n+
∥∥2

L2(f)
+
∥∥u−n−∥∥2

L2(f)
,

and bound the sum of jumps and averages over faces by boundary values∑
f∈Γh

1

2
‖[[p]]‖2L2(f) ≤

∑
K∈Ωh

‖p‖2L2(∂K) ,
∑
f∈Γh

‖{{p}}‖2L2(f) ≤
∑
K∈Ωh

‖p‖2L2(∂K) .
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Combined with (5) and changing to a sum over elements, we can apply trace inequalities to arrive at∣∣UTAsU ∣∣ ≤ ∑
K∈Ωh

{
τp,K ‖p‖2L2(∂K) + τu,K ‖u · n‖2L2(∂K)

}
≤
∑
K∈Ωh

CT (N,K)
{
τp,K ‖p‖2L2(K) + τu,K ‖u‖2L2(K)

}
,

where CT (N,K) is the constant in the trace inequality over the boundary ∂K of the element K and τp,K , τu,K
are the maximum values of the penalties over the faces of an element. Combining these bounds, we have

max

∣∣∣∣UTAsUUTMU

∣∣∣∣ ≤ max

∑
K∈Ωh

CT (N,K)
{
τp,K ‖p‖2L2(K) + τu,K ‖u‖2L2(K)

}
∑
K∈Ωh

{
1
κK
‖p‖2L2(K) + ρK ‖u‖2L2(K)

}
≤ max

K
CT (N,K) max

(
τp,KκK ,

τu,K
ρK

,

)
The spectral radius of M−1Ak may be bounded by noting that skew-symmetric matrices are normal,

which implies that ρ(M−1Ak) =
∥∥M−1Ak

∥∥. A characterization of this norm is given as follows: for a
skew-symmetric matrix Z ∈ Rn×n,

‖Z‖ = max
f,g∈Rn

2gTZf

‖f‖2 + ‖g‖2
.

This characterization has been proven in other settings (see, for example, [12]). A straightforward modifica-

tion of this theorem to use the norm ‖f‖M =
√
fTMf gives that

∥∥M−1Ak
∥∥ = max

U,V ∈Rn

2V TAkU

‖U‖2M + ‖V ‖2M

where the denominator ‖U‖2M + ‖V ‖2M is

‖U‖2M + ‖V ‖2M =
∑
K∈Ωh

{
1

κK
‖p‖2L2(K) + ρK ‖u‖2L2(K) +

1

κK
‖v‖2L2(K) + ρK ‖τ‖2L2(K)

}
From (4), we may compute the skew-symmetric form

V TAkU =
∑
K∈Ωh

{∫
K

u · ∇v −
∫
K

∇p · τ
}

+
∑
f∈Γh

∫
f

(−{{u}} [[vn]] + {{τ}} [[pn]])

where we have used the vector-valued jumps [[pn]] = p+n+ + p−n− and [[vn]] = v+n+ + v−n−.
We may bound the volume terms using Markov and Young’s inequality∑
K∈Ωh

∣∣∣∣∫
K

u · ∇v −
∫
K

∇p · τ
∣∣∣∣ ≤ ∑

K∈Ωh

‖u‖L2(K) ‖∇v‖L2(K) + ‖∇p‖L2(K) ‖τ‖L2(K)

≤
∑
K∈Ωh

1

2

√
CM (N,K)

(
‖p‖2L2(K) + ‖u‖2L2(K) + ‖v‖2L2(K) + ‖τ‖2L2(K)

)
≤ 1

2

√
CM (N,K) max

(
κK ,

1

ρK

)(
‖U‖2M + ‖V ‖2M

)
where CM (N,K) is the constant in the Markov inequality for the element K.
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The surface terms may also be bounded using Young’s inequality∣∣∣∣∣∣
∑
f∈Γh

∫
f

(−{{u}} [[vn]] + {{τ}} [[pn]])

∣∣∣∣∣∣ ≤
∑
f∈Γh

(
‖{{u}}‖L2(f) ‖[[vn]]‖L2(f) + ‖{{τ}}‖L2(f) ‖[[pn]]‖L2(f)

)
≤ 1

2

∑
K∈Ωh

(
‖p‖2L2(∂K) + ‖u‖2L2(∂K) + ‖v‖2L2(∂K) + ‖τ‖2L2(∂K)

)
≤ 1

2

∑
K∈Ωh

CT (N,K)
(
‖p‖2L2(K) + ‖u‖2L2(K) + ‖v‖2L2(K) + ‖τ‖2L2(K)

)
≤ 1

2
max
K

CT (N,K) max

(
κK ,

1

ρK

)(
‖U‖2M + ‖V ‖2M

)
Combining these two bounds gives∥∥M−1Ak

∥∥ = max
U,V ∈Rn

2V TAkU

‖U‖2M + ‖V ‖2M
≤ max

K
max

(
κK ,

1

ρK

)(√
CM (N,K) + CT (N,K)

)
.

3.2. Constants in trace inequalities

An explicit expression for the trace inequality constant for a general d-simplex was given by Warburton
and Hesthaven in [47], and was extended by Hillewaert in his thesis to hexahedra and wedges in [23]. While
the trace constant for the pyramid does not appear to be available in an explicit form, Hillewaert also
proposed an empirical fit of the trace inequality constant for pyramids, which was based on a lower bound
for the trace constant that could be derived in closed form. An improved asymptotically optimal constant
was given by Chan and Warburton in [10]. The trace inequality is as follows: for u in the approximation

space, the norm of u on a face f̂ of the reference element K̂,

‖u‖2L2(f̂) ≤ Cf (N) ‖u‖2L2(K̂) .

These constants were derived assuming triangular faces with area 2 and quadrilateral faces of area 4 on
bi-unit reference elements.

The constants in the trace inequality over the surface ∂K̂ of a reference element may be given in terms
of the constants over the different types of faces. Assume the trace inequality is derived for face f . Then, if
we have Nf faces of a reference element K̂,

‖u‖2L2(∂K̂) =

Nf∑
j=1

‖u‖2L2(fj) =

Nf∑
j=1

|fj |
|f |
‖u‖2L2(f) ≤

Nf∑
j=1

Cf (N)

|f |
|fj | ‖u‖2K̂ ≤ max

Cf (N)

|f |

∣∣∣∂K̂∣∣∣ ‖u‖2K̂ .
where we have used Hölder’s inequality with p = 1 and q =∞ and the fact that, under an affine transform
(i.e. rotation), ‖u‖2fj = |fj |/|f | ‖u‖2f . We will refer to CT (N) as the constant in the trace inequality over the
full surface ∂K, such that

CT (N) = max
f

Cf (N)

|f |

∣∣∣∂K̂∣∣∣
We summarize these trace constants Cf (N) and CT (N) in Table 2. We remark that the constant CT (N) for
tetrahedra may be equivalently derived using the trace inequality from [47]

‖u‖2∂K ≤
(N + 1)(N + 3)

3

|∂K|
|K|

‖u‖K

when the element K is taken to be the bi-unit right tetrahedron K̂.
The constants in Table 2 have the benefit of being fully explicit in N . However, since the values of CT (N)

are based on face-by-face estimates (instead of considering the whole surface ∂K), surface trace inequalities
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Element type Triangular face Quadrilateral face CT (N)
Hexahedra (N + 1)2/2 4(N + 1)2

Wedge (N + 1)2/2 (N + 1)(N + 2) (
√

2 + 3)(N + 1)(N + 2)

Pyramid (N + 1)(N + 2)/2 (N + 1)(N + 3) (
√

2 + 2)(N + 1)(N + 3)

Tetrahedra (N + 1)(N + 3)/2 (
√

3 + 3)(N + 1)(N + 3)/2

Table 2: Summary of the trace constant Cf (N) in the discrete trace inequalities for different faces of various

reference elements, as well as the analytic trace constant CT (N) = maxf (Cf (N)/ |f |)
∣∣∣∂K̂∣∣∣ over the surface

∂K̂.
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(d) Tetrahedra

Figure 4: Comparison of face-based bound CT (N) to numerically computed trace inequality constants on
each reference element.

under these constants are not tight. Figure 4 compares numerically computed trace inequality constants to
the derived analytic constants CT (N) in Table 2. For each element up to N ≤ 7, the estimated analytic
constant is a factor of 2-3 larger than the computed constant.

For the reference wedge, pyramid, and tetrahedra, we have not found explicit expressions for numerically
computed constants in surface trace inequalities. However, for the hexahedron, we are able to derive that
the constant in the bounds

‖u‖2L2(∂K̂) ≤ CT (N) ‖u‖2L2(K̂) , ‖u‖2SEM(∂K̂) ≤ CSEM(N) ‖u‖2SEM(K̂)

are given exactly by

CT (N) =
3(N + 1)(N + 2)

2
, CSEM(N) =

3N(N + 1)

2

where the bound for the SEM inequality is valid for N ≥ 1. These constants are a refinement of explicit
bounds given by Ern and Burman [9] and Evans and Hughes [15], and proofs are included in Appendix A.1.

Under a mapping from reference element K̂ to physical element K, we may derive a bound in terms of
the determinant of the Jacobian J and the determinant of the surface Jacobian Js

‖u‖2L2(∂K) ≤ CT (N) ‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂) ‖u‖

2
L2(K) . (6)

If the LSC-DG basis is used for the wedge, the polynomial trace inequalities used here may be replaced by
trace inequalities for weighted polynomial spaces [46], resulting in a bound of the form

‖u‖2L2(∂K) ≤ CT (N)

∥∥∥∥JsJ
∥∥∥∥
L∞(∂K̂)

‖u‖2L2(K) .

For affine mappings of faces where Js, J are constant, the ratio of their norms reduces to the ratio of the
physical surface area to reference surface area divided by the ratio of physical element volume to reference
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element volume

‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂) =

|∂K| /
∣∣∣∂K̂∣∣∣

|K| /
∣∣∣K̂∣∣∣ .

3.3. Constants in Markov inequalities

Expressions for the constants in Markov inequalities over simplices are given in [36]; however, these
bounds have not yet been extended to hexahedra, tetrahedra, and pyramids. We take a more heuristic
approach here and compute numerically the constant in Markov inequalities over the reference element. We
may bound

‖∇u‖2L2(K) =

3∑
k=1

∥∥∥∥ ∂u∂xk
∥∥∥∥2

L2(K)

≤ C2
rst ‖J‖L∞(K̂) ‖∇rstu‖

2
L2(K̂) ,

where Crst = maxrst,xyz

∥∥∥ ∂r,s,t∂x,y,z

∥∥∥
L∞(K̂)

is the max norm of the Jacobian matrix for the element K. The

constants in the reference Markov inequality

‖∇rstu‖2L2(K̂) ≤ CM (N) ‖u‖2L2(K̂)

may then be computed numerically over the reference element through the solution of an eigenvalue problem.
The bound is completed by bounding reference quantities by physical quantities using J−1

‖∇u‖2L2(K) ≤ CM (N)C2
rst ‖J‖L∞(K̂)

∥∥J−1
∥∥
L∞(K̂)

‖u‖2L2(K) .

3.4. N -dependent bounds for ρ(M−1A)

To summarize, the trace constant over a mapped element K is given by

CT (N,K) = CT (N) ‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂) ,

while the Markov constant CM (N,K) is given by

CM (N,K) = CM (N)C2
rst‖J‖L∞(K̂)

∥∥J−1
∥∥
L∞(K̂).

The real part of the spectra of M−1A is bounded by the trace inequality constant and physical parameters

|Re(λ)| ≤ max
K

max

(
τp,KκK ,

τu,K
ρK

)
CT (N) ‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂) . (7)

Likewise, the imaginary part of the spectra of M−1A depends on the quantity

|Im(λ)| ≤ max
K

max

(
κK ,

1

ρK

)(√
CM (N,K) + CT (N,K)

)
. (8)

The latter term expands to

Crst
√
CM (N) ‖J‖L∞(K̂) ‖J

−1‖L∞(K̂) + CT (N) ‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂).

We analyze the bounds derived above for the acoustic wave equation with κ = ρ = 1 and compare them
to numerically computed spectra of M−1A. Figure 5 shows the computed spectra of M−1A for a hybrid
mesh using the GL formulation. Bounds on the real and imaginary parts of the spectra derived by computing
ρ(M−1As), ρ(M−1Ak) are also included as dotted lines.

We note that our estimates for ρ(M−1Ak) provide a loose bound on the imaginary part of the spectra.
However, we observe that the spectral radius of the symmetric part ρ(M−1As) provides a relatively tight
bound on ρ(M−1A). Motivated by this observation, we compare ρ(M−1A) to four different bounds based
on ρ(M−1As):

20



−3
−2

−1
0

1
2

3 −1
0

1

−1

−0.5

0

0.5

1

(a) Hybrid mesh

−50 −40 −30 −20 −10 0

−20

−15

−10

−5

0

5

10

15

20

 

 

Spectra for N = 1
Spectra for N = 2
Spectra for N = 3

(b) Spectra and bounds

Figure 5: Spectra for a hybrid mesh using Gauss-Legendre quadrature, along with bounds (dotted lines)
computed from ρ(As) and ρ(Ak), and analytic bounds (squared lines). The bounds for N = 2, 3 are truncated
for visualization purposes.

1. The true spectral radius of M−1As.

2. The bound (7), where the trace inequality constant CT (N,K) is computed numerically as the maximum
trace constant over each mapped element K.

3. The bound (7), where the trace inequality constant CT (N) is computed numerically over the reference

element K̂ (Appendix B).

4. The bound (7), where the trace inequality constant CT (N) is given by the estimate (6).

In the latter two bounds, the L∞ norm of J, J−1, and Js is approximated by taking the maximum value
over quadrature points. Table 3 shows each bound compared to ρ(M−1A) for various N . The bound on
ρ(M−1A) using computed trace inequality constants over the reference element is less than a factor of 2
away from the true spectral radius, and we use this to estimate the largest stable timestep for a given mesh
and discretization. The bound on ρ(M−1A) using analytically derived trace constants over faces provides a
looser bound (factor of 4-5 away from the true spectral radius), but has the advantage of being fully explicit
in N .

Bounds for the spectral radius under the SEM formulation may be derived by substituting in trace
inequality constants using SEM quadrature over quadrilateral faces. Computed trace inequality constants
CT (N) for both the GL and SEM formulations are given in Appendix B. Analytic expressions for constants
in trace inequalities may also be derived using norm equivalences between SEM and L2 norms for polynomials
of order N .

Numerical experiments confirm that ρ
(
M−1A

)
is bounded by the maximum trace inequality constant

maxK CT (N,K). Since a stable timestep is given by dτ ≤ 1/ρ
(
M−1A

)
, we estimate the global timestep by

dτ =
C

maxK
(
CKρ,κCT (N,K)

) =
C

maxK
(
CKρ,κCT (N)CKJ

) ,
where CKρ,κ = max

(
τp,KκK ,

τu,K

ρK

)
, C is a tunable global CFL constant, and CKJ is

CKJ = ‖Js‖L∞(∂K̂)

∥∥J−1
∥∥
L∞(K̂) if the element is a hex, pyramid, or tet, or

CKJ =

∥∥∥∥JsJ
∥∥∥∥
L∞(∂K̂)

if the element is an LSC-DG wedge.

Since we have estimated the global timestep by taking the maximum trace constant over all elements, we
may also use local trace constants to estimate stable local timesteps dτK using the constants in local trace
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N 1 2 3 4
ρ(M−1A) 10.89 18.66 28.18 41.09
ρ(M−1As) 11.26 19.30 29.05 42.86

Computed CT (N,K) 12.22 20.84 32.76 47.47
Computed CT (N) 17.24 29.47 46.32 67.13
Analytic CT (N) 38.53 74.73 124.54 186.81

Table 3: Spectral radius of ρ(M−1A) and various bounds for a hybrid mesh and N = 1, . . . , 4.

(a) Wedge (b) Pyramid

Figure 6: Subdivisions of hexahedra used to construct uniform meshes of wedges and pyramids.

inequalities

dτK =
C

CKρ,κCT (N)CKJ
. (9)

4. Numerical experiments

In this section, we present results from hybridg for meshes of individual element types and hybrid meshes
at various orders of approximation.

4.1. Verification: individual element types

We begin by comparing the SEM and GL formulations for a series of uniformly refined meshes. Hex
meshes are constructed by subdividing the unit cube into hexahedra of size h, and we construct wedge and
pyramid meshes by further subdividing each hexahedra into either 2 wedges or 6 pyramids, as shown in
Figure 6. Figure 7 shows numerical convergence rates obtained using the resonant cavity solution

p(x, y, z, τ) = sin(πx) sin(πy) sin(πz) cos(
√

3πτ)

over the unit cube [0, 1]3. Since the solution is smooth, the best approximation in L2 converges with a rate of
hN+1, though DG is guaranteed only a convergence rate of hN+1/2 for general meshes. We observe optimal
hN+1 convergence rates for the GL formulation, while the SEM formulation yields computed convergence
rates somewhere in between hN+1/2 and hN+1 (though for the hex, these rates are less informative since SEM
errors do not follow a constant rate as closely). For all orders and meshes, the error for the GL formulation
is lower than that of the SEM formulation, though this difference is less pronounced at higher N .

We also compare standard wedges to LSC-DG wedges in Figure 8 by performing convergence tests on two
sequences of meshes. For one sequence, we refine a uniform mesh of affine wedges with the GL formulation
(referred to as “GL Wedge”). For the other, we begin with a mesh of randomly warped wedges, and refine
the mesh by bisection to produce a sequence of meshes (referred to as “GL LSC wedge”). Optimal rates of
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Figure 7: Convergence rates for both the SEM and GL formulations for meshes of hexes, wedges, and
pyramids.
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Figure 8: Convergence of LSC-DG (right) on a mesh of warped wedges (left). The vertex positions are
perturbed by 10%, and the mesh is then refined by splitting. The convergence of LSC-DG is plotted using
a black line, while red lines compare the convergence of DG on an un-warped mesh of wedges.

convergence are observed for both sequences (for the SEM formulation, similar behavior to standard SEM
wedges is also observed when using LSC SEM wedges). We note that the observed optimal convergence
rates for LSC-DG are likely dependent on the fact that refinement by bisection produces asymptotically
affine elements. If we perturb vertex positions at each level of mesh refinement, we do not in general observe
optimal convergence rates. This issue is observed also for standard mapped approximation spaces [8], though
it is likely exacerbated by the LSC-DG approximation.

4.2. Verification: hybrid cube meshes

We check also numerical convergence rates for unstructured hybrid meshes. L2 errors are computed on a
sequence of hybrid meshes containing elements of all types . Each element is refined by a self-similar splitting,
except for pyramids, which are refined into both pyramids and tetrahedra.1 These meshes contain 201, 1704,
14016, and 113664 elements, respectively. The breakdown of the number of each individual elements of each
type is given in Table 4. 5 MRAB levels are used, with a CFL constant of 0.5. Results are computed using
double precision; single precision behaves similarly, though the error stalls at around 5× 10−7.

1Each element is refined according to the pattern specified by the “refine by splitting” option in GMSH [19].
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Hexahedra Wedge Pyramids Tetrahedra Total elements
Mesh 1 84 10 24 83 201
Mesh 2 672 80 96 856 1704
Mesh 3 5376 640 384 7616 14016
Mesh 4 43008 5120 1536 64000 113664

Table 4: Number of elements of each type for each hybrid mesh used in convergence tests.
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Figure 9: An exploded view of the hybrid mesh with 201 elements (left) and L2 errors for both the SEM
and GL formulation (right).

Under the assumption that the mesh size h is halved at each time, we estimate the asymptotic convergence
rate in Figure 9 for N = 1, 2, 3. For both the SEM and GL formulations, we observe orders of convergence
(in between hN+1/2 and hN+1) similar to those reported for single element-type meshes in Section 4.1.

4.3. Computational results

In Section 4.3.1 and 4.3.2, we quantify the computational cost of DG solvers on hybrid meshes in terms
of runtime per degree of freedom. While the approximation power per degree of freedom varies from element
to element, the cost per dof gives a rough estimate of the efficiency of each kernel. In Section 4.3.3, we
quantify the computational efficiency of the solver in terms of estimated bandwidth and GFLOPS for each
element kernel. All computations were run on a single Nvidia GTX 980 GPU in single precision.

4.3.1. Cost of SEM vs GL formulations

Since the computational structure of the volume kernel is identical between the SEM and GL formula-
tions, any additional cost associated with the GL formulation lies in the surface and update kernels. We
implemented two separate surface and update kernels and report the relative per-dof speedup of SEM com-
pared to GL for orders N = 1, . . . , 5 in Table 5. For all orders, the cost of the SEM update is lower or equal
to the cost of the GL update. For low orders, the SEM-tailored surface kernel performs slightly worse than
that of the GL kernel2. However, as the order N increases, the SEM kernel becomes cheaper due to the fact
that data from interior nodes does not need to be accessed. When comparing total runtime at N > 1, the
SEM formulation becomes roughly 5−10% cheaper per-dof than the GL formulation, similar to the 10−15%
cost savings using SEM over GL as reported by Kopriva and Gassner on CPU architectures [28].

2The slower runtime may be due to additional conditional statements and the structure of memory accesses in the SEM-
tailored kernel. We note that it is always possible to run the SEM formulation using GL kernels, and thus the cost of the SEM
surface kernel can always be made in practice to be less than or equal to the cost of the GL kernel
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N 1 2 3 4 5
Ratio of surface cost of SEM vs GL 1.1243 1.0597 0.9350 0.8986 0.8329
Ratio of update cost of SEM vs GL 0.9884 0.7437 1.0000 0.8408 0.9000
Ratio of total cost of SEM vs GL 1.0432 0.9286 0.9798 0.9163 0.9134

Table 5: Total time-per-dof cost for SEM vs GL hexahedra.

N 1 2 3 4 5
Hex SEM kernels

Volume 1.2238 1.0373 1.1147 0.9538 0.7772
Surface 0.9631 0.8735 0.5666 0.6038 0.5808
Update 1.0254 0.8427 0.9161 0.8762 0.6667

Total (all kernels) 1.0492 0.9108 0.8222 0.7987 0.6738
Hex GL kernels

Volume 1.2238 1.0373 1.1147 0.9538 0.7772
Surface 0.8567 0.8243 0.6060 0.6719 0.6974
Update 1.0374 1.1332 0.9161 1.0422 0.7407

Total (all kernels) 1.0058 0.9808 0.8392 0.8717 0.7377
Wedge kernels

Volume 2.965 1.800 2.999 2.596 2.975
Surface 0.912 0.778 0.99 2.086 1.566
Update 1.414 1.02 1.111 1.321 1.485

Total (all kernels) 1.5937 1.1450 1.5972 2.0407 2.0242
Pyramid kernels

Volume 1.912 1.653 2.418 3.228 2.842
Surface 0.959 0.855 0.634 1.657 1.157
Update 1.51 1.033 1.112 1.169 1.804

Total (all kernels) 1.3705 1.1386 1.2788 2.0470 1.9280

Table 6: Time-per-dof cost (relative to tetrahedra) of hexahedra, wedge and pyramid kernels.

4.3.2. Cost per element type

In this section, we compare the computational cost of hexahedra, wedges, and pyramids relative to the
computational cost of tetrahedra. The results reported are for tuned computational kernels, where the
number of elements processed per workgroup has been chosen in order to minimize the runtimes of the
volume, surface, and update kernels for each element [34, 17]. As suggested in [26], automation of this
process is crucial for portable performance across various architectures, especially for hybrid meshes where
parameters must be tuned for 12 separate kernels.

Table 6 shows the time-per-dof cost for K ≈ 100000 hexahedral, wedge, or pyramidal elements relative to
the time-per-dof cost of K ≈ 100000 tetrahedral elements. While hexahedra are observed to be faster per-dof
than tetrahedra at higher orders, wedge and pyramidal volume kernels are observed to be 1-2 times slower
per-dof than tetrahedra kernels. This may be due in part to the fact that, for planar tetrahedra, geometric
factors are constant over an element. As a result, only a few values must be loaded per element independently
of N . This is in contrast to hexahedra, wedges and pyramids, for which the number of geometric factors to
be loaded increases along with the total number of nodal or cubature points.

We note that these numbers give optimistic estimates on per-dof costs for two reasons. First of all, for
meshes containing only planar tetrahedra, the cost of the surface and update kernels may be further reduced
by replacing surface quadratures with lift operators for nodal bases [22, 26]. Secondly, on hex-dominant
meshes, the number of wedges and pyramids is expected to be much smaller than the number of hexahedra
and tetrahedra. The runtimes reported previously are for asymptotically “large” numbers of elements, and
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(d) Tetrahedra

Figure 10: Time-per-dof cost of hexahedral, wedge, pyramidal, and tetrahedral volume kernels on meshes
with K ≈ 100, 1000, 10000 and 30000 elements at various orders N .

may increase for a small number of elements.
To illustrate the dependence of runtime on number of elements, we timed the cost of the volume kernel

over 500 timesteps on meshes containing approximately 100, 1000, 10000, and 30000 elements. For ease of
presentation, we show results only for the volume kernel, though the behavior is similar for the surface and
update kernels. The order of approximation is varied from N = 1, . . . , 5 for each mesh, and the kernel
runtime is reported in Figure 10. Since the computational structure of each volume kernel is the same
between the SEM and GL formulations (with the exception of the pyramid3) we show timings for only four
volume kernels.

Since the time-per-dof decreases as more elements are processed, if a mesh contains a small number of
wedges or pyramids, the actual cost of a wedge or pyramid relative to a tetrahedron may be slightly greater
than the reported values of Table 6, though this effect is less pronounced at higher orders of approximation.
For example, for N = 3 on the largest hybrid mesh (consisting of 113664 elements, with 5120 prisms, 1536
pyramids, and 64000 tetrahedra), prisms and pyramids were respectively 1.7563 and 1.8849 times more
expensive per dof than tetrahedra, instead of the estimated 1.6 and 1.28 times suggested by Table 6.

4.3.3. Estimated GFLOPS and bandwidth

Finally, we present estimated GFLOP and effective bandwidth counts for each kernel in Table 7. For
reference, we include the estimated bandwidth and GFLOPS of a repeated entrywise multiplication kernel
in Figure 11. For an array A of sufficiently large size (running with the maximum number of threads),
we execute Nmult times the command Aij = A2

ij − C, where C is some constant. As Nmult increases, the
kernel changes from being IO bound to compute-bound. We achieve roughly 1970 GFLOPS and 168 GB/s
bandwidth at most on an Nvidia GTX 980. When utilizing float4 operations, we observe the same peak
bandwidth, but achieve 2930 GFLOPS at peak, roughly 1.5× the performance using only floats. While these
numbers are not necessarily indicative of peak performance, we believe they are representative of “good”
performance for a given kernel.

With this in mind, we may compare the GFLOPS and bandwidth of kernels for each element. Comparing
only the volume kernels, we see efficiency resulting from both effective hardware utilization and reduced
computational load. For example, the wedge volume kernel shows low estimated bandwidth with high
estimated GFLOPS, indicating that its performance is compute-bound. We note that the observed GFLOPS
are relatively high, which may be due to the heavy use of float4 operations within the wedge volume kernel.
On the other hand, the bandwidth and GFLOPS for the tetrahedron volume kernel are more balanced.
Finally, though it is similar in structure to the tetrahedral kernel, the pyramid volume kernel shows high
estimated bandwidth and low GFLOPS, implying that it is IO bound. This is likely due to the fact that the
skew-symmetric form is used, and requires the loading of twice as many operators (derivative matrices and

3Under the GL formulation, the pyramid volume kernel may use the more efficient strong formulation. We show timings,
GFLOPS, and estimated bandwidth for the skew-symmetric pyramid kernel only.

26



10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

Number of multiplications

E
st

im
at

ed
 G

F
LO

P
S

 

 

10
1

10
2

10
3
0

50

100

150

200

E
st

im
at

ed
 b

an
dw

id
th

GFLOPS
Est. bandwidth

(a) Standard float operations
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(b) Float4 operations

Figure 11: GFLOPS and bandwidth (for a kernel executing repeated entrywise array multiplication/addition)
as a function of the number of repeated multiplications Nmult. As Nmult increases, the kernel goes from being
IO bound to compute-bound. Results from two kernels are presented: one where computations are done
using only standard single precision floats, and one where computations are performed using the float4 data
type.

their transposes) as the tetrahedral kernel.
For hexahedral kernels, the operators are explicitly stored in shared memory, removing caching effects.

As a result, the reported bandwidth and GFLOPS are both significantly lower than for other elements,
but near-peak bandwidth numbers are achieved for N ≥ 3, implying the kernel is IO bound. This near-
peak performance is likely due to the loading of multiple geometric change-of-variables factors per node per
element and the low arithmetic intensity of tensor-product operations, which are effectively hidden during
memory retrievals. It has been noted in [39] that, for vertex-mapped hexahedra, the IO bound nature of
the hex volume kernel may be addressed by computing these geometric factors on the fly inside the kernel,
loading only vertex positions (regardless of order).

For wedges, pyramids, and tetrahedra, bandwidth is reported both with and without counting operator
loads per element. The reported bandwidth numbers with operator loads are often higher than peak rates,
which is likely due to the fact that compiler optimizations and caching effects are not taken into account
during estimates. Removing operator loads from bandwidth counts reveals that the bandwidth for prism,
pyramid, and tetrahedron kernels decreases as N increases, verifying that operations for these three element
types are compute-bound at high orders.

5. Conclusions

We have presented in this paper a high order discontinuous Galerkin solver on hybrid, hex-dominant
meshes. A careful selection of basis functions controls the storage cost of the scheme, making it suitable for
acclerators and GPUs. Two energy-stable formulations are given, based on either SEM or Gauss-Legendre
nodal bases for the hexahedron. Explicit bounds on the spectra are computed in terms of the order-dependent
constants in the trace inequalities for each type of element, and are used to determine local timestep restric-
tions for multi-rate timestepping. Convergence rates are reported for each formulation, and computational
cost is assessed by estimating the GFLOPS, bandwidth, and cost-per-dof of each element.

The focus of this work has been mainly based presenting a DG solver for hybrid meshes on a single GPU.
Future work will focus on the following areas:

• Wedge basis: while the LSC-DG wedge basis achieves optimal rates of convergence, there is additional
complexity and computational cost compared to polynomial bases (necessity of quadrature, storage of
derivatives of J). A low-storage polynomial wedge basis could reduce costs for wedge volume kernels
and surface/update kernels for wedges, pyramids, and tetrahedra.
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N 1 2 3 4 5
Hex SEM
Volume 100 134 173 199 232
Surface 68 51 57 47 35
Update 46 34 49 40 44
Hex GL
Surface 60 44 52 43 32
Update 45 46 49 48 48
Wedge
Volume 242 552 1032 1551 1956
Surface 197 418 566 452 771
Update 166 403 736 904 960
Pyramid
Volume 77 161 238 259 392
Surface 187 344 850 482 922
Update 136 333 699 898 670

Tet
Volume 123 200 401 550 699
Surface 149 228 423 596 791
Update 161 260 599 779 931

(a) GFLOPS

1 2 3 4 5

152 160 169 165 167
88 68 81 70 54
159 112 155 125 133

77 59 74 64 49
160 152 155 149 148

217/149 271/156 294/122 316/107 300/79
166/103 273/98 328/70 247/31 408/33
177/116 309/132 472/128 533/99 536/69

220/102 444/106 646/83 699/52 1054/49
163/107 236/100 510/131 271/46 497/55
155/103 270/123 464/137 546/116 397/58

238/145 322/125 595/139 784/116 974/95
122/81 147/65 244/64 327/58 421/50
205/147 238/129 434/160 509/144 559/112

(b) Est. bandwidth

Table 7: GFLOPS and estimated effective bandwidth counts for each kernel of each element type (after
optimization of the number of elements processed per workgroup). For wedges, pyramids, and tetrahedra,
bandwidth is reported (with operator loads)/(without operator loads).

• Hybrid meshes compared to tetrahedral meshes: while cost-per-dof comparisons have been
made between tetrahedra and other element types, DG on hex-dominant meshes should be compared
to optimized nodal DG on fully tetrahedral meshes. The effect on efficiency of the ratio between hexes
and elements of other types should also be carefully investigated.

• Parallelization and scalability: multiple GPUs are necessary to handle larger problem sizes. Per-
formance of multiple GPU-accelerated DG will require load balancing and communication strategies
for multi-rate solvers on hybrid meshes.
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[26] Andreas Klöckner, Tim Warburton, Jeff Bridge, and Jan S Hesthaven. Nodal discontinuous galerkin
methods on graphics processors. Journal of Computational Physics, 228(21):7863–7882, 2009.

[27] Tom Koornwinder. Two-variable analogues of the classical orthogonal polynomials. In Theory and
application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison,
Wis., 1975), pages 435–495. Academic Press New York, 1975.

[28] David A Kopriva and Gregor Gassner. On the quadrature and weak form choices in collocation type
discontinuous galerkin spectral element methods. Journal of Scientific Computing, 44(2):136–155, 2010.

[29] Lilia Krivodonova and Ruibin Qin. An analysis of the spectrum of the discontinuous galerkin method.
Applied Numerical Mathematics, 64:1–18, 2013.

[30] Lilia Krivodonova and Ruibin Qin. An analysis of the spectrum of the discontinuous galerkin method
ii: Nonuniform grids. Applied Numerical Mathematics, 71:41–62, 2013.

[31] Ethan J Kubatko, Clint Dawson, and Joannes J Westerink. Time step restrictions for runge–kutta
discontinuous galerkin methods on triangular grids. Journal of Computational Physics, 227(23):9697–
9710, 2008.

[32] Johan Malm, Philipp Schlatter, Paul F Fischer, and Dan S Henningson. Stabilization of the spectral
element method in convection dominated flows by recovery of skew-symmetry. Journal of Scientific
Computing, 57(2):254–277, 2013.

[33] David S Medina, Amik St-Cyr, and T Warburton. OCCA: A unified approach to multi-threading
languages. arXiv preprint arXiv:1403.0968, 2014.

[34] Axel Modave, Amik St-Cyr, Wim A Mulder, and Tim Warburton. Nodal discontinuous galerkin simu-
lations for reverse-time migration on gpu clusters. arXiv preprint arXiv:1506.00907, 2015.

[35] Nilima Nigam and Joel Phillips. Numerical integration for high order pyramidal finite elements. ESAIM:
Mathematical Modelling and Numerical Analysis, 46(02):239–263, 2012.

[36] Sevtap Ozısık, Beatrice Riviere, and Tim Warburton. On the constants in inverse inequalities in L2.
Technical report, Rice University, 2010.

[37] Anthony T Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion.
Journal of computational Physics, 54(3):468–488, 1984.

30
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Rendus Hebdomadaires des Séances de L’Académie des Sciences, 245(26):2459–2461, 1957.

[39] J.F. Remacle, R. Gandham, and T. Warburton. GPU accelerated spectral finite elements on all-hex
meshes. arXiv preprint arXiv:1506.05996, 2015.
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Appendix A. Explicit trace inequalities for tensor product elements

The constant in the surface trace inequality for tensor product elements may be computed explicitly.
Throughout these proofs, we define φj be the normalized Legendre polynomials, orthogonal with respect to
the standard L2([−1, 1]) inner product. We begin by proving a result in 1D.

Lemma Appendix A.1. Let u ∈ PN ([−1, 1]). Then,

|u(−1)|+ |u(1)| ≤ (N + 1)(N + 2)

2
‖u‖2L2([−1,1])

Proof. In 1D, we wish to derive an expression for the spectral radius ρ(Ms), where

(Ms)ij = φj(−1)φi(−1) + φj(1)φi(1).

and φj(x) are normalized Legendre polynomials. Since Legendre polynomials are symmetric across x = 0,
φj(−1) = φj(1) for j even, and φj(−1) = −φj(1) for j odd. Then, assuming i and j do not share the same
parity, we have

(Ms)ij = φj(−1)φi(−1) + φj(1)φi(1) = 0.
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This implies Ms is block diagonal, with each block corresponding to even/odd powers of the Legendre
polynomial. Both the even block Me and odd block Mo reduce down to

(Me)ij = (Mo)ij = 2φj(−1)φi(−1) = 2φj(1)φi(1).

These are both rank 1 matrices, such that

ρ(Me) = 2
∑

j=even

φj(−1)2, ρ(Mo) = 2
∑
j=odd

φj(−1)2.

For both even and odd i, j, φj(−1)2 = (2i+ 1)/2, implying that

ρ(Ms) = 2 max (ρ(Me), ρ(Mo)) =
(N + 1)(N + 2)

2
.

The extremal polynomial for the above inequality may also be characterized explicitly.

Lemma Appendix A.2. Define ri to be the quadrature points of the (N+2)-point Gauss-Legendre-Lobatto
(GLL) rule. Let u be the order (N + 1) Lagrange polynomial that is zero at N interior GLL nodes and unity
at either r = 1 or r = −1. Then,

|u(−1)|+ |u(1)| = (N + 1)(N + 2)

2
‖u‖2L2([−1,1])

Proof. We note that, while the (N + 1)-point GLL quadrature does not integrate polynomials of order 2N
exactly, polynomials of order 2N are integrated exactly by the (N + 2)-point GLL quadrature.

Since u(r) is symmetric or antisymmetric across r = 0 (this may be shown by explicitly writing out the

interpolating Lagrange polynomial), u(1) = ±u(−1) depending on whether N is even or odd. Then, ‖u‖2L2

is given as

‖u‖2L2 =

∫ 1

−1

u2 =

N+2∑
j=1

wju(rj) = w1u(−1)2 + wN+2u(1)2 = u(1)2(w1 + wN+2).

The surface integral of u2 is just u(1)2 + u(−1)2 = 2u(1)2. As a result,

2u(1)2

u(1)2(w1 + wN+2)
=

1

w1
=

(N + 1)(N + 2)

2
.

by the fact that the GLL weights for an (N + 2)-point rule are each 2
(N+1)(N+2) at the endpoints.

A curious coincidence is that, since the N + 1-point Gauss-Radau-Jacobi (GRJ) rule contains all but one
endpoint of the (N + 2)-point GLL rule, the extremal polynomial is identical to the extremal polynomial for
triangle faces, which is unity at the −1 GRJ point and zero at all others [47].

We may prove a similar result, replacing the mass matrix with the underintegrated Gauss-Legendre-
Lobatto quadrature mass matrix.

Lemma Appendix A.3. Let u ∈ PN ([−1, 1]). Then, for N ≥ 1, the following is bound is tight

|u(−1)|+ |u(1)| ≤ N(N + 1)

2
‖u‖2SEM .
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Proof. We take the basis φi(r) = `i(r)/
√
wi, where `i(r) is the Lagrange polynomial at the ith GLL node

and wi are the quadrature weights of the (N + 1)-point GLL rule. Since this basis is orthogonal with respect
to the SEM inner product, the constant in the trace inequality is the spectral radius of the surface mass
matrix under this basis, which has entries (Ms)ij = φi(−1)φj(−1) + φi(1)φj(1). Applying the Lagrange
property, we see that Ms is diagonal with only two nonzero diagonal entries

(Ms)11 =
1

w1
, (Ms)N+1,N+1 =

1

wN+1
.

ρ(Ms) is the maximum of these two entries, and the bound is proven by noting w1 = wN+1 = 2
N(N+1) . The

extremal polynomial for this bound is any convex combination of φ1(r) or φN+1(r).

Appendix A.1. Tensor product elements

For a d-dimensional hypercube [−1, 1]d, we may define an orthonormal tensor product basis as

φi1,...,id =

d∏
k=1

φik(rk), 0 ≤ ik ≤ N,

where rk is the coordinate in the kth direction. Using the above basis, we may prove the following theorem:

Theorem Appendix A.4. Let u ∈ span {φi1,...,id} for 0 ≤ i1, . . . id ≤ N . Then,

‖u‖2L2(∂K̂) ≤ d
(N + 1)(N + 2)

2
‖u‖L2(K̂)

Furthermore, this bound is tight.

Proof. The surface mass matrix over the d-dimensional hypercube is

(Ms)i1,...,id,j1,...,jd =

d∑
k=1

(φik(−1)φjk(−1) + φik(1)φjk(1))
∏
l 6=k

∫ 1

−1

φilφjl drl.

By the orthogonality of Legendre polynomials, this reduces to

(Ms)i1,...,id,j1,...,jd =

d∑
k=1

(Mk
s )i1,...,id,j1,...,jd ,

(Mk
s )i1,...,id,j1,...,jd = (φik(−1)φjk(−1) + φik(1)φjk(1))

∏
l 6=k

δiljl .

This results in a block diagonal matrix in all indices il, jl for l 6= k. Also, by the same argument as in the
1D case, if pairs of indices ik, jk do not share the same parity,

(φik(−1)φjk(−1) + φik(1)φjk(1)) = 0,

implying that each matrix Mk
s consists of two blocks of even and odd indices. Additionally, each matrix

Mk
s contains the same entries as the 1D surface mass matrix and are identical up to a permutation. An

application of Weyl’s inequality then gives

ρ (Ms) ≤
d∑
k=1

ρ
(
Mk
s

)
= d

(N + 1)(N + 2)

2
.
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We may show that this bound is tight by constructing the extremal polynomial in d dimensions as the
tensor product of the 1D polynomial. Take u1D(rk) to be the 1D extremal polynomial in the kth coordinate
and define

u(r1, . . . , rd) =

d∏
k=1

u1D(rk).

The (N+2)d tensor product GLL rule integrates this exactly, such that for the reference element K̂ = [−1, 1]d,

‖u‖2L2(K̂) =

N+2∑
i1=1

N+2∑
i2=1

. . .

N+2∑
id=1

wi1wi2 . . . widu
2
1D(r1,i1)u2

1D(r2,i2) . . . u2
1D(rd,id) = 2dwd1 .

where 2d is the number of vertices on the d-dimensional hypercube.
The surface norm of u for a d-dimensional hypercube is the sum of the integrals over the 2d faces. Since

each face itself is a hypercube of dimension d− 1, the integral of u over the face is 2d−1w1, and the surface
norm of u reduces to

‖u‖2L2(K̂) =
2d∑
f=1

2d−1wd−1
1 = d2dwd−1

1 ,

and we may conclude that
‖u‖2L2(∂K̂)

‖u‖2L2(K̂)

=
d

w1
= d

(N + 1)(N + 2)

2
.

For N > 1, similar steps may be followed to prove the equivalent trace inequality under SEM quadrature
in d dimensions

‖u‖2SEM(∂K̂) ≤ d
N(N + 1)

2
‖u‖SEM(K̂) .

We note that Ern and Burman also utilized GLL weights to prove a similar trace inequality in d dimensions

‖u‖2L2(∂K̂) ≤ d
(N + 1)(N + 2)

2

(
2 +

1

N

)d
‖u‖2L2(K̂) .

The additional factor of (2 + 1/N)d results from the equivalence constant between the L2 norm and discrete
L2 norm resulting from underintegration using GLL quadrature.

Appendix B. Computed Markov and trace inequality constants

For wedge, pyramid, and tetrahedral elements, we have not been able to determine explicit expressions
for the constants CT (N) in trace inequalities over reference elements K̂

‖u‖2L2(∂K̂) ≤ CT (N) ‖u‖2L2(K̂) .

However, CT (N) may be computed as the maximum eigenvalue of a generalized eigenvalue problem

Msv = λMv,

where Ms is the surface mass matrix and M is the volume mass matrix. We may similarly compute the trace
inequality constants CSEM(N) for the case when SEM quadrature is used for hexahedra and quadrilateral
faces. For the Markov inequality on the reference element
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N 1 2 3 4 5 6 7 8 9
Hexahedron 9 18 30 45 63 84 108 135 165

Wedge 9.93 18.56 29.03 42.99 58.80 78.01 99.27 123.76 150.48
Pyramid 11.68 20.89 32.84 47.59 65.17 85.60 108.90 135.07 164.11

Tetrahedron 12.22 20.46 29.18 41.65 54.45 71.10 88.32 109.04 130.67

Table B.8: Computed trace constants CT (N) using the full mass matrix for various reference elements up
to N = 9.

N 1 2 3 4 5 6 7 8 9
Hexahedron 3 9 18 30 45 63 84 108 135

Wedge 46.46 51.70 63.94 83.32 104.76 132.20 161.22 195.95 232.52
Pyramid 31.58 37.12 47.59 60.95 77.14 96.31 118.52 143.80 172.13

Table B.9: Computed trace constants CSEM(N) using SEM quadrature for various reference elements up to
N = 9. SEM quadrature is used to compute the mass matrix and surface mass matrices when quadrilateral
faces are present. The constants for tetrahedra are identical in both cases.

‖∇u‖2L2(K̂) ≤ CM (N) ‖u‖2L2(K̂)

we may similarly compute the constant CM (N) as the maximum eigenvalue of

Kv = λMv,

where Kij =
∫
K̂
∇φj · ∇φi is the stiffness matrix over the reference element. We summarize computed

values of CT (N), CSEM(N) and CM (N) up to N = 9 in Tables B.8, B.9 and B.10. For a SEM hex, we may
determine the constant in the Markov inequality using the full mass matrix value of CM (N) and equivalence
constants between discrete SEM and L2 inner products.

N 1 2 3 4 5 6 7 8 9
Hexahedron 3.00 18.00 55.73 137.51 293.97 562.17 985.92 1616.24 2511.47

Wedge 12.00 54.27 142.63 308.34 585.89 1021.64 1663.85 2574.06 3814.56
Pyramid 12.92 60.05 175.51 405.43 809.95 1460.93 2442.26 3849.94 5792.11

Tetrahedron 20.00 78.62 195.58 403.91 744.85 1265.54 2021.09 3073.26 4491.62

Table B.10: Computed Markov constants CM (N) for various reference elements up to N = 9.
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