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Abstract 

 In this work, we propose and test a method for calculating Stokes drag applicable to 

particle-laden fluid flows where two-way momentum coupling is important. In the point-particle 

formulation, particle dynamics are coupled to fluid dynamics via a source term that appears in 

the respective momentum equations. When the particle Reynolds number is small and the 

particle diameter is smaller than the fluid scales, it is common to approximate the momentum 

coupling source term as the Stokes drag. The Stokes drag force depends on the difference 

between the undisturbed fluid velocity evaluated at the particle location, and the particle 

velocity. However, owing to two-way coupling, the fluid velocity is modified in the 

neighborhood of a particle, relative to its undisturbed value. This causes the computed Stokes 

drag force to be underestimated in two-way coupled point-particle simulations. We develop 

estimates for the drag force error as function of the particle size relative to the grid size. We then 

develop a correction method that estimates the undisturbed fluid velocity from the computed 

disturbed velocity field. The correction scheme is tested for a particle settling in an otherwise 

quiescent fluid and is found to reduce the error in computed settling velocity by an order of 

magnitude compared with common interpolation schemes.  
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1. Introduction 

 Fluids laden with particles are abundant in environmental and industrial settings ranging 

from the atmospheric transport of volcanic ash, coal-fired powerplants, and soot formation in 

engines. It has been observed by many authors cf. [3, 29, 32] that fluid statistics in a turbulent 

flow are altered when particles are introduced. The no-slip condition at particle surfaces provides 

an additional dissipation mechanism. In particle boundary layers, the fluid velocity must change 

from the characteristic undisturbed value which is of order 𝑢𝑟𝑚𝑠
′  to the particle velocity. In fully 

resolved simulations of particle-turbulence interaction, Burton and Eaton [31] observed this 

variation may happen on the scale of a few particle diameters. Other primary questions in 

particle-laden flows concern the nature of particle dispersion and concentration where the 

distribution of particles may influence other physical processes. For example, in particle-based 

solar collectors, non-uniform particle concentration can impact the overall system efficiency [9]. 

Another example concerns fluidized bed reactors where particles act as catalyzing agents 

lowering the activation energy necessary for reactants to reach activated complex. However, 

inhomogeneities in the particle field owing to preferential concentration mean some portions of 

the flow will have reacted while other regions will have yet to undergo chemical reaction [11]. 

 

 While there have been some efforts to study particle-laden flows using fully resolved 

simulations cf. [20, 30, 31], the number of grid points required to resolve particle boundary 

layers makes simulation of a large number of particles impractical. A popular simulation method 

is the Lagrangian point-particle method. In this method, particles are tracked in their respective 

Lagrangian frames while the fluid is simulated using standard Eulerian methods. Particles are 

represented as point sources of momentum and energy. Coupling between the particle and fluid 

phases is accomplished via Newton’s third law. In the particle momentum equation, the 

magnitude of the force felt by the fluid owing to the particle is equal in magnitude and opposite 

in direction to the force experienced by the particle owing to the fluid.   

 

 In a fully resolved simulation, the force felt by the particle would be equal to the fluid 

stress integrated over the boundary of the particle. In a point-particle simulation, the fluid 

stresses are not computed at the scale of each particle so the resulting force must be modeled 

using nearby fluid information. For a particle suspended in a turbulent flow there is no general 

point force model that accounts for all of the fluid interactions that a particle experiences. In the 

limit of small particle Reynolds number, and particle diameter smaller than the Kolmogorov 

scale, the Maxey-Riley equation [18] provides a very general model for the interactions felt by a 

particle with a fluid. These effects include gravity, fluid acceleration, Stokes drag, Faxen 

corrections owing to a spatially non-uniform flow, added mass, and Basset-Boussinesque history 

force owing to unsteady effects. Calzavarini et al. [7] performed simulations of particle-laden 

flow and showed that point-particles obeying Stokes drag augmented by Faxen correction terms 

had no discernable change in the variance and kurtosis of their Lagrangian acceleration statistics 

compared with particles obeying Stokes drag alone for particle diameters less than four times the 
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Kolmogorov scale. For gas-solid flows where the density ratio between the particle and fluid 

typically exceeds 1000, the leading order contributions in the particle momentum equation are 

the Stokes drag and gravity force.  

 

 For terrestrial applications, the gravitational force is safely modeled as a constant body 

force and requires no special treatment. The Stokes force however requires more consideration. 

Originally derived in 1850 [8], Stokes showed that the resistance felt by a particle moving slowly 

at constant velocity through an otherwise stationary viscous fluid was proportional to the 

particle’s velocity. For a fluid that is non-stationary even in the absence of the particle, an 

equivalent statement is the drag force experienced by the particle is proportional to the difference 

between the particle velocity and the undisturbed fluid velocity prior to the introduction of the 

particle evaluated at the particle location. Mathematically, the Stokes’ drag can be expressed as 

𝐹𝑑 = 𝑚𝑝(𝑢̃ − v𝑝)/𝜏𝑝 where 𝑚𝑝 and 𝜏𝑝 are respectively the particle mass and relaxation time, 

and 𝑢̃ and v𝑝 are respectively the undisturbed fluid velocity evaluated at the particle location and 

the particle velocity. In two-way coupled simulations however, the undisturbed fluid velocity, 𝑢̃ 

is not directly accessible. It is common in practice to use the disturbed fluid velocity at the 

location of particles, 𝑢𝑝 as a replacement for 𝑢̃. As we shall see, this approximation can lead to 

significant errors in prediction of Stokes' drag when the particle size becomes on the order or 

larger than a fraction of the mesh size. To visually illustrate this, Figure 1 highlights the 

difference between 𝑢̃ and 𝑢𝑝. 

 
Figure 1: Illustration of how fluid velocity slows down near a particle in a two-way coupled 

point-particle calculation. 

 

For small particles relative to the grid size, the difference between 𝑢𝑝 and 𝑢̃𝑝 may be small. 

Boivin et al. [17] suggested that the difference between 𝑢𝑝 and 𝑢̃𝑝 should be 𝑂(𝑑𝑝/𝑑𝑥), where 
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𝑑𝑝 is the particle diameter and 𝑑𝑥 is the grid spacing. Motivated by this observation we outline 

the remainder of our paper. 

 

 In section two we present the point-particle method and develop error estimates for the 

drag force when 𝑢𝑝 is used in place of 𝑢̃𝑝. We observe a significant difference between 𝑢𝑝 and 

𝑢̃𝑝 as the ratio 𝑑𝑝/𝑑𝑥 increases. This will have consequences not only for accurate tracking of 

particle trajectories but it will also lead to under prediction of the drag force and thus inaccurate 

prediction of the energy dissipation due to fluid-particle interactions. In section 3 the magnitude 

of the drag force error is estimated as a function of 𝑑𝑝/𝑑𝑥. To reduce contamination of statistics, 

in section 4 we develop a correction scheme which provides an accurate estimation of the 

undisturbed fluid velocity using the computed disturbed velocity near the particle. In the final 

section, we demonstrate the correction scheme for a particle settling in an otherwise quiescent 

fluid and compare that to an analytical solution. Comparison is also made with computations 

without the proposed correction where the disturbance fluid velocity is used in place of the 

undisturbed fluid velocity. The correction scheme is found to agree very well with the analytical 

solution while the uncorrected schemes result in very large errors. Another key conclusion from 

that section will be that high order interpolation schemes which are used to calculate the fluid 

velocity at the particle will in general perform worse than lower order schemes. This is because 

the higher order interpolation schemes provide a better estimate for the disturbed fluid velocity 

which is a worse prediction of the undisturbed fluid velocity.  

 

 Before continuing to the next section, we wish to emphasize that the purpose of this paper 

is not to propose a new equation of motion. For a particle placed in a turbulent flow under the 

most general conditions with parameters including particle size, shape, Reynolds number, 

volume fraction, density ratio, the equation of motion is probably more complicated than 

consideration of only the Stokes drag and gravity terms. The question of whether an equation of 

motion correctly predicts the correct physics is a validation question. We are not ready to answer 

that question. Rather, we wish to address the question, given an equation of motion, is the point-

particle algorithm accurately computing in a situation where we know the equation of motion is 

valid? This is the verification question. We will show that the answer is no. The point-particle 

model as traditionally implemented is not verifiable for a particle moving in a low Reynolds 

number flow. The correction procedure therefore moves the point-particle algorithm closer to a 

verifiable method. The procedure we develop is a simple fix which can be incorporated with 

little effort into an existing point-particle code. However, we wish to emphasize that our 

procedure is intended to be used only in a regime where the user can argue physically that Stokes 

drag and perhaps gravity are the relevant terms in the particle equation of motion. In a turbulent 

flow, this assumption is expected to be justified for particles smaller than the Kolmogorov length 

scale and particle Reynolds number less than unity. The particle to fluid density ratio should be 

high to ensure added mass, fluid acceleration, and history terms are small in comparison to 

gravity and Stokes drag. In addition, the particle volume fraction should be much less than unity 
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to ensure particle-particle interactions such as lubrication and collisions are infrequent. The 

particle shear Reynolds number should be much less than unity to justify neglect of the Saffman 

lift force [21] in favor of the Stokes drag. When the above assumptions are satisfied it is 

expected that the correction procedure we propose will result in more accurate calculations of the 

Stokes drag force which will in turn result in more accurate settling, dispersion, and fluid energy 

statistics.  

 

2. Point-Particle Methodology 

 The point-particle method, strictly speaking, refers to a method of treating particles and is 

amenable to a host of fluid simulation methodologies including Direct Numerical Simulation 

(DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier Stokes (RANS). For any 

hope at tackling this problem we must assume that the fluid is well-resolved in the absence of 

particles and that the error in the computed drag force is solely due to the improper calculation of 

the undisturbed fluid velocity, hence we will concern this paper only with DNS. The continuity 

and momentum equations used in this work are given in (1) and (2) respectively: 

 

(1)                                                                        
𝜕𝜌𝑓

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝜌𝑓𝑢𝑗 = 0 

   

(2)                      
𝜕

𝜕𝑡
𝜌𝑓𝑢𝑖 +

𝜕

𝜕𝑥𝑗
𝜌𝑓𝑢𝑗𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ 𝐹𝑔,𝑖 −

1

𝑉
∑𝐹𝑑

𝑘

𝑁𝑝

𝑘

𝑃{𝛿(𝑥𝑖 − 𝑥𝑖
𝑘)} 

 

 Here,  𝜌𝑓 is the fluid density, 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝑢𝑖 is the 

fluid velocity. 𝐹𝑔,𝑖 = 𝑔𝑖(𝜌𝑓 − 𝜌𝑓̅̅ ̅) is the gravitational body force per unit volume, 𝑔𝑖 is the 

acceleration due to gravity, 𝜌𝑓̅̅ ̅ is the mean fluid density and 𝐹𝑑
𝑘 = 3𝜋𝜇𝑑𝑝(𝑢̃𝑝

𝑘 − v𝑝
𝑘) is the Stokes 

drag, where 𝑢̃𝑝
𝑘 is the undisturbed fluid velocity evaluated at the location of the 𝑘𝑡ℎ particle, and 

v𝑝
𝑘 is the velocity of the 𝑘𝑡ℎ particle. Here 𝑃{𝛿(𝑥𝑖 − 𝑥𝑖

𝑘)} represents the numerical projection of 

the Dirac delta onto a computational grid. Note that (1) and (2) are written in the limit of small 

dispersed phase volume fraction. We solve the momentum equation (2) using a 2
nd

 order finite 

difference method on a staggered mesh subject to the constraint of incompressibility. For a 

uniform grid of spacing 𝑑𝑥, 𝑉 = 𝑑𝑥3. The resulting Poisson equation for pressure is solved 

using a Fast Fourier transform combined with a tridiagonal matrix solver. Time stepping of fluid 

and particle equations is accomplished using an explicit 4
th

 order Runge-Kutta scheme. The 

Lagrangian equations for the 𝑘𝑡ℎ particle are given in (3) and (4): 

 

(3)                                                                             
𝑑𝑥𝑖

𝑘

𝑑𝑡
= v𝑖

𝑘 

(4)                                                          𝑚𝑝

𝑑v𝑖
𝑘

𝑑𝑡
= (𝑚𝑝 − 𝑚𝑓)𝑔𝑖 + 𝐹𝑑

𝑘 
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Here, 𝑥𝑖
𝑘 is the location of the 𝑘𝑡ℎ particle, v𝑖

𝑘 is the particle velocity, and 𝑚𝑝 and 𝑚𝑓 are 

respectively the particle and fluid mass. Dividing (4) by the particle mass yields: 

  

(5)                                                 
𝑑v𝑖

𝑘

𝑑𝑡
= (1 − 𝜌𝑓/𝜌𝑝)𝑔𝑖 + (𝑢̃𝑝

𝑘 − v𝑝
𝑘)/𝜏𝑝 

 

The particle response time 𝜏𝑝 = (𝜌𝑝/𝜌𝑓)𝑑𝑝
2/18𝜈𝑓, where 𝜈𝑓 = 𝜇/𝜌𝑓 is the kinematic viscosity.  

 

 The explicit coupling between the fluid and particle phases is now evident in equations 

(2) and (5). To close the point-particle algorithm we must address the calculation of 𝑢̃𝑝
𝑘 and the 

projection operator 𝑃{}. As we will show in the next section, the calculation of 𝑢̃𝑝
𝑘 generally 

cannot be treated separately from the specification of 𝑃{}. 

 

 In one-way coupled flows, the issue of calculating 𝑢̃𝑝 is simpler. Since fluid dynamics 

only influence trajectories of particles via the drag force term in (4), and particles do not 

feedback momentum onto the fluid, the fluid field in the neighborhood of a particle experiences 

no contamination owing to a single particle seeing its own disturbance flow. The only issue that 

arises then is that particle data may exist anywhere in space while fluid information will exist 

only at discrete Eulerian points. Therefore, whereas the determination of 𝑢̃𝑝 is an estimation 

problem in a two-way coupled flow, it is an interpolation problem in a one-way coupled flow.  

 

 Yeung and Pope [22] performed numerical simulations of turbulence and tested different 

interpolation schemes for tracking Lagrangian scalars. 2
nd

 order trilinear interpolation was found 

to perform poorly for accurate determination of particle displacement in time while a third-order 

Taylor Series scheme “TS13” and 4
th

 order cubic splines performed satisfactorily compared with 

exact spectral interpolation. Balachandar and Maxey [24] performed a similar study comparing 

trilinear, 6
th

 order Lagrange, 2D Hermitian combined with 1D Fourier, and TS13 schemes. The 

partial Hermite and Lagrange schemes were found to be the most accurate while trilinear was the 

least accurate for determination of the Lagriangian velocity evaluated at particle locations. There 

does not seem to be a consensus in the community with regard to which interpolation scheme is 

best for tracking particles, but higher-order methods are favored. One-way coupled simulations 

by Calzavarini 2009 [7] and Rouson & Eaton 2001 [6] used trilinear (2
nd

 order) interpolation; the 

same interpolation scheme was used by Squires & Eaton 1990, 1991 [14], [15] in two-way 

coupled homogeneous isotropic turbulence. 4
th

 order Hermite interpolation was used by 

Elghobashi and Truesdell 1993 [26] and Ferrante and Elghobashi [3] in two-way coupled 

simulations and by Wang and Maxey 1993 [16] in one-way coupled simulations of particles in 

turbulence. Other schemes used include 4
th

 order Lagrange interpolation by Boivin et al. [17] as 

well as by Sundaram and Collins 1996 and 1999 [28], [29] and 8
th

 order Lagrange used by Ray 

and Collins 2011 [5]. 
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 It is important to recognize that the interpolated fluid velocity used for tracking particles 

in two-way coupled simulations is not the undisturbed fluid velocity found in Stokes’s formula. 

For particles much smaller the grid spacing, the error incurred by use of the incorrect velocity 

may be small. Boivin et al. [17] recognized this and suggested the error would be 𝑂(𝑑𝑝/𝑑𝑥). In 

later sections we will verify this prediction. The ratio 𝑑𝑝/𝑑𝑥 = Λ will end up being an important 

physical parameter.  

 

 Considering a simulation of particle-laden homogeneous and isotropic turbulence, the 

main parameters are the box size which for a desired 𝑅𝜆 allow the two-point correlations to die 

off sufficiently to not be influenced by the periodic boundary conditions. The grid spacing is 

chosen to resolve the Kolmogorov scale. Suppose a user decided to use a finer grid. The fluid 

properties would remain unchanged. For a given dispersed phase material with diameter 𝑑𝑝, Λ 

increases as the grid is refined. This is equivalent to saying the source term in (2) becomes 

singular as the grid is refined. In the context of channel flows, a non-uniform grid is often used to 

resolve the inner boundary layer close to the wall. In such a scenario, whereas Λ may be small 

near the channel center-plane, it may be large near the wall. Therefore, an uncorrected point-

particle representation of the Stokes drag can lead to significant errors in prediction of disperse 

phase behavior and momentum exchanges between the two phases. 

 

 In surveying the literature, a number of physical studies used Stokes drag in two-way 

coupled simulations of turbulence laden by particles whose diameter was at least 30% of the 

unladen Kolmogorov scale [3, 19, 26, 29]. Regardless of the validity of Stokes drag for these 

cases, it will be important to test the accuracy in implementing Stokes drag in scenarios where 

the particle size becomes similar to the grid spacing, that is Λ = 𝑂(1). 

 

 To complete the point-particle algorithm, the projection operator 𝑃{} must be defined. 

Sundaram and Collins 1996 [28] derived a total energy equation for the fluid and particles under 

the assumption that particles are point-particles obeying Stokes drag. Because particles are not 

fully resolved in this context, the energy equation contains an additional dissipation term which 

is classified as dissipation that occurs at particle surfaces. This term is essentially a model for the 

contribution to true fluid dissipation that is not resolved in particle boundary layers. Sundaram 

and Collins showed that the numerical implementation of a point-particle algorithm would only 

be consistent if the weights used in the interpolation stencil to calculate the (disturbed) fluid 

velocity at the particle location was the same as the weights used to project the resulting drag 

force back onto the surrounding grid nodes. When the weights are different, the discrete energy 

equation evidently contains an additional error dissipation term of order one higher than the 

lowest order stencil used in either the interpolation or projection schemes. Therefore, in practice 

it is common to use the same stencil for projection and interpolation schemes. It is worth 

emphasizing however that the dissipation at particle surfaces is a term that only exists in a point-
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particle context and not in a fully resolved context. Because particle boundary layers are not 

resolved in the former case, this means the true fluid dissipation rate is not accurately calculated. 

Rather, since point-particle simulations will likely never be able to capture the true fluid 

dissipation rate correctly, point-particle algorithms should be tested such that the sum of the true 

fluid dissipation rate and the point-particle dissipation resulting from the formulation of the 

particle drag, along with its numerical implementation (interpolation + projection) equals the true 

fluid dissipation rate as calculated in a fully resolved simulation, at least in an ensemble sense. 

That question remains to be addressed once a properly verified and validated particle drag 

formulation is found.  

 

3. Error Estimation 

 In this section, we develop estimates for the error in calculation of Stokes drag when the 

disturbed fluid velocity is used in place of the undisturbed fluid velocity. The model problem we 

consider will test the accuracy of the point particle model in a regime where the Stokes formula 

is known to be accurate, namely, uniform flow passed a stationary sphere at low Reynolds 

number. This is the scenario depicted in Figure 1. Prior to introduction of the particle, the fluid 

velocity will be uniform everywhere, and the undisturbed fluid velocity at the location of the 

particle will be equal to the inflow velocity. When the particle is introduced, the particle slows 

down the fluid velocity locally owing to two-way coupling. The computational implementation  

is depicted in Figure 2. A point-particle is initialized at a fluid cell-face and held fixed. This 

formulation ensures there will be no interpolation error. The fluid velocity at the location of the 

particle is precisely the fluid velocity on the cell face upon which the particle rests. The 

projection of the drag force onto the fluid will reduce the fluid velocity near the particle. The 

particle will then sample a lower velocity than the undisturbed value and will project a new force 

onto the fluid grid. Viscous diffusion will tend to regularize the influence of the projected force. 

 
Figure 2: Model Problem for error estimation. 
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We therefore should expect an equilibrium to result with a region of slowed fluid near the 

particle and a drag force calculated as 𝐹𝑑 = 3𝜋𝜇𝑑𝑝(𝑢𝑝 − v𝑝) < 3𝜋𝜇𝑑𝑝(𝑢̃𝑝 − v𝑝). Note here 

that v𝑝 = 0 since the particle is stationary. Three-dimensional simulations are performed with 

periodic boundary conditions in lateral and transverse directions and inflow-outflow boundary 

conditions in the streamwise direction. Because the Stokes disturbance field decays very slow 

away from the particle ~1/𝑟, a large box was necessary to ensure the periodic boundary 

conditions did not influence the calculation of the drag force. In these test cases and for the 

remainder of the paper, the number of grid points 𝑁3 = 1283 was found to yield accurate and 

converged results. The grid spacing is equal in all directions, 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧. The particle 

Reynolds number is 𝑅𝑒𝑝 = 𝑢̃𝑝𝑑𝑝/𝜈𝑓 = 0.1. 

  

 We also examine the effect of the projection scheme on the error. In the symmetric 

formulation which uses the same weights for interpolation and projection, all of the computed 

drag force is projected onto one grid point. This means the disturbance created by the point 

source is larger than if it was spread over many grid points. Capecelatro and Desjardins [10] 

noted that the source term is singular under grid refinement and proposed a two-step procedure. 

The first step is to mollify or project the calculated drag force onto neighboring grid points using 

a Gaussian stencil of compact support. For particles of size comparable to the grid spacing, the 

mollification still results in a singular source term as the grid is refined. Capecelatro and 

Desjardins proposed a second step whereby the mollified drag force is diffused to surrounding 

grid points. The second step is performed for particle sizes Λ > 1/3 and was demonstrated to 

result in a converged projection filter that did not depend on the grid spacing. To understand the 

role of using a Gaussian projection scheme, we have implemented the mollification procedure 

used in that work for a filter width comparable to the mesh spacing (the cutoff of the filter is 

𝑟𝑐𝑢𝑡𝑜𝑓𝑓 > 1.5𝑑𝑥). The Gaussian filter is normalized such that the sum of weights assigned to all 

grid points is unity. 

 

 Error in steady state drag for the one point and Gaussian projection schemes for different 

particle sizes are summarized in Figure 3. The error is seen to increase with the particle to mesh 

size and is of the 𝑂(Λ), consistent with Boivin et al.’s [17] prediction. The error was found to be 

relatively insensitive to Reynolds number in the low Reynolds number limit. Note that the error 

is non-negligible even for relatively small Λ = 0.1. In all cases the Gaussian stencil reduces the 

computed drag force error, but not significantly. Incorporation of the diffusion procedure may 

reduce error incurred for the Λ = 0.5 and Λ = 1.00 cases, however  it is still clear from these 

results that convergence of the Gaussian filter width does not imply convergence of 𝐹𝑑 to the 

Stokes drag solution. In principle, a projection of infinite support, or in practice, using a 

Gaussian mollification that incorporates a large number of grid points would reduce the error in 

calculated drag force. This is because the influence of the calculated force distributed among 

many grid points would result in a smaller disturbance at the location of the particle. However, 
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communication with a large number of grid points would become impractical for simulations 

tracking millions of particles.  

 

 

Figure 3: Percent error in calculation of 𝐹𝑑 for flow passed a stationary point particle. 

 It is important to note that these are simply error estimates. As a particle moves through 

the grid, it will sample velocities at different distances from its center via the chosen 

interpolation scheme. The projection scheme will distribute the calculated force over several grid 

points so the error in drag force as computed when a particle moves in an arbitrary direction 

through the grid will be different from what we computed for the special case that a particle is 

collocated with a flow velocity mesh point. It is also important to note that these are steady errors 

obtained by integrating the fluid equations for approximately one hundred viscous relaxation 

times. (This was necessary to ensure a steady state solution since the velocity disturbance 

solution to the unsteady Stokes equation decays slowly as ~exp (−𝑟2/𝜈𝑓𝑡) , Basset p.288 [1].) 

Therefore, we may expect that the error in drag force for a moving particle will depend on the 

particle Stokes number, 𝑆𝑡 = 𝜏𝑝/𝜏𝑣𝑖𝑠𝑐. This question will be explored in section 5. The results in 

this section however demonstrate the order of the error incurred by use of the disturbed fluid 

velocity in the Stokes drag formula. While different projection schemes may reduce this error, 

they do not explicitly address the problem of incorrectly using 𝑢𝑝 in the drag expression 

compared with 𝑢̃𝑝.  

 

4. Proposed Correction Method 

 In the previous section, we observed that simply spreading the computed drag force over 

more fluid grid points will not significantly reduce the error in the calculated force. At 

initialization, a particle has not created its own disturbance field, so the computed drag force will 

be correct. However, as time progresses, the region of slowed flow grows around the particle. 

The centerline velocity for low Reynolds number flow passed a stationary point-particle is 

depicted in Figure 4. Near the particle (and within a few grid points of its center), the fluid 

velocity is considerably slower than the undisturbed fluid velocity. In this scenario, the fluid 

𝚲 



11 

 

velocity far from the particle is equivalent to the undisturbed velocity at the particle location. In 

addition, the streamwise fluid velocity is nearly symmetric about the center of the particle. 

Motivated by these observations, we may propose a correction scheme of the form: 

 

(6)                                                  𝑢̃𝑝 ≈ 𝑢𝑝 + 𝐶1𝑑𝑥
𝜕𝑢𝑝

𝜕𝑥
+ 𝐶2𝑑𝑥2∇2𝑢𝑝 + ⋯ 

 

 
Figure 4: centerline velocity for flow passed a stationary point particle at different times, 

𝑡∗ =
𝑡𝜈𝑓

𝑑𝑝
2 ≈ 1 (𝑟𝑒𝑑), 24 (𝑏𝑙𝑢𝑒), 𝑁3 = 1283, Λ = 1, Gaussian projection. 

Since the disturbance flow is nearly symmetric, the first derivative is very small at the particle 

location. This allows us to simplify (6) to: 

 

(7)                                                    𝑢̃𝑝 ≈ 𝑢𝑝 + 𝐶(Λ, 𝑥𝑖)𝑑𝑥2∇2𝑢𝑝  

 

Equation (7) is the central statement in our proposed scheme. The proposition is that a good 

approximation for the undisturbed fluid velocity is a truncated power series expansion which 

incorporates the disturbance fluid velocity and adds a correction owing to the disturbance field 

each particle has generated for itself. Note, this is not the Faxen [33] contribution which is a 

correction to the drag formula which accounts for the fact that in a multiple particle system, 

particles see a disturbance field created by other particles. In this context, we are seeking only to 

accurately calculate the Stokes drag. In the Stokes formula, a particle does not see its own 

disturbance field so it is appropriate to remove that disturbance which a point-particle creates for 

itself. Such an estimate is expected to be good when the particle volume fraction is small such 

that particle-particle interactions are not a leading order effect in momentum or energy coupling. 
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 In equation (7), 𝐶(Λ, 𝑥𝑖) is still unknown. As we will show, this coefficient will depend 

on both the particle size relative to the grid spacing Λ, and in general will depend on the location 

of a particle within a grid cell. Assuming this 𝐶-field can be found as a function of Λ, then the 

problem of estimating 𝑢̃𝑝 has been transformed to a problem of interpolating 𝐶. The latter is a 

simpler problem to solve. As we will see, the reason interpolation of 𝐶 will be successful 

whereas interpolation of the fluid velocity field is unsuccessful is that the 𝐶-field will involve a 

set of coefficients that are independent of time, i.e. there is no feedback on the C-field. 

Interpolation of 𝐶 will be successful because it represents uncontaminated data whereas the fluid 

velocity field is contaminated by the particle disturbance field and hence is not directly suitable 

for interpolation. 

 

 𝐶 will be constructed by reverse engineering. We will hold a particle fixed in an 

otherwise uniform flow and ask, what value of  𝐶 for a given Λ makes (7) an equality? The drag 

force appearing in the momentum equation (2) will be computed exactly as 𝐹𝑑 = 3𝜋𝜇𝑓𝑑𝑝𝑢̃𝑝. 

Since 𝑢̃𝑝 is identical to the prescribed inflow velocity, it easy to calculate in steady-state the 

value of 𝐶 such that 

 

 (8)                                     𝐶 = (𝑢̃𝑝 − 𝑢𝑝)/𝑑𝑥2∇2𝑢𝑝 = (𝑢𝐵𝐶 − 𝑢𝑝)/𝑑𝑥2∇2𝑢𝑝 

 

This procedure is done for each Λ ∈ [0.01, 0.05, 0.1, 0.25, 0.5, 1.0]. We choose 𝑅𝑒𝑝 = 0.1 for 

each of these cases, with results having little dependence on 𝑅𝑒𝑝 in the low 𝑅𝑒𝑝 limit. Since at 

low Reynolds number, the momentum transport equation is almost linear and quasi-steady 

(inertial effects are negligible near the particle), it is appropriate to integrate the fluid equations 

to steady state and take the resulting value of 𝐶. We will show in section 5 that treating 𝐶 as time 

invariant works well even for a moving particle. In Table 1, we present a grid study of the 

computed value of 𝐶 for Λ = 1 for a particle collocated on the velocity point, and present 

convergence to about the third digit for the 1283 grid. Two viscous CFL numbers, both well 

below the Runge-Kutta stability boundary were explored and found to have little effect on the 

computed value of 𝐶. So far, we have demonstrated how to calculate exactly the drag force the 

fluid experiences owing to a particle placed and held fixed on a fluid cell-face. 

Grid 𝐶𝐹𝐿𝑣𝑖𝑠𝑐 = 0.36 𝐶𝐹𝐿𝑣𝑖𝑠𝑐 = 0.1 

83 0.227316 0.227311 

163 0.238328 0.238325 

323 0.244916 0.244956 

643 0.247345 0.247346 

1283 0.247746 0.247747 

Table 1: Grid study for 𝐶, Λ = 1. 
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Figure 5: Two-dimensional stencil for flow passed stationary point-particle. 

This scenario in two and three dimensions are shown respectively in Figures 5 and 6. The 

difference between a traditional interpolation scheme and the proposed correction is summarized 

in equations (9), (10a), and (10b): 

 

(9)      𝑆𝑡𝑒𝑛𝑐𝑖𝑙 1 (𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑):                   𝑢̃𝑝 = 𝑢𝑝 

 

(10𝑎) 𝑆𝑡𝑒𝑛𝑐𝑖𝑙 2 (2𝐷):  𝑢̃𝑝 = 𝑢𝑝 + 𝐶𝑑𝑥2∇2𝑢𝑝 

                                                  = (1 − 4𝐶) × 𝑢𝑝 + 𝐶(𝑢𝑛 + 𝑢𝑠 + 𝑢𝑒 + 𝑢𝑤) 

 

(10𝑏) 𝑆𝑡𝑒𝑛𝑐𝑖𝑙 2 (3𝐷):  𝑢̃𝑝 = 𝑢𝑝 + 𝐶𝑑𝑥2∇2𝑢𝑝 

                      = (1 − 6𝐶) × 𝑢𝑝 + 𝐶(𝑢𝑛 + 𝑢𝑠 + 𝑢𝑒 + 𝑢𝑤 + 𝑢𝑡 + 𝑢𝑏) 

 

Note all results are implemented with the 3D stencil; the 2D stencil is shown only for illustration. 

It is apparent that stencil 2 can be regarded as a non-convex interpolation scheme with a mixture 

of positive and negative interpolation weights. Since the fluid velocity away from the particle is 

larger than the velocity near the particle, a non-convex scheme can estimate a velocity 𝑢̃𝑝 which 

is greater than all velocity values used 𝑢𝑝, 𝑢𝑛, 𝑢𝑠 , 𝑢𝑒 , 𝑢𝑤, 𝑢𝑡 , 𝑢𝑏. Note this scheme is conservative 

since in the absence of a disturbance flow, the scheme would correctly predict 𝑢̃𝑝 = 𝑢𝑝. 

 

 In general, a particle will not be located at a grid node (fluid cell-face in a staggered mesh 

configuration). Therefore the proposed scheme must be extended to the arbitrary position of a 

particle in a grid cell. Unfortunately, the 𝐶 value we have obtained for a particle located at a cell 

face which we will call 𝐶1, will not work for an arbitrary particle location.  
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Figure 6: Three-dimensional stencil for flow passed stationary point-particle, (orthogonal 

velocity components not shown for clarity). 

 

 Based on the previous observations we propose a solution to the arbitrary particle 

location by solving for 𝐶 at a few points on, and within a grid cell. This scenario is shown in 

Figure 7. We consider a decomposition of a cubical grid cell into eight cubes of side length one 
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half (𝑑𝑥/2) the physical grid spacing, 𝑑𝑥. Nodes of the original cube (shown in blue) 

correspond to fluid velocity cell-faces as depicted in Figure 8. Hence an appropriate value of 𝐶 

for that location is 𝐶1. 𝐶 values can then be obtained at the vertices of a single smaller cube by 

placing a particle at each of those locations and solving for the resulting C values via (8). 

 
Figure 7: Formulation of C field in uniform grid.  

 
Figure 8: cell-faces correspond to cube vertices. 
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 Owing to symmetry of the Stokes solution, six values of 𝐶 uniquely define the eight 

vertices. Further, within a grid cell, there is no distinction among a particle being in one of the 

smaller cubes over another. Therefore, determination of eight (six unique) 𝐶 coefficients in one 

small cube determines the 𝐶 coefficients for the nodes of all eight cubes. As depicted in Figures 

9 and 11, this procedure will result in a periodic scalar field 𝐶 embedded in each grid cell. In 

Table 2, we tabulate the six unique coefficients for different particle to grid sizes. For a chosen 

Λ, a set of six numbers can be used in conjunction with (7) to obtain a good estimate for the 

undisturbed fluid velocity at the particle location. Since the 𝐶-field has no feedback on it, the 

tabulated coefficients are not contaminated by a disturbance and hence independent of time. As 

we will show in the next section for a particle moving through the grid in an arbitrary direction, a 

low memory access trilinear interpolation method for 𝐶 will produce accurate results for all of 

the particle sizes we consider. For particle sizes that are different than those presented here, it is 

straightforward to estimate the 𝐶 coefficients by interpolating the 𝐶 data using smooth cubic 

splines. A plot of the 𝐶 data and the splines is shown in Figure 10. The spline equations used for 

this interpolation can be found in the Appendix. 

Λ 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

1.0 0.248 0.312 0.340 0.440 0.681 0.518 

0.5 0.246 0.309 0.337 0.435 0.671 0.512 

0.25 0.242 0.303 0.329 0.422 0.644 0.493 

0.1 0.231 0.285 0.306 0.389 0.579 0.447 

0.05 0.218 0.267 0.282 0.356 0.522 0.403 

0.01 0.190 0.236 0.239 0.311 0.460 0.335 

Table 2: 𝐶-field coefficients for different values of Λ. 

 
Figure 9: Scalar field 𝐶 embedded in a grid cell; blue vertices indicate cell faces. 
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Figure 10: 𝐶1−6 vs. Λ and interpolating cubic splines.  

 

 The 𝐶 data is smooth over the range of Λ we considered. As shown in Figure 10, 𝐶𝑖 is 

more sensitive to Λ for smaller Λ.  However errors in estimating 𝐶𝑖 for small Λ would not be 

significant since the disturbance velocities generated by point particles at small Λ are relatively 

small. For particle sizes Λ ≥ 0.25, the 𝐶𝑖 field shows little variation. Therefore, an accurate 

approximation for these 𝐶 coefficients can be taken by evaluating the spline interpolants for a 

given Λ chosen for a particular study.  

 

 While the 𝐶 coefficients were obtained for a particle held fixed in a uniform flow parallel 

to the x-direction, the same 𝐶 coefficients will apply to the orthogonal directions. Owing to the 

orthogonality of the three velocity components (for a Cartesian mesh) in a staggered formulation, 

the 𝐶 field ends up being transposed for the v and 𝑤 components, compared with the 𝑢 

component. This is depicted in Figure 11. Notice that the 𝐶 field is periodic so that it can be 

completely characterized by two layers. The blue nodes represent cell-faces in the respective 𝑢, 

v, and 𝑤 momentum equations which are consistent with the 𝐶1 value while green nodes 

represent particle locations within a grid cell. Since the 𝐶 field is periodic, only 6 constants are 

needed which are the same for all grid cells for all momentum directions (up to a rotation of the 

coordinate frame). Therefore this method requires very little storage and can be easily integrated 

into an existing finite difference code. 

 

 

𝚲 
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Figure 11: Distribution of  𝐶 field within a cell for 𝑢, v, 𝑤-velocity components. The blue node 

for each case represents the location where the corresponding velocity component is stored. 

 

4.1 Algorithm Summary: to calculate undisturbed velocity for arbitrary particle location 

 We now summarize the proposed algorithm. For an explicit scheme, we will have fluid 

𝑢𝑖
𝑛 and particle v𝑖

𝑛 velocity data at the 𝑛𝑡ℎ time step and we wish to advance to the next timestep, 

(𝑛 + 1). Here we will only discuss the force calculation as this is the only calculation that differs 

from a classical Euler-Lagrange method. To calculate 𝐹𝑑,𝑖, which will be needed to update both 
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particle and fluid velocities, we recognize the 𝑖𝑡ℎ component of the drag force 𝐹𝑑,𝑖 =

3𝜋𝜇𝑑𝑝(𝑢̃
𝑛
𝑝,𝑖 − v𝑖

𝑛), where 𝑢̃𝑛
𝑝,𝑖 is the undisturbed fluid velocity evaluated at the particle 

location. Note that this undisturbed velocity need not be constant in time if for example a particle 

is in a time evolving flow (turbulence e.g.). Therefore, we wish to calculate the 𝑖𝑡ℎ component of 

the undisturbed fluid velocity at time step 𝑛 via 𝑢̃𝑛
𝑝,𝑖 ≈ 𝑢𝑝,𝑖

𝑛 + 𝐶(Λ, 𝑥𝑖)𝑑𝑥2∇2𝑢𝑝,𝑖
𝑛 , where the 

position 𝑝 within a cell may be arbitrary. 

 

The algorithm steps are: 

 1. 𝐶1−6 are prescribed at the beginning of a simulation for the chosen particle size Λ 

(multiple 𝐶 arrays could be used if the particle field is polydisperse). 

 2. At time step 𝑛, for a given particle location in the Eulerian grid, determine its position 

with respect to one of the eight small cubes within the physical grid cell. Note that this 

location may be different for the 𝑢, v, and 𝑤 components owing to the staggered grid and 

transpose of the C field. However this step can be accomplished very easily with a few if 

statements. 

 3. Using trilinear interpolation, estimate the value of 𝐶 at the particle location using the 

vertices of the small cube. Again here, the interpolated value of 𝐶 will be different for the 

𝑢, v, and 𝑤 directions. 

 4. Using trilinear interpolation, calculate 𝑢̃𝑝,𝑖
𝑛 ≈ 𝑢𝑝,𝑖

𝑛 + 𝐶𝑖𝑛𝑡𝑑𝑥2∇2𝑢𝑝,𝑖
𝑛  where 𝑢𝑝,𝑖

𝑛  and  

∇2𝑢𝑝,𝑖
𝑛  are interpolated from the cell-faces of the grid. For a 2

nd
 order scheme, a consistent 

discretization of ∇2𝑢 would use a 2
nd

 order central scheme. Note ∇2𝑢 is a quantity that 

will already exist at fluid cell-faces since it is needed to update the momentum equations 

even in the absence of this correction. 

 5. With the estimate of 𝑢̃𝑝,𝑖
𝑛 , the particle forcing term 3𝜋𝜇𝑓𝑑𝑝(𝑢̃𝑝 − v𝑝) may be formed. 

The particle equations are ready to be updated using the appropriate time advancement 

scheme. 

 6. To update the fluid equations, it is necessary to project the computed force back to the 

fluid grid. The coefficients 𝐶𝑖 we have reported are consistent with using trilinear weights 

(based on the velocity cell face distances) to project the computed drag force back to the 

fluid cell faces. 

It is important to re-emphasize here that the reported 𝐶 coefficients are consistent with using 

trilinear interpolation in steps 4 and 6. In step 3, any interpolation scheme is appropriate. This is 

not a drawback of the method. The ability to correct for the disturbance flow using low memory 

access methods (trilinear) compared with higher order interpolation schemes makes this method 

advantageous from a runtime prospective. From an implementation prospective, the only 

modifications to an existing Euler-Lagrange code would be: (1) addition of a trilinear 

interpolation routine (if one does not already exist in the code), (2) a simple set of conditionals to 

classify a particle as being within one of eight 8 smaller cubes within a fluid grid cell, (3) either 
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loading Table 2 directly into the code or having a preprocessor that evaluates the splines for a 

given Λ and loads those 6 coefficients into the code, and (4) finally a summing step that forms 

the suitable linear combination of interpolated fluid velocity, 𝐶𝑖𝑛𝑡, and Laplacian components. 

All of these pieces can be incorporated into an existing code with relative ease. 

 

5. Method Verification  

 We have developed a correction procedure to calculate the undisturbed fluid velocity at 

the location of a particle placed and held fixed in an arbitrary location in the fluid grid. However, 

we must ensure the proposed procedure is capable of accurately capturing the dynamics of a 

moving particle, since in most applications a particle is free to move owing to the stresses the 

fluid exerts on it. An appropriate verification problem is that of particle settling in an unbounded 

and otherwise quiescent fluid subject to gravity. The problem setup is shown in Figure 12.  

 
Figure 12: Particle settling in an unbounded fluid where the gravity vector is chosen at an 

arbitrary tilt with respect to the grid. 

 We consider a three-dimensional box with 1283 grid points and periodic boundary 

conditions on all sides. To test the robustness of the scheme, we do not align the gravity vector 

with the grid. We have chosen the gravity unit vector to be 𝑔̂ = (1, (1 + √5)/2, 𝑒)/|𝑔|. This 

ensures the particle achieves good sampling of the fluid field as it passes within and from grid 

cell to grid cell. The particular choice of the gravity vector is arbitrary, but specifying 𝑔̂ such that 

the ratio of any two components of 𝑔̂, that is, 𝑔̂𝑥/𝑔̂𝑦, 𝑔̂𝑥/𝑔̂𝑧, or 𝑔̂𝑧/𝑔̂𝑦, is an irrational number, is 

not arbitrary. Such combinations would ensure that the collection of points along the particle 

trajectory would form a dense set [4, 27] within the domain of each mesh element and thus all 

possible interpolation scenarios would be tested in our verification study. 

 

 With this choice of setting, while the analytical solution to the particle equation will yield 

a particle velocity parallel to the gravity vector, the simulated results will not, and rather have 

some component of velocity perpendicular to the gravity direction. This drift velocity is 

unphysical (for an isolated particle) and will be owing to bias in interpolation of the fluid 

velocity at the particle location. Finally, because this verification problem admits an analytical 
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solution in the low Reynolds number limit, it is a robust problem to assess the accuracy of the 

proposed scheme in comparison with other standard techniques. 

 

 Table 3 presents the simulation runs for a particle settling under gravity for various flow 

conditions. Note that the proposed scheme was developed for flow passed a stationary particle 

(𝑆𝑡 → ∞), at 𝑅𝑒𝑝 = 0.1, so it will be important to consider the effectiveness of the proposed 

scheme over a range of these parameters. Here, the Stokes number 𝑆𝑡 = 𝜏𝑝/𝜏𝑣𝑖𝑠𝑐, where 𝜏𝑝 is the 

particle response time and 𝜏𝑣𝑖𝑠𝑐 = 𝜈𝑓/𝑑𝑥2, where 𝜏𝑣𝑖𝑠𝑐 is the relaxation time of the grid. Since 

the particles are not fully resolved, it is not appropriate to use 𝑑𝑝 as the length scale for viscous 

relaxation in the fluid. In a turbulent flow, the definition of 𝜏𝑣𝑖𝑠𝑐 ≈ 𝜏𝜂 and is consistent with our 

choice since, 𝜂 = 𝑂(𝑑𝑥) in DNS [25]. We test particle sizes in the range Λ ∈ [0.01, 1.00], 

Stokes numbers 𝑆𝑡 ∈ [0.25, 10], and particle Reynolds numbers 𝑅𝑒𝑝 ∈ [0.05, 0.50]. The 

proposed scheme is compared with two methods of interpolation, trilinear, and 4
th

 order 

Lagrange. While there are other interpolation schemes that could be tested, some general 

conclusions will arise. Finally, while the Stokes drag is formally derived in the limit of 𝑅𝑒𝑝 → 0, 

the deviation of the Stokes drag from experimental observations is within a few percent for 

particle Reynolds numbers up to unity [23]. Hence, examination of particle Reynolds numbers 

up to 0.5 in this study will be within the regime of validity of the Stokes drag. 

   

Size Study 

Run 𝑅𝑒𝑝 𝑆𝑡 Λ 𝐶𝐹𝐿𝑣 𝐶𝐹𝐿𝑝 

A 0.1 10.0 1.0 

0.5 

0.25 

0.1 

0.05 

0.01 

0.36 0.006 

B 0.1 10.0 0.36 0.006 

C 0.1 10.0 0.36 0.006 

D 0.1 10.0 0.36 0.006 

E 0.1 10.0 0.36 0.006 

F 0.1 10.0 0.36 0.006 

Reynolds number Study 

Run 𝑅𝑒𝑝 𝑆𝑡 Λ 𝐶𝐹𝐿𝑣 𝐶𝐹𝐿𝑝 

G 0.05 10.0 1.0 

1.0 

1.0 

1.0 

0.36 0.006 

H,A 0.1 10.0 0.36 0.006 

I 0.25 10.0 0.36 0.006 

J 0.50 10.0 0.36 0.006 

Stokes number Study 

Run 𝑅𝑒𝑝 𝑆𝑡 Λ 𝐶𝐹𝐿𝑣 𝐶𝐹𝐿𝑝 

K,A 0.1 10.0 1.0 

1.0 

1.0 

1.0 

1.0 

0.36 0.006 

L 0.1 5.0 0.36 0.012 

M 0.1 1.0 0.36 0.06 

N 0.1 0.5 0.36 0.12 

O 0.1 0.25 0.36 0.24 

Table 3: List of runs, Courant numbers: Viscous:  𝐶𝐹𝐿𝑣 = 6𝜈𝑓∆𝑡/𝑑𝑥2, Particle: 𝐶𝐹𝐿𝑝 = ∆𝑡/𝑡𝑝. 
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Figure 13: Particle transient settling velocity for different particle sizes, (𝑎)Λ = 1, (𝑏)Λ = 0.5,
(𝑐)Λ = 0.25, (𝑑)Λ = 0.1, (𝑒)Λ = 0.05, (𝑓)Λ = 0.01 , red-4

th
 order Lagrange, blue-2

nd
 order 

trilinear interpolation, green-correction scheme, black-analytical solution, inset shows the 

ordering of respective schemes’ steady state behavior is preserved for all Λ. 

 Settling velocity histories for different sized particles are shown in Figure 13. The four 

curves shown compare the proposed correction scheme to particle tracking using trilinear and 

fourth order Lagrange. The analytical solution 𝑢𝑠𝑠 = 𝑔𝜏𝑝(1 − 𝜌𝑓/𝜌𝑝)(1 − exp(−𝑡/𝜏𝑝))  is 

(a) 

(e) 

(c) 

(d) 

(f) 

(b) 

  

𝒕/𝝉𝒑 

𝒕/𝝉𝒑 𝒕/𝝉𝒑 

𝒕/𝝉𝒑 𝒕/𝝉𝒑 

𝒕/𝝉𝒑 



23 

 

shown for comparison. Here, we are using the same weights for the uncorrected interpolation and 

projection schemes (trilinear, 4
th

 order Lagrange) based on the recommendation of Sundaram and 

Collins 1996 [28]. The correction scheme follows the analytical solution for all particle sizes 

with a maximum steady state error of approximately 5% for the largest particle size, Λ = 1. Both 

the trilinear and Lagrange schemes significantly overshoot the steady state analytical settling 

velocity. For Λ = 1, the trilinear scheme overshoots the steady value by approximately 75%, 

while the Lagrange-4 scheme overshoots by approximately 100%. Because the interpolation 

schemes are measuring a fluid velocity that contains the particle disturbance flow, the measured 

slip velocity 𝑢𝑠
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑢𝑝 − v𝑝 is less than the slip velocity upon which the Stokes drag 

analytical depends, i.e. 𝑢𝑠
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑢̃𝑝 − v𝑝. Since the slip velocity is underpredicted, as a 

consquence, so is the drag force. As a result, lower drag means a higher settling velocity. 

 

 

Figure 14: (a) velocity predicted by interpolation schemes compared with actual undisturbed 

fluid velocity, (b) spatial distribution of projection weights 

 

 At first glance, it is not intuitive why 4
th

 order Lagrange behaves more poorly than 

trilinear interpolation. A simple explanation is depicted in Figure 14. Consider a particle settling 

under gravity. For simplicity, we consider a one-dimensional problem and a particle whose 

instantaneous position is halfway between two fluid cell-faces. The undisturbed fluid in this 

scenario is stationary. Due to gravity, the particle moves with a velocity greater than the 

surrounding fluid’s velocity. But, owing to the momentum coupling between the particle and the 

fluid, the particle will tend to drag fluid with it, so that the fluid velocity near the particle is 

higher
2
 than the undisturbed value. Since the disturbance flow is symmetric about the particle 

center in a Stokes flow, the fluid velocity measured at the grid points surrounding the particle 

will take a concave shape (the precise magnitude is not important here, only that the curvature is 

in the direction depicted in Figure 14. Trilinear (linear in 1D) interpolation would sample the 

fluid velocity from the nearest neighbor grid points and predict some fluid velocity at the particle 

                                                 
2
 Note that the notion of higher or lower depends on the reference frame of the observer. 
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location. The 4
th

 order Lagrange scheme however is able to account for the curvature in the fluid 

velocity field and to recognize the fluid (disturbed) velocity at the particle location is greater than 

than the trilinear prediction. If the fluid velocity data were not contaminated by a disturbance 

flow, the 4
th

 order Lagrange estimate would be better than the trilinear prediction. However, the 

goal is to compute 𝑢̃, which in the present problem is identically zero. So in fact, while the 4
th

 

order Lagrange scheme provides a better estimate of the disturbed velocity at the particle 

location, this corresponds to a worse estimate of the undisturbed velocity. Therefore we may 

expect in general that higher order schemes will tend to provide better estimates of the disturbed 

flow which is counter to the problem of estimating the undisturbed fluid velocity. We have also 

tested cubic splines, Lagrange 6
th

, Lagrange 8
th

 order schemes (not shown for clarity) which 

cooroborates this claim. 

 

 Taking the 4
th

 order Lagrange scheme as an example, the problem is exacerbated when 

considering what happens in the projection step. After estimating the drag force based on an 

interpolated fluid velocity, the drag force must be projected back to the Eulerian grid. If the same 

weights that were used for interpolation are also used for projection, we can see that the 4
th

 order 

Lagrange scheme would project a larger percentage of the force on grid points close to the 

particle. As depicted in Figure 14 (b), the weights associated with the Lagrange-4 scheme are 

0.5625 for both grid points immediately surrounding the particle and -0.0625 for the next nearest 

grid points. So the 4
th

 order Lagrange scheme will tend to create a larger disturbance flow in the 

neighborhood of the particle than does the trilinear scheme. Any interpolation scheme which has 

larger weights near the particle and smaller away from the particle will yield similar behavior. 

Examples of such schemes include higher order Lagrange, Cubic Spline, and Gaussian 

interpolation/projection schemes. (Notice in contrast the correction scheme has smaller weights 

near the particle and larger weights away from the particle. ) Evidently, lower order schemes, for 

example trilinear, should perform better in a two-way coupled flows in the absence of a 

correction scheme. 

 

 We examine the Reynolds number dependence of the results for a settling particle in 

Figure 15. The magnitude of the steady state error decreases slightly with increasing Reynolds 

number. The unphysical intra-grid and inter-grid oscillations appear to reduce with increasing 

Reynolds number. The Reynolds number was changed by increasing the magnitude of gravity. 

This corresponds to a higher steady-state settling velocity and reduced intra-cell residence time. 

The reduced residance time means the particle samples a smaller distribtion of fluid velocity per 

unit time which may account for the reduction in oscillations.The general observation is that the 

correction scheme behaves well over the decade of Reynolds numbers examined. 
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Figure 15: Particle transient settling velocity for different particle Reynolds numbers, red-4
th

 

order Lagrange, blue-2
nd

 order trilinear interpolation, green-correction scheme, black-analytical 

solution, (a) 𝑅𝑒𝑝 = 0.05, (b) 𝑅𝑒𝑝 = 0.10, (c) 𝑅𝑒𝑝 = 0.25, (d) 𝑅𝑒𝑝 = 0.50, Λ = 1. 

 

 Another important parameter to examine is the Stokes number. In turbulent flows, the 

Stokes number plays an important role in the dictating the particle concentration field. With 

respect to estimating the undisturbed flow necessary to calculate the Stokes drag, there is a 

balance between the viscous relaxation time of the fluid due to the particle drag force and 

relaxation of the particle velocity due to the fluid force. The relaxation rates are respectively 

~exp(−𝑡𝑣𝑖𝑠𝑐/𝑡) [1] and ~exp(−𝑡/𝑡𝑝) so that for comparable ratio of particle to fluid time 

scales, e.g. 𝑆𝑡 = 𝑂(1), the time required for the disturbance field to develop in the fluid is 

significantly longer than the time it takes for a particle to assume a velocity comparable to the 

undisturbed fluid velocity. In other words, whereas the particle velocity analytically assumes 

99% of it steady state velocity after ~5 particle relaxation times, the fluid disturbance field does 

develop to the same extant until ~100 viscous time scales. Therefore, we may expect that the 

correction scheme, which has 𝐶 coefficients tuned for steady state (𝑆𝑡 → ∞) may not perform as 

well at low Stokes numbers. Nevertheless the proposed correction is shown to perform robustly 

across a wide range of Stokes numbers as shown in Figure 16.  

(a) 

(c) 

(b) 

(d) 

𝒕/𝝉𝒑 

𝒕/𝝉𝒑 𝒕/𝝉𝒑 

𝒕/𝝉𝒑 
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Transient settling velocity histories for different Stokes numbers are shown in Figure 16. For 

𝑆𝑡 = 5, 10, Figure 16 (d) and (e), the particle settling velocity is in excellent agreement with the 

analytical solution. For smaller Stokes numbers, there is some undershoot in the settling velocity 

  

  

 

Figure 16: Transient particle settling velocity for different Stokes numbers (a) 𝑆𝑡 = 0.25, (b) 

𝑆𝑡 = 0.50, (c) 𝑆𝑡 = 1.00, (d) 𝑆𝑡 = 5.00, (e) 𝑆𝑡 = 10.00, Λ = 1,  red-4
th

 order Lagrange, blue-

2
nd

 order trilinear interpolation, green-correction scheme, black-analytical solution. 

(a) 

(e) 

(c) (d) 

(b) 

𝒕/𝝉𝒑 

𝒕/𝝉𝒑 𝒕/𝝉𝒑 

𝒕/𝝉𝒑 

𝒕/𝝉𝒑 
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predicted by the correction scheme, especially for 𝑆𝑡 = 0.25. This is because the correction 

scheme is tuned for the steady problem of flow passed a sphere and is attempting to compensate 

for the amount of drag error that would occur in steady state. While the correction scheme has 

some unsteadiness built into it, that is, the Laplacian term grows as the disturbance flow 

develops, it seems for low Stokes numbers the correction scheme overpredicts the disturbance 

force error at early times. Hence, the drag force is overestimated at early times and the settling 

velocity is underestimated. Note that this is not a serious drawback since most physical problems 

consider fluid statistics averaged over several eddy turnover times which will be much longer 

than the viscous time scale. Note, even at low Stokes number, the correction particles approach 

the steady state analytical solution. In addition, the undershoots at early times are still 

considerably smaller than the overshoots that exist using trilinear and Lagrange-4 interpolation 

schemes without the proposed correction. The results presented in Figure 16 were for the 

maximum particle size and it is likely that errors at early times would be reduced for smaller 

particles. Based on these results, we may suggest that if the user of the correction scheme is 

interested in long time averaged statistics, then the proposed scheme should be appropriate for all 

of the size, Reynolds numbers, and Stokes numbers examined. If the user is interested in 

calculating short time dispersion statistics, they should proceed with caution for larger particles 

at small Stokes number. 

 

 Finally, we summarize the results of these numerical experiments of the settling particle 

in Tables 4-9. Here we present averaged settling and rms drift velocity statistics for each of the 

parameters we examined. Time averaging was performed over approximately thirty relaxation 

times from 𝑡 = 10𝜏𝑝 → 40𝜏𝑝. While analytically there is no drift component in the particle 

trajectory (component perpendicular to gravity), there does end up being a drift component 

owing to interpolation errors as the particle moves in an arbitrary direction relative to the grid. In 

all of the previous figures, the settling velocity 𝑢// = v⃑ 𝑝 ∙ 𝑔̂ is the component of the velocity 

parallel to the gravity vector and the drift velocity 𝑢+ = |v⃑ 𝑝 − 𝑢//𝑔̂| is the magnitude of the 

component perpendicular to the gravity vector. In all cases, the particle settling velocity for the 

corrected scheme exhibits at least one order of magnitude less error than the steady state settling 

velocity for either the trilinear or Lagrange-4 schemes. The maximum steady state error for the 

correction scheme is ~5.5% for 𝑅𝑒𝑝 = 0.05, 𝑆𝑡 = 10, Λ = 1.0, which is signifcantly lower than 

errors for trilinear and Lagrange-4, ~76% and ~102% respectively. For all cases, trilinear 

interpolation was used to interpolate the C-field. Some tests using higher order interpolation 

(Lagrange-4) of the C field exhibited a little smaller error in drift velocity, but the variance in 

steady state settling velocity was not significantly different. While steady state settling velocity 

errors are small for all parameters tested, ≤ 𝑂(5%), the non-zero error is likely due to small but 

finite asymmetry in the disturbance velocity field associated with a moving particle compared 

with a stationary particle. 
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 Tables 7-9 show time averaged rms drift velocity normalized by 𝑢𝑠 = 𝑔𝜏𝑝(1 − 𝜌𝑓/𝜌𝑝). 

For 𝑆𝑡 = 10, for all particle sizes and Reynolds numbers, the particle drift velocity is small for 

all schemes, 𝑂(1%), although the correction scheme has lower error for most cases. The 

Lagrange-4 scheme has a little bit smaller error in drift velocity compared with the trilinear 

scheme. For Stokes numbers of unity and less, the drift velocity error becomes appreciable for 

the trilinear and Lagrange-4 schemes. For 𝑆𝑡 = 0.25, Lagrange-4 exhibits ~9.2% time averaged 

rms error in drift velocity while trilinear exhibits almost 11% normalized drift velocity error. 

Note that for all parameters examined in this study, the normalized drift velocity error for the 

proposed correction scheme is less than 1%.  
 

Λ 1.0 0.5 0.25 0.1 0.05 0.01 

Lagrange-4 101 50 24 8.5 3.5 0.26 

Lagrange-2 75 37 18 6.2 2.5 0.18 

Corrected 5.1 2.4 1.0 0.35 0.16 0.016 

Table 4:  Percent Error in settling velocity, size study. 
 

Re𝑝 0.05 0.10 0.25 0.50 

Lagrange-4 102 101 96 89 

Lagrange-2 76 75 71 65 

Corrected 5.5 5.1 3.4 0.65 

Table 5:  Percent Error in settling velocity, Reynolds study. 
 

St 0.25 0.50 1.00 5.00 10.0 

Lagrange-4 99 95 97 100 101 

Lagrange-2 75 69 72 75 75 

Corrected -4.7 -1.7 1.4 4.5 5.1 

Table 6:  Percent Error in settling velocity, Stokes study. 
 

Λ 1.0 0.5 0.25 0.1 0.05 0.01 

Lagrange-4 0.71 0.32 0.11 0.022 0.012 0.0050 

Lagrange-2 1.0 0.42 0.14 0.025 0.0058 0.0027 

Corrected 0.22 0.063 0.020 0.010 0.011 0.0018 

Table 7:  Percent Error in rms drift velocity normalized by settling velocity, size study. 
 

Rep 0.05 0.10 0.25 0.50 

Lagrange-4 1.3 0.71 0.32 0.20 

Lagrange-2 1.9 1.0 0.45 0.26 

Corrected 0.37 0.22 0.13 0.093 

Table 8:  Percent Error in rms drift velocity normalized by settling velocity, Reynolds study. 
 

St 0.25 0.50 1.00 5.00 10.0 

Lagrange-4 9.2 5.8 4.7 1.4 0.71 

Lagrange-2 11 7.3 6.1 2.0 1.0 

Corrected 0.86 0.89 0.61 0.39 0.22 

Table 9:  Percent Error in rms drift velocity normalized by settling velocity, Stokes study. 
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5.1 Energetics 

 Finally, it is worth mentioning what are the consequences of using the proposed scheme 

for computing the particle drag force on the energetics of the particles and fluid separately as 

well as for the system as a whole. At the outset it is clear that the improved prediction of particle 

kinematics by the proposed correction scheme will directly translate to improved prediction of 

particle and fluid energetics. For example, improved prediction of the particle settling velocity 

implies an improved prediction of the rate at which potential energy is being consumed.  

 

 To develop more insight into energy exchange processes between the particle and the 

fluid, we next present the fluid and particle energy equations. Our derivations closely follow the 

work of Sundaram and Collins [28]. The particle kinetic energy equation is readily obtained from 

(5): 

 

(11)                                        
𝑑𝑘𝑝

𝑑𝑡
= v𝑖𝑚𝑝(𝑢̃𝑖 − v𝑖)/𝜏𝑝 + 𝑚𝑝(1 − 𝜌𝑓/𝜌𝑝)𝑔𝑖v𝑖 

 

Where 𝑘𝑝 =
1

2
𝑚𝑝v𝑖v𝑖 is the particle kinetic energy. The fluid kinetic energy equation is obtained 

from the Navier-Stokes equation (2) viz.  

 

(12)            𝑢𝑖 × [
𝜕

𝜕𝑡
𝜌𝑓𝑢𝑖 +

𝜕

𝜕𝑥𝑗
𝜌𝑓𝑢𝑗𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

1

𝑉
𝐹𝑑,𝑖 𝑃{𝛿(𝑥𝑖 − 𝑥𝑖

′)}] 

 

(13)                        
𝜕𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑢𝑗𝑘 = −𝑢𝑖

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇𝑢𝑖

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

1

𝑉
𝑢𝑖𝐹𝑑,𝑖 𝑃{𝛿(𝑥𝑖 − 𝑥𝑖

′)} 

 

Where 𝑘𝑓 = (
1

2
) 𝜌𝑓𝑢𝑖𝑢𝑖. Integrating over the volume, the convective and pressure work terms 

disappear since they can be written in divergence form yielding
3
: 

 

(14)                                                                
𝑑𝑘𝑓

𝑑𝑡
= 𝑊𝑣 − 𝜖𝑝𝑝 

 

Where: 

 

(15)                               𝑊𝑣  = ∫𝜇𝑢𝑖

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
𝑑𝑉 = ∫ [𝜇∇2𝑘 − 𝜖 + 𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
] 𝑑𝑉 

 

                                                 
3
 This has been verified for our staggered scheme but in general this step is contingent upon the discrete operators’ 

satisfaction of the rules of calculus. 
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(16)                              𝜖𝑝𝑝 = ∫
1

𝑉
𝑢𝑖𝐹𝑑,𝑖 𝑃{𝛿(𝑥𝑖 − 𝑥𝑖

′)}𝑑𝑉 = 𝑢𝑖𝑚𝑝(𝑢̃𝑖 − v𝑖)/𝜏𝑝  

 

Here 𝜖 = 2𝜇𝑆𝑖𝑗𝑆𝑖𝑗 is the true fluid dissipation rate per unit volume, where 𝑆𝑖𝑗 = (
1

2
) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

is the strain-rate tensor. 

 

Summing expressions (11) and (14), the evolution of the total kinetic energy of the system is 

described by (17): 

 

(17)                             
𝑑𝑘𝑝

𝑑𝑡
+ 

𝑑𝑘𝑓

𝑑𝑡
= 𝑚𝑝

(v𝑖 − 𝑢𝑖)(𝑢̃𝑖 − v𝑖)

𝜏𝑝
+ 𝑊𝑣 + 𝑚𝑝 (1 −

𝜌𝑓

𝜌𝑝
)𝑔𝑖v𝑖 

 

 

 

The first term on the right hand side of (17) is owing to the incorporation of a point-particle 

model and would be absent in a particle resolved simulation. In the case of point-particle 

simulations, this term represents a portion of the heat generation due to unresolved particle 

boundary layers on the particles. Note that in the limit that Λ → 0, where 𝑢̃𝑖 ≈ 𝑢𝑖, (17) reduces to 

the kinetic energy equation derived in [28]. The only difference lies in the point-particle source 

term, the first term on the right hand side of (17). We note that based on the analytical solution to 

the Stokes equation, the rate of heat generation must be 𝑚𝑝(𝑢̃ − v𝑝)
2
/𝜏𝑝, however this is not 

explicitly seen in the expression above. To clarify this connection, we re-write the heat 

generation term in (17) in the following form: 

 

(18)               𝑚𝑝

(v𝑖 − 𝑢𝑖)(𝑢̃𝑖 − v𝑖)

𝜏𝑝
+ 𝑊𝑣 = −

𝑚𝑝(𝑢̃𝑖 − v𝑖)
2

𝜏𝑝
+

𝑚𝑝(𝑢̃𝑖 − 𝑢𝑖)(𝑢̃𝑖 − v𝑖)

𝜏𝑝
+ 𝑊𝑣 

 

The first term on the right hand side of (18) represents the analytical heat generation. Using (14) 

and (16) and assuming the scheme is predicting 𝑢̃𝑖 = 0, one can verify that the second and third 

term on the right hand side of (18) will cancel in steady-state. The above exercise clarifies how 

each of the respective terms should be interpreted. For example, in the case of refinement to very 

small mesh for a fixed particle size, the disturbed fluid velocity may be singularly large leading 

to artificial apparent viscous dissipation. This is an inevitable consequence of the use of a point-

force model. However, the second term on the right hand side of (18) grows in the same fashion 

with the opposite sign and will cancel this unphysical effect. 

 

 Our discussion has focused mostly on the consequences of implementing a verifiable 

Stokes drag scheme within a point-particle code with respect to kinematics and energetics for 

low particle Reynolds numbers. Provided the assumptions of Stokes drag are met, it is expected 
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that the demonstrated improvements can be translated to more complex scenarios such as 

turbulent flows laden with particles. While we defer investigation of such settings to a future 

publication, we briefly note that previous numerical studies by Segura [12] and Yamamoto [34] 

in channel flow found that turbulence attenuation by particles was significantly under-predicted 

compared with experiments under similar conditions performed by Paris [2] and Kulick et al. 

[13] respectively. Our results may explain some of these discrepancies by noting that under-

prediction of the drag force by an uncorrected point-particle model will naturally lead to under-

prediction of the energy exchange between particles and fluid. This under-prediction can be 

significant, especially in settings with near-wall mesh refinement where most turbulence 

dissipation takes place. In these regions, Λ will inevitably be large. 

 

 A final word concerns the utility of point-particle methods. It should be emphasized that 

the mere use of a point-force model implies that the fluid structures in the neighborhood of 

particles are necessarily artificial. The premise of a verifiable point-force model is to ensure that 

the flow structures away from the particle “see” the correct momentum input. Under conditions 

where the Stokes drag and gravity force are not the only leading order interactions between the 

particle and fluid, other terms in the Maxey-Riley equation or other equation of motion will have 

to be used. These equations of motion have other terms (e.g. added mass, history) which also 

depend on undisturbed fluid information in the same fashion as the Stokes drag. Ideas similar to 

those presented here are likely to lead to improved predictions in these regimes as well. 

Nevertheless, careful verification benchmarks must be conducted to establish the effectiveness of 

similar correction schemes for more complicated equations of motion. 

 

6. Summary 

 In this work, we have demonstrated the error that is incurred in the calculation of Stokes 

drag in particle laden flows when the incorrect velocity, namely the disturbed fluid velocity is 

used in place of the correct, undisturbed fluid velocity. For uniform flow passed a stationary 

point-particle, the error is demonstrated to be the same order as the particle size compared with 

the grid spacing. Projecting the particle force over more grid points can reduce but not eliminate 

the drag force error. Only a projection kernel of infinite support could accomplish that.  

 

 A correction scheme is proposed to estimate the undisturbed fluid velocity from the 

neighboring disturbed fluid velocity information. The correction scheme may be interpreted as a 

non-convex interpolation scheme with negative weights near the particle and positive weights 

away from the particle. This allows the scheme to estimate a velocity which is greater than any 

of the velocity data used in the scheme (for flow passed a stationary particle) which is in the 

direction that the curvature vector points. The scheme was extended to an arbitrary location of 

the particle embedded in an Eulerian grid. For a given Λ, the scheme is well represented by six 𝐶 

constants which are independent of time and identical for all grid cells. For any particle location 

in the grid, the 𝐶 field may be interpolated to the particle location. Whereas simple interpolation 
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of the fluid velocity field is not directly appropriate for two-way coupling since the velocity field 

is contaminated owing to the disturbance field that a particle generates for itself, the 𝐶 field is 

not contaminated during the simulation. For particle sizes that do not correspond to the six tested 

in this work, it is straightforward to evaluate the spline equations for the particle sizes chosen for 

a particular physical study. These spline interpolated coefficients will become the six coefficients 

that are then interpolated at each time step during simulation runtime based on a particle’s 

position in a grid cell. 

 

 Having developed the correction scheme for flow passed a stationary particle, the scheme 

is tested for a particle settling in an arbitrary direction relative to the grid at low Reynolds 

number. The correction scheme to calculate the undisturbed fluid velocity is compared with 

standard interpolation schemes for calculating the disturbed fluid velocity at the particle location. 

We compared these schemes for different particle sizes, Reynolds numbers, and Stokes numbers. 

For all cases, the correction scheme was superior compared with trilinear and Lagrange-4 

schemes. Time-averaged steady state settling velocity error was at least one order of magnitude 

smaller for the correction scheme compared with the other schemes. In addition, the correction 

scheme was shown to significantly suppress the unphysical inter-grid and intra-grid oscillations 

compared with the interpolation schemes. The calculated drift velocity was small for all schemes 

except at small Stokes number where the interpolation schemes exhibited drift velocity error of 

𝑂(10%). Another important finding was that the trilinear scheme had lower error in settling 

velocity compared with the Lagrange-4 scheme. This is because the Lagrange-4 scheme provides 

a better estimate of the disturbed flow velocity at the particle, which is a worse estimate of the 

undisturbed fluid velocity. Further, the Lagrange-4 scheme has larger interpolation weights near 

the particle so that projection of the interpolated force tends to exacerbate the error. Therefore, 

an important finding is that higher order interpolation schemes will tend to perform worse than 

lower order interpolation schemes.  

 

 This work moves the point-particle method towards being a verifiable scheme. Accurate 

calculation of the Stokes drag means Lagrangian statistics including particle distribution and 

dispersion will be more accurate. We have demonstrated that interpolation-projection with un-

corrected schemes will under-predict the momentum exchange between particles and fluid in 

simulations of turbulent flows laden by particles. This is because un-corrected schemes use the 

difference between the disturbed and particle velocity as the slip velocity to calculate the Stokes 

drag force. This quantity will be less than if the correct slip velocity were used, namely the 

difference between the undisturbed velocity which is 𝑂(𝑢𝑟𝑚𝑠
′ ) and the particle velocity. This is a 

significant observation as it may elucidate why point-particle simulations of turbulence disagree 

with experimental efforts with regard to turbulence modification by particles. It is also worth 

further investigation to reveal how different numerical methods for point-particles influence the 

prediction of Eulerian and Lagrangian statistics in two-way coupled turbulent flows.  
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 The correction scheme presented here was developed strictly for momentum coupling in 

dilute particle-laden flows and is appropriate whenever the computational user can justify the 

Stokes drag should be the leading order contribution, (for instance, high density ratio, 𝑑𝑝/𝜂 < 1, 

𝑅𝑒𝑝 < 1, etc.). The scheme was implemented on a uniform staggered grid using a 2
nd

 order 

discretization. The method may be suitable for higher order discretization since the 𝐶 field was 

calculated via a thorough grid refinement study. Extensions to non-uniform grids as would be 

found in channel flows is straightforward, but will require some modification since the assumed 

symmetry in the C field is partially broken. (For non-uniform grids, eight coefficients instead of 

six would be necessary.)  
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 Appendix: Spline Interpolants for C-field 

 

The equation for the 𝑖𝑡ℎ 𝐶 coefficient, 𝐶𝑖, 𝑖: 1 → 6, in the 𝑗𝑡ℎ Λ interval, 𝑗: 1 → 5 is given in 

equation (A.1), constructed by a cubic spline approach: 

 

(𝐴. 1)                𝐶𝑖(Λ) = 𝐶𝑖𝑗4 + 𝐶𝑖𝑗3(Λ − Λ𝑜𝑗) + 𝐶𝑖𝑗2(Λ − Λ𝑜𝑗)
2
+ 𝐶𝑖𝑗1(Λ − Λ𝑜𝑗)

3
 

 

Here, Λ𝑗𝑜 is a virtual origin for the 𝑗𝑡ℎ Λ interval, viz. 

 

(A. 2)                                                      Λ𝑗𝑜 = [0.01, 0.05, 0.1, 0.25, 0.5] 

 

The 𝑗 Λ intervals are: 

 

(𝐴. 3)         ∆Λ𝑗 = {[0.01,0.05], [0.05,0.1], [0.1,0.25], [0.25,0.5], [0.5,1.0]} 

 

(A.1) represents a smooth interpolation of the 𝐶 field given in Table 2 and reproduced below in 

Table A.1. The 𝑘𝑡ℎ coefficient, 𝐶𝑖𝑗𝑘 for the 𝑖𝑡ℎ scalar value 𝐶𝑖, in the 𝑗𝑡ℎ ∆Λ interval are given in 

Tables A.2-A.7 below. 

 

 

 

 

 

Λ 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

1.0 0.248 0.312 0.340 0.440 0.681 0.518 

0.5 0.246 0.309 0.337 0.435 0.671 0.512 

0.25 0.242 0.303 0.329 0.422 0.644 0.493 

0.1 0.231 0.285 0.306 0.389 0.579 0.447 

0.05 0.218 0.267 0.282 0.356 0.522 0.403 

0.01 0.190 0.236 0.239 0.311 0.460 0.335 

Table A.1: 𝐶-field coefficients for different values of Λ 
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 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 24.7650593990219 -7.83056883298398 1.04859865828092 0.236000000000000 

𝑗 = 2 24.7650593990218 -4.85876170510134 0.541025436757512 0.267000000000000 

𝑗 = 3 2.25392033542974 -1.14400279524807 0.240887211740041 0.285000000000000 

𝑗 = 4 0.105738644304684 -0.129738644304684 0.0498259958071283 0.303000000000000 

𝑗 = 5 0.105738644304684 -0.0504346610761710 0.00478266946191452 0.309000000000000 

Table A.3: 𝐶2𝑗𝑘 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 36.3508036338224 -11.3367155835080 1.47030733752620 0.239000000000000 

𝑗 = 2 36.3508036338226 -6.97461914744934 0.737853948287911 0.282000000000000 

𝑗 = 3 3.04933612858142 -1.52199860237596 0.313023060796646 0.306000000000000 

𝑗 = 4 0.115130677847659 -0.149797344514326 0.0622536687631028 0.329000000000000 

𝑗 = 5 0.115130677847659 -0.0634493361285815 0.00894199860237598 0.337000000000000 

Table A.4: 𝐶3𝑗𝑘 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 18.4394129979040 -7.56379035639415 1.39804855345912 0.311000000000000 

𝑗 = 2 18.4394129979034 -5.35106079664568 0.881454507337526 0.356000000000000 

𝑗 = 3 5.47236897274636 -2.58514884696018 0.484644025157233 0.389000000000000 

𝑗 = 4 0.0665828092243163 -0.122582809224316 0.0784842767295594 0.422000000000000 

𝑗 = 5 0.0665828092243162 -0.0726457023060791 0.0296771488469605 0.435000000000000 

Table A.5: 𝐶4𝑗𝑘 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 -0.442208245981379 -4.49806848357797 1.73063027253669 0.460000000000000 

𝑗 = 2 -0.442208245981526 -4.55113347309576 1.36866219426974 0.522000000000000 

𝑗 = 3 9.58758909853245 -4.61746470999300 0.910232285115303 0.579000000000000 

𝑗 = 4 0.185716282320059 -0.303049615653393 0.172155136268345 0.644000000000000 

𝑗 = 5 0.185716282320059 -0.163762403913348 0.0554521313766593 0.671000000000000 

Table A.6: 𝐶5𝑗𝑘 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 43.5868623340319 -14.7774032145352 2.22135714884696 0.335000000000000 

𝑗 = 2 43.5868623340325 -9.54697973445148 1.24838183088749 0.403000000000000 

𝑗 = 3 6.10772886093639 -3.00895038434660 0.620585324947588 0.447000000000000 

𝑗 = 4 0.175139063591895 -0.260472396925228 0.130171907756814 0.493000000000000 

𝑗 = 5 0.175139063591894 -0.129118099231307 0.0327742837176799 0.512000000000000 

Table A.7: 𝐶6𝑗𝑘 

 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 
𝑗 = 1 29.7380852550663 -8.75483997204750 1.00261266247379 0.190000000000000 

𝑗 = 2 29.7380852550664 -5.18626974143956 0.444968273934312 0.218000000000000 

𝑗 = 3 1.45733053808526 -0.725556953179597 0.149376939203354 0.231000000000000 

𝑗 = 4 0.0537582110412291 -0.0697582110412291 0.0300796645702305 0.242000000000000 

𝑗 = 5 0.0537582110412291 -0.0294395527603073 0.00528022361984637 0.246000000000000 

Table A.2: 𝐶1𝑗𝑘 


