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Abstract

Particle-in-cell (PIC) plasma simulations are a productive and valued tool for
the study of nonlinear plasma phenomena, yet there are basic questions about
the simulation methods themselves that remain unanswered. Here we study one
such question: energy and momentum conservation by PIC. We employ both
analysis and simulations of one-dimensional, electrostatic plasmas to understand
why PIC simulations are either energy or momentum conserving but not both,
what the role of numerical stability is in non-conservation, and how do errors in
conservation scale with the numerical parameters. Conserving both momentum
and energy make it possible to model problems such as Jeans’ -type equilibria.
Avoiding numerical instability is useful, but so is being able to identify when
its effect on the results may be important. Designing simulations to achieve
the best possible accuracy with the least expenditure of effort requires results
on the scaling of error with the numerical parameters.. Our results identify
the central role of Gauss’ law in conservation of both momentum and energy,
and the significant differences in numerical stability and error scaling between
energy-conserving and momentum-conserving simulations.
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1. Introduction

Plasma simulations using particle-in-cell (PIC) methods [1, 2, 3, 4, 5] have
proven their value many times over. They have helped several generations of
plasma physicists understand fundamental phenomena, among them collision-
less shocks [6, 7, 8, 9], laser-plasma interactions [10, 11, 12, 13], and magnetic
reconnection [14, 15, 16, 17] in both the laboratory and in space plasmas.

Development of PIC simulation methods extends their range , improves their
accuracy, and adapts them to specialized applications. There are now many
different variants of PIC, including charge-conserving [18, 19] and implicit PIC
simulation algorithms [20, 21, 22, 23, 19, 24]. PIC simulations exist in many
specialized forms, but here we consider their common core in its simplest form
to understand errors in momentum and energy conservation .
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PIC methods were developed originally to model fluid flows in two dimensions[25,
26]. PIC plasma simulations and PIC fluid algorithms are similar in many ways.
However, where PIC fluid models conserve both momentum and energy, PIC
plasma simulations conserve either momentum or energy but not both. The er-
rors are not necessarily large, especially if numerical instability can be avoided,
but there are problems where non-conservation of momentum or energy can be
a problem. For example, kinetic equilibria based on Jeans’ theorem [27] require
accurate conservation of both momentum and energy.

The energy and momentum conservation properties of PIC simulations are
discussed in [2, 3], and a striking example of momentum non-conservation
is given in [28]. In [3][p252], errors in energy conservation in momentum-
conserving schemes and errors in momentum conservation in energy-conserving
schemes are attributed to the same cause, ’the nonconservative part of the force
due to undersampling’. In a more recent paper [24][p7041], errors in momen-
tum conservation are attributed to ’spurious self-forces arising from the non-
smoothness of the current deposition to the grid.’ Even an energy and charge-
conserving method does not enforce exact momentum conservation [19].

To understand why there are errors in conservation in PIC plasma simula-
tions, we consider simulations in their simplest form: one-dimensional, electro-
static simulations with periodic boundary conditions. This problem is simple
enough to analyze, and modest enough to explore error scaling with numerical
parameters yet complex enough to be relevant. We review the equations de-
scribing an electrostatic plasma, and identify what a numerical model must get
right if the energy and momentum are to be conserved. We compare results
for LEWIS, an energy-conserving method using point particles and a quadratic
variation of the potential; CIC, a standard momentum-conserving, cloud-in-cell
(CIC) algorithm; and CELESTE, a contemporary version of Lewis’ energy con-
serving method [29, 30, 24, 19, 31] that uses particle clouds as in CIC and a
linear potential variation. With all three methods, we compare the stability
of simulations with dispersion theory [32, 33], and examine the scaling of mo-
mentum and energy errors with the time step, grid spacing, and number of
particles.

Our principal results are:

• Momentum is conserved to round-off when Gauss’ law is satisfied at grid
points where the electric field is stored.

• Re-centering the electric field by averaging is essential to momentum con-
servation in CIC. Averaging has consequences:

– There is introduced an energy error that is independent of the time
step, ∆t.

– Cold beams are unstable at all speeds [45]. The instability is not
consistent with the dispersion theory for the finite grid instability
[32, 33].
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• The accuracy of energy-conserving methods is limited by the accuracy
of the solutions of the particle equations of motion and the interpolation
order.

In outline, the paper is organized as follows: In Model, the equations for an
electrostatic plasma and their conservation properties are discussed. In Algo-
rithms, three numerical algorithms, LEWIS, CIC and CELESTE are developed,
and their momentum conservation properties are discussed. In Analysis, the nu-
merical stability and errors in energy conservation are reviewed. In Numerical
Test Problems, the results of simulations for a cold electron beam, a warm sta-
tionary plasma, and a drifting warm plasma are used to develop scaling. In
Conclusions, we summarize the results.

2. The Equations for an Electrostatic Plasma in One Dimension and
Their Properties

We review the equations for an electrostatic plasma to remind ourselves
that conservation of charge, momentum and energy are fundamental properties
of their solutions.

The equations for an electrostatic plasma describe the motion of charged
particles in the electric field they induce. Each particle p has position, velocity,
and charge, xp, vp, and qp, and the electric field is derivable from a scalar
potential, E = −∇φ.

The charge density is,

Q(x) =
∑
p

qpδ(x− xp), (1)

where δ(x) is a Dirac delta function, and δ(x) = δ(x)δ(y)δ(z). We assume the
total charge within a volume changes only as a result of particles entering or
leaving the volume.

The equations of motion are derived in the classical way from Hamilton’s
principle for charged particles in an electrostatic field [43] [pp364-370], for which
the Lagrangian is,

L = F +K − Φ. (2)

The Lagrangian comprises the field,

F =
1

8π

∫
D

d3x∇φ2, (3a)

particle kinetic,

K =
∑
p

1

2
mpv

2
p, (3b)

and particle potential energies,

Φ =

∫
D

d3xQ(x)φ(x). (3c)
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The potential energy links the field and particle energies.
Variation of L with respect to the φ yields Poisson’s equation and Gauss’

law,
4πQ(x) = −∇2φ = ∇ ·E. (4)

Variation with respect to the particle position yields the particle equations
of motion,

mp
dvp

dt
= qpE(xp)

dxp

dt
= vp. (5)

2.1. momentum

The total particle momentum,

P ≡
∫
D

∑
p

mpvpδ(x− xp)dV,

changes only as a result of forces acting on the boundary ∂D. The time deriva-
tive of the total momentum,

∂P

∂t
=

∫
D

QEdV, (6)

is a conservation law because Gauss’ law, Eq. 4, is satisfied. With Gauss’ law,
the RHS is,

(∇ ·E)E = QE,

which for an electrostatic plasma where E× (∇×E) = 0 is the Maxwell stress
[34],

∇ ·
(
EE− I

E ·E
2

)
= (∇ ·E)E. (7)

(I is the unit tensor.) It is true even when ∇×E 6= 0 [34].
Combining Eqs. 6 and 7 shows the system momentum changes only as the

result of boundary contributions,

∂P

∂t
=

1

4π

∫
∂D

dS ·
(
EE− I

E ·E
2

)
. (8)

If the boundaries are periodic or n̂ · E = 0, the total particle momentum is a
constant of the motion.

The Maxwell stress for a vacuum electromagnetic field is derived in [34][pp86-
87]. For a magnetized plasma, Eq. 8 becomes,

∂P′

∂t
=

1

4π

∫
∂D

dS ·
(
EE + BB− I

E ·E + B ·B
2

)
,

where P′ = P+
∫
D

dV (E×B)/4πc. In this derivation, the solenoidality condition
for the magnetic field, ∇ ·B = 0, and Gauss’s law have similar roles [35].
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2.2. energy

Energy is conserved. Where E = K + F , changes in E are given by,

∂

∂t
(K + F) =

∫
D

E ·
(
J +

1

4π

∂E

∂t

)
dV,

with current density,

J =
∑
p

qpvpδ(x− xp).

Substitute −∇φ for E, and and integrate by parts to derive,

−
∫
D

φ∇ ·
(
J +

1

4π

∂E

∂t

)
dV = −

∫
∂D

dS ·
(
J +

1

4π

∂E

∂t

)
φ. (9)

In this form the RHS is the boundary contribution.
Consider a periodic domain, for which the RHS vanishes. Unless φ is equal

to zero everywhere, energy is conserved because charge is conserved ,

0 = ∇ · J + ∂Q/∂t, (10)

and charge conservation enters because the divergence term on the LHS of Eq.
9 is the time derivative of Gauss’ law, Eq. 4, which is always satisfied.

To point out the obvious, the negative of this proposition is also true. If the
charge continuity equation were not satisfied, energy would not be conserved.

3. Electrostatic Particle-in-Cell (PIC) Algorithms in One Dimension

The original particle-in-cell (PIC) method models hydrodynamic flow by
the motion of Lagrangian particles through a stationary grid in a single-valued,
continuous flow velocity [25, 36, 26, 37] . The particle motion is computed by
area-weighting the velocities at nodes of the grid [25], and solutions conserve
both momentum and energy. Accuracy is compromised by a ’ringing instability’
that causes diffusion, especially in stagnation regions [36, 38]. Newer versions
of PIC reduce or eliminate the instability with smoother interpolation [39].

PIC plasma simulation models collision-less plasmas, for which the electric
and magnetic fields are continuous but velocities are not [2]. Plasma motion
is modeled by the motion of computational particles through a stationary grid
on which continuous electric and magnetic fields are computed. The particle
motion is computed by area-weighting the fields at nodes of the grid. PIC
simulations presently conserve either momentum or energy. Simulation has
solved many fundamental plasma problems, but its accuracy is compromised by
a finite-grid-instability (FGI) that causes diffusion and heating [32, 33].

Here we study the properties of 3 PIC simulation methods; the cloud-in-cell
method (CIC) [2], Lewis’ point-particle energy-conserving method (LEWIS)
]citeLewis1970, and a cloud-in-cell method that is also energy-conserving (CE-
LESTE) [29]. We limit our study to an electrostatic plasma in one dimension
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on a periodic domain x ∈ [0, L]. The domain is divided into N cells with
width ∆x. The values of the electric field, Ev, are calculated at cell vertices,
xv : v ∈ [1, N + 1], from a potential, φc, at cell centers xc = 1/2(xv+1 +xv). All
the algorithms execute the same sequence of steps to solve initial value problems.

• A charge density is computed at grid points. (Sec. 3.1 )

• A finite-difference approximation to Poisson’s equation is solved to com-
pute the electric field. ( Sec. 3.2)

• The electric field is interpolated from the grid to the particles. (Sec 3.3)

• Particle equations of motion are solved using leapfrog time-stepping. (Sec.
3.4)

The three methods transform the equations of motion for an electrostatic plasma
into a PIC formulation differently, but all use the special properties of the b-
spline, which are described in many references, among them [40, 41]. In Ap-
pendix we list relevant properties b-splines for our comparison of PIC simulation
methods.

3.1. Charge assignment

The cloud-in-cell (CIC) method [2] substitutes ’clouds’ for the point par-
ticles in Section 2. The clouds move with unchanging shape and size at their
center-of-mass velocity. Mathematically, a nearest-grid-point (NGP) b-spline
replaces Dirac delta functions, and the charge density, Eq. 1, is replaced by,

Q(x) =
∑
p

qpS(0)(x− xp) (11)

The CIC charge is assigned in proportion to the overlap of cloud and cell,

Q(1)
c =

∑
p

qp

∫
dxS(0)(x− xp)S(0)(x− xc). (12)

We recognize this as the convolution that defines S(1), Eq. 70, and the assign-
ment in Eq. 12 uses a linear b-spline with l = 1.

Lewis’ PIC method [42], which we will call LEWIS, follows the motion of
point particles in a potential whose values at a finite number of grid points
are the unknowns, and φ(x) is given an expansion in b-splines,

φ(x) =
∑
c

φcS(l)(x− xc), (13)

where φc is the value of the potential at cell centers. With the charge density
for point particles, Eq. 1, the particle potential energy, Eq. 3c is then given by,

Φ =

∫
dx
∑
p

δ(x− xp)
∑
c

φcS(l)(x− xc), (14)
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or
Φ =

∑
c

Q(l)
c φc∆x, (15)

where Q
(l)
c is the LEWIS charge density in cell c,

Q(l)
c =

∑
p

qpS(l)(xc − xp) (16)

CELESTE follows the motion of clouds in a potential given by Eq. 13 with
l = 1. The particle potential energy, Eq. 3c, becomes,

Φ =

∫
dx
∑
p

S(0)(x− xp)
∑
c

φcS(1)(x− xc). (17)

The convolution results in a particle potential energy,

Φ =
∑
c

Q(2)
c φc, (18)

where Q
(2)
c , the CELESTE charge density in cell c, is given by Eq. 16 with

l = 2.

3.2. Poisson’s equation

In CIC, the values of the potential at cell centers are obtained by solving a
finite difference approximation to Poisson’s equation,

4πQ(1)
c = −φc+1 − 2φc + φc−1

∆x2
. (19)

With a vertex electric field defined by,

Ev ≡ −
φc − φc−1)

∆x
, (20)

Gauss’ law for CIC is,

4πQ(1)
c =

Ev+1 − Ev

∆x
. (21)

In LEWIS, Hamilton’s principle [43] is used to derive an equation for the
potential. The field energy, Eq. 3a, becomes,

F =
1

8π

∑
c,c′

(
φc − φc−1

∆x

)(
φc′ − φc′−1

∆x

)
S(l)cc′∆x, (22)

The ’mass matrix’ in Eq. 22 is,

S(l)cc′∆x =

∫ L

0

dxS(l−1)(x− xc)S(l−1)(x− xc′). (23)
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The Euler-Lagrange equation for the potential is obtained by varying the particle
potential energy, Eq. 15 and field energy, Eq. 22, with respect to φc. The result
is the LEWIS version of Poisson’s equation,

4πQ(l)
c = −

∑
c′

φc′+1 − 2φc′ + φc′−1
∆x2

S(l)cc′ . (24)

A ’sharpened’ density, given by the solution of,∑
c′

Q̂
(l)
c S(l)cc′ = Ql)

c , (25)

puts Poisson’s equation in a form that can be solved by standard methods,

4πQ̂
(l)
c = −φc+1 − 2φc + φc−1

∆x2
. (26)

With Ev defined by Eq. 20 Gauss’ law is,

4πQ̂
(l)
c =

Ev+1 − Ev

∆x
. (27)

For l = 1, the mass-matrix reduces to a Kronecker δ, S(1)cc′ = δc,c′ , Q̂
(1)
c =

Q
(1)
c , and Poisson’s equation for LEWIS (and CIC) are given by Eq. 19. For

l = 2, S(2)cc′ = S(3)(xc − xc′) [28], and the sharpened density is given by solving,

1/6Q̂c+1 + 2/3Q̂c + 1/6Q̂c−1 = Q(2)
c .

For CELESTE, the field energy is given by Eq. 22 with l = 1 and the
particle potential energy by Eq. 18. Variation with respect to φc yields Poisson’s

equation with charge density Q
(2)
c and no mass matrix,

4πQ(2)
c = −φc+1 − 2φc + φc−1

∆x2
. (28)

Gauss’ law for CELESTE is

4πQ(2)
c =

Ev+1 − Ev

∆x
. (29)

3.3. Electric field interpolation

CIC assigns the electric field to the particle positions using area-weighting,

E(xp) =

∫
dx
∑
c

EcS(0)(x− xc)S(0)(x− xp), (30)

the convolution of a piecewise constant electric field and a cloud. Thus, the CIC
electric field is an expansion in a linear b-splines,

E(xp) =
∑
c

EcS(1)(xp − xc). (31)
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The cell-centered field, Ec, is computed by averaging Ev ,

Ec = 1/2 (Ev+1 + Ev) . (32)

For LEWIS (and CELESTE) recall that S is differentiable, the electric field
is computed analytically, E = −∂φ/∂x, and xc = xv + ∆x/2 to derive,

E(x) = −∂φ
∂x

=
∑
v

EvS(l−1)(x− xv), (33)

With l = 1, the electric field is piecewise constant. That means that with
LEWIS’ point particles, the electric field is assigned to particles using a nearest
grid point function,

E(xp) =
∑
v

EvS(0)(xp − xv). (34)

but with CELESTE as in CIC, the force on a particle is the convolution two
nearest-grid-point functions and the electric field is an expansion in linear b-
splines,

E(xp) =
∑
v

EvS(1)(xp − xv). (35)

This is also the expansion for LEWIS with l = 2.
Results for LEWIS with l = 1, with the electric field given by Eq. 34 are

described as noisy in [44, 28]. Therefore we include only LEWIS with l = 2 in
the comparisons between CIC, CELESTE, and LEWIS that follow.

3.4. Particle equations of motion

The variation of the particle kinetic and potential energies yields the particle
equations of motion. The particle kinetic energy, Eq. 3b, is,

K =
∑
p

1

2
mpv

2
p, (36)

and the particle equations of motion with leapfrog differencing are,

v
n+1/2
p − vn−1/2p

∆t
= qpE(xnp ), (37a)

xn+1
p − xnp

∆t
= vn+1/2

p . (37b)

The particle electric fields are interpolated using a linear b-spline for CIC,
LEWIS and CELESTE. However, the CIC electric field is given by Eq. 32 and
the CELESTE and LEWIS field by Eq. 20.
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3.5. momentum conservation

Following the steps in the discussion of momentum conservation, it becomes
obvious that LEWIS and CELESTE are not momentum conservative. The
change in total particle momentum each time step is,

∆P =
∑
p

qpE(xnp )∆t. (38)

With the electric field given by Eq. 35 , the RHS of Eq. 38 becomes,∑
v

Q(1)
v Ev∆x∆t =

∑
p

qpE(xp)∆t. (39)

The charge density, Q
(1)
v =

∑
p qpS(1)(xv − xp), is not the same as the charge

density in Gauss’ law, Q̂
(2)
c , Eq. 27, or Q(2) in Eq. 29, the RHS in Eq. 39

cannot be written in the conservation form given in Eq. 8, and momentum is

not conserved unless Q
(1)
v = 0 for every v.

CIC conserves momentum. With a cell-centered electric field, Eq. 31, the
RHS of Eq. 38 becomes,∑

c

Q(1)
c Ec∆x∆t =

∑
p

qpE(xnp )∆t, (40)

the charge density is the same as in Gauss’ law, Eq. 21, and

1

8π

∑
c

(E2
v+1 − E2

v) =
∑
c

Q(1)
c Ec (41)

is a collapsing sum that is zero for periodic boundary conditions, and a function
only of the boundary conditions on the electric field otherwise.

4. Analysis

4.1. finite-grid-instability

The finite grid instability in PIC plasma simulations of a cold, drifting
plasma [32, 33] and the ringing instability in PIC fluid modeling [36] are both
caused by aliasing and have similar properties [38]. Because there are many
more particles than grid points, there is a degeneracy that causes numerical
instability.

The general form of the linear dispersion with alias contributions is [45],

0 = 1−
ω2
p

K2(k)

∑
q

kqκ(kq)Sl+1
k (kq∆x/2)

(ω − kqU0)2
, (42)

where

Sk(ky) =

(
sin(ky)

ky

)
,
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and −π/∆x ≤ k ≤ π/∆x, kg ≡ 2π/∆x, and kq = k− qkg, q = 0,±1,±2,±3, ...,
. K(k) is the Fourier transform of the finite-difference Laplace operator, κ(kq)
is the Fourier transform of the finite-difference gradient operator, and Sl+1

k is

the Fourier transform of S(l) in Q
(l)
c . The solutions, in the form of complex ω,

are the roots of the dispersion relation.
For CIC, K(k) = k2S2k(k∆x/2), κ(kq) = kqSk(kq∆x), and charge is assigned

with a linear b-spline, l = 1. Eq. 42 reduces to,

0 = 1− ω2
p

∑
q

Sk(kq∆x)

(ω − kqU0)2
. (43)

For LEWIS with l = 2, K(k) = k2S6k(k∆x/2), κ(kq) = kqSk(kq∆x/2), and the
charge is assigned with a quadratic b-spline. Eq. 42 reduces to,

0 = 1−
ω2
p

S4k(k∆x/2)

∑
q

S2k(kq∆x/2)

(ω − kqU0)2
. (44)

For CELESTE K(k) = k2S2k(k∆x/2), κ(kq) = kqSk(kq∆x/2), and the charge
is assigned with a quadratic b-spline. Eq. 42 reduces to,

0 = 1− ω2
p

∑
q

S2k(kq∆x/2)

(ω − kqU0)2
. (45)

The finite grid instability growth rate does not depend on the number of
particles per cell or the time step.

The variation of the theoretical growth rate, γ, with k∆x/2 and beam ’Debye
length’, B = U0/ωp∆x, [45], is shown for CIC, LEWIS and CELESTE in Figs.
1 (a),(b), and (c). Black shading corresponds to γ = 0, and the white to the
highest values of γ. In general, high beam speeds or small values of ∆x yield
stability. CIC, LEWIS, and CELESTE are stable for B > 0.25, 0.4, and 0.2
respectively. The separate contributions of the aliases included in the sums in
Eqs. 43 - 45 determine the number of ridges. From left to right, each higher
value of q corresponds to a ridge with lower height and a smaller cutoff.

CIC is stable to the FGI for all values of B when k = ±π/∆x as a con-
sequence of the averaging that defines Ec. The averaging replaces kq∆x/2 by
kq∆x in Eq. 43. Because Sk(kq∆x) = 0 for k = π/∆x and all q, Eq. 43 has
solutions with real values of ω only. Both LEWIS and CELESTE, Figs. 1(b)
and (c), are unstable to the FGI for B small enough and k = ±π/∆x.

The maximum growth rate is smallest for CELESTE, γmax = 0.2ωpe, and
largest for LEWIS, γmax = 0.4ωpe. The only difference between LEWIS and
CELESTE is the contribution of the mass matrix. The modest smoothing prop-
erties of the quadratic b-spline in the charge density calculation in LEWIS and
CELESTE are overwhelmed in LEWIS by the anti-smoothing contributed by
the mass matrix.
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(a)

(b)

(c)

Figure 1: The FGI γ is plotted for CIC in (a), for LEWIS in (b), and for CELESTE in (c) as
a function of k and B for a cold, drifting plasma. From left to right, each ridge corresponds
to aliases 1 through 5 of the principal wave number. In (a), the growth rate is zero for all k
when B > 0.25, and for all B when k = π/∆x. In (b), γ is zero for all k when B > 0.4. In
(c), γ is zero for all k when B > 0.2
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4.2. Estimated error in CELESTE momentum conservation

It is shown in Section 3.5 that CIC conserves momentum but CELESTE
and LEWIS do not because Gauss’ law is not satisfied by Q

(1)
v in the total

momentum equation. For CELESTE, a charge density at vertex v computed by

averaging Q
(2))
c , Q̃v = 1/2(Q

(2)
c + Q

(2)
c−1) satisfies an averaged Gauss’ law, Eq.

29,
Q̃v = (Ev+1 − Ev−1)/2∆x.

and the RHS of Eq. 38 is,

1/2
∑
v

(Ev+1 − Ev−1)Ev =
∑
v

Q̃vEv∆x,

which is zero for periodic boundary conditions and a function of the boundary
values otherwise. Any error in momentum conservation is proportional to the

difference between Q
(1)
v and Q̃v. Since both are computed from the same particle

data but use b-splines differently, the analysis to obtain an error estimate is
simple. First, the average S(l) used in in Q̃v is given by,

1

2

(
S(l)(xc − xp) + S(l)(xc−1 − xp)

)
=

1

2

∫
dxS(l−1)(x− xv)S(0)(x− xv; 2∆x),

the average of S(l) at adjacent cell centers is equal to the convolution of S(l−1)
with an S(0) with support 2∆x. Thus, where qk ≡

∑
p qp exp(ikxp), the Fourier

transform of the error is,

(εQ)k = qkSlk
(
sin(k∆x)

k∆x
− 1

)
. (46)

For small |k∆x|, the error scales as ∆x2, but for modes with k∆x → ±π, the
error in the charge is as large as (Qv)k = qkSlk. Any application with deviations
from charge neutrality at small scales sufficient to cause particle trapping may
have significant errors in momentum conservation.

4.3. Energy conservation

Here we consider sources of error in energy conservation in the CELESTE
and CIC algorithms following the analysis for the implicit moment method in
[22, 29]. (An analysis of LEWIS gives similar results to CELESTE.) In Section
2.2, it is shown that energy conservation means that the numerical value of the
sum of kinetic and field energies, K+F , is constant. Any change is due to error
if, as we assume, periodic boundary conditions apply.

The change in the particle kinetic energy in a time step, WK, is the product
of the electric field and the particle current. For CELESTE,

WK =
∑
v

1

2
(Jn+1/2

v +
̂

J
n−1/2
v )En

v ∆t, (47)
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where the particle currents are,

Jn+1/2
v =

∑
p

qpv
n+1/2
p S(1)(xv − xnp ) (48)

and ̂
J
n−1/2
v =

∑
p

qpv
n−1/2
p S(1)(xv − xnp ). (49)

The second particle current , when expanded about position, xn−1p , becomes

̂
J
n−1/2
v = Jn−1/2

v −
(Π

n+1/2
c −Π

n+1/2
c−1 )∆t

∆x
+ .... (50)

where the pressure, Πc, is

Πc =
∑
p

qpv
n+1/2
p vn+1/2

p S(0)(xc − xnp ). (51)

The expansion ends with S(0).
The changes in particle potential and field energies are equal,∑

c

(
Qn+1

c φn+1
c −Qn

c φ
n
c

)
∆x =

1

2

∑
v

(En+1
v )2 − (En

v )2, (52)

from which it follows that∑
c

(
Qn+1

c −Qn
c

) 1

2

(
φn+1
c + φnc

)
=
∑
c

Qn+1
c φn+1

c −Qn
c φ

n
c . (53)

The particles move and the charge density, Eq. 16, changes from one time step
to the next,

Q(l)n+1
c −Q(l)n

c =
∑
p

qp

(
S(l)(xn+1

p − xc)− S(l)(xnp − xc)
)
. (54)

For CELESTE with l = 2, expand S(2) about xnp to derive,

Qn+1
c −Qn

c = −
(
˜

J
n+1/2
v+1 − ˜

J
n+1/2
v )∆t

∆x
+O((vp∆t/∆x)3, (55)

where J̃ includes contributions from the pressure,

˜
J
n+1/2
v ≡ Jn+1/2

v −

(
Π

n+1/2
c −Π

n+1/2
c−1

)
∆t

2∆x
. (56)

The expansion is valid only while a particles remain within the support of S(2)
[46]. (This limit is overcome in [19], where particle orbits are computed in
segments bounded by cell boundaries. Energy is conserved even for vp∆t > ∆x.)
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Summation by parts yields the change in field energy, which, except for the
first and last time steps, can be written.

WF = −
∑
v

1

2
En

v

( ˜
J
n+1/2
v +

˜
J
n−1/2
v

)
∆t. (57)

Combining the kinetic and field energy changes gives us the energy error, ∆E =
WK +WF , per time step for CELESTE,

∆E =
∑
v

En
v

(
1

2
(Jn+1/2

v +
̂

J
n−1/2
v )− 1

2
(
˜

J
n+1/2
v +

˜
J
n−1/2
v )

)
∆t+O(vp∆t)3.

(58)
The surprising result is that the pressure terms cancel and the error in CE-
LESTE energy is O((vp∆t)3, and the error scaling is given by,

∆E ≈ β′(vp∆t/∆x)3. (59)

For CIC, WK with Ec = 1/2(Ev+1 + Ev) interpolated to the particles is,

WK =
∑
c

1

2
(Jn+1/2

c +
̂

J
n−1/2
c )

1

2
(En

v+1 + En
v )∆t, (60)

where
Jn+1/2
c =

∑
p

qpv
n+1/2
p S(1)(xc − xnp ),

and ̂
J
n−1/2
c =

∑
p

qpv
n−1/2
p S(1)(xc − xnp ).

When WK is re-summed over v, it can be compared with CELESTE, Eq. 57,

WK =
∑
v

1

2

(〈
Jn+1/2
v

〉
+

〈 ̂
J
n−1/2
v

〉)
En

v ∆t, (61)

where,

〈Jv〉 =
1

2
(Jc + Jc−1) . (62)

The charge continuity equation for CIC,

Qn+1
c −Qn

c = −
(J0

n+1/2
v+1 − J0

n+1/2
v )∆t

∆x
+O((vp∆t/∆x)2, (63)

where
J0n+1/2

v =
∑
p

qpv
n+1/2
p S(0)(xv − xnp ),

contains no pressure contribution because the expansion ends with S(0).
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〈Jv〉 and J0v are not equal in the CIC error estimate,

∆E =
∑
v

En
v

[
1

2

(〈
Jn+1/2
v

〉
+
〈
Jn−1/2
v

〉)
− 1

2
(J0n+1/2

v + J0n−1/2v

]
∆t, (64)

because of averaging and the absence of a pressure contribution in the charge
continuity equation, so the error is different for CIC and CELESTE. To estimate
the error due to averaging, we use the Fourier transform of the term in brackets,

Jk = jkSk
(
sin(k∆x)

k∆x
− 1

)
≈ −jkSk

(k∆x)2

6
,

where jk =
∑

p exp(−ikxp)qpvp. The error scaling for CIC is approximated by,

∆E ≈ α∆x2 + β(vp∆t/∆x)2, (65)

where the undetermined constants α and β multiply the error contributed by
averaging and by the charge continuity equation without pressure respectively.

5. Numerical Test Problems

The numerical parameters one can vary are the number of simulation par-
ticles, Np, the time step, ∆t, and the grid resolution, ∆x. The numerical and
physical parameters can be linked by the ratio of the Debye length to the cell
size,

D = λD/∆x, (66)

the time step in units of inverse plasma frequency,

∆T = ωpe∆t, (67)

and the number of cells a particle travels at the thermal speed in a time step,

C = D∆T = vte∆t/∆x. (68)

When the dimensionless parameters, D,∆T, and C have a nominal value of 1,
then ∆x and ∆t resolve λD, ωpe, and the particle motion. This is essentially the
guidance given to users for the choice of numerical parameters in [2]. In addition,
it is remarked that the number of simulation particles per Debye length,

ND = NpλD/L,

should be significantly larger than 1 to control numerical fluctuations in charge
[2].

The total energy and momentum, E and P, are constants of the motion
for all the problems we consider. Any changes in these over time are due to
numerical error. We define an energy error, ε, as the per cent change in the
energy from T = 0 to T = Tfinal,

ε ≡ 100× E(Tfinal)− E(0)

E(0)
.
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5.1. Buneman instability

The Buneman instability describes the interaction of drifting electrons with
initially stationary ions that results in exponential growth of an electrostatic
potential. The potential traps thermalize the electrons and transfers their mo-
mentum to the ions. CELESTE and CIC simulations of the Buneman instability
agree with each other and with theory. The numerical parameters are such that
for both CELESTE and CIC errors in the conservation of momentum and energy
are small.

The case considered in [47] is reproduced here. With a periodic domain,
L = c/ωpe, (just one electron collisionless skin depth) electrons with drift speed
Ue = 0.159c and thermal speed, vte = 0.02c stream through stationary ions with
vti = 0.001c. The mass ratio, mi/me = 100.

Excellent energy and momentum conservation is realized by both CIC and
CELESTE simulations on a computational grid with 128 cells and 500 simu-
lation particles of each species in each cell to model the plasma. With these
parameters, ND = 64000 and D = 20. The simulations are advanced with
constant time step ∆T = 0.25 using an explicit leapfrog algorithm. The CIC
results are reported in [47]. The CELESTE results are given here.

The exponential growth of the field energy, Fig. 2(a), is terminated by
particle trapping and followed by persistent ion acoustic oscillations, Total mo-
mentum is conserved, but particle trapping causes a transfer of momentum from
the drifting electrons to the initially stationary ions, Fig. 2(b). The trapping
time is short compared with the time required for the field energy to grow. The
gain in field energy is balanced by a loss in kinetic energy, Fig 2(c). Errors in
the total energy are less than 1% for CELESTE, Fig. 2 (d).

5.2. Cold drifting plasma

Different results from those in [47] are described by Okuda [44] and Langdon
[28] for a cold beam, vte = 0.0, U0 = 0.16c, and stationary ions. Simulations
with several algorithms, including CIC and LEWIS with l = 1, are performed
on a computational grid with 64 cells, domain x ∈ [0, 64c/ωpe], and 16 particles
per cell to represent the electrons. The ions are stationary, me/mi = 0, and
there is no Buneman instability because the instability growth rate scales as
(me/mi)

1/4. There is, instead, an FGI, Section 4.1. The ratio of the Debye
length to the grid spacing is D = 0.16, compared with D = 20 in [47].

First, we compare the electrostatic energy growth computed by CIC, LEWIS
(with l = 2), and CELESTE, Fig. 5. The instability grows from round-off
after a brief latent period. CELESTE and CIC have similar growth rates, but
LEWIS is higher. The linear growth rate for CIC, LEWIS, and CELESTE is
γ/ωpe = 0.105, 0.2, and 0.075 respectively. The peak CIC value of E2 is more
than 400% and LEWIS is 85% that for CELESTE.

Next, we compare momentum, which is conserved by CIC but not by CE-
LESTE or LEWIS, Fig. 4. The upper curve at a constant value of 10 is the
result from a CIC simulation. The two lower curves are the result of CELESTE
and LEWIS simulations, in which nearly all the initial electron momentum is
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(a) (b)

(c) (d)

Figure 2: Results are shown from an energy-conserving simulation of the Buneman instability
with mi/me = 0.01, D = 2.56, and B = 20.35: (a) The electric field energy’s unstable growth
saturates due to particle trapping. (b) Momentum is exchanged between electrons and ions
while total momentum is constant. (c) The maximum in field energy and the minimum in
kinetic energy at T = 70 add to give constant total energy. (d)
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Figure 3: F

rom left to right (largest to smallest FGI γ for a cold beam),F , is plotted for
LEWIS, CIC and CELESTE.

lost just as the growth of the field energy saturates. Particle trapping causes
saturation of the FGI earlier in LEWIS than in CELESTE, but the loss of
electron momentum with LEWIS is slightly less. Like the Buneman instability
[47], the rapid loss is caused by electron trapping in short wavelength potential
wells. Unlike [47], the instability is numerical and momentum is lost to the
computation grid.

Energy is conserved by LEWIS and CELESTE, Figs. 5(a) and (b) but not
by CIC, Fig. 6, for which energy increases by more than 100% by T = 500.
The potential energy is constant after saturation, and the drift energy is small.
Electron heating accounts for almost all the increase in energy with CIC.

The value of γ for CIC and CELESTE from theory and numerical simulations
is compared in Fig. 7. A theoretical growth rate is plotted for k = π/2∆x, which
corresponds approximately to the position of the maximum growth rate. The γ
from numerical results is the measured growth rate of the electrostatic energy.

Where the CIC dispersion theory predicts stability for B > 0.25, the numer-
ical results exhibit instability, Fig. 7(a). In fact, for all B > 0.25 the numerical
results for CIC are unstable with constant growth rate, γ ≈ 0.2, independent of
B and not much less than its maximum value. Similar results are described in
[45].

By contrast, the CELESTE compare well with dispersion theory in Fig. 7(b).
The numerical simulations are stable for B > 0.2 and the maximum growth rate
is γ ≈ 0.2 as theory predicts, However, the separate contributions of the aliases
are not visible in the simulation results.
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Figure 4: The momentum is constant in CIC simulations of a cold beam (upper curve), but
CELESTE and LEWIS simulations, electron momentum is lost due trapping in potential wells
created by the FGI. Trapping occurs earlier with LEWIS but the momentum loss is larger
with CELESTE.

(a) (b)

Figure 5: For both LEWIS (a) CELESTE (b), variation in E (upper curve) is smaller than
changes in F (lower curve) and mathcalK (middle curve).
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Figure 6: The CIC E (upper curve) increases by 40 % due to the growth in F , bottom curve.
Subsequently, increases in K (middle curve) reflect heating.

(a) (b)

Figure 7: The theoretical growth rates for the FGI are compared with numerical results ( �’s);
in (a) for CIC and in (b) for CELESTE.
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Figure 8: For B > 0.2, electrons lose no momentum in CELESTE simulations of a cold beam.

Errors in momentum conservation from cold beam simulations with CE-
LESTE are shown in Fig. 8 for 0.02 ≤ B ≤ 0.32. For 0.02 < B < 0.2 a cold
beam loses almost all momentum by T = 500 . For B > 0.2, a cold beam loses
none of its momentum even when the simulation is continued to T = 10000.
For values of B for which there is instability, Fig.7( b), there is momentum loss.
Where there is no instability, there is no momentum loss. In practical terms, if
∆x is sufficiently small that B = λDebye/∆x > 0.2 , CELESTE simulations of
a cold beam conserve both momentum and energy.

The CIC simulation results in Fig. 9 characterize an instability that is not
predicted by the dispersion theory. Shown are electric field energy histories for
a cold, drifting plasma for a sequence of values of B. In Fig. 9 (a), B is varied
while C = 0.08 is fixed. That is, ∆x is varied but U = 0.16 and ∆T/∆x = 0.5
are held fixed. The values of B are:

B = [0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48]. (69)

All the histories unfold similarly in 3 phases: In the first phase, there is expo-
nential growth of the field energy. The growth rate is, as advertised, the same
for all the values of B. In the second phase some process, most likely particle
trapping, ends growth. Finally, in the third phase the field energy is in steady
state. The histories are ordered from top to bottom in increasing B. Each curve
corresponds to a simulation with double the value of B and 1/4 the value of the
field energy relative to the total energy for the curve above it. Since the total
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(a) (b)

Figure 9: F from CIC simulations of a cold, drifting plasma with constant C = 0.08 and
B from Eq. 69 are compared. (a) γ = 0.2ωpe for all values of B, but the saturation energy
varies as 1/B2 (b) F at T = 500 with C = 0.08, 2’s, is compared with the energy error, �’s,
and f(B) = 1/B2 for reference.

energy is constant, the value of the energy at saturation varies as 1/B2. In Fig.
9 (b), we compare the field energy at saturation with the total energy error for
C = 0.8 and B from Eq. 69. Both the field energy, 2’s, and energy error, �’s,
vary as 1/B2 . In fact, except for the point corresponding to B = 0.16, which
is unstable to the FGI, the ratio of the field energy to the total energy error is
nearly constant. For example, the ratio of the field energy to the energy error
for B = 2.56 is 0.86, and for B = 20.48 is 0.87. Plasma heating makes a small
contribution to the error, and it also varies as 1/B2.

In Fig 10 the results show that the energy error converges to 0 as 1/B2 → 0.
Three sequences of simulations are compared with each other and with the
straight line 1/B2. In the first sequence (2’s), C = 0.08 and B is from Eq.
69. As in Fig. 9 , U = 0.16 and ∆T/∆x = 0.5. The error varies as 1/B2. In
the second sequence (4’s), B is again given by Eq. 69 but C = B∆T . In this
sequence, U = 0.16 as before but ∆T = 0.5 and ∆x is varied. The error still
varies as 1/B2. In the third sequence (∗’s) ∆x = c/ωpe, ∆T = 0.5 and U is
varied. In this sequence, the absolute error is constant but the relative error
varies as 1/B2 because the total energy varies as B2.

The scaling of errors in energy conservation is explained by the re-centering
of the electric field, Eq. 32. Namely, only error terms that come from replacing
Ev by Ec = 1/2((Ev+1+Ev) in the CIC particle momentum equation contribute.
Other error terms that depend on ∆T , are absent because they are proportional
to the pressure, Eq 51, which is vanishingly small for a cold beam.

5.3. Warm, stationary plasma

We repeat portions of Okuda’s study in one dimension [44], and compare the
energy and momentum errors for CIC with those for CELESTE. (This is the only
case we have found for the growth of the FGI in a Maxwellian plasma.) A warm,
stationary plasma is simulated on a periodic domain with length L = 8c/ωpe

with fixed ions. The initial particle velocities are sampled from a Maxwellian
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Figure 10: ε from CIC simulations of a cold, drifting plasma scales as 1/B2 no matter how the
numerical parameters are varied. B is varied: by varying ∆x and ∆T with ∆T/∆x constant
(2’s); by varying ∆x with constant ∆T (4’s); by varying U with constant ∆x and ∆T (∗’s,).
The straight line ε = 1/B2 is included for reference.

distribution. The numerical parameters are D = 0.10, B = 0.0, C = 0.0125,
and ND = 30. Okuda’s simulations with CIC end at T = 40 [44]. Ours end at
T = 1000, much longer but still a short time compared with current practice.
In Figure 11(a), the growth of the electric field energy with CIC (upper curve)
is compared with the functions f1 = 0.0002 × exp(0.013T ) corresponding to
mode 2 with k∆x = π/2 and f2 = 0.004× exp(0.001T ) corresponding to mode
4 with k∆x = π/4 [32], and with the much smaller and more slowly growing
CELESTE electric field energy (lower curve). The faster growing mode saturates
at T ≈ 250; the more slowly growing mode has not saturated by T = 1000. As
Okuda remarked [44], even when a numerical instability grows slowly, it can
result in significant heating over longer periods, Figure 11(b). With CELESTE,
there is no heating in this case.

When D = 0.16, a case that Hockney studied [46], the FGI growth rate
from theory is much smaller than with D = 0.1. With D = 0.16, B = 0,
∆T = 0.5, C = 0.08, and ND = 20 the FGI seems to be much weaker. In
Figure 13, the values of ε computed by CIC and by CELESTE are compared
for C/D = ∆T = 0.125. For C > 0.64, CIC error varies as C3. For all C,
CELESTE error varies as C3. It is often stated that CELESTE, and energy-
conserving methods in general, conserve energy exactly only when ∆T → 0,
but it should be noted the errors are small compared with those for CIC when
C < 0.3.

The scaling of the energy error, or heating in this case, with ND is shown
in Figure 14 for both CIC and CELESTE. For all values of ND, D = 0.16,
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(a) (b)

Figure 11: F in a stationary, Maxwellian plasma is shown in (a) for CIC (upper curve) and
for CELESTE (lower curve). The straight lines are the FGI growth rates for modes 2 and 4.
ε for CIC is shown in (b).

(a) (b)

Figure 12: In (a) with CIC), ε depends on ∆x but not ∆T for values of D corresponding to
the minimum error and below. There ε scales as 1/∆x2. The 3 time steps for which data is
plotted are ∆T = 0.5 (2), 0.25 ( 4), and 0.125 (∗).In (b), data from (a), are replotted against
C. ε is smallest when C ≈ 0.64. Hockney [46] notes that for C = 1, 60% of the particles cross
cell boundaries each time step.
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Figure 13: ε for CELESTE (4) and CIC (2) in simulations of a warm, stationary plasma
are compared for C/D = ∆T = 0.125. For C > 1, the CELESTE ε ( 4) is twice that for CIC
(2). The CIC ε varies approximately as 1/C2 for C < 0.64, and as C3 for C > 0.64. The
CELESTE error varies as C3 for all C.

∆T = 0.5 and C = 0.08. For CIC in Figure 14, the heating decreases from
5000% of the initial energy with ND = 1 to 1% with ND = 5120, and varies
linearly with 1/ND in between. For CELESTE, the heating also varies as 1/ND

(lower curve in Figure 14 with open squares), but for all values of ND, the
heating for CELESTE is several thousand times smaller than for CIC.

For an equilibrium plasma, the momentum errors are discussed in [46][pp252-
253]. A random walk argument is used to show that the secular drift of the
momentum should not be a serous problem for energy-conserving methods (like
CELESTE) if C < 1 and ND >> 1. Experiments with CELESTE give random
errors in the average drift that are less than 1% of the thermal speed..

5.4. Warm drifting plasma

We now consider a warm, drifting plasma with D = B. This is a more
typical plasma condition than the cold beam in Okuda’s problem [44], and the
FGI does not seem to occur. Nevertheless, there are numerical errors that cause
a CIC plasma to heat and a CELESTE plasma to lose momentum.

In Hockney [46], computational results verify the the dependence of collisions
and heating on the number of particles. The collision and heating rates scale
inversely as the number of computational particles in a Debye length.

For CELESTE, the momentum decay slowly in Figure 15(a) compared with
trapping for a cold beam Figure 4. The warm beam momentum decays expo-
nentially, due to a mechanism that operates continuously. The data in Fig. 15
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Figure 14: Numerical heating is much smaller for CELESTE( 2) than for CIC, points labeled
(∗). Heating scales for both as1/ND. D = 0.16, ∆T = 0.5, C = 0.08.

(b) in which the momentum decay time scales as ND suggests the momentum
decay is caused by charge fluctuations.

With CIC, the energy error increases linearly in time, Fig. 16(a), which
agrees with earlier results in [46, 48]. The error scales as 1/ND, Fig. 16(b) for
5 ≤ N ≤ 5000. With a warm beam, the momentum and energy errors decrease
as the number of particles per Debye sphere increases.

Fig. 16(b) compares the variation in energy error in CIC simulations with
ND for a warm, drifting plasma with U0 = vte = 0.16, and the stationary plasma
with U0 = 0 and vte = 0.16. The energy errors for both are computed relative
to the thermal energy. The drift energy is subtracted. Thus, the absolute errors
are comparable in size and in their decrease as N−1D . Consider the energy error
that might be produced by a finite grid instability. The FGI error can contribute
to energy error in drifting but not stationary plasma which might account for
the differences in value between moving and stationary results except that an
FGI-caused error is independent of ND.

In Fig. 17, the CIC energy errors for cold drifting, warm drifting, and cold
stationary plasmas are shown. All of the simulations have ND = 500, and
D = 10.24. ∆T varies so that 0.16 ≤ C ≤ 10.24. For a warm plasma with
vte = 0.16 that is either drifting with U = 0.16 (�’s) or stationary with U = 0
(4’s). For a cold drifting plasma with vte = 0 and U = 0.16, (2’s), the energy
error is independent of C, unlike the corresponding plots for hot plasmas, both
stationary and drifting, where ε varies as C3. The difference is caused by the
absence of a higher moment contributions to the current in the cold drifting
beam, Section 4.3. With no thermal velocity, all higher order terms in the
moment equation expansion, Eq. 56, of the continuity equation are zero, and
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(a) (b)

Figure 15: The CELESTE momentum decays exponentially with time (a). The CELESTE
momentum decay time, τP , increases as ND (b)

(a) (b)

Figure 16: Due to numerical error, ε for a CIC simulation of a warm plasma increases linearly
with time (a). The CIC heating rate in (b) varies as 1/ND for both drifting (2’s) and
stationary (4’s) plasmas. (The stationary data is reproduced from Figure 14.)

.
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Figure 17: ε from CIC simulations of a cold, drifting plasma (2’s), a warm stationary
plasma (4’s), and a warm, drifting plasma (�’s) are shown. The error for the warm plasmas,
stationary or drifting, varies as C3. The error for the cold plasma is nearly independent of C.

there is no truncation error. In addition, ε is larger at small values of C for a
cold plasma than a warm plasmas. This is likely due to the contribution of an
FGI. The CIC cold plasma is unstable to an FGI (Section 4.1), ε ≈ 0.01% for
D = 10.24 (Figure 9 b), and saturation of the FGI is independent of ∆T .

6. Conclusions

The physics model in Section 2 conserves both momentum and energy if
Gauss’ law is satisfied everywhere. The PIC algorithms in Section 3 satisfy
Gauss’ law either at cell centers or at cell vertices. For momentum-conserving
algorithms, such as CIC with cell-centered differencing, Gauss’ law is satisfied
at cell centers and momentum is conserved to round-off. For energy-conserving
algorithms, such as CELESTE or LEWIS, the derivation of the equations from
Hamilton’s principle results in a staggered mesh scheme in which Gauss’ law is
satisfied at cell centers by the solution of the potential equation but not at cell
vertices where momentum is computed.

When Gauss’ law is satisfied, the total force acting on the particles can be
expressed as the divergence of a Maxwell stress tensor, Eq. 7. To reproduce this
result with difference equations requires that summation by parts of (∇ · E)E
result in a collapsing sum, one that depends only on the boundary conditions.
A problem with some similarities occurs in magnetohydrodynamics, where it is
required that ∇ ·B = 0 for conservation of momentum. There one can choose
to express the force exerted by the magnetic field on the plasma as J×B, which
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does not conserve momentum, or by a Maxwell stress tensor, in which case there
may be non-physical contributions from ∇ ·B 6= 0 [35].

Momentum conservation or non-conservation is not altered by the intro-
duction of implicit differencing in time. In recent work on implicit, energy-
conserving methods, for example [24, 19], errors in momentum conservation are
identified in the numerical examples. However, implicit methods allow large
time steps compared with the plasma frequency, the contributions of fluctu-
ations in net charge vary inversely with the time step [21], and so errors in
momentum conservation, which depend on errors in Gauss’ law, don’t grow
with the time step.

Probably more plasma heating is attributed to the FGI than should be. The
FGI seems to cause larger energy errors for cold drifting plasmas, Figure 6, than
for warm plasmas, either drifting or stationary. For example, in a warm plasma
with D = 0.16, Figure 14, heating is observed to vary as 1/ND for both CIC
and CELESTE, and the FGI is independent of ND. If the spatial resolution is
sufficiently coarse, for example with D = 0.1, a weak FGI with CIC, (and none
with CELESTE), causes significant heating with CIC (but not with CELESTE),
Figure 11b.

The FGI causes momentum loss in LEWIS and CELESTE simulations of a
cold, drifting plasma, Figure 4, by causing electron trapping. In general, how-
ever, any mechanism physical or numerical that causes spatial variations in the
net charge will cause errors in momentum conservation unless D is sufficiently
large, as it is in the simulation of the Buneman instability, Figure 2. If one
argues that the stability boundary for the FGI is useful guide, then the spatial
resolution should satisfy D > 0.2 with CELESTE, or D > 0.4 with LEWIS.
For improved energy conservation, spatial resolution with CIC should satisfy a
similar but more restrictive condition D ≈ 1, Figure 12.

The energy analysis, Section 4.3, gives for CIC energy error scaling as C2,
Eq. 65 and for CELESTE as C3, Eq. 59. The numerical results, Figures 13
and 17, seem to show that CIC and CELESTE energy errors both scale as
C3. This appears to disagree with [29], where numerical results suggest that
quadratic charge assignment, as in CELESTE, gives smaller energy errors than
linear assignment, as in CIC, and analysis shows that the greater continuity of a
quadratic function reduces errors. The results in [29] are for a different problem
and no scaling is given, so a direct comparison is not possible.

Two obvious questions are left unresolved by this work. There is no obvious
explanation for the disagreement between theory and CIC results for the FGI,
Figure 7(a) and [45]. Why an FGI-like instability should develop for k∆x = π
where theory says the growth rate should be zero suggests there is something
essential left out of the dispersion theory, but not what that might be.

The big unresolved question is how one might formulate a simulation algo-
rithm that conserves both momentum and energy. The model, Section 2, is
clearly conservative, and the analysis in Sections 4.2 and 4.3 makes clear what
properties the finite difference equations must have to preserve the constants of
the motion. However, it is not just a question of finite differences. The assign-
ment of particle properties to the grid constrains the difference equations, and
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achieving conservation is more complex as a result. It’s a fascinating puzzle.

Appendix: Some Useful Properties of b-Splines

The PIC formulation uses the special properties of the b-spline [40]. Their
properties are described in many references, among them [41]. Here we list
those properties that are relevant to a comparison of energy-conserving and
momentum-conserving PIC formulations.

The PIC equations in one dimension are solved on the domain x ∈ [0, L],
which is divided into N cells with width ∆x. Cell vertices are labeled xv : v ∈
[1, N + 1] and cell centers xc = 1/2(xv+1 + xv).

For any l, S(l+1) is equal to the convolution of S(l) with S(0),

S(l+1) = S(l) ∗ S(0), (70)

where S(0) is a characteristic function with support ∆x,

S(0)(x; ∆x) =

{
1/∆x if x ∈ [∆x/2,∆x/2],

0 if x /∈ [∆x/2,∆x/2].
(71)

If the support is not specified, it is assumed to be equal to ∆x.
Analytic differentiation of S(l+1) yields a centered difference equation,

∂S(l+1)

∂x
=
S(l)(x+ ∆x/2)− S(l)(x−∆x/2)

∆x
(72)

Finally, we note that S is normalized so that for all l ≥ 0,

1 =

∫
S(l)(x)dx,

1/∆x =
∑
c

S(l)(x− xc) =
∑
v

S(l)(x− xv).

The Fourier transform of S(0) is [2],

S(0)k =
sin(k∆x/2)

k∆x/2
. (73)

Using the Eq. 70,

S(l)k =

(
sin(k∆x/2)

k∆x/2

)2

. (74)

Acknowledgements

I am grateful for many useful discussions with Gianni Lapenta, Gabor Toth
and Sergey Gimelshein.

31



References

[1] J. Dawson, One-dimensional plasma model, Phys. Fluids 5 1962 445-459.

[2] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simula-
tion, Adam Hilger, Philadelphia, 1991.

[3] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles,
Institute of Physics Publishing, Philadelphia, 1988.

[4] Yu. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk, Numerical ’Particle-
in-Cell’ Methods, VSP, Utrecht, 2002.

[5] J. M. Dawson, Computer modeling of plasma: Past, present and future,
Phys. Plasmas 2 (1995) 2189-2199.

[6] D. W. Forslund and C. R. Shonk, Formation and structure of electrostatic
collisionless shocks, Phys. Rev. lett. 25 (1970) 1699.

[7] D. W. Forslund, K. B. Quest, J. U. Brackbill, K. Lee, Collisionless dissipa-
tion in quasi-perpendicular shocks, J. Geophys. Res. 89 (1984) 2142-2150.

[8] B. Lembege and J. M. Dawson, Formation of double layers within and
oblique collisionless shock, Phys. Rev. Lett. 62 (1989) 2683-2686.

[9] B. Lembege, J. Giacolone, M. Scholer, T. Hada, Selected problems in col-
lisionless shock physics, Space Sci. Rev. 110 (2004) 161-236.

[10] K. Estabrook and W. L. Kruer, Theory and simulation of one-dimensional
Raman backward and forward scattering, Phys. Fluids 26 (1983) 1892.

[11] D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, R. L. Morse, Thoery
and simulation of resonant absorption in a hot plasma, Phys. Rev. A 11
(1975) 679.

[12] D. W. Forslund, J. U. Brackbill, Magnetic-field-induced surface transport
on laser-irradiated foils, Phys. Rev. Lett. 48 (1982) 1614.

[13] S. C. Wilks, W. L. Kruer, M. Tabak, A. B. Langdon, Absorption of ultra-
intense laser pulses, Phys. Rev. Lett. 69 (1992) 1383.

[14] P.L.Pritchett, Geospace Environment Modeling magnetic reconnection
challenge: Simulation with a full-particle electromagnetic code, J. Geo-
phys. Res. 106 (2001) 3783-3798.

[15] P. Ricci, J. U. Brackbill, W. Daughton, G. Lapenta, Influence of the lower
hybrid drift instability on the onset of magnetic reconnection, Phys. Plas-
mas 11 (2004) 4489.

[16] C. Joshi et al., Ultrahigh gradient particle acceleration by intense laser-
driven plasma density waves, Nature 311 (1984) 525.

32



[17] S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from
intense laser-plasma interactions, Nature 431 (2004) 535-538.

[18] J. Villasenor and O. Buneman, Rigorous charge conservation for local elec-
tromagnetic field solvers, Comput. Phys. Commun. 69(1992) 306-316.

[19] G. Chen, L. Chacon, D. C. Barnes, An energy- and charge-conserving im-
plicit electrostatic particle-in-cell algorithm, J. Comput. Phys. 230 (2011)
7018-7036.

[20] J. Denavit, Time-filtering particle simulations with ωpe >> 1, J. Comput.
Phys. 42, 337-366 (1981).

[21] Rodney J. Mason, Implicit moment particle simulation of plasmas, J. Com-
put. Phys. 41 (1981) 233-244.

[22] J. U. Brackbill, D. W. Forslund, An implicit method for electromagnetic
plasma simulation in two dimensions, J. Comput. Phys. 46 (1982)271.

[23] A. B. Langdon, B. I. Cohen and A. Friedman, Direct implicit large time-
step particle simulation of plasmas, 51(1983)107-138.

[24] S. Markidis and G. Lapenta, The energy conserving particle-in-cell method,
230 (2011) 7037-7052.

[25] F. H. Harlow, D. O. Dickman, D. E. Harris, R. E. Martin, Los Alamos
National Laboratory Report No. LA-2301, 1959 (unpublished).

[26] F. H. Harlow, The particle-in-cell computing method in fluid dynamics,
Meth. Comput. Phys. 3 (1964) 319-343.

[27] K. Schindler, D. Pfirsch and H. Wobig, Stability of two-dimensional
collision-free plasmas, Plasma Phys. 15 (1973) 1165-1184.

[28] A. B. Langdon, ’Energy conserving’ plasma simulation, J. Comput. Phys.
12 (1973) 247-268.

[29] H. X. Vu and J. U. Brackbill, CELEST1D: an implicit, fully kinetic model
for low-frequency, electromagnetic plasma simulation, Comput. Phys. Com-
mun. 69 (1992) 253-276.

[30] I. V. Sokolov, Alternating-order interpolation in a charge-conserving
scheme for particle-in-cell simulations, Comput. Phys. Commun. 184
(2013) 320-328.

[31] L. Chacon, G. Chen, D. C. Barnes, A charge- and energy-conserving im-
plicit, electrostatic particle-in-cell algorithm on mapped computational
meshes, J. Comput. Phys. 233 (2013) 1-9.

[32] A. B. Langdon, Effects of spatial grids in simulation plasmas, 6 (1970)
247-267.

33



[33] E. L. Lindman, Dispersion relation for computer-simulated plasmas, J.
Comput. Phys. 5 (1970) 13-22.

[34] L. D. Landau and E. M. Lifshitz, ’The Classical Theory of Fields’, Fourth
Revised English Edition, Elsevier, 1975.

[35] J. U. Brackbill, D. C. Barnes, The effect of nonzero ∇ ·B on the numeri-
cal solution of the magnetohydrodynamic equations, J. Comput. Phys. 35
(1980) 426-430.

[36] F. H. Harlow, The particle-in-cell method for the numerical solution of
problems in fluid dynamics, in Proceedings of the Symposium on Appl.
Math. XV, Experimental Arithmetic, High Speed Computations and Math-
ematics, American Math. Soc., Providence, 1963.

[37] A. A. Amsden, Los Alamos National Laboratory Report N. LA-3466, 1966
(unpublished).

[38] J. U. Brackbill, The ringing instability in particle-in-cell calcuations of low-
speed flow, J. Comput. Phys. 75 (1988) 469.

[39] J. U. Brackbill and H. M. Ruppel, FLIP: A method for adaptively zoned,
particle-in-cell calulations of fluid flows in two dimensions, J. Comput.
Phys. 65(1986) 314.

[40] C. de Boor, ’A Practical Guide to Splines’, Springer-Verlag, New York
(1978).

[41] T. Haugbolle, J. T. Frederiksen, and A. Nordlund, ’Photon-Plasma: A
modern high-order particle-in-cell code, Phys. Plasmas 20 (2013) 062904.

[42] H. R. Lewis, Application of Hamilton’s principle to the numerical analysis
of Vlasov plasmas, in Meths. in Computational Physics, 9 (1970) 307-338.

[43] H. Goldstein, ’Classical Mechanics’, Addison-Wesley, Reading, Ma (1959).

[44] Hideo Okuda, Nonphysical noises and instabilities in plasma simulation due
to a spatial grid, J. Comput. Phys. 10 (1972) 475-486.

[45] C. K. Birdsall and N. Maron, Plasma self-heating and saturation due to
numerical instabilities, J. Comput. Phys. 36 (1980) 1-19.

[46] R. W. Hockney, Measurements of collision and heating times in a two-
dimensional thermal computer plasma, J. Comput. Phys. 8(1971) 19-44.

[47] A. Hirose, O. Ishihara, and A. B. Langdon, Nonlinear evolution of the
Buneman instability. II. Ion dynamics 25 (1982) 610.

[48] Bruce I. Cohen, A. Bruce Langdon, Dennis W. Hewett, and Richard J. Pro-
cassini, Performance and optimization of direct implicit particle simulation,
J. Comput. Phys. 81 (1989), 151-168.

34


	1  Introduction
	2 The Equations for an Electrostatic Plasma in One Dimension and Their Properties
	2.1 momentum
	2.2 energy

	3 Electrostatic Particle-in-Cell (PIC) Algorithms in One Dimension
	3.1 Charge assignment
	3.2 Poisson's equation
	3.3 Electric field interpolation
	3.4 Particle equations of motion
	3.5 momentum conservation

	4 Analysis
	4.1 finite-grid-instability
	4.2 Estimated error in CELESTE momentum conservation
	4.3 Energy conservation

	5 Numerical Test Problems
	5.1 Buneman instability
	5.2 Cold drifting plasma
	5.3 Warm, stationary plasma
	5.4 Warm drifting plasma

	6 Conclusions

