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Abstract

We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential
Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented
formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At
the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is
basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the
error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more
degrees of freedom), only this output is proven to tend to its continuous analog while the solution
field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the
mathematical formulation of the mesh adaptation problem under the form of the optimization, in
the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we
amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm
of the approximation error. The norm is prescribed by the user and the method allows addressing the
case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag,
lift and moment in one shot. In this work, we consider the basic linear finite-element approximation
and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples
for the Poisson problem are computed.

Key words: goal-oriented mesh adaptation, anisotropic mesh adaptation, adjoint, metric, Poisson
problem, finite elements

1. Introduction

This paper addresses anisotropic mesh adaptation. We focus on methods which build a somewhat
optimal mesh defined by a parametrization using a Riemannian metric. A typical family of optimal
metric-based methods for CFD is the family of Interpolation-based/Hessian-based methods. An
attractive property of these methods is that they are based on a mathematical optimization principle.

Iso-distribution /equi-repartition Hessian-based methods tend to minimize a Sup or L∞ norm of
the (main term of) interpolation error with respect to a metric considered in a subset of metrics with
a prescribed number of vertices. We refer to the two pioneering works [13, 16] for the methods, the
two pioneering works [1, 31] for the analysis, and to [32, 4]. The methods minimizing the Lp norm
(p <∞) of the interpolation error of one or several sensors depending on the CFD solution allows to
better capture features of different scales in the solution. Cf. [34, 22, 14, 23, 5]. Sensors are solution-
dependant fields chosen by the user according to their ability to take into account mesh-resolution
difficulties of the flow to compute.
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The Hessian-based methods are particularly well adapted to the finite-element approximation of
second-order elliptic PDEs. It is true, by the projection theorem, that a norm of the approximation
error is bounded by the analog norm of the interpolation error but this concerns the H1 norm while
Hessian-based method concentrate on L∞ or Lp norms. More generally, while taking into account the
features of the PDE solution, these methods do not take into account the features of the PDE itself.
This is penalizing in the case of systems, for which several sensors need to be chosen and weighted
by the user. However, if sensors are wisely chosen, a good convergence of the whole approximate
solution field to the exact solution field is usually observed.

Taking into account the influence of the PDE on the error through an equation-based estimate
has also been an important research topic. The formulation of goal-oriented methods is an important
step for a more justified error evaluation. It has been introduced in [7]. It relies on an a posteriori
estimate. A good synthesis concerning a posteriori estimates is [36], see also [17]. An interest of
a posteriori estimate is that it is expressed in terms of the approximate solution, assumed to be
available in a mesh adaptation loop. A second interest is that it does not require the use of higher-
order (approximate) derivatives, in contrast to truncation analyses. These estimates show accurately
where the mesh should be refined. A method for deducing a better anisotropic mesh from an a
posteriori estimate is proposed in [18], while a theory for Hp norms in [3] and a joint analysis of Hp

and Lp norms of the error are presented in [2]. These methods cannot focus on an arbitrary user-
specified error norm but relies on a particular one, specified by the variational formulation of the
PDE. A more popular option is to choose, as accuracy target, a particular scalar output depending
on the PDE solution. Any scalar output can be considered, except that difficulties can arise for
the so-called non-admissible ones, according to [6]. An a posteriori estimate also allows for building
correctors for goal-oriented analyses [19, 30]. In [35], the goal-oriented approach is cleverly combined
with the correction strategy of [30] and with the Hessian-based metric approach, still minimizing the
interpolation error of a user-prescribed sensor.

A priori estimates generally rely on Taylor series, either through divided differences or through
polynomial approximation of functions. Then, approximations of higher-order derivatives of solution
need to be built from the approximate solution. This is a delicate job since there are not many
proofs ensuring that a good approximation of a higher-order derivative of the exact solution can
be recovered from the low-order approximate solution. However, since the development of the first
recovery methods (see for example [38]), many numerical experiments tend to show that the method
is useful and rather reliable.

A remarkable feature of the goal-oriented metric-based adaptation of [23, 9] is the complete and
coherent mathematical formulation of the mesh adaptation problem. Indeed, it takes the form of
the optimization of a well-defined functional, namely the error for a prescribed scalar output, to be
minimized with respect to a parameter, the metric, belonging to a well-identified and compact set.
This strategy is applied to the discrete case in [37]. In [23, 9], in order to analytically solve the
optimum, an a priori analysis is developed. It restricts to the main asymptotic term of the local
error in order to exhibit more easily the dependance with respect to metric.

Goal-oriented methods have strongly impacted the applications but, due to its formulation, a
goal-oriented method has two inherent limitations. First, it does not naturally extend to several
scalar outputs. This “multi-target” issue is well-known and a proposition for addressing it is made
in [21]. Second, because they are specialized to a given scalar output, the features of the solution
field which are not influencing this output might be neglected by the automatic mesh improvement.
A goal-oriented method provides the convergence of the approximate prescribed scalar output to its
continuous analog. But generally convergence does not hold for the whole flow field itself. To clarify
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this point, let us consider the mesh adaptative computation of a sonic boom footprint at the ground.
The functional depends only on the pressure at the ground level. Now, many details of the flow on
upper part of the aircraft do not influence the pressure at the ground level. This vanishing influence
is taken into account by the adjoint state which also vanishes on these upper regions. Then, in these
regions, the adapted mesh is not refined and the approximation of the flow field does not converge.
See an illustration in [26]. As already noted, another limitation of a goal-oriented method is the
scalar character of the error to reduce. It leads to use integrals of solution fields as in (u− uh, g), u
being the exact solution, uh its approximation and g a field prescribed by user. Now, these integrals
are generally not sufficiently sensitive to oscillating deviations between u and uh.

In the new norm-oriented formulation proposed in this paper, the user can prescribe a norm or a
semi-norm |u−uh| of the error in order to minimize it with respect to the mesh. As a typical example
of semi-norm, this can be the sum of square deviations on particular outputs. Let us take an example
in aerodynamics. The semi-norm |u−uh| ≡ |Cl(u)−Cl(uh)|2 + |Cd(u)−Cd(uh)|2 + |Cm(u)−Cm(uh)|2
will account for minimizing the errors on lift, drag and moment measured from flow solution uh with
respect to mesh. The proposed method will ultimately address this kind of semi-norm, assuming
that, as for the goal-oriented method, the possible issue of a non-admisssible norm according to [6]
is solved. As for the goal-oriented method, the norm-oriented method takes into account the PDE
features and, in the case where a norm is prescribed, it produces an approximate solution field which
does converge to the exact one in this norm.

Although the proposed method is a rather general method extending to more complex CFD
models, see for example [27], we consider in this paper a 2D Poisson problem discretized by the usual
linear finite-element method. This choice is motivated first by the rather complete set of theoretical
works available for the finite-element approximation of a Poisson problem. This amount of theoretical
background reduces as much as possible (although far from completely) the heuristics to introduce in
building the mesh adaptation analysis. In contrast, convergence results (in which functional spaces?)
are not available for Euler equations, for example. A second motivation is the easy availability of
exact solutions defined in a simple way. This allows to build a kind of benchmark allowing to compare
mesh adaptation methods. Let us mention also that the Poisson problem (with variable coefficient) is
a central equation in two-fluid models. The proposed benchmark will be inspired by a few particular
two-fluid configurations.

Although the FEM is designed for minimizing the H1 norm (with first-order accuracy), the user
may wish to enjoy a convergence with a different norm. The proposed method, demonstrated for L2

norm (providing second-order accuracy), is defined in order to many types of norms (or semi-norms).
The method relies on the use of a corrector field and on an a priori error estimate from which is
extracted the asymptotically largest terms of the local error. After we have the best mesh for the
prescribed norm, are we in the best of all possible worlds? Not really. We need that this norm be less
than a prescribed level. The central difficulty, in our opinion, is the accurate evaluation of this error
norm. Most estimates are conditioned by mesh convergence. Therefore, we compare our estimates
with mesh convergence analysis and try to propose a least uncertain error evaluation. In our test
cases, this evaluation is compared with the information produced by the analytic exact solution.

After a formulation of the problem, the derivation of two correctors is proposed in Sec.2. Next
three sections are devoted to the three identified mesh adaptation formulations: Hessian-based,
minimizing an interpolation error in Sec.3, goal-oriented formulation in Sec.4 and our proposal for a
norm-oriented in Sec.5. Sec.6 is devoted to a numerical comparison between the two field-convergent
formulations, viz. Hessian-based and norm-oriented and the paper is completed by a discussion of
methods and numerical examples.
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2. Two correctors for the Poisson problem

On the way for minimizing the error norm ||u − uh||L2 , where u is the exact PDE solution and
uh its approximation, we have to replace u− uh by a so-called corrector which would be rather easy
to evaluate.

2.1. Notations

Let V = H1
0 (Ω), Ω being a sufficiently smooth computational domain of R2. The continuous PDE

system is written in short:

u ∈ V | Au = f or u ∈ V | ∀ ϕ ∈ V, a(u, ϕ) = (f, ϕ) (1)

where

A = −div(
1

ρ
∇) ; a(u, ϕ) =

∫
Ω

1

ρ
∇u · ∇ϕ dxdy

and where 1
ρ

is a positive, possibly discontinuous, scalar field in L∞(Ω). Further, we assume that the
bilinear form a is coercive in space V , i.e. there exists a positive α such that:

a(v, v) ≥ α|v|2V .

This model exemplifies the pressure equation in some multi-phase incompressible flow formulation
for which mesh adaptation is useful, see e.g. [20]. Let Ωh = Ω for simplicity, τh a triangulation of Ωh

and Vh be the usual P1-continuous finite-element approximation space related to τh:

Vh = {ϕh ∈ C0(Ω̄) ∩ V, ϕh|T is affine ∀T ∈ τh}.

The finite-element discretisation of (1) is written in variational and operational form:

uh ∈ Vh and ∀ ϕh ∈ Vh, a(uh, ϕh) = (fh, ϕh) (2)

in such a way that uh is a linear function of fh which we denote:

uh = A−1
h fh.

We denote by Πh the usual interpolation operator:

∀v ∈ C0(Ω̄) ∩ V, Πhv ∈ Vh and, ∀ xi vertex of Ωh, Πhv(xi) = v(xi).

Scalar correctors, i.e. correctors for scalar outputs j(uh) depending on the solution, e.g. j(uh) =
(g, uh) with g prescribed, have been defined by Giles and Pierce, [19]. Our interest concerns the
correction of the unknown field itself. Two options are now proposed.

2.2. A priori corrector for the PDE solution

A first rather simple a priori corrector can be derived from an analysis of the error RHS. We
observe that:

a(u− uh, ϕh) = (f − fh, ϕh) ∀ϕh ∈ Vh.

Assuming that the solution u is continuous, we get:

a(Πhu− uh, ϕh) = a(Πhu− u, ϕh) + (f − fh, ϕh) ∀ϕh ∈ Vh. (3)
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We call Πhu − uh the implicit error. By implicit, we mean that it can be obtained through solving
a discrete system. It differs from the approximation error by an interpolation error:

u− uh = Πhu− uh + u− Πhu. (4)

In order to find an approximate of the implicit error, we need to evaluate the RHS of (3) for any test
function ϕh. The second term of RHS of (3) is easy to evaluate (we know f and fh). The first term
of RHS of (3) can be transformed as follows (assuming that 1

ρ
is constant on each element):

a(Πhu− u, ϕh) =
∑
T

∫
T

1

ρ
∇ϕh · ∇(Πhu− u) dxdy

=
∑
T

∫
∂T

(Πhu− u)
1

ρ
∇ϕh · n dσ.

Then, we get:

a(Πhu− uh, ϕh) =
∑
∂Tij

1

ρ
∇(ϕh|Ti − ϕh|Tj) · nij

∫
∂Tij

(Πhu− u) dσ + (f − fh, ϕh) (5)

where the sum is taken for all edges ∂Tij separating triangles Ti and Tj of the triangulation. The
unit vector nij normal to ∂Tij is pointing outward Ti.

Now, we do not know u but uh. In order to evaluate the interpolation error, we first approxi-
mate the Hessian of u by an approximation Hh(uh) in Vh of the Hessian of uh. This is done with
a Zienkiewicz-Zhu-type ([38]) recovery method defined in the seventh chapter of [29]. Then, the
evaluation of Πhu−u is built on the edge eij as a quadratic function vanishing at both extremities of
eij and of second-derivative in direction eij defined from Hh(uh). We replace Πhu− u by πhuh − uh
where πhuh − uh is defined on edge ij as follows:

∀ x ∈ eij, (πhuh − uh)(x) =
1

2
(Hh(uh)(xi) +Hh(uh)(xj))(x− xi)(x− xj)

which allows a mid-edge integration on each triangle of Ωh. This replacement is justified in [33]. We
shall see, in the sequel, that it is useful to apply a similar estimate for the f − fh term, f − fh ≈
−(πhfh − fh) . In order to approximate the implicit error Πhu− uh, solution of (5), we define our a
priori implicit corrector by:

u′prio ∈ Vh, and ∀ ϕh ∈ Vh,

a(ū′prio, ϕh) =
∑
∂Tij

(
1

ρ
∇ϕh|Ti −∇ϕh|Tj) · nij

∫
∂Tij

(πhuh − uh) dσ − (ϕh, πhfh − fh). (6)

This corrector is an approximation of Πhu − uh. Replacing again the unknown interpolation error
by its evaluation on the discrete approximation, we define our a priori corrector by:

u′prio = ū′prio − (πhuh − uh). (7)

Assuming the approximations made between (5) and (6) are small, u′prio is built in such a way that:

u′prio ≈ u− uh.

This corrector is easy to compute but of a priori low accuracy.
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2.3. Finer-grid defect correction corrector for the PDE solution

A second option for a corrector relies on using a fictitious finer grid. Let us assume that the
approximation is in its asymptotic mesh convergence phase for the mesh Ωh under study, of size h.
Then, this will be also true for a strictly two-times finer embedding mesh Ωh/2 and, for our second-
order accurate scheme applied to a sufficiently smooth problem, the heuristics of Richardson analysis
writes:

uh = A−1
h fh , uh/2 = A−1

h/2fh/2 ⇒ u− uh/2 ≈
1

4
(u− uh) (8)

where uh and uh/2 are respectively the solutions on Ωh and Ωh/2. We have formally:

Πhu− Πhuh/2 ≈
1

4
(Πhu− uh)

which implies:

Πhu− uh ≈
4

3
(Πhuh/2 − uh).

Now,
Ah/2(uh/2 − Ph→h/2uh) = fh/2 − Ah/2Ph→h/2uh.

where Ph→h/2 linearly interpolates coarse values on fine mesh. This allows to evaluate Πhu− uh but
needs to solve a finer grid system. Let us introduce the residual transfer Rh/2→h which accumulates
on coarser grid vertices the values at finer vertices in neighboring coarse elements multiplied with
barycentric weights. In order to reduce the computational cost to solving a coarser grid system, we
approximate ΠhA

−1
h/2 by A−1

h Rh/2→h:

Πh(uh/2 − Ph→h/2uh) ≈ A−1
h Rh/2→h (fh/2 − Ah/2Ph→h/2uh).

This motivates the definition of a finer-grid Defect-Correction (DC) corrector as follows:

Ahū
′
DC =

4

3
Rh/2→h(fh/2 − Ah/2Ph→h/2uh) (9)

In the case of local singularities, statement (8) is not true for uniform meshes but we have some
hints that it holds almost everywhere for a sequence of adapted meshes, according to [28]. The DC
corrector ū′DC approximates Πhu− uh instead of u− uh and can be corrected as the previous one:

u′DC = ū′DC − (πhuh − uh). (10)

3. Interpolation error optimization

Main notions and notations are stated by recalling the basics of the Hessian-based approach.

3.1. Mesh parametrization

We shall work inside the framework proposed in [24, 25]. The main idea of this framework is to
model discrete meshes by continuous Riemannian metric fields. It allows us to define the adaptation
problem as a differentiable optimization problem , i.e., to apply, on the class continuous metrics, a
calculus of variations which cannot be applied on the class of discrete meshes. This framework lies
in the class of metric-based methods. A continuous metric M of the computational domain Ω is a
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Riemannian metric field [11] M = (M(x))x∈Ω where M(x) is a symmetric 2× 2 matrix. We define
the total number of vertices of M as:

C(M) =

∫
Ω

√
det(M(x)) dx.

Given a continuous metric M, we shall say that a discrete mesh H of the same domain Ω is a unit
mesh with respect to M if each triangle K ∈ H, defined by its list of edges (aibi)i=1...3, verifies:

∀i ∈ [1, 3],

∫ 1

0

√
taibiM(ai + t aibi) aibi dt ∈

[
1√
2
,
√

2

]
.

The rest of the paper will try to find the best metric M from an error analysis which is asymptotic
with respect to mesh size.

3.2. Interpolation-based optimal metric

Let u be any sufficiently smooth function defined on Ω. Let M be a mesh/metric of Ω. In the
rest of the paper, M replaces h as the discretization index. We consider only meshes M involving
enough nodes for justifying the replacement of the complete error by its main asymptotic part. The
P 1 interpolation error |ΠMu−u| can be approximated in terms of second derivatives of u and of the
metric M by the continuous interpolation error defined in [24]:

|ΠMu− u| ≈ |u− πMu|

with:

|u− πMu|(x) =
1

8
trace(M− 1

2 (x) |Hu(x)|M− 1
2 (x)) (11)

where |Hu| is deduced from Hu by taking the absolute values of its eigenvalues. Starting from:

‖u− πMu‖Lp(Ωh) =

(∫
Ω

(
trace

(
M− 1

2 (x)|Hu(x)|M− 1
2 (x)

))p
dx

) 1
p

, (12)

we define as optimal metric the one which minimizes the right hand side under the constraint of a
total number of vertices equal to a parameter N . After solving analytically this optimization problem
(see e.g. [34, 22, 14, 23, 5], we get the unique optimal (MLp(x))x∈Ω as:

MLp = Kp(Hu) with Kp(Hu) = DLp (det |Hu|)
−1

2p+2 |Hu| and DLp = N

(∫
Ω

(det |Hu| dx)
p

2p+2

)−1

,

(13)
where DLp is a global normalization term set to obtain a continuous metric with complexity N and

(det |Hu|)
−1

2p+2 is a local normalization term accounting for the sensitivity of the Lp norm. In the
case of an adaptation loop for solving a Partial Differential Equation, a continuous function u is not
available but an approximate solution uM is. In that case, the continuous interpolation error (11) is
replaced by:

|uM − πMuM|(x) =
1

8
trace(M− 1

2 (x) |HuM(x)|M− 1
2 (x)) (14)

where HuM is an approximate Hessian evaluated with a recovery method.
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According to the continuous metric framework, statement (13) defines directly a continuous op-
timal metric. In practice, solving (13) is done by approximation, i.e. in a discrete context with
a couple (mesh, solution) denoted (HM, uM) and iteratively obtained through the following fixed
point:
Step 1: compute the discrete state uM on mesh HM,
Step 2: compute sensor sM = s(uM) and optimal metric Mopt

inter = Kp(HM(sM)),
Step 3: put M =Mopt

inter, generate a new mesh HM = HMopt
inter

and go to 1, until convergence.
In the above algorithm, the continuous Hessian of s is replaced by an approximate Hessian

HM(sM), evaluated by the patch-recovery approximation defined in [29]. In our Hessian-based
numerical examples, the L2 case, p = 2, has been considered. The above notation Kp will also be
used in the next sections for p = 1.

4. Implicit a priori error estimate

In contrast to a corrector as defined in Section 2, an asymptotic upper bound of the approximation
error should allow an easier error reduction by minimisation of its norm with respect to the metric.
In our PDE discretisation notations, we henceforward replace in the discretization index h by the
index M which holds for any unit mesh of the metric M. The implicit a priori error system (5)
then writes:

∀ ϕ ∈ VM,

a(ΠMu− uM, ϕ) =
∑
∂Tij

1

ρ
(∇ϕ|Ti −∇ϕ|Tj) · nij

∫
∂Tij

(ΠMu− u) dσ − (ϕ,ΠMf − f) (15)

where Tij are the triangles of a unit mesh for M and the proposed corrector is expressed with the
discrete solution:

ū′prio ∈ VM , a(ū′prio, ϕ) = K(M, ϕ, uM) ∀ ϕ ∈ VM with

K(M, ϕ, uM) =
∑
∂Tij

1

ρ
(∇ϕ|Ti −∇ϕ|Tj) · nij

∫
∂Tij

(πMuM − uM) dσ − (ϕ, πMf − f),

u′prio = ū′prio − (πMuM − uM). (16)

We now restart from (5). The following result is proven in [8]:

Lemma 4.1. We assume that the metric anisotropy is bounded by a positive number. For any smooth
couple of functions (u, ϕ), where u is not necessarily a solution of (1), we have the following bound:

|
∫

Ω

1

ρ
∇(u− ΠMu)∇ΠMϕdx| � K

∫
Ω

1

ρ
ρS(H(ϕ)) |u− ΠMu|dx (17)

where A � B holds for a majoration asymptotically valid, i.e. A ≤ B + o(A). Expression ρS(H(ϕ))
holds for the largest (in absolute value) eigenvalue of the Hessian H(ϕ) of ϕ. �

The next section shows how to use this estimate.

5. Equation-based adaptation

5.1. Scalar output “goal-oriented” analysis

The goal-oriented analysis relies on the minimization of the error δjgoal(M) done in the evaluation
of the scalar output j = (g, u) , error which we simplify as follows:

δjgoal(M) = |(g, u− uM)| = |(g,ΠMu− uM + u− ΠMu)|. (18)
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Let us define the discrete adjoint state u∗g,M:

∀ψM ∈ VM, a(ψM, u
∗
g,M) = (ψM, g). (19)

Then:
(g,ΠMu− uM + u− ΠMu) = a(ΠMu− uM, u∗g,M) + (g, u− ΠMu)

and, using (3),

(g,ΠMu− uM + u− ΠMu) = a(ΠMu− u, u∗g,M) + (f − ΠMf, u
∗
g,M) + (g, u− ΠMu)

thus

δjgoal(M) ≈ |a(ΠMu− u, u∗g,M) + (f − ΠMf, u
∗
g,M) + (g, u− ΠMu)|

Recall that u is unknown. The second term ΠMu − u, similar to the main term of the Hessian-
based adaptation in Section 3.2, can be explicitly approached in the same way, i.e. introducing the
continuous interpolation error (14):

δjgoal(M) � |a(ΠMu− u, u∗g,M)|+ |(f − ΠMf, u
∗
g,M)|+ |g||πMuM − uM|

For the second ΠMu − u term, we first apply Lemma 4.1 and then also introduce the continuous
interpolation error. We get

δjgoal(M) �
∫

Ω

( [1
ρ
ρS(H(u∗g,M)) + |g|

]
|πMuM − uM| + |u∗g,M| |πMf − f |

)
dx.

It is then reasonable to try to minimize the RHS of this inequality instead of the LHS. But this still
involves some difficulty due to the dependancy of adjoint state u∗g,M with respect to M. We shall
further simplify our functional by freezing, during a part of the algorithm, the adjoint state. The
idea is that, when we change the parameter M, the discrete adjoint u∗g,M is close to its (non-zero)
continuous limit and is thus not much affected, in contrast to the interpolation errors |πMuM− uM|
and |πMf − f |. We then consider, for a given M0, the following optimum problem:

min
M

∫
Ω

( [1
ρ
ρS(H(u∗g,M0

)) + |g|
]
|πMuM − uM| + |u∗g,M0

| |πMf − f |
)

dx.

This will produce an optimum:

Mopt,M0 = arg min
M

|tr(M−1/2

([1
ρ
ρSH(u∗g,M0

) + |g|
]
|Hu|+ |u∗g,M0

||Hf |
)
M−1/2)|.

Observing that, in the integrand,

Hgoal,0 = [
1

ρ
ρS(H(u∗g,M0

)) + |g|] |Hu| + |u∗g,M0
| |Hf |

is a positive symmetric matrix, we can apply the above calculus of variation and get:

Mopt,M0 = K1( [
1

ρ
ρS(H(u∗g,M0

)) + |g|] |Hu| + |u∗g,M0
| |Hf |)

9



where K1 is defined in (13). This solution can then be introduced in a fixed-point loop and will
produce the solution of:

Mopt,goal = K1( [
1

ρ
ρS(H(u∗g,Mopt,goal

)) + |g|] |Hu| + |u∗g,Mopt,goal
| |Hf |).

Let us precise how the discrete algorithm is organised:
Step 1: compute the discrete state uM on mesh HM,
Step 2: compute the discrete adjoint state u∗M,
Step 3: compute optimal metric Mopt

goal(uM),

Step 4: putM =Mopt
goal(uM), generate a new meshHM = HMopt

goal(uM) and go to 1, until convergence.

The adaptation of this process to the Euler model of Gas Dynamics is studied in [26] for the
steady case and in [10] for the unsteady case.

5.2. Norm-based functional

We are now interested by the minimization of the following expression with respect to the mesh
M:

δj(M) = ||u− uM||2L2(Ω). (20)

Introducing gM = u− uM, we get a formulation similar to the goal-oriented formulation:

δj(M) = (gM, u− uM). (21)

Let us define the discrete adjoint state u∗M:

∀ψM ∈ VM, a(ψM, u
∗
M) = (ψM, gM). (22)

Then, similarly to Section 5.1, we have to solve the following optimum problem.

min
M

∫
Ω

( [1
ρ
ρS(H(u∗M)) + |gM|

]
|πMuM − uM| + |u∗M| |πMf − f |

)
dx.

Exactly as for Section 5.1, we freeze the dependancy of the adjoint state.

min
M

∫
Ω

( [1
ρ
ρS(H(u∗M0

)) + |gM|
]
|πMuM − uM| + |u∗M0

| |πMf − f |
)

dx.

Mopt,M0 = K1( [
1

ρ
ρS(H(u∗M0

)) + |gM|] |Hu| + |u∗M0
| |Hf |).

In practice, the gM RHS in (21-22) is replaced by the corrector u′prio,M. In order to get the final
norm-oriented optimum Mopt,norm, we apply:

Step 1: compute the discrete state uM(α) on mesh HM(α) ,

Step 2: solve the linearised corrector system:

a(ū′prio,M(α) , ϕ) =∑
∂Tij

(∇ϕ|Ti −∇ϕ|Tj) · nij
∫
∂Tij

(πM(α)uM(α) − uM(α)) dσ − (ϕ, πM(α)fM(α) − fM(α)). (23)
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where πM(α)uM(α) − uM(α) is expressed in terms of metric and Hessian, as in (6).

Put u′
prio,M(α) = ū′

prio,M(α) − (πM(α)uM(α) − uM(α)).

Step 3: then, solve the adjoint system:

a(ψ, u∗prio,M(α)) = (u′prio,M(α) , ψ) (24)

Step 4: put:

M(α+1) = K1([|u′prio|+
1

ρ
ρSH(u∗prio)] |HuM(α)

|+ |u∗prio||Hf |) (25)

Step 5: generate a new meshHM(α) and go to 1, until convergence to a fixed pointMopt,norm =M(∞).

The new algorithm involves the solution of two extra linear systems with respect to a basic
Hessian-based algorithm and one extra linear system with respect to the goal-oriented algorithm.

Remark: In contrast to the adjoint of the goal-oriented algorithm, these auxiliary variables are not
consistent with a continuous adjoint (and do not converge towards it when mesh is refined). They are
correctors and converge to zero. Then it seems that we cannot get a good initial condition to an FMG
phase (from a coarse mesh to a finer one) on these variables. For doing it anyway, we rely again on
the Richardson heuristics. We assume that our data and solution are sufficiently regular for applying
the Aubin-Nitsche L2 analysis. This implies the second-order L2 convergence of approximate solution
to exact one, i.e. ||uM − u||L2 = O(h2). This tends to indicate that our corrector norm would be
also O(h2), i.e., formally:

||u′prio,M||L2 = O(h2).

We write this in terms of the number N of vertices for metric M as follows (again formally):

||u′prio,M||L2 = O(N−1).

Further, following a (formal) Richardson expansion:

u′prio,M ≈ N−1u′prio (26)

where u′prio is the limit (assumed to exist) of Nu′prio,M when mesh is refined. Similarly, we can put:

u∗prio,M ≈ N−1u∗prio. (27)

In particular, when passing from a meshM1 with N1 vertices,M2 with N2 vertices, approximations
of u′prio,M2

and u∗prio,M2
can be defined as

u′prio,M2
≈ N1

N2

u′prio,M1
; u∗prio,M2

≈ N1

N2

u∗prio,M1
(28)

and used as initial conditions inside the FMG method.�

6. Numerical examples

We restrict our study to a benchmark of two-dimensional Poisson problems. We conjecture
that the two following mesh adaptation methods produce L2 convergent solutions to continuous.
The first method, the Hessian-based method (with p = 2), is just heuristically relying on usual
finite-element estimates. The second method, our novel norm-oriented method, is directly built on
the minimisation of the L2 error norm. We do not consider goal-oriented applications for which
examples of computations can be found in [26] and [10]. As already remarked, the convergence of
goal-oriented solutions to continuous is definitively questionable.
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6.1. Numerical features

In [12], a mesh-adaptative full-multigrid (FMG) algorithm relying on the Hessian-based adap-
tation criterion is designed. We first describe in short this algorithm for the Hessian-based option.
A sequence of numbers Nk of vertices is specified from a coarse mesh to finer one N0 = N,N1 =
4N,N2 = 16N,N3 = 64N, .... For each mesh size Nk, a sequence of adapted meshes of size Nk is
built by iterating the following loop:
(a) computing a solution,
(b) computing the optimal metric,
(c) building the adapted mesh.
In (a), a multi-grid V-cycle is applied to a sufficient convergence. In (b), approximations of the
Hessians are performed as in [26]. When changing of mesh, an interpolation is applied in order to
enjoy a good initial condition. A prescribed number of 4 adaptation iterations is applied at each
mesh fineness Nk.

The extension of the above loop to norm-oriented adaptation consists of replacing the single Hes-
sian evaluation by:
- the computation of the corrector, using MG and, as initial solution, the previous evaluation inter-
polated to current mesh and corrected according to (28),
- the computation of the adjoint, using MG and, as initial solution, the previous evaluation interpo-
lated to current mesh and corrected according to (28),
- the evaluation of (25).

Figure 1: Fully 2D Boundary layer test case : sketch of the solution.

Let us discuss computer efficiency. In the demonstrator of [12], a particular feature is the stopping
criterion of FMG which applies to the convergence of the solution of the unique solved system, i.e.
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the system under study, u = A−1f . It is then possible to enjoy a better and better initial condition
and control the iterative and approximation errors convergence. Consequently, it was possible, in
[12], to show that mesh adaptation carries large improvement not only in terms of accuracy for a
given number of vertices but also in terms of accuracy for a given computational time.

In contrast, the method proposed in this paper involves three systems to solve: (1) the system
under study, u = A−1f , (2) the corrector system, (3) the adjoint system. We shall give an idea of
the performances for one test case.

6.2. 2D Boundary layer

This test case is taken from [18]. We solve the Poisson problem −∆u = f in ]0, 1[×]0, 1[ with
Dirichlet boundary conditions and a right-hand side f chosen for having:

u(x, y) = [1− e−αx − (1− e−α)x]4y(1− y).

The coefficient α is chosen equal to 100. The graph of the solution is depicted in Figure 1. Before
applying our mesh adaptative algorithm, it is interesting to evaluate the accuracy of our correctors.
We choose a 161×161 uniform mesh and show, in Figure 2 and Figure 3, the cut of u−uh compared
with the cut of u′. We observe that the a priori corrector does its job in a correct but inaccurate
manner while the DC one is rather accurate. We have also observed that the DC corrector does not
consume notably more CPU than the a priori one. Therefore, we keep this option for the rest of
the test case. In Figure 4, we show a set of FMG calculations for the considered test case. The

Figure 2: Fully 2D Boundary layer test case : comparison of error cuts for y = 0.5: plus signs (+) depict the
approximation error u− uh and crosses (×) depict the a priori corrector u′prio. The corrector is able to correct about
60% of the approximation error.

numbers of vertices of the successive meshes are supported by the horizontal axis, from 120 vertices
to 30,000 vertices. The vertical axis gives the L2-norm of the approximation error |u−uh|L2 obtained
on the mesh. Its variation with respect to number of vertices is compared in Figure 4 for the three
following algorithms: (a) the uniform-mesh FMG, (b) the Hessian-based adaptative FMG and (c)
the norm-oriented adaptative FMG. We observe that both adaptation methods carry an important
improvement with respect to uniform-grid FMG (25921 vertices on finest mesh). For essentially the
same number of vertices (32318), the Hessian option gives an error divided by 47. The norm-oriented
option appears as better with an error divided by 208 with 29485 vertices.
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Figure 3: Fully 2D Boundary layer test case : comparison of error cuts for y = 0.5: plus signs (+) depict the
approximation error u − uh and crosses (×) depict the Defect-Correction corrector u′DC . The corrector is able to
correct about 95% of the approximation error.

Figure 4: Fully 2D Boundary layer test case: convergence of the error norm |u − uh|L2 as a function of number of
vertices in the mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG, (∗) norm-oriented adaptative
FMG.

Since the exact solution u is analytically available, we also propose an a posteriori measure of the
correctors efficiency by comparing the convergence of our norm-oriented adaptation (equipped with
either corrector) with the same method except that the corrector is replaced by u − uh. Of course,
that latter algorithm is not a mesh adaptation method since we assume that we already know the
exact solution. In Figure 5, we observe that the error convergence for the three computations are
very close to each other. This confirms the interest of the two proposed correctors.

Lastly, when using the proposed method in usual conditions, i.e. without knowing the analytic
solution, it can be interesting to have an evaluation of the final error u−uh by using the DC corrector
which appeared in experiments as more accurate. Figure 6 shows a comparison of the evaluated error
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computed from the corrector with the actual error. We observe that this evaluation is useful, giving
the good order of magnitude. For the finer mesh of 30, 000 vertices, the evaluated error is 2.14 10−5

while the actual error is 4.31 10−5. However, for most meshes, the evaluation remains somewhat
optimistic (smaller than the actual error).

Figure 5: Fully 2D Boundary layer test case: convergence based on (×) the a priori corrector or on the (∗) Defect-
Correction one, compared with (�) a virtual adaptation controlled by u− uh.

Figure 6: Fully 2D Boundary layer test case: comparison of the predicted error norm proposed by the method, curve
with (�), with the exact error norm (×).

6.3. Bubble-like test case with thick interface

We are interested by a Poisson problem the solution of which is a function u equal to 1 on
a disk and to 0 in the rest of the domain. This function is the prototype of the pressure in a
multi-fluid flow involving capillary forces. The source term is a Dirac derivative. We smooth this
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computation by defining a thickness ε for defining an annular region separating the two subdomains
(outside the disk, inside the disk) and in which u is smoothly varying from 0 to 1: if (x, y) is
located inside the annular region, u(x, y) is given by the formula: u(x, y) = 1

2
+ 1

2
sin(πψ

ε
) with

ψ = 0.25 −
√

(xC − x)2 + (yC − y)2. From this solution, a right-hand side f is computed. Given a
mesh, vertex values of fh are interlopated from the analytic f . As a result, for rather coarse meshes,
the zone where f is not zero can be spuriously missed and fh can be zero even in the neighborhood
of the high values of f . We consider first a quite large thickness of ε = 0.1. An approximate solution
uh is shown in Figure 7. As for the previous test case, we first evaluate the accuracy of the corrector.

Figure 7: Circular layer test case: an adapted mesh and the corresponding numerical solution uh. Palette from
−6.4 10−5 to 0.9996.

We choose a uniform mesh 161×161 and show, in Figure 8 and Figure 9, the cut of u−uh compared
with the cut after correction, that is u−uh−u′h. We observe that both a priori and Defect-Correction
correctors do an accurate job.

The three methods are again compared in Figure 10: standard FMG, Hessian-based adaptative
FMG and norm-oriented adaptative FMG. For the Hessian-based calculation, we observe a tendancy
for a slower convergence for finer meshes, finishing with an error which is worse than the uniform
refinement. The proposed norm-oriented adaptative method behaves in a better way with a five
times smaller error than for the uniform refinement.

6.4. Bubble-like test case with thin interface

In order to evaluate the robustness of the methods with respect to steeper gradients, we consider
the same test case with a thinner transition: ε = 0.02.
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Figure 8: Thick bubble case: comparison of (+) error u− uh and (×) a priori corrector.

Figure 9: Thick bubble case: comparison of (+) error u− uh and (×) Defect-Correction corrector.

The convergence of the three methods is shown in Figure 14. Due to the very thin support of the
right-hand side f , the three methods start with a zero fh. Then, either with adaptation or refinement,
the error increases to several units. The convergence of the uniform FMG shows an acceptable slope
but the error values remain relatively huge. By comparison with the thick-bubble convergence, we
may infer that the slope of uniform FMG will be second-order with even higher number of vertices and
a 0.1 % error may be not attained for meshes of less than 10 millions nodes. The Hessian-based final
result is a little better but globally disappointing. The norm-oriented convergence starts chaoticly
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Figure 10: Thick bubble test case: convergence of the error norm |u− uh|L2 as a function of number of vertices in the
mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG and (∗) norm-oriented adaptative FMG.

Figure 11: Thin bubble case: an adapted mesh and the corresponding numerical solution uh. Palette from 0.000 to
1.0593.

before being monotone and second-order for meshes finer than 2000 vertices. The final L2 errors
produced by the three methods are 0.17589 with 25921 vertices for the uniform FMG, 0.03773 with
32127 vertices for the Hessian-based adaptation and 0.000585 for 29742 vertices for the norm-oriented
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Figure 12: Thin bubble case: comparison of (+) error u− uh and (×) a priori corrector.

Figure 13: Thin bubble case: comparison of (+) error u− uh and (×) Defect-Correction corrector.

calculation, 300 times smaller than the first result. In order to show the behavior of the algorithms for
more complex solutions, we have computed the case of a solution involving three bubbles of different
sizes. A comparison, in Figure 15, of the solutions with and without adaptation demonstrate that
the uniform FMG (results of top range) is unable to produce even a rough approximation with 6561
vertices. Only the solution for 25921 vertices is rather good, with an error L1 norm of 0.50 but with
mean values in bubbles showing still 10% deviations. In contrast, the norm-oriented mesh-adapted
solutions (bottom range of Figure 15) show a fast convergence. For 1681 vertices, the solution has
the same quality as the uniform 25921-vertices one (error is slightly larger, 0.54). For 6561 and 25921
vertices, the accuracy seems good. The apparent convergence order is greater than two. In contrast,
we observe that the Hessian-based calculation is rather disappointing.
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Figure 14: Thin bubble test case: convergence of the error norm |u− uh|L2 as a function of number of vertices in the
mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG and (∗) norm-oriented adaptative FMG.

Figure 15: Multiple bubble test case: top: non-adaptative solutions for 441, 1681,6561, 25921 nodes, and, bottom, the
norm-oriented mesh adaptative solution for about the same number of nodes (palette retricted to values between the
minimum (0.) and the maximum (1.) of the exact solution.

6.5. Poisson problem with discontinuous coefficient

This test case exemplifies the singularity which is met in the simulation of multi-fluid flows with
a large deviation between the densities ρ1 and ρ2 of each phase. In the case where a projection
algorithm is applied to solve the Navier-Stokes equations for incompressible flow, a Poisson problem
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Figure 16: Multiple bubble test case: convergence of the error norm |u− uh|L2 as a function of number of vertices in
the mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG and (∗) norm-oriented adaptative FMG.

with discontinuous coefficients has to be solved. An example can be found in [20]. The present case
does not satisfy the smoothness assumptions introduced for deriving our method. However, a usual
expectation in mesh adaptation is that the methods should also apply well on non-smooth contexts.
We consider the equation of Poisson −div(1

ρ
∇u) = rhs with a discontinuous coefficient taking two

different values 1/ρ1 and 1/ρ2 on two sub-domains Ω1 and Ω2 separated by an interface which is
a sufficiently smooth curve for having a normal vector. This PDE is mathematically referred as a
transmission problem and the solution is continuous across the interface but of discontinuous normal
derivatives since:

1/ρ1∇u1 · n = 1/ρ2∇u2 · n

where u1 and u2 are the restrictions of the solution u on Ω1 and Ω2. In our example, we define them
as follows

u|Ωi = ui = αi + βi(x
2 + y2) i = 1, 2.

Further, Ω2 is the disk of center (0.5, 0.5) and of radius 0.2 in the computational domain ]0, 1[×]0, 1[
and we have:

1/ρ1 = 1000. ; α1 = 1.23579... ; β1 = −2.47158...

1/ρ2 = 1. ; α2 = 100. ; β2 = −2471.58... (29)

This is sketched in Figure 17. In the discrete model, the interface appears only as values of 1/ρ
evaluated on the vertices of each grid. From the examination of cuts of the correctors in Figures
18 and 19, we observe that their pointwise accuracy is somewhat a disaster. Our analysis used
intensively smoothness of functions and assumes, for the Defect Correction option that second-order
convergence applies, which is not true for this discontinuous case. However, the injection of the
correctors in the norm-oriented functional and adjoint performs adequately. The convergence of
our process is not really affected by the poor accuracy of the correctors, as can be seen from the
comparison of convergence with the correctors or with the exact error, Figure 21. The anisotropy
of the finer mesh is illustrated in Figure 20. A convergence in terms of number of vertices with
non-adaptative and Hessian-based adaptive is given in Figure 22. We observe that, without mesh
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Figure 17: Poisson problem with discontinuous coefficient: sketch of exact solution definition and a typical computation
of it.

Figure 18: Poisson problem with discontinuous coefficient: comparison of (+) error u− uh and (×) a priori corrector.

adaptation (crosses +), the convergence order is around 1. This behavior can be explained by the
singularity of the solution. In contrast, the overall convergence order of the adaptative process is
about two. Note that this convergence will finally deteriorate when we attain the limits of the
stretching capabilities of the mesh generator. However, the second-order numerical convergence
observed is a usual bonus obtained by anisotropic mesh adaptation which has already been noted
in [28]. In [12], the convergence of an anisotropic adaptation has been compared with its isotropic
analogous for the same test case. The anisotropic calculation was converging at order two while the
isotropic one was converging at order 3/2. A short analysis of these behaviors is proposed in [15].

Let us now compare with the Hessian-based method. This is the only one of our test cases for
which the convergence of error in terms of number of nodes of the norm-oriented formulation is not
neatly better (but it is as good) than the analog convergence of the Hessian-based formulation. The
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Figure 19: Poisson problem with discontinuous coefficient: comparison of (+) error u− uh and (×) Defect-Correction
corrector.

error plays a role of weighting in the new formulation. Then a possible explanation of this -relatively-
disappointing behavior is that, with the realistic ratio of densities we have chosen, the error is very
small close to the discontinuity.

Although not optimised for CPU, the novel algorithm may give a good increase of efficiency. We
present, in Figure 23, the behavior of the error as a function of CPU. Three curves are compared.
The upper curve corresponds to the non-adaptative FMG calculation. An error of about 0.06 is
obtained on 100000 vertices after 25000 seconds of CPU. We present also the Hessian-based adaptative
convergence obtained in [12] in which the convergence of MG is adequately controlled by a stopping
criterion. Despite the remeshing and re-computing for adaptation, the total time is about twice the
non-adaptative FMG time, for an error of 0.001− 0.002, at least 30 times smaller. The third curve
shows the CPU behavior of the norm-oriented algorithm. The total time is about ten times the
non-adaptative FMG time, for an error of 0.001. After 25000 seconds of CPU, the error is about 10
times smaller than with the non-adaptative FMG at same time.

6.6. A 1D Boundary layer

The new method has shown a good behavior for all test cases we tried except one which we
describe now. It is a boundary layer case with a 1D solution: u(x, y) = u(x) of a Dirichlet-Neumann
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Figure 20: Poisson problem with discontinuous coefficient: views of final mesh: global view, zoom on right part, zoom
of the zoom.

Figure 21: Poisson problem with discontinuous coefficient: convergence based on (×) the a priori corrector or on the
(∗) Defect-Correction one, compared with (�) a virtual adaptation controlled by u− uh.

problem −∆u = rhs with

rhs(x, y) = (α2(exp(1/α)− 1))−1exp(x/α) ; α = 0.03.

We check first the correctors. Both seem adequate on a uniform grid, as shown with a horizontal cut
depicted on Figure 24 and Figure 25.

In Figure 26, the non-adaptative FMG produces an approximation error of 0.003 (30000 vertices).
This convergence is relatively satisfactory, being a second order convergence. However, in order
to reach a 10−7 error level, several hundred millions vertices will be necessary with this sequence
of uniform meshes. A second curve is obtained with the adaptative FMG with the Hessian-based
criterion. Final convergence is disappointing since the slope is first-order. The same problem appears
with our new algorithm. A deeper examination of adaptation criteria has shown that the high
derivatives of the right-hand side f are very close to boundary x = 1. It could not be seen by the
algorithm, because of the weighting by the adjoint u∗, which is zero at this boundary. We have
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Figure 22: Poisson problem with discontinuous coefficient: convergence of the error norm |u− uh|L2 as a function of
number of vertices in the mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG and (∗) norm-oriented
adaptative FMG.

Figure 23: Poisson problem with discontinuous coefficient: efficiency analysis : CPU time for (+) non-adaptative
FMG, (×) Hessian-based adaptative FMG and (∗) norm-oriented adaptative FMG.

replaced the norm-oriented optimum metric by its intersection with the metric based on the Hessian
of f . Then, the convergence improved a lot. In contrast, introducing the same metric intersection in
the other cases did not produce second-order convergence.

7. Conclusion

The norm-oriented mesh adaptation method is an answer to a well formulated problem. Con-
sidering a numerical scheme, here the most used FEM, and prescribing a norm, we want to find
the mesh giving the smallest approximation error in that norm for a given number of vertices. The
norm-oriented mesh adaptation method transforms the problem into an optimization problem which
is mathematically well-posed. It relies on the following other features.
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Figure 24: 1D Boundary Layer: comparison of error cuts for y = 0.5: plus signs (+) depict the approximation
error u − uh and crosses (×) depict the a priori corrector u′prio. The corrector is able to correct about 55% of the
approximation error.

Figure 25: 1D Boundary Layer: comparison of error cuts for y = 0.5: plus signs (+) depict the approximation error
u− uh and crosses (×) depict the Defect-Correction corrector u′DC . The corrector is able to correct about 80% of the
approximation error.

A corrector represents the approximation error. We give two examples of correctors. An a priori
corrector is built from the variational discrete statement. A Defect-Correction corrector is built
from a finer-mesh defect correction principle. These correctors appear as not very accurate but
sufficiently accurate for our purpose. According to the type of approximation, at least the second
one, Defect-Correction is extendable to many models and schemes.

The norm-oriented algorithm is presented as a natural extension of the goal-oriented algorithm
which, in our formulation, is itself a natural extension of the Hessian-based algorithm. More precisely,
while the Hessian-based algorithm solves only the PDE under study in the mesh-adaptation loop,
the goal-oriented algorithm also solves an adjoint system (with linearised operator, transposed).
The norm-oriented algorithm solves three systems, a corrector (linearised system with an adhoc
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Figure 26: 1D Boundary Layer: convergence of the error norm |u − uh|L2 as a function of number of vertices in the
mesh for (+) non-adaptative FMG, (×) Hessian-based adaptative FMG, (∗) norm-oriented adaptative FMG, and (o)
norm-oriented adaptative FMG with intersection with RHS Hessian.

RHS), an adjoint (linearised and transposed with the corrector as RHS) and the PDE itself. The
three algorithms have in common an anisotropic a priori error analysis and a metric-based mesh
parameterisation.

The Hessian-based method produces convergent solution fields but does not take into account
the precise equation and discretization. The goal-oriented method takes into account equation and
discretization but is too focused on a particular output and does not generally produce convergent
solution fields. The norm-oriented method has the advantages of both.

In order to show the improvement obtained with respect to previous methods, we compare, in our
experiments, the two field-convergent options, i.e. the Hessian-based method and the norm-oriented
method. Our benchmark examines convergence to continuous thanks to the application of a Full-
Multigrid (FMG) process. Approximation errors can then be compared as functions of the number
of degrees of freedom. Although of larger complexity, the mesh adaptative algorithms are generally
more efficient in terms of CPU time than the non-adaptative one. The advantage is renforced by the
fact that the same level of error is reached with a much lower number of vertices. Secondly, although
the elliptic context is known as favourable to Hessian-based methods, the norm-oriented approach
behaves notably better than Hessian-based in terms of approximation error for a given number of
vertices. This is observable in particular for singular or stiff contexts.

We have presented an example of comparison of computational effort but our algorithm is not
optimised. It is, therefore, in several cases, less efficient than Hessian-based adaptative FMG.

The method is rather general and it is now applied to more complex PDE models from CFD
(Euler, Navier-Stokes), see [27], involving dominant advection effects for which a Hessian-based
approach is much less efficient.
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Y. Mesri, and G. Rogé. Multi-model and multi-scale optimization strategies. application to
sonic boom reduction. European Journal of Computational Mechanics, 17(1-2):191–214, 2008.

[6] E. Arian and M.D. Salas. Admitting the inadmissible: Adjoint formulation for incomplete cost
functionals in aerodynamic optimization. AIAA Journal, 37(1):37–44, 1999.

[7] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods:
basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.
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