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Abstract

We consider model order reduction by proper orthogonal decomposition (POD)
for parametrized partial differential equations, where the underlying snapshots
are computed with adaptive finite elements. We address computational and
theoretical issues arising from the fact that the snapshots are members of dif-
ferent finite element spaces. We propose a method to create a POD-Galerkin
model without interpolating the snapshots onto their common finite element
mesh. The error of the reduced-order solution is not necessarily Galerkin or-
thogonal to the reduced space created from space-adapted snapshot. We ana-
lyze how this influences the error assessment for POD-Galerkin models of lin-
ear elliptic boundary value problems. As a numerical example we consider a
two-dimensional convection-diffusion equation with a parametrized convective
direction. To illustrate the applicability of our techniques to non-linear time-
dependent problems, we present a test case of a two-dimensional viscous Burgers
equation with parametrized initial data.

Keywords: proper orthogonal decomposition, adaptive finite elements, model
order reduction, reduced basis method

1. Introduction

Model order reduction is a tool to decrease the computational cost for appli-
cations where a parametrized PDE problem needs to be solved multiple times
for different parameter values. Therefore model order reduction is often stud-
ied in the context of optimal control [7, 15, 20] or uncertainty quantification
[5, 8, 22]. Snapshot-based model order reduction requires a set of representative
samples of the solution, which need to be computed in advance. The solution
of the reduced-order model is then represented as a linear combination of these
snapshots. The respective coefficients are determined by means of a Galerkin
projection, based on a weak form of the governing equations. In this way, the
reduced-order model inherits both the spatial structure of typical solutions as
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well as the underlying physics. Introductions to snapshot-based model order
reduction are provided by the textbooks [9, 17].

Standard techniques for model order reduction assume that all snapshots use
one and the same spatial mesh. We refer to this case as static snapshot compu-
tations. In contrast, with adaptive snapshot computations we mean that each
snapshot may use a different mesh. Combining space-adaptive simulations with
model order reduction can be an advantage from two points of view: Firstly,
introducing spatial adaptivity to the set-up phase of a reduced-order model can
decrease the total computation time if the solution contains local features de-
pending on the parameter. By adapting the mesh to the features at a given
parameter value, less degrees of freedom are required to obtain a certain accu-
racy. Secondly, introducing model order reduction to space-adaptive simulations
promises computational speed-up in cases where the solution is susceptible to
an approximation in a low-dimensional linear space and needs to be evaluated
for multiple different parameter values.

One possible way to implement a POD-Galerkin reduced-order model from
snapshots of different discretization spaces is to express the snapshots as ele-
ments of some common discretization space. Then one can use standard meth-
ods to create a POD basis and compute a respective Galerkin projection of the
solution. In the case of strongly varying local refinements, however, a good
common discretization space may be relatively high-dimensional, which makes
it unattractive from a computational point of view. We show that by express-
ing the POD basis in terms of the snapshots, it is possible to avoid forming the
common discretization space explicitly.

Model order reduction with spatial adaptivity has been studied in [1, 2] for
snapshot computations with adaptive wavelets and in [23] for snapshot com-
putations with adaptive mixed finite elements. The main issue addressed in
these publications is the assessment of the error between the reduced-order so-
lution and the infinite-dimensional true solution. In the case of static snapshot
computations, this problem can be circumvented by assuming a sufficiently fine
snapshot discretization. Then the error between the reduced-order solution and
a corresponding discrete solution can be estimated with the help of the discrete
residual. For the case of adaptive snapshot computations, [1, 2] use wavelet
techniques to estimate the required dual norm of the continuous residual. In
contrast, [23] derives a bound for the dual norm of the continuous residual from
a special mixed finite element and reduced basis formulation.

The references [1, 2, 23] focus on model order reduction by the greedy re-
duced basis method [16]. In this paper, however, we consider an alternative
approach, namely proper orthogonal decomposition (POD) [10, 18]. The major
difference between both methods lies in the construction of the reduced space
used as a test and trial space in a Galerkin procedure. Both methods require
a fixed set of training parameters to be chosen in advance, where for time de-
pendent problems, time is viewed as a parameter. From the training parameter
set, the greedy reduced basis method selects a set of parameter values in an
iterative way using an error estimator and uses the span of the corresponding
snapshots as a reduced space. This can save computation time by avoiding the
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computation of snapshots which have not been selected. The resulting reduced
space is close to the one which minimizes the maximum approximation error
over the training set. In contrast, POD forms a reduced basis by linearly com-
bining the snapshots corresponding to all training parameter values. The linear
combination is done in a way which minimizes the mean square approximation
error over the training set, but at the cost of computing all training snapshots.
If the dimension of the reduced spaces are increased, both the greedy and the
POD space eventually become equal to the span of the snapshots corresponding
to all training parameter values.

A POD of snapshots resulting from a static spatial discretization can be im-
plemented in terms of a truncated singular value decomposition [11]. Therefore,
an error estimator is not necessary for creating a POD reduced basis. Because
snapshots have to be computed for all training parameters, POD is often ap-
plied to time-dependent problems, where snapshot data arise as a by-product of
the numerical time stepping scheme. We note that in this context, POD with
time-adaptive snapshots has been studied in [3]. POD with one-dimensional
space-adaptive snapshots has already been addressed in [13], where the POD
computation relies on a polynomial approximation of the snapshots. In con-
trast, we focus on the two-dimensional case and present a method which does
not require an intermediate approximation of the snapshots.

A major difference between greedy and POD reduced basis methods for
space adaptive snapshots is caused by the relation between the snapshots and
the reduced basis functions: In the greedy reduced basis method, the reduced
space is formed by linear combinations of snapshots, while the snapshots are
themselves elements of the reduced space. In the POD reduced basis method,
the reduced space is also formed by linear combinations of snapshots, but the
snapshots are not elements of the reduced space, in general. The difference
between the snapshots and their closest approximation in the POD space can
be measured in terms of the truncated singular values. This has consequences
for the error assessment of POD-Galerkin schemes in presence of space-adapted
snapshots. While the main difficulties in the greedy reduced basis method arises
from the fact that the error of the reduced-order solution is not necessarily
orthogonal to the reduced space anymore, the POD reduced basis method is
additionally subject to a truncation error.

This paper is structured as follows: In section 2, we introduce proper orthog-
onal decomposition for adaptive finite element snapshots. We propose methods
to efficiently compute POD bases for adaptive finite element discretizations with
nested refinement. A POD-Galerkin reduced-order model based on adaptive
snapshots is formulated in section 3 for an elliptic boundary value problem. We
prove error statements for the reduced-order solution in presence of adaptive
snapshots and compare the results to snapshot computations on a static mesh.
The methods and analytic results are illustrated in section 4 with a numeri-
cal test case involving a linear convection-diffusion equation with parametrized
convective direction. The applicability to non-linear time-dependent problems
is suggested by the results of section 5, which features a Burgers problem with
parametrized initial condition.
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2. Proper orthogonal decomposition

We consider snapshot-based model order reduction, where the solution of
a PDE problem is represented in the space spanned by a set of reduced basis
functions obtained by linearly combining a set of snapshots. Such reduced-
basis functions typically have a global support and contain information about
expected spatial structures of the solution.

One method to compute reduced basis functions from snapshots is the proper
orthogonal decomposition [10, 18]. If the snapshots correspond to coefficient
vectors of a finite element discretization on a fixed grid, a POD can be given in
terms of the snapshot coefficient matrix [11]. In the following, we introduce a
method that computes a POD of snapshots stemming from an adaptive finite
element simulation, where a snapshot matrix can not be created in straight-
forward manner.

2.1. Method of snapshots

We consider a PDE problem defined over some bounded open spatial domain
Ω and some time and/or parameter domain S. In particular, we are interested in
parametrized elliptic boundary value problems, where S is a parameter domain,
and in parametrized parabolic initial boundary value problems, where S is a
tensor product of a time interval and a parameter domain.

Let V be the infinite-dimensional Hilbert space used to characterize the
solution as a function of space. A typical example is V = H1

0 (Ω), the Sobolev
space of L2(Ω) functions with weak first derivatives in L2(Ω) and boundary
values vanishing in the sense of traces. We denote the V -scalar product by
(·, ·)V and the V -norm by ‖ · ‖V .

A proper orthogonal decomposition of snapshots u1, . . . , uN ∈ V can be
defined in terms of a system of minimization problems [12]: Find functions
φ1, . . . , φN ∈ V which solve the minimization problems

min
φ1,...,φR∈V

N∑
n=1

∥∥∥un − R∑
k=1

(un, φk)V φk

∥∥∥2

V
, (φi, φj)V = δij , i, j = 1, . . . , R

(1)

for all R = 1, . . . , N . The solutions can be computed by an eigenvalue decompo-
sition of the matrix containing the mutual V -inner products of u1, . . . , uN . This
approach is often called the method of snapshots [18]. The eigenvalue problem
can be written in components as follows: For given u1, . . . , uN ∈ V , find λ ∈ R
and ~a = (a1, . . . , aN )T ∈ RN , such that

N∑
j=1

(ui, uj)V aj = λai, i = 1, . . . , N.

After defining the snapshot Gramian matrix G = (gij) with gij = (ui, uj)V for
i, j = 1, . . . , N , the matrix form of the set of equations is given by G~a = λ~a.
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The eigenvalue decomposition of the snapshot Gramian results in eigenvalues
λ1, . . . , λN ∈ R and eigenvectors ~a1, . . . ,~aN ∈ RN . We order the eigenvalues
such that λ1 ≥ · · · ≥ λD > 0 = λD+1 = · · · = λN and write the eigenvectors in
components as ~ar = (ar1, . . . , a

r
N )T for r = 1, . . . , N . Then the first POD basis

functions are given by linear combinations of snapshots,

φr =

N∑
n=1

un
arn√
λr
, r = 1, . . . , D. (2)

The space V R = span(φ1, . . . , φR) is called a POD space of dimension R for any
1 ≤ R ≤ D.

POD reduced-order modeling tries to approximate a solution u : S → V
with a function uR : S → V R defined by

uR =

R∑
r=1

φrb
r, (3)

where ~b = (b1, . . . , bR)T : S → RR is a POD coefficient vector. Combining (2)
and (3) gives a POD approximation in terms of the snapshots,

uR =

N∑
n=1

un

R∑
r=1

arnb
r

√
λr
. (4)

One particular choice of POD coefficients is implied by the POD minimiza-
tion problem (1) and given by a V -orthogonal projection of u onto V R:

PRu :=

R∑
r=1

φr(φr, u)V ∀u ∈ V, R = 1, . . . , D,

which means br = (φr, u)V for r = 1, . . . , R. The orthogonal projection is used
as a reference solution later on, because it gives a POD representation with
optimal coefficients:

‖u− PRu‖V = inf
v∈V R

‖u− v‖V ∀u ∈ V.

The error of the POD projection of the snapshots can be computed from the
POD eigenvalues,

N∑
n=1

‖un − PRun‖2V =

D∑
n=R+1

λn, (5)

which implies that the POD projection error of the snapshots decreases mono-
tonically with the POD dimension and that un = PDun for n = 1, . . . , N .
Together with (2) this means

span(u1, . . . , uN ) = span(φ1, . . . , φD). (6)

5



V1 V2 V1 + V2 V+

Figure 1: Illustration of meshes corresponding to general finite element spaces V1 and V2,
their vector sum V1 + V2 and a common finite element space V+ obtained by adding nodes
and edges.

2.2. Adaptive snapshot spaces

In order to compute a set of snapshots, we discretize our PDE problem of
interest with adaptive finite elements in space. Let V1, . . . , VN ⊂ V be adapted
finite element spaces, so that u1 ∈ V1, . . . , uN ∈ VN . Let M1, . . . ,MN be the
dimensions of the respective spaces. We focus on h-adaptive Lagrangian finite
elements with a fixed polynomial degree, so that each snapshot finite element
space is defined by a triangulation.

For discretizations on a fixed triangulation, one can represent linear com-
binations of snapshots by linear combinations of finite element coefficient vec-
tors. In order to do this for adaptive spatial discretizations, however, one must
first express the snapshots in terms of a suitable common finite element basis.
Therefore, we introduce a space V+ ⊂ V with finite dimension M+, on which
we impose two properties:

1. V+ is a finite element space of the same type as V1, . . . , VN ,

2. V1 + · · ·+ VN ⊂ V+ in terms of a vector sum.

A consequence of the first property is that after interpolating all snapshots onto
V+, we can work with them in the same way as if they were computed on a
fixed triangulation. The second property ensures that the error between any
snapshot and its representation in V+ is zero.

In general, setting V+ = V1 + · · ·+ VN would be too restrictive in the sense
that it does not necessarily fulfill the first property. Consider, for example, the
case where V1, . . . , VN are linear Lagrangian finite element spaces defined over
different triangulations of a common spatial domain, like in Figure 1. While the
functions in V1+· · ·+VN are still piecewise linear, they do not always correspond
to a finite element discretization on a triangulation. Still, by adding degrees of
freedom one can find a triangulation and a respective linear Lagrangian finite
element space V+ containing V1 + · · ·+ VN .

A more convenient situation is encountered if the snapshots are adapted with
the newest vertex bisection algorithm starting from a common initial triangu-
lation. It is known that the smallest common refinement of two such meshes is
their overlay [4, 19], which implies V1 + · · · + VN = V+. A sketch is given in
Figure 2. Moreover, the mesh of V+ can be found by repeated local refinements
of any snapshot mesh. Consequently, to interpolate a function from Vn to V+ for
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V0 V1 V2 V+

Figure 2: Illustration of meshes resulting from refinement by newest vertex refinement based
on a common initial triangulation corresponding to a finite element space V0. Dotted lines
indicate the next possible refinement. Refining the upper left triangle of the initial mesh
results in V1. Refining the upper right triangle of the initial mesh results in V2. The common
finite element space V+ equals the overlay of both refined meshes, and therefore V+ = V1 +V2.

any n = 1, . . . , N , one only needs to interpolate the function between successive
refinement steps. Because of this favorable property, we focus on refinement by
newest vertex bisection in our numerical examples. However, the theory does
not depend on this decision.

Besides a common finite element space of all snapshots, it will be useful to
have common finite element spaces of subsets of snapshots available. To this
end, we extend our notation in the following way: Let Vn1

, . . . , VnK
for K > 1

define a K-tuple of snapshot finite element spaces with 1 ≤ nk ≤ N for all
k = 1, . . . ,K. We define Vn1...nK

as a finite element space of the same type
as Vn1 , . . . , VnK

, with Vn1 + · · · + VnK
⊂ Vn1...nK

. As a special case we denote
V+ = V1...N .

2.3. Gramian of adapted snapshots

The first step in the computation of a POD with the method of snapshots
is the creation of the snapshot Gramian, see section 2.1. For the case of space
adapted snapshots, we consider two options: The first option is to represent all
snapshots as members of a common finite element space of all snapshots. The
second option is to represent pairs of snapshots as members of common finite
element spaces of these pairs.

At first we provide an implementation for adaptive finite element snapshots
in terms of a common finite element space of all snapshots, where we choose
u1, . . . , uN ∈ V+. We collect the finite element coefficients of the snapshots with
respect to a basis of V+ in a set of snapshot coefficient vectors U1, . . . ,UN ∈ RM+

and define a snapshot matrix U = (U1, . . . ,UN ) ∈ RM+×N . Let M+ be the
matrix associated with the V -inner product of functions in V+, so that for
ui, uj ∈ V+ we have (ui, uj)V = UTi M+Uj . Then the snapshot Gramian matrix
is given by G = UTM+U .

Now we reformulate the computation of the snapshot Gramian so that we
only need to create common finite element spaces of pairs of snapshots. We
consider the computation of a single entry of the snapshot Gramian matrix
for a pair consisting of ui ∈ Vi and uj ∈ Vj . Let U iji and U ijj be the finite
element coefficients of ui and uj with respect to a basis of their common finite
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element space Vij and letMij be the matrix associated with the V -inner product

of functions in Vij , so that (ui, uj)V = (U iji )TMijU ijj . This means that the
Gramian matrix can be filled by creating finite element spaces Vij of all pairs
of snapshots.

We have presented two ways of creating the snapshot Gramian matrix for
the eigenvalue decomposition associated with the POD method of snapshots. In
any case, due to the properties of the common finite element spaces we obtain
the exact Gramians. The advantage of the first method is that only a single
common finite element space has to be created. A possible disadvantage is that
the dimension of this space may be very high. In the second method a larger
number of lower-dimensional finite element spaces must be created.

2.4. POD basis functions and approximation

The POD basis functions are determined as linear combinations of snap-
shots by (2). If the snapshots are represented as members of V+, the POD basis
functions are automatically members of V+ and can be computed by linearly
combining the snapshot finite element coefficient vectors corresponding to a ba-
sis of V+. If the snapshots are represented as members of their original adapted
finite element spaces V1, . . . , VN , the POD basis functions can be implicitly de-
fined as linear combinations of snapshots. In this way, forming a basis of V+

can be avoided, but applying a linear operator to a single POD basis function
means applying this operator to all snapshots. Following this idea, there are
multiple ways to represent a POD approximation: in terms of V+, or in terms
of a linear combination of POD basis functions by (3), or in terms of snapshots
by (4). By expressing the POD approximation and the POD basis in terms
of the snapshots, one can formulate POD Galerkin models based on adaptive
snapshots without the need to create the common discretization space.

The theoretical results regarding the V -orthogonal POD projection in the
last paragraph of section 2.1 have been stated in the context of functions in
V . Therefore, these results do not depend on whether the snapshots have been
computed with a static or an adaptive discretization. Still, the V -orthogonal
projection requires knowledge of the function to be projected, and is therefore
only valuable as a reference.

A different scenario is the computation of POD coefficients by a reduced-
order model obtained via Galerkin projection. Here, knowledge of the solution
is not necessary to obtain POD coefficients. As we will see in the following
section, however, the snapshot discretization influences the accuracy of the POD
approximation.

3. POD Galerkin reduced-order modeling for an elliptic PDE

We highlight the principal differences between POD Galerkin reduced-order
modeling for static and adapted snapshots with an example of a parametrized
elliptic boundary value problem. For the case R = D we can use results from the
greedy reduced basis theory [1], because according to (6) the POD space equals
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the span of the snapshots. For R < D we need to take the additional POD
truncation error into account. The goal of the error assessment is to understand
in which way the POD truncation and the mismatch between the snapshot finite
element spaces contribute to the error of the reduced solution.

3.1. Weak formulation

Let µ ∈ S be a parameter vector in a domain S ⊂ RK . We define a
parametrized bilinear form a(·, ·;µ) : V × V → R which is uniformly coercive
with coercivity constant

α(µ) = inf
v∈V \{0}

a(v, v;µ)

‖v‖2V
≥ α > 0

and uniformly continuous with continuity constant

γ(µ) = sup
v,w∈V \{0}

a(v, w;µ)

‖v‖V ‖w‖V
≤ γ <∞.

We also define a linear form f(·;µ) : V → R which is uniformly continuous with
continuity constant

δ(µ) = sup
v∈V \{0}

f(v;µ)

‖v‖V
≤ δ <∞.

The parametrized elliptic PDE problem is now formulated as follows: For
µ ∈ S, find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V. (7)

The Lax-Milgram theorem guarantees well-posedness of this problem under the
given continuity and coercivity assumptions. Its solution is called true solution
in the following.

3.2. Snapshot computation

To provide snapshots for the POD computation, we introduce a collection
of discretized PDE problems associated with a given discrete training set SN =
{µ1, . . . , µN} with µ1, . . . , µN ∈ S. For each µ ∈ SN we solve the respective PDE
problem with an adaptive discretization scheme, which leads to the snapshot
spaces V1, . . . , VN ⊂ V . The snapshots are solutions of the following discretized
version of (7): For each n = 1, . . . , N , find un ∈ Vn such that

a(un, v;µn) = f(v;µn) ∀v ∈ Vn.

For any n = 1, . . . , N , the subspace property Vn ⊂ V leads to Galerkin
orthogonality between the error u(µn) − un and the discrete space Vn, which
means

a(u(µn)− un, v;µn) = 0 ∀v ∈ Vn.
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We imply a Céa lemma stating

‖u(µn)− un‖V ≤
γ(µn)

α(µn)
‖u(µn)− Pnu(µn)‖V , n = 1, . . . , N, (8)

where Pn denotes the V -orthogonal projection onto the snapshot discretization
space Vn, so that

‖u(µn)− Pnu(µn)‖V = inf
v∈Vn

‖u(µn)− v‖V .

3.3. Reduced-order model

Using the methods from section 2, we create a POD space V R ⊂ V from
the snapshots. The respective POD-Galerkin reduced-order model of (7) is
formulated as follows: For µ ∈ S, find uR(µ) ∈ V R such that

a(uR(µ), v;µ) = f(v;µ) ∀v ∈ V R. (9)

The considerations regarding the computation of the snapshot Gramian in
section 2.3 give rise to two ways to implementing a reduced-order representation
of (9). In the first approach, the snapshots and reduced basis functions are
interpreted as elements of V+. Substituting (3) in (9) and testing against the
POD basis functions leads to the following implementation: For µ ∈ S, find
~b(µ) : S → RR such that

R∑
i=1

a(φi, φr;µ)bi(µ) = f(φr;µ) r = 1, . . . , R.

This requires building V+ and the respective finite element operators, which
may be expensive in some cases.

As an alternative, one can substitute (4) in (9) and test against the POD
basis functions represented in terms of the snapshots via (2), which leads to the

following implementation: For µ ∈ S, find ~b(µ) : S → RR such that

R∑
i=1

N∑
m,n=1

aim√
λi
a(um, un;µ)

arn√
λr
bi(µ) =

N∑
n=1

f(un;µ)
arn√
λr

r = 1, . . . , R.

This requires evaluating the bilinear form for all pairs of snapshots. The cost is
similar to creating the snapshot Gramian needed for the POD computation.

In any case, further information about the dependence of the linear and
bilinear forms on the parameter µ is needed to obtain a reduced-order model
which can be evaluated for any µ ∈ S at a cost which does not depend on the
number of spatial degrees of freedom. An example is given in section 4.

3.4. Error assessment

For the error assessment of uR from (9), we first recall the main results for
static discretizations. Then we study the adaptive case and point out major
differences compared to the static case. We restrict our attention to µ ∈ SN .
For practical applications this means that a sufficiently rich snapshot set is
assumed, so that the error from discretizing S is negligible.
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3.4.1. Static discretization

Assume V R ⊂ Vn for n = 1, . . . , N . This assumption holds if the snapshots
have been computed with static finite elements.

At first we study the error between the snapshots and the reduced-order
solution evaluated at the corresponding training parameter values. From V R ⊂
Vn, we can derive a Galerkin orthogonality between this error and the POD
space,

a(un − uR(µn), v;µn) = 0 ∀v ∈ V R, n = 1, . . . , N.

The Céa lemma, following from coercivity and continuity, states the relation to
the POD approximation error,

‖un − uR(µn)‖V ≤
γ(µn)

α(µn)
‖un − PRun‖V , n = 1, . . . , N.

Moreover, (5) implies uD(µn) = un for n = 1, . . . , N . The fact that the snap-
shots are recovered for large enough R is called asymptotic snapshot repro-
ducibility.

For the error with respect to the true solution we use a triangle inequality
and respective Céa lemmas to obtain

‖u(µn)− uR(µn)‖V ≤ ‖u(µn)− un‖V + ‖un − uR(µn)‖V

≤ γ(µn)

α(µn)
‖u(µn)− Pnu(µn)‖V +

γ(µn)

α(µn)
‖un − PRun‖V

for n = 1, . . . , N . For maximum efficiency, the errors of the finite element
discretization and the POD truncation should be balanced. It should be noticed,
however, that the first term stems from the off-line discretization, which is only
relevant for the setup of the reduced-order model, while the second term stems
from the on-line discretization, which is also relevant for the evaluation time of
the reduced-order model.

3.4.2. Adaptive discretization

We derive error inequalities similar to the ones in section 3.4.1, but for the
more general case, where the snapshots are members of different finite element
spaces. The assumption V R ⊂ Vn for n = 1, . . . , N is usually not satisfied in
the adaptive case, we only have V R ⊂ V+ and Vn ⊂ V+. As a consequence, we
are not able to use a Galerkin orthogonality between the reduced-order error
un − uR(µn) and the reduced space V R for n = 1, . . . , N .

We start with the error between the solution of the reduced-order model and
the true solution. Due to V R ⊂ V , for any µ ∈ S one can derive a Galerkin
orthogonality

a(u(µ)− uR(µ), v;µ) = 0 ∀v ∈ V R

11



and a corresponding Céa lemma

‖u(µ)− uR(µ)‖V ≤
γ(µ)

α(µ)
‖u(µ)− PRu(µ)‖V .

We split the right-hand side of the Céa lemma into contributions from the
snapshot computation and from the POD truncation. To exclude the error
associated with the discretization of the parameter domain, we consider only
µ ∈ SN . The derivation starts with adding a zero to the right-hand side of
the Céa lemma for the reduced-order model and subsequently uses triangle
inequalities and the properties of orthogonal projections,

‖u(µn)− uR(µn)‖V ≤
γ(µn)

α(µn)
‖u(µn)− un + un − PRun + PRun − PRu(µn)‖V

≤ γ(µn)

α(µn)
‖un − PRun‖V +

γ(µn)

α(µn)
‖(I − PR)(u(µn)− un)‖V

≤ γ(µn)

α(µn)
‖un − PRun‖V +

γ(µn)

α(µn)
‖u(µn)− un‖V

for n = 1, . . . , N . Using (8) we obtain

‖u(µn)− uR(µn)‖V ≤
γ(µn)

α(µn)
‖un − PRun‖V +

γ(µn)2

α(µn)2
‖u(µn)− Pnu(µn)‖V

for n = 1, . . . , N . This means that for parameter values in SN , the error between
the true and the reduced-order solution can be split into contributions from
the projection of the respective snapshot onto the POD space and from the
projection of the true solution onto the respective snapshot finite element space.
In absence of POD truncation, i.e. forR = D, the POD projection error vanishes
and we obtain a variant of known results from greedy reduced basis theory [1].

Because in general V R 6⊂ Vn for n = 1, . . . , N , we are not able to derive a
Céa lemma for un − uR(µn). A straight-forward approach is using the results
from above to obtain

‖un − uR(µn)‖V
≤ ‖un − u(µn)‖V + ‖u(µn)− uR(µn)‖V

≤ γ(µn)

α(µn)

(
1 +

γ(µn)

α(µn)

)
‖u(µn)− Pnu(µn)‖V +

γ(µn)

α(µn)
‖un − PRun‖V .

Alternatively, we can use another result adapted from the literature [1]: Due
to coercivity, continuity, un ∈ V D and Galerkin orthogonality between V D and
the error between the true solution and the solution of the reduced-order model
we have

α(µn)‖un − uD(µn)‖2V ≤ a(un − uD(µn), un − uD(µn);µn)

= a(un − u(µn), un − uD(µn);µ)

≤ γ(µn)‖un − u(µn)‖V ‖un − uD(µn)‖V , n = 1, . . . , N,
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so that

‖un − uD(µn)‖V ≤
γ(µn)

α(µn)
‖un − u(µn)‖V , n = 1, . . . , N.

Because V R ⊂ V D for R ≤ D we obtain

‖un − uR(µn)‖V
≤ ‖un − uD(µn)‖V + ‖uD(µn)− uR(µn)‖V

≤ γ(µn)

α(µn)
‖un − u(µn)‖V +

γ(µn)

α(µn)
‖uD(µn)− PRuD(µn)‖V

≤ γ(µn)2

α(µn)2
‖u(µn)− Pnu(µn)‖V +

γ(µn)

α(µn)
‖uD(µn)− PRuD(µn)‖V ,

with the help of the Céa lemma of the snapshot computation. In any case, the
error between a snapshot and the solution of the reduced-order model at the
corresponding parameter value contains a component from the finite element
computation, which was not present for static snapshots.

4. Numerical example of a convection-diffusion equation

We apply POD model order reduction to a two-dimensional convection-
diffusion problem, where the transport direction serves as a parameter and
adaptive finite element snapshots are taken over the parameter interval. The
test case illustrates the computational methods introduced in section 2 and the
theoretical results derived in section 3.

4.1. Problem setting

We consider a parametrized boundary value problem based on a convection-
diffusion equation in two dimensions,

vx(µ)∂xu+ vy(µ)∂yu− ν∂xxu− ν∂yyu = 1 ∀(~x, µ) ∈ Ω× S,

with solution u(~x, µ) : Ω × S → R for a spatial domain Ω = (0, 1) × (0, 1), a
parameter interval S = [0, 1] and a diffusivity of ν = 0.01. The dependence of
the convective velocity components vx(µ) and vy(µ) on the parameter µ is given
by vx = cos(0.25πµ) and vy = sin(0.25πµ), which means that only the direction
of the velocity vector is varied. At the boundary ∂Ω of the spatial domain Ω,
we specify homogeneous Dirichlet conditions, so that

u(~x, µ) = 0 ∀(~x, µ) ∈ ∂Ω× S.

A spatial weak form of the parametrized convection-diffusion problem is given
by (7), where V := H1

0 (Ω) and the bilinear and linear forms are defined by

a(w,ψ;µ) :=

∫
Ω

vx(µ)∂xwψ + vy(µ)∂ywψ + ν∂xw ∂xψ + ν∂yw ∂yψ d~x,

f(ψ) :=

∫
Ω

ψ d~x.
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Figure 3: Solution of the convection-diffusion problem for different parameter values.

4.2. Discretization

The general procedure for the snapshot computation and the discretization
of the parameter domain has been described in section 3.2. Here, we focus on
the weak form of the convection-diffusion equation. To provide a complete de-
scription of the snapshot computation, the choice of V1, . . . , VN is characterized
in the following.

For the numerical discretization, we use a custom implementation [21] of
piecewise linear Lagrangian finite elements on triangular meshes. As an er-
ror indicator, we employ the Matlab function pdejmps [14], defining an error
measure for a triangle K by

E(K) =

(
1

2

∑
τ∈∂K

h2
τ [~nτ · (ν∇uh)]2

) 1
2

,

where τ denotes an edge along the triangle boundary ∂K, hτ is the length
of the edge, ~nτ is the unit normal, and [·] denotes a jump across the edge.
The refinement loop is started from a coarse initial mesh which is identical
for all snapshot simulations. In each step, the triangles with the largest error
contributions are refined by newest vertex bisection. The marking of triangles
and the termination of the refinement loop is done with Matlab pdeadgsc [14].

Numerical solutions for varying parameter values are presented in Figure 3.
Adapted spatial meshes are plotted in Figure 4 together with an overlay of all
snapshot meshes constituting V+ for further reduced-order modeling.

4.3. Reduced-order modeling

In order to generate snapshots for subsequent reduced-order modeling, we
solve the problem for 33 parameter values distributed equidistantly over the
parameter interval and store the respective solutions. We compute a POD of
these snapshots and create Galerkin reduced-order models of varying dimension,
using the same techniques as described in section 3.3. We can rewrite the model

14



Figure 4: Adapted triangulations corresponding to Figure 3, and the overlay of grids of all
snapshots, consituting V+.

as an equation for the POD coefficient vector: Find ~b(µ) : S → RR such that

(ARx vx(µ) +ARy vy(µ) +ARν )~b = ~FR.

Expressions for the constant model coefficient matrices ARx , ARy , ARν and the

right-hand side vector ~FR follow from substitution of the POD expansion (3)
into (9) and testing against the POD basis functions. In this example, refinement
was mostly necessary near the boundary. Therefore, forming the common finite
element space of all snapshots was not very costly. Consequently, the snapshot
Gramian and the coefficients of the reduced-order model were created using V+.

4.4. Results
In order to test how well the reduced-order models reproduce the underlying

snapshots, we solve the models for the parameter values in the training set.
The error between the snapshots and the solution of the POD-Galerkin model
is named εROM. It can be viewed as a benchmark for the Galerkin reduced-
order model under the assumption that sufficient snapshot data has been used
to create the POD. It is measured in the relative norm induced by the POD, so
that

εROM =

√√√√ N∑
n=1

‖un − uR(µn)‖2V
/√√√√ N∑

n=1

‖un‖2V . (10)

The error between the snapshots and their orthogonal projection on the
POD is named εPOD. It can be viewed as a benchmark for the POD in the
sense that it characterizes the ability of the snapshot data to be represented in
a low-dimensional space. It is measured in the relative norm induced by the
POD, which enables an alternative expression in terms of the POD eigenvalues
via (5):

εPOD =

√√√√ N∑
n=1

‖un − PRun‖2V
/√√√√ N∑

n=1

‖un‖2V =

√√√√ D∑
n=R+1

λn

/√√√√ D∑
n=1

λn. (11)
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Figure 5: Error εPOD of the POD projection, error εROM of the solution of the reduced-order
model, and finite element discretization error εFEM, corresponding to (10)–(12). Left: adapted
snapshots, middle: dependence on the spatial refinement for 10 POD basis functions, right:
static snapshots computed on the common grid of the space-adapted snapshots.

To compare the approximation errors resulting from the model order reduc-
tion with the finite element discretization error, we computed reference snap-
shots uref

1 , . . . , uref
N with a stricter spatial tolerance. The resulting estimated

finite element discretization error of the original snapshots is measured in the
same norm as above, so that

εFEM =

√√√√ N∑
n=1

‖uref
n − un‖2V

/√√√√ N∑
n=1

‖uref
n ‖2V . (12)

The errors defined in (10)–(12) are plotted in Figure 5 (left). We observe
that the POD projection error εPOD decreases monotonically, which is implied
by its representation in terms of the POD eigenvalues. The convergence of the
error of the reduced-order model εROM, however, stagnates at some level.

Figure 5 (middle) shows that the stagnation level is related to the finite
element error of the snapshots, as suggested by the results of section 3.4.2. In
the plot, the number of POD basis functions is kept fixed, but the number of
finite element functions is varied by changing the tolerance of the refinement
algorithm. One can observe that the error of the reduced-order model and the
POD projection error roughly follow the finite element discretization error up
to some constant.

The error depending on to the number of basis functions is shown in Fig-
ure 5 (right) for simulations on a fixed grid given by the overlay of all adapted
snapshots. Here both the error of the POD projection and the solution of the
reduced-order model converge. This can be explained by the Galerkin orthogo-
nality property detailed in section 3.4.1. The convergence rate is higher in the
case of a static finite element discretization. Our interpretation of this behav-
ior is that in the adaptive case the POD basis functions of higher index start
approximating spatial artifacts resulting from the different discretizations.
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Figure 6: A selection of POD basis functions resulting from 33 snapshots. Top: adapted,
bottom: static.

To underline our interpretation of the differences in the POD approximation
error εPOD between adaptive and static snapshots simulations, we plot a selec-
tion of POD basis functions resulting from the adapted snapshots in Figure 6
(top). We observe that the POD basis functions corresponding to the adaptive
simulation start exhibiting local variations in the size of typical mesh cells when
the index is increased. For comparison, we present a selection of POD basis
functions resulting from the static snapshots in Figure 6 (bottom). It is reason-
able that the oscillations visible in these plots are necessary to approximate the
parameter-dependent physical structures of the solution with increasing accu-
racy, see Figure 3.

Despite this qualitative differences in the appearance of the POD basis func-
tions of higher index, we stress that in this example including more than 4 basis
functions does not decrease the total error of the reduced-order solution. This
is because the POD errors are dominated by the finite element approximation
error for R ≥ 4 in both the adaptive and the static case, see Figure 5 (left).

5. Numerical example of a Burgers equation

To illustrate the potential of POD-Galerkin modeling with adaptive snap-
shots for non-linear time-dependent problems, we apply our techniques to a
Burgers equation. Adaptive finite element snapshots are taken over the time
and parameter domain. Note that by choosing the parameter domain equal to
a single point, a time-dependent non-parametrized Burgers problem is obtained
as a special case. The test case suggests that the theoretical results derived in
section 3 for a linear elliptic setting can be transferred to a parabolic setting.
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5.1. Problem setting

We consider a parametrized initial-boundary value problem based on a scalar
viscous Burgers equation in two dimensions,

∂tu+ u∂xu− ν∂xxu− ν∂yyu = 0 ∀(t, ~x, µ) ∈ I × Ω× S,

with solution u(t, ~x, µ) : I × Ω × S → R for a time interval I = (0, 1.2], a
spatial domain Ω = (0, 1) × (0, 0.5), and a parameter interval S = [0, 1]. The
problem is a modified version of a numerical example in [6]. A parametrized
initial condition is given by

u(0, ~x, µ)− u0(~x)µ = 0 ∀(~x, µ) ∈ Ω× S

with spatial data u0(x) : Ω→ R given by a two-dimensional sinusoidal profile

u0 = 0.5 + 0.5 sin
(
(x− y − 0.75)π

)
sin
(
(x+ y + 0.25)π

)
.

At the boundary we choose a combination of homogeneous Neumann and peri-
odic conditions, so that

u(t, (0, y)T , µ)− u(t, (1, y)T , µ) = 0 ∀(t, y, µ) ∈ I × (0, 0.5)× S,
∂yu(t, (x, 0)T , µ) = ∂yu(t, (x, 0.5)T , µ) = 0 ∀(t, x, µ) ∈ I × (0, 1)× S.

We choose a viscosity constant of ν = 0.001. Note that for the inviscid Burgers
equation with ν = 0 we would have u(t, ~x, µ) = µu(tµ, ~x, 1).

In the context of section 5, we define V ⊂ H1(Ω) as the Sobolev space of
L2(Ω) functions which have weak first derivatives in L2(Ω) and which satisfy
the periodic boundary conditions in a weak sense. A spatial weak form of the
parametrized Burgers problem is then given as follows: For u0 ∈ L2(Ω), find
u(t, µ) : I × S → V , such that

(u(0, µ)− u0µ, φ) = 0 ∀φ ∈ V, µ ∈ S,
(∂tu, φ) + a(u, φ) + b(u, u, φ) = 0 ∀φ ∈ V, (t, µ) ∈ I × S,

where (·, ·) denotes the L2(Ω)-inner product and the bilinear and trilinear forms
are defined by

a(v, ψ) := ν

∫
Ω

∂xv ∂xψ + ∂yv ∂yψ d~x, b(v, w, ψ) :=

∫
Ω

v∂xwψ d~x.

5.2. Discretization

We apply Rothe’s method to the problem, i.e. we employ a time discretiza-
tion followed by space discretizations of the sequence of resulting boundary
value problems. We use a constant time step size τ = T/(K−1) with according
discrete time instances tk = (k−1)τ and semi-discretized solutions ũk ≈ u(tk, ·)
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for k = 1, . . . ,K. An implicit Euler time discretization is given as follows: For
u0 ∈ L2(Ω), find ũ1(µ), . . . , ũK(µ) : S → V such that

(ũk − u0µ, φ) = 0 ∀φ ∈ V, k = 1, (13)

(ũk − ũk−1, φ) + τa(ũk, φ) + τb(ũk, ũk, φ) = 0 ∀φ ∈ V, k = 2, . . . ,K. (14)

This semi-discretization is the starting point for further adaptive space dis-
cretization and reduced-order modeling.

In order to obtain snapshots for a reduced-order model, we discretize the
parameter domain into a training set SP := {µ1, . . . , µP } with µ1, . . . , µP ∈ S.
We introduce a discretization in space with adaptive finite elements, so that each
snapshot belongs to an individual finite element space chosen with respect to
some global error tolerance. We denote the respective fully discrete solutions and
finite element spaces by uk,p ∈ Vk,p for k = 1, . . . ,K and p = 1, . . . , P , so that
uk,p ≈ u(tk, µp). A discretization of the problem with an implicit Euler scheme
in time and adaptive finite elements in space for the training parameter values is
given as follows: For u0 ∈ L2(Ω) and p = 1, . . . , P , find u1,p ∈ V1,p, . . . , uK,p ∈
VK,p such that

(uk,p − u0µp, φ) = 0 ∀φ ∈ Vk,p, k = 1,

(uk,p − uk−1,p, φ) + τa(uk,p, φ) + τb(uk,p, uk,p, φ) = 0 ∀φ ∈ Vk,p, k = 2, . . . ,K.

The finite element discretization leads to a set of non-linear algebraic equations
which can be solved in parallel for p = 1, . . . , P and in sequence for k = 1, . . . ,K.
The non-linear equations are solved with a standard Newton method using a
direct solver for the resulting sequence of linear algebraic equations in each time
step.

In the presented example, the time discretization uses a step size of τ =
0.005. The spatial discretization in each time step employs the same error
estimation, triangle marking and refinement strategies as in section 4.2. The
adapted meshes and corresponding numerical solutions at various time instances
are presented in Figure 7 for a fixed parameter choice of µ = 1. To illustrate the
parameter dependency of the solution, Figure 8 shows the respective numerical
solutions at the initial and final times for µ = 0.5.

5.3. Reduced-order modeling

For consistency, we denote the snapshots by u1 ∈ V1, . . . , uN ∈ VN with
N = KP . We set un = uk,p and VN = Vk,p with N = k + (p − 1)K for
k = 1, . . . ,K and p = 1, . . . , P . Using the methods from section 2, we create
a POD space V R ⊂ V with basis functions φ1, . . . , φR. Substituting V by
V R in the semi-discretization (13)–(14) gives rise to the following discretized
reduced-order model: Find uR1 (µ), . . . , uRK(µ) : S → V R such that

(uRk − u0µ, φ) = 0 ∀φ ∈ V R, k = 1, (15)

(uRk − uRk−1, φ) + τa(uRk , φ) + τb(uRk , u
R
k , φ) = 0 ∀φ ∈ V R, k = 2, . . . ,K.

(16)
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Figure 7: Solution of the Burgers problem with µ = 1 at different times. Left: Adapted finite
element meshes, right: numerical solutions
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Figure 8: Solution of the Burgers problem with µ = 0.5 at the initial and final times.

We can rewrite the model as a set of equations for the POD coefficient vectors:
Find ~b1(µ), . . . ,~bK(µ) : S → RR such that

MR~bk −~b0µ = ~0, k = 1,

MR(~bk −~bk−1) + τAR~bk + τBR(~bk)~bk = ~0, k = 2, . . . ,K.

Expressions for the constant model coefficient matrices MR, AR, BR and the
initial data ~b0 follow directly from substitution of the POD expansion (3) into
(15)–(16) and testing against the POD basis functions. An evaluation of the
term involving BR amounts to a multiplication with a tensor containing R3

constant model coefficients.

5.4. Results

We use the same error measures as in section 4.4 to test how well the reduced-
order models are able to reproduce the snapshots. The results are shown in
Figure 9 (left). We observe that the number of POD basis functions needed for
a given relative error is increased in comparison with the convection-diffusion
problem presented in the previous section. Otherwise the results are similar. In
particular, the POD projection error with respect to the snapshots monotoni-
cally decreases, but the convergence of the solution of the reduced-order model
stagnates at some point.

Figure 9 (middle) shows the errors depending on the number of finite element
degrees of freedom. It can be observed that the level of stagnation is coupled
to the finite element discretization error.

The results for a fixed grid, shown in Figure 9 (right), are qualitatively
similar to the corresponding results of the convection-diffusion problem, so the
same conclusions regarding the use of adaptive snapshots can be drawn in the
case of a Burgers problem.

6. Conclusions

We have extended the framework of POD-Galerkin reduced-order modeling
to snapshot data obtained with adaptive finite elements, where each snapshot

21



0 8 16 24 32 40 48 56 64

number of POD basis functions

10 -4

10 -3

10 -2

10 -1

10 0
e
rr

o
r

adapted

FEM

ROM

POD

10 2 10 3 10 4

number of FE basis functions

10 -3

10 -2

10 -1

e
rr

o
r

adapted, R = 64

FEM

ROM

0 8 16 24 32 40 48 56 64

number of POD basis functions

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r

static

ROM

POD

Figure 9: Error εPOD of the POD projection, error εROM of the solution of the reduced-
order model, and finite element discretization error εFEM. Left: adapted snapshots, middle:
dependence on the finite element refinement for 64 POD basis functions, right: static snapshots
computed on the common grid of the space-adapted snapshots.

may be represented in a different finite element space. The considered reduced-
order models rely on a representation in a common finite element space of all
snapshots. Because creating such a space may be computationally demanding,
we have proposed a method to create the reduced-order model without actually
building the common finite element space.

The POD projection error of our method converges when the POD dimension
is increased. The error between the POD Galerkin solution and the snapshots,
however, contains a contribution from the spatial finite element discretization,
which does not vanish when the POD dimension is increased. We have shown
this effect for the case of linear elliptic boundary value problems.

Our findings are underlined with a numerical example of a convection-
diffusion problem. Here we could observe that the error caused by the spatial
adaptivity is dominated by the finite element error of the snapshots. Computa-
tional results for a Burgers problem suggest that the principal statements can be
carried over to a broader class of problems, including non-linear parametrized
parabolic PDEs.

A detailed analysis of the influence of the discretization errors onto the
reduced solution for non-linear and/or time-dependent problems with space
adapted snapshots is still to be done. The ultimate goal of combining adap-
tivity with model order reduction is to automate the creation of the reduced-
order model by adapting the dimension of the reduced basis and the snapshot
discretization according to some global error criterion. To reach this goal, it is
still necessary to derive adequate error bounds and to combine them in a global
adaptation loop.
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