
High-performance implementation of Chebyshev filter
diagonalization for interior eigenvalue computations

Andreas Piepera, Moritz Kreutzerb, Andreas Alvermanna,∗, Martin Galgonc,
Holger Fehskea, Georg Hagerb, Bruno Langc, Gerhard Welleinb

aErnst-Moritz-Arndt-Universität Greifswald, Germany
bFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany

cBergische Universität Wuppertal, Germany

Abstract

We study Chebyshev filter diagonalization as a tool for the computation of many
interior eigenvalues of very large sparse symmetric matrices. In this technique
the subspace projection onto the target space of wanted eigenvectors is approx-
imated with filter polynomials obtained from Chebyshev expansions of window
functions. After the discussion of the conceptual foundations of Chebyshev filter
diagonalization we analyze the impact of the choice of the damping kernel, search
space size, and filter polynomial degree on the computational accuracy and ef-
fort, before we describe the necessary steps towards a parallel high-performance
implementation. Because Chebyshev filter diagonalization avoids the need for
matrix inversion it can deal with matrices and problem sizes that are presently
not accessible with rational function methods based on direct or iterative linear
solvers. To demonstrate the potential of Chebyshev filter diagonalization for
large-scale problems of this kind we include as an example the computation of
the 102 innermost eigenpairs of a topological insulator matrix with dimension
109 derived from quantum physics applications.

Keywords: interior eigenvalues, Chebyshev filter polynomials, performance
engineering, quantum physics, topological materials

1. Introduction

Computation of many interior eigenvalues and eigenvectors of a large sparse
symmetric (or Hermitian) matrix is a frequent task required for electronic struc-
ture calculations in quantum chemistry, material science, and physics. Starting
from the time-independent Schrödinger equation Hψi = Eiψi, where H is the
Hamilton operator of electrons in the material under consideration, one is in-
terested in all solutions of this equation with energies Ei within a small window

∗Corresponding author
Email address: alvermann@physik.uni-greifswald.de (Andreas Alvermann)

Preprint submitted to August 29, 2018

ar
X

iv
:1

51
0.

04
89

5v
2

 [
m

at
h.

N
A

]
 1

0
M

ay
 2

01
6

inside of the spectrum of H. Interior eigenvalues are required because electrical
or optical material properties are largely determined by the electronic states in
the vicinity of the Fermi energy, which separates the occupied from the unoc-
cupied electron states. The width of the energy window is given by, e.g., the
temperature or the magnitude of an applied electric voltage.

Recently, the computation of interior eigenvalues has gained new thrust from
the fabrication of graphene [1] and topological insulator [2] materials, which
exhibit unconventional electron states that differ from those observed in tradi-
tional semiconductors or metals. In graphene, electrons at the Fermi level follow
a linear dispersion reminiscent of relativistic Dirac fermions, while the topologi-
cally protected surface states of topological insulators are natural candidates for
quantum computing and quantum information storage. Because the properties
of graphene and topological insulator devices depend directly on such electron
states close to the center of the spectrum, their modeling and design requires
the solution of ever larger interior eigenvalue problems [3, 4].

Motivated by the rapidly developing demands on the application side we
introduce in this paper a high-performance implementation of Chebyshev fil-
ter diagonalization (ChebFD), a straightforward scheme for interior eigenvalue
computations based on polynomial filter functions. ChebFD has a lot in com-
mon with the Kernel Polynomial Method (KPM) [5] and is equally well suited
for large-scale computations [6]. Our goal is to show that a well-implemented
ChebFD algorithm can be turned into a powerful tool for the computation of
many interior eigenvalues of very large sparse matrices. Here we include results
for the computation of ' 102 central eigenvalues of a 109-dimensional topologi-
cal insulator matrix on 512 nodes of the federal supercomputer system “Super-
MUC” at LRZ Garching, at 40 Tflop/s sustained performance. ChebFD is, to
our knowledge, presently the only approach that can solve interior eigenvalue
problems at this scale.

While the present paper focuses on high-performance applications of
ChebFD, and less on algorithmic improvements, we will discuss its theoretical
foundations in considerable detail. We will analyze especially how the algorith-
mic efficiency of polynomial filtering depends on the number of search vectors in
the computation, and not only on the quality of the filter polynomials. Using a
larger search space and lower filter polynomial degree can improve convergence
significantly. Conceptually, ChebFD is a massively parallel block algorithm with
corresponding demands on computational resources, which makes performance
engineering mandatory.

One should note that the use of Chebyshev filter polynomials has a long
tradition in the solution of linear systems [7, 8], as a restarting technique for
(Krylov) subspace iterations [9, 10, 11], and for the computation of extreme
and interior eigenvalues in quantum chemistry applications [12, 13, 14, 15].
The latter methods can be divided roughly into two classes: Methods which
are based—explicitly or implicitly—on time propagation of a wave function
with Chebyshev techniques and (re-)construction of eigenstates from Fourier
inversion of the computed time signal (as, e.g., in Ref. [13]), and methods that
use Chebyshev filters for iterated subspace projection steps (see, e.g., Ref. [16]

2

a bν νλ λc

δ δδ’ δ’

Figure 1: Sketch of the interval configuration for interior eigenvalue computations: The target
interval IT = [λ, λ], with half width δ = (λ − λ)/2, is contained within the search interval
IS = [ν, ν], which is larger by a margin δ′. Both lie within an interval [a, b] that encloses
the spectrum of the matrix under consideration. Typically, it is δ � b − a and the target
interval center c lies far away from a, b. The symmetric situation c ≈ (a + b)/2 is especially
challenging.

for a recent contribution). ChebFD belongs to the latter class of methods.
The rationale behind the use of polynomial filters in ChebFD instead of ratio-

nal filter functions (as, e.g., in FEAST [17, 18] or the CIRR method [19, 20]) or
of spectral transformations of the eigenvalue problem [21] is that sparse matrix
factorization is not feasible for the very large matrices in our target applications.
This prevents the use of direct solvers such as PARDISO [22] or ILUPACK [23],
which have been used successfully for, e.g., Anderson localization [21]. In some
applications the matrix is not even stored explicitly but constructed ‘on-the-
fly’ [24, 25]. Therefore, we assume that the only feasible sparse matrix operation
in ChebFD is sparse matrix vector multiplication (spMVM).

If a matrix H is accessed exclusively through spMVMs the only expressions
that can be evaluated effectively are polynomials p[H]~v of H applied to a vector
~v. Note that in such a situation also the use of iterative linear solvers would
result in a polynomial expression. Therefore, we design and analyze the ChebFD
algorithm entirely in terms of polynomial filters (see also Refs. [26, 27, 28] for
recent work on polynomial filters).

The paper is organized as follows. In Sec. 2 we describe the construction of
Chebyshev filter polynomials, analyze the convergence of polynomial filtering as
used in ChebFD, and obtain practical rules for the choice of the free algorith-
mic parameters. In Sec. 3 we introduce the basic ChebFD scheme and test the
algorithm with a few numerical experiments. In Sec. 4 we describe the main
performance engineering steps for our GHOST [29]-based ChebFD implementa-
tion, which we use for the large-scale application studies in Sec. 5. We conclude
in Sec. 6, where we also discuss possible algorithmic refinements of the basic
ChebFD scheme.

2. Polynomial filter functions

The eigenvalue problem described in the introduction can be specified as
follows: Given a symmetric (or Hermitian) matrix H, compute the NT eigen-
pairs (λi, ~vi) within a prescribed target interval λi ∈ IT = [λ, λ] (see Fig. 1).
Numerical convergence is achieved if the residual of every eigenpair satisfies
‖H~vi−λi~vi‖ ≤ ε for a specified accuracy goal ε, and all eigenpairs from the target
interval are found. In current applications the target interval typically contains
up to a few hundred eigenvalues of H, which itself has dimension 106, . . . , 1010.

3

The precise value of NT is normally not known prior to the computation, but
can be estimated from the density of states (see Sec. 2.4).

The optimal filter function for the above problem is the rectangular window
function W (x) = Θ(x−λ)Θ(λ−x), with the Heaviside function Θ(x). With this
choice W [H] is the exact projection onto the target space, that is, W [H]~vi = ~vi
for λi ∈ IT and W [H]~vi = 0 for λi 6∈ IT . The eigenpairs in the target interval
can then be obtained as follows: Start with sufficiently many (random) search
vectors ~xk, for k = 1, . . . , NS with NS ≥ NT , and compute the filtered vectors
~yk = W [H]~xk. The vectors ~yk lie in the target space, but if NS > NT they are
linearly dependent. Orthogonalization of the ~yk with a rank-revealing technique
gives a basis1 of the target space. The wanted eigenpairs are the Rayleigh-Ritz
pairs of H in this subspace basis.

2.1. Construction of polynomial filter functions

Of course, a rectangular window function W (x) cannot be represented ex-
actly by a polynomial p(x). The first step in polynomial filtering thus is the
construction of a good polynomial approximation to W (x). Theoretical argu-
ments [11] and numerical evidence (see Sec. 3) suggest that convergence im-
proves with high-order polynomial approximations. Since general optimization
or fitting techniques become difficult to use for polynomials of high degree, we
construct the filter polynomials from Chebyshev expansions and kernel polyno-
mials. This is motivated by our previous experience with the KPM [5].

The construction of filter polynomials is based on the Chebyshev expansion

W (x) =

∞∑
n=0

cnTn(αx+ β) , with α =
2

b− a
, β =

a+ b

a− b
, (1)

of W (x) on an interval [a, b] that contains the spectrum of H (see Fig. 1). Here,
Tn(x) = cos(n arccosx) is the n-th Chebyshev polynomial of the first kind, with
recurrence

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x) . (2)

Notice the scaling of the argument αx+ β ∈ [−1, 1] of Tn(·) for x ∈ [a, b]. The
expansion coefficients cn are given by

cn =
2− δn0
π

∫ 1

−1
W
(b− a

2
x+

a+ b

2

)
Tn(x)(1− x2)−1/2 dx (3)

=


1
π

(
arccos(αλ+ β)− arccos(αλ+ β)

)
if n = 0 ,

2
πn

(
sin
(
n arccos(αλ+ β)

)
− sin

(
n arccos(αλ+ β)

))
if n ≥ 1 .

(4)

1It can happen that basis vectors are missing, but the probability of this event is negligible
for NS � NT . In the ChebFD scheme of Sec. 3 the probability is reduced even further by
adding new vectors after each orthogonalization step.

4

Fejér Jackson Lanczos

Np − n+ 1

Np + 1

1

Np

(
(Np − n) cos

πn

Np
+ sin

πn

Np
cot

π

Np

) (
sin(πn/(Np + 1))

πn/(Np + 1)

)µ
Table 1: Coefficients gn of the Fejér, Jackson, and Lanczos kernel (cf. Ref. [5]). The Lanczos
kernel has an additional parameter µ (later we will use µ = 2).

Here, the first expression results from orthogonality of the Tn(x) with respect to
the weight function (1−x2)−1/2, the second expression is obtained by evaluating
the integral for the rectangular function W (x) = Θ(x− λ)Θ(λ− x).

Truncation of the infinite series (1) leads to a polynomial approximation to
W (x), which, however, suffers from Gibbs oscillations (see Fig. 2). The solution
to the Gibbs phenomenon exploited in, e.g., KPM is to include suitable kernel
damping factors gn in the expansion. This gives the polynomial approximation

W (x) ≈ pn(x) =

Np∑
n=0

gncnTn(αx+ β) (5)

of degree Np.
Three examples for the kernel coefficients gn are given in Table 1, including

the Jackson kernel [30] known from KPM [5]. The resulting approximations to
W (x) are plotted in Fig. 2. In ChebFD we will use the Lanczos kernel with
µ = 2, which tends to give faster convergence than the other choices.

Note that we have not yet defined what constitutes a ‘good’ filter polynomial
p(x). Obviously, |p(x)| should be (i) small for x 6∈ IT and (ii) reasonably large
for x ∈ IT , while (iii) keeping the degree of p(x) small among all possible
polynomials satisfying (i) and (ii). We will examine these conditions in Sec. 2.3
systematically.

Notice also that we construct filter polynomials starting from rectangular
window functions, which is not necessarily the best approach. The fact that
W (x) = 1 within the target interval is not relevant for convergence of ChebFD.
Using window functions with W (x) 6= 1 that allow for better polynomial ap-
proximation can improve convergence [28]. Another idea is the use of several
different window functions, for example a comb of δ-function peaks that cover
the target interval. Fortunately, as we will see now, the precise shape of the
filter polynomials is not crucial for the overall convergence of ChebFD, although
the convergence rate can be of course affected.

2.2. Polynomial filtering: Numerical example

The effect of polynomial filtering is demonstrated in Fig. 3. We use the
diagonal D×D matrix H = diag(λ1, . . . , λD) with equidistant eigenvalues λi =
−1 + 2i/(D + 1). The target interval IT = [−δ, δ] thus contains NT = δD
eigenvectors of H. We now apply the filter polynomial once, and compare cases

5

-0.2 -0.1 0 0.1 0.2
x

10
-10

10
-5

10
0

|p
(x

)|
N

p
=200

N
p
=2000

no kernel

-0.2 -0.1 0 0.1 0.2
x

10
-10

10
-5

10
0

|p
(x

)|

N
p
=200

N
p
=2000

Fejer

-0.2 -0.1 0 0.1 0.2
x

10
-10

10
-5

10
0

|p
(x

)|

N
p
=200

N
p
=2000

Jackson

-0.2 -0.1 0 0.1 0.2
x

10
-10

10
-5

10
0

|p
(x

)| N
p
=200

N
p
=2000

Lanczos

Figure 2: Chebyshev polynomial approximations to the rectangular window function W (x)
for a target interval [λ, λ] = [−0.01, 0.01] ⊂ [−1, 1] = [a, b] (gray region), for polynomial degree
Np = 200 (black curves) and Np = 2000 (red curves). The approximations are shown without
modification by a kernel (gn = 1 in Eq. (5)), and with the Fejér, Jackson, and Lanczos (µ = 2)
kernels from Table 1.

with (i) a small number (NS = NT) and (ii) a large number (NS = 5NT � NT)
of search vectors. Shown is the weight

wi =

(
NS∑
k=1

|〈~vi, ~yk〉|2
)1/2

(6)

of the filtered orthonormalized search vectors ~yk at the eigenvectors ~vi of H (we
use the Euclidean scalar product). Notice that wi is invariant under orthogonal
transformations of the subspace basis {~y1, . . . , ~yNS

} of the search space formed
by the orthonormalized vectors. We have 0 ≤ wi ≤ 1, and wi = 1 if and
only if the eigenvector ~vi is contained in the filtered search space spanned by
the ~yk. If the search space contains an eigenvector approximation ~v to ~vi with
error |~v − ~vi| ≤ ε, we have wi ≥ 1 − ε. Conversely, wi ≥ 1 − ε implies that
an eigenvector approximation with error below 2ε exists in the search space.
Values of wi close to one thus correspond to the existence of good eigenvector
approximation among the filtered search vectors. Finally, wi ≥ 1 − ε for all λi
in the target interval indicates convergence to the desired accuracy ε.

6

-0.2 -0.1 0 0.1 0.2

λ
i

10
-6

10
-3

10
0

w
i

10
-6

10
-3

10
0

|p
(λ

i)|

N
S
=50

N
S
=10

-0.2 -0.1 0 0.1 0.2

λ
i

10
-6

10
-3

10
0

1
-w

i

N
S
=50

N
S
=10

N
S
=10

N
p
=2000

1-w
i
≤1.5×10

-5

Figure 3: Weight wi of search vectors at eigenvectors (see Eq. (6)) after one polynomial filtering
step. We use the filter polynomials for the target interval [−0.01, 0.01] ⊂ [−1, 1] (gray region)
from Fig. 2 (here, for the Lanczos kernel with µ = 2). The target space contains NT = 10
eigenvectors of the diagonal matrix described in the text, with dimension D = 103. Left panel:
Weight wi for (i) NS = 10 (green curve) and (ii) NS = 50 (violet curve) search vectors, both
for polynomial degree Np = 200. The black dashed curve shows the filter polynomial |p(λi)|.
Right panel: Expected residual 1 − wi for cases (i), (ii) from the left panel, and in addition
for (iii) NS = 10 with Np = 2000 (orange curve). The horizontal dashed line indicates the
bound 1− wi ≤ 1.5× 10−5 achieved within the target interval in case (ii).

For a single search vector ~x =
∑
i xi~vi polynomial filtering gives

p[H]~x =

D∑
i=1

xi p(λi)~vi , (7)

that is, wi ∝ |p(λi)| on average. The polynomial filter thus suppresses compo-
nents outside of the target interval (where p(λi) ≈ 0) in favor of components
in the target interval (where |p(λi)| ≈ 1). This effect is clearly seen in the left
panel of Fig. 3 for case (i) (with NS = NT).

The filter polynomial used in Fig. 3 is a rather ‘bad’ approximation of the
rectangular window function, despite the relatively large degree Np = 200. One
filter step with this polynomial suppresses components outside of the target
interval only weakly. Many iterations would be required in the ChebFD scheme,
and convergence would be accordingly slow. One way to improve convergence
is to improve the quality of the filter polynomial. However, for narrow target
intervals inside of the spectrum the degree of a ‘good’ filter polynomial that
leads to convergence in a few iterations had to become extremely large.

ChebFD follows a different approach: Use a ‘moderately good’ filter polyno-
mial, even if it does not lead to fast convergence, and compensate by increasing
the number of search vectors over the number of target vectors (NS � NT).
The rationale behind this approach is that polynomial filtering compresses the
search space towards the target space, but the target space can accommodate
only NT orthogonal vectors. Therefore, orthogonalization of the filtered search
vectors separates components inside and outside of the target space. In this way
“overpopulating” the target space with search vectors (NS � NT) can lead to

7

faster convergence towards target vectors than Eq. (7) predicts (for NS ∼ NT).
That this approach can significantly improve convergence is demonstrated

by case (ii) (with NS = 5NT) in Fig. 3. The same filter polynomial as in case
(i) now achieves wi ≈ 1 throughout the target interval. All target vectors are
obtained from the search space with residual below 2(1 − wi) ≤ 3 × 10−5 in
one filter step (see right panel). The strength of this approach is also seen in
comparison to case (iii) (right panel in Fig. 3, with NS = NT as in case (i), but
Np = 2000). Although the filter polynomial is now much better than in cases (i),
(ii) (see Fig. 2, lower right panel) the residual weight 1−wi has not diminished
substantially. The accuracy achieved in case (iii) is still far from that achieved
in case (ii), although the number of spMVMs has doubled (NS×Np = 10×2000
versus 50 × 200). Evidently, there is a trade-off between search space size and
filter polynomial degree that requires further analysis.

2.3. Theoretical analysis of filter polynomial quality and ChebFD convergence

The previous numerical experiment illustrates the essential mechanism be-
hind polynomial filtering in ChebFD. Our theoretical analysis of the ChebFD
convergence is based on a measure for the quality of the filter polynomial that
depends on the target interval and search interval size.

Arrange the eigenvalues λi of H such that |p(λ1)| ≥ |p(λ2)| ≥ · · · ≥ |p(λD)|.
By construction, the filter polynomial is largest inside of the target interval
IT , such that the target eigenvalues appear as λ1, . . . , λNT

. Therefore, through
polynomial filtering the components of the search vectors that lie in the target
space are multiplied by a factor ≥ |p(λNT

)|. On the other hand, because we
use NS > NT search vectors, components perpendicular to the target space are
multiplied by a factor ≤ p(λNS

). The damping factor of the filter polynomial,
by which the unwanted vector components in the search space are reduced in
each iteration, is σ = |p(λNS

)/p(λNT
)|.

As seen in Fig. 2 the filter polynomials decay with distance from the target
interval. We will, therefore, assume that the eigenvalues λNT+1, . . . , λNS

in the
above list are those closest to the target interval. With this assumption we
arrive at the expression

σ =

max
x∈[a,b],x 6∈IS

|p(x)|

min
x∈IT

|p(x)|
(8)

for the damping factor of the filter polynomial, where IS = [ν, ν] ⊃ IT =
[λ, λ] is the search interval that contains the eigenvalues λ1, . . . , λNS

. For a
symmetrically shaped polynomial filter the search interval evenly extends the
target interval by a margin δ′ > 0, i.e., ν = λ− δ′, ν = λ+ δ′ (see Fig. 1).

If the filter polynomial p(x) is applied M times (i.e., the filter polynomial
used is p(x)M), the damping factor is σM and the total polynomial degree is
M ×Np. To achieve a reduction of the unwanted vector components outside of
the target space by a factor ε, therefore, requires about Niter ≈ log10 ε/ log10 σ

8

10
1

10
2

10
3

10
4

10
5

N
p

10
2

10
3

10
4

10
5

10
6

10
7

η

Jackson
Lanczos

δ=10
-4

δ=10
-3

δ=10
-2

(none)

δ’=2δ

δ’=δ/2

0 5 10 15 20

δ’ / δ

10
-8

10
-6

10
-4

10
-2

10
0

σ

Lanczos

Jackson
none

none
iter

Figure 4: Left panel: Filter polynomial quality η as a function of Np, for target interval
half width δ = 10−2, 10−3, 10−4 and search interval margin δ′ = δ, with the Jackson and
Lanczos (µ = 2) kernel. For δ = 10−3, additional curves with δ′ = δ/2, 2δ are shown, and
for δ = 10−4 the additional curve marked “(none)” gives the result obtained without kernel
factors. Right panel: Damping factor σ as a function of the search interval margin δ′, for
δ = 10−3 and the optimal polynomial degree Np as determined in the left panel for δ′ = δ.
It is Np = 6251, 7899, 1424 for the Lanczos, Jackson, no kernel. The curve “none (iter)” gives
the result for the 6251/1424 ≈ 4.4-th power of the “none” filter polynomial.

iterations in the ChebFD scheme, or η × (− log10 ε) spMVMs for each vector,
where

η = − Np
log10 σ

(9)

is our (lower-is-better) measure for the quality of the filter polynomial2.
The behavior of the filter polynomial quality η is plotted in Figs. 4, 5. We

concentrate here, and in the following, on the symmetric situation IT = [−δ, δ]
and IS = [−(δ+δ′), δ+δ′] in the center of the interval [−1, 1]. Similar consider-
ations apply, with modified numerical values, also to situations with λ 6= −λ as
long as the target interval is located inside of the spectrum. For the computation
of extreme eigenvalues other considerations would apply.

For all combinations of δ, δ′ there is an optimal value of Np that leads to
minimal η. As seen in Fig. 4 (left panel) the optimal Np and η scale as δ−1 for
fixed δ′/δ, and as δ′−1 for fixed δ. We observe that high polynomial degrees Np
are required already for relatively large values of δ. The Lanczos kernel (with
µ = 2) performs always better than the Jackson kernel, for which the broadening
of the window function is too pronounced (cf. Fig. 2). In some situations the
filter polynomial without kernel modifications (“none” kernel), for which the
optimal η occurs at significantly smaller Np because the width of the window
function approximation remains small, is even better.

2Note that the number of iterations Niter is an integer, therefore the actual number of
spMVMs required in practice will be somewhat larger than this estimate. Such details do not
change the general analysis.

9

As seen in Fig. 4 (right panel) the kernels differ in their decay away from the
target interval (see also Fig. 2). Even if the “none” kernel can outperform the
Lanczos kernel in terms of η, it does not decay as fast with distance from the
target interval. In the application, where we do not know the search interval
precisely, the robustness of the filter polynomial under changes of the search
interval becomes important. Because of the faster and smoother decay—and for
this reason only—we will use the Lanczos kernel (µ = 2) in the following and
not the “none” kernel. In any case, the construction of better filter polynomials
remains worthy of investigation.

2.4. Optimal choice of algorithmic parameters

Based on the theoretical analysis from the previous subsection we will now
establish practical rules for the choice of the two algorithmic parameters Np
(filter polynomial degree) and NS (number of search vectors).

Because the filter polynomial is applied to all search vectors, the total num-
ber of spMVMs is Niter × Np × NS , or η × NS × (− log10 ε). The last factor
in this expression is specified by the user, so that we will try to minimize the
product η ×NS . The central information used here is the scaling

ηopt ' η0
Sw
δ

δ

δ′
(10)

of the optimal filter polynomial quality (cf. Fig. 5) with the half width Sw =
(b − a)/2 of the interval [a, b] that contains the spectrum, the target interval
half width δ, and the search interval margin δ′. The optimal polynomial degree
scales as Nopt

p ' N0(Sw/δ)(δ/δ
′) (cf. Fig. 4). Only the dependence on δ′ is

relevant for the following argument. We introduce the additional factor “δ/δ”,
which cancels in Eq. (10), to obtain the product of the relative width Sw/δ (of
the target interval) and δ/δ′ (of the search interval margin).

The approximate scaling relations for ηopt and Nopt
p express the fact that

the width3 of the (Lanczos or Jackson) kernel scales as Sw/Np. Therefore, if
the filter polynomial from Eq. (5) should decrease from |p(x)| ≈ 1 inside of the
target interval to |p(x)| � 1 outside of the search interval, i.e., over the distance
δ′, the polynomial degree has to scale as Sw/δ

′. The above scaling relations
follow. The constants η0, N0 in these relations depend on the kernel, and can
be obtained from a fit as in Fig. 5. For the Lanczos kernel (with µ = 2) we have
η0 = 2.58, N0 = 6.23 near the center of the spectrum (cf. Table 2).

The optimal choice of NS now depends on the distribution of eigenvalues
outside of the target interval, which can be expressed by the eigenvalue count,

or density of states (DOS), ρ(λ) =
∑
i δ(λ− λi). By definition, D =

∫ b
a
ρ(λ)dλ

gives the total number of states, i.e., the matrix dimension. The number of

3For example, the variance of the Jackson kernel is π/Np in the center of the interval [−1, 1]

(see Ref. [5]), which gives the full width at half-maximum
√

2 ln 2π(b−a)/Np ≈ 3.7(b−a)/Np

of the Gaussian function that is obtained from a δ-peak through convolution with the kernel.

10

0 1 2 3 4 5

δ’ / δ

0

2000

4000

6000

8000

η
o

p
t

Lanczos
Jackson
none

L

J

n

0

λ

0

ρ
(λ

)

0

λ

1 2 3 4 5 6
N

S
 / N

T

0

2

4

6

8

η
 N

S
 [

η
0
 (

S
w
/δ

)
N

T
]

flat linear

flat

linear

Figure 5: Left panel: Value of the optimal (i.e., minimal possible) filter polynomial quality
ηopt as a function of search interval margin δ′/δ, for δ = 10−3. The dotted curve gives the
fit η ∝ 1/δ′ from Eq. (10). Right panel: Estimate for the effort ηNS , measured in units of
η0(Sw/δ)NT , for a flat and linear density of states according to Eqs. (13), (14).

target vectors is given by

NT =

∫ λ

λ

ρ(λ)dλ , (11)

while the search interval IS = [ν, ν] can be determined from the condition

NS =

ν∫
ν

ρ(λ)dλ , (12)

where we can assume that ν = λ− δ′, ν = λ+ δ′.
Two situations are of particular practical importance: A flat density of

states, which stays constant in the vicinity of the target interval, and a lin-
early increasing density of states with a ‘pseudo’-gap in the target interval. The
first situation occurs, e.g., in Anderson localization, the second situation occurs
for the graphene and topological insulator materials. The optimal choice in
these cases, as depicted in Fig. 5, is as follows.

Flat DOS. For a flat DOS ρ(λ) = ρ0 ≡ const. we have NT = 2ρ0δ and NS =
2ρ0(δ + δ′). Then, δ′/δ = NS/NT − 1 or

ηNS = η0
Sw
δ
NT
(
1−NT /NS

)−1
. (13)

This function decreases monotonically with NS , with ηNS → η0(Sw/δ)NT for
NS � NT .

11

interval center c/Sw

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N0 6.23 6.20 6.10 5.94 5.71 5.40 4.99 4.46 3.75 2.73
η0 2.58 2.57 2.53 2.46 2.37 2.24 2.07 1.85 1.55 1.13

Table 2: Values for η0 and N0 in the approximate scaling relations (cf. Eq. (10)) for the
Lanczos kernel (µ = 2), for various positions c of the target interval [c−δ, c+δ] in the spectral
interval [−Sw, Sw]. The values reported have been determined for δ/Sw = 10−3. Notice that
the scaling relations hold for a large range of δ-δ′ combinations, although only approximately.
Notice further that N0 and η0 decrease towards the edges of the spectrum (c → ±Sw), that
is, the minimal required effort becomes smaller.

Linear DOS. For a linearly increasing DOS ρ(λ) = ρ1|λ| we have NT = ρ1δ
2

and NS = ρ1(δ + δ′)2. Now, δ′/δ =
√
NS/NT − 1 or

ηNS = η0
Sw
δ
NT

√
NS/NT

1−
√
NT /NS

. (14)

This function is minimal at NS = 4NT , where ηNS = 4η0(Sw/δ)NT .

It is instructive to compare the scaling of the effort with the matrix dimension
D in both cases. For the flat DOS, with D ' 2ρ0Sw, the scaling is ηNS ' η0D.
For the linear DOS, with D ' ρ1S

2
w, the scaling is ηNS ' 4η0

√
DNT . For the

linear DOS the required total effort is smaller by a factor 4
√
NT /D.

Note that our considerations apply under the assumption that NS/D is a
small but non-negligible ratio, such that the DOS can be approximated by a
continuous function, and that the target interval lies inside of the spectrum.
They break down for NS → 1, where the discreteness of eigenvalues comes into
play, and at the edges of the spectrum where other scaling relations hold.

3. The Chebyshev filter diagonalization scheme

The ChebFD scheme is the straightforward realization of the idea sketched
in the previous section: (Over-) populate the target space with many filtered
search vectors. Fast convergence is not achieved by unlimited improvement of
the filter polynomial quality but relies essentially on the use of many search
vectors. The requirements for memory resources are accordingly high, which
suggests that ChebFD is best deployed in a large-scale computing environment.

3.1. Algorithm

The ChebFD scheme comprises the following steps:

1. Determine parameters a, b such that the spectrum of H is contained in
the interval [a, b]. Estimate the DOS ρ(λ).

2. Estimate the number of target vectors NT in the specified target interval.
Choose the number of search vectorsNS & 2NT according to this estimate.

12

Step 5: Apply the polynomial filter

1: for k = 1 to NS do . First two recurrence steps
2: ~uk = (αH + β1)~xk . spmv()

3: ~wk = 2(αH + β1)~uk − ~xk . spmv()

4: ~xk = g0c0~xk + g1c1~uk + g2c2 ~wk . axpy & scal

5: end for
6: for n = 3 to Np do . Remaining recurrence steps
7: for k = 1 to NS do
8: swap(~wk, ~uk) . swap pointers
9: ~wk = 2(αH + β1)~uk − ~wk . spmv()

10: ~xk = ~xk + gncn ~wk . axpy

11: end for
12: end for

Figure 6: The computational core (step 5) of the ChebFD scheme: replace ~xk by p[H]~xk. The
two loops over k can each be replaced by a single operation on block vectors of size nb = NS

(see Sec. 4).

3. Estimate the size of the search interval from NS . Choose the filter poly-
nomial degree Np according to this estimate.

4. Construct NS random search vectors ~x1, . . . , ~xNS
.

5. Apply the polynomial filter: ~yk = p[H]~xk (see Fig. 6).

6. Orthogonalize the filtered search vectors {~yk}.
7. Compute the Rayleigh-Ritz projection matrix 〈~yk, H~yl〉 and the corre-

sponding Ritz pairs (λ̃k, ~̃vk), together with their residuals ~rk.

8. Check for convergence:

(a) Exit if |~rk| ≤ ε for all Ritz values λ̃k in the target interval.
(b) Otherwise: Restart at step 5 with the new search vectors {~yk}.

Steps 1–4 comprise the preparatory phase, and steps 5–8 the iterative core
phase of the ChebFD scheme. A few remarks on the individual steps of the
algorithm:

Step 1. The interval [a, b] can be computed with a few (20− 30) Lanczos itera-
tions, which we prefer over the crude estimates from, e.g., Gershgorin’s theorem.
Good estimates for the DOS can be computed with the KPM in combination
with stochastic sampling of the matrix trace (see Ref. [5] for details). This
strategy has been known to physicists for a long time [31] and has recently been
adopted by researchers from other communities [16].

Step 2. The number of target vectors can be estimated from the DOS according
to Eq. (11). Following the analysis from Secs. 2.3, 2.4 the number of search vec-
tors should be a small multiple of the number of target vectors. We recommend
using 2 ≤ NS/NT ≤ 4.

13

Step 3. The search interval width can be estimated from the DOS according
to Eq. (12). The optimal value of Np follows from minimization of η for the
given interval configuration, as in Sec. 2.3. The minimization does not require
the matrix H, can be performed prior to the ChebFD iteration, and requires
negligible additional effort. For the Lanczos kernel the choice of Np can be
based on the values in Table 2. With the corresponding value of η the expected
computational effort can be deduced already at this point.

Step 5. The computational core of ChebFD is the application of the filter poly-
nomial to the search space in step 5, as depicted in Fig. 6. Only during this
step in the inner iteration cycle (steps 5–8) the matrix H is addressed through
spMVMs. Therefore, our performance engineering efforts (Sec. 4) focus on this
step.

Step 6. Orthogonalization should be performed with a rank-revealing technique
such as SVQB [32] or TSQR [33]. Because the damping factors σ of the filter
polynomials used in practice are still large compared to machine precision, the
condition number of the Gram matrix of the filtered search vectors usually
remains small. Therefore we can use SVQB, which is not only simpler to im-
plement than TSQR but also more easily adapted to the row-major storage of
vectors used in our spMVM (see Sec. 4). For the computation of the required
scalar products we use Kahan summation [34] to preserve accuracy even for long
vectors (i.e., large D). If orthogonalization reduces the size of the search space
we can add new random vectors to keep NS constant.

Step 7. The Ritz pairs computed in step 7 will contain a few ‘ghost’ Ritz pairs,
for which the Ritz values lie inside of the target interval but the residual is
large and does not decrease during iteration. To separate these ‘ghosts’ from
the Ritz vectors that do converge to target vectors we discard all Ritz pairs
for which the residual lies above a certain threshold (here: if it remains larger
than

√
ε). A theoretically cleaner approach would be the use of harmonic Ritz

values [35, 36], but they are not easily computed within the present scheme,
and we did not find that they speed up convergence or improve robustness of
the algorithm. Therefore, we decided to use ordinary Ritz values together with
the above acceptance criterion in the present large-scale computations.

Step 8. The convergence criterion stated here uses the parameter ε directly
as specified by the user, similar to the criteria used in other standard eigen-
solvers [37]. Perturbation theory explains how ε is related to the error of the
eigenvalues and eigenvectors [38]. For eigenvalues, a small residual |~rk| ≤ ε guar-
antees a small error |λk− λ̃k| ≤ ε‖H‖ of the corresponding eigenvalue (the norm
‖H‖ is known from step 1). If precise eigenvectors are required the convergence
check should also take the distance to neighboring eigenvalues into account, and
can be performed by a user-supplied routine that accesses all the Ritz pairs and
residuals.

14

0 20 40 60 80 100
N

S

0.0

5.0×10
4

1.0×10
5

1.5×10
5

2.0×10
5

e
ff
o
rt

 [
s
p
M

V
M

]

N
p
=100 1000

500

200

0 200 400 600 800 1000
N

p

0.0

2.5×10
4

5.0×10
4

7.5×10
4

1.0×10
5

e
ff
o
rt

 [
s
p

M
V

M
]

N
S
=20

30

40

50

Figure 7: Effort of ChebFD, measured by the total number (Np×NS× iterations) of spMVMs
until convergence, as a function of NS for fixed Np = 100, 200, 500, 1000 (left panel) and as
a function of Np for fixed NS = 20, 30, 40, 50 (right panel). The matrix is the same diagonal
matrix as used in Fig. 3, with D = 103 and target interval [−0.01, 0.01] ⊂ [−1, 1]. Convergence
was detected according to the criterion stated in the text, with residual ε ≤ 10−7. In all cases,
the NT = 10 target eigenvalues were found with an accuracy better than ε.

3.2. Parameter selection: Numerical experiment

An initial numerical experiment on the correct choice of NS and Np is shown
in Fig. 7 for the diagonal matrix from Sec. 2.2. The experiment clearly supports
our previous advice: Best convergence is achieved for 4 ≤ NS/NT ≤ 5. Smaller
NS requires larger Np, because the width of the filter polynomial must roughly
match the width of the search interval. In the present example with equidistant
eigenvalues, i.e., a flat DOS, reducing NS 7→ NS/2 should require increasing
Np 7→ 2Np. This is consistent with the data in Fig. 7, until convergence becomes
very slow for NS . 2NT for the reasons explained in Sec. 2.4.

The present experiment can be summarized in a few rules of thumb: First,
the optimal choice of Np depends on NS , and smaller NS requires a better filter
polynomial with larger Np. Preferably, the number of search vectors is substan-
tially larger than the number of target vectors, which increases the benefits of
“overpopulating” the target space. At least we should guarantee NS ≥ 2NT .
Second, the width of the central lobe of the filter polynomial, which scales ap-
proximately as N−1p , should be of the same size as the search interval, hence,
about twice as large as the target interval. Near the center of the spectrum
Np ≈ 4(b− a)/(λ− λ) according to the plots4 in Fig. 2

These informal rules indicate what typically happens in a ChebFD run.
For less informal statements we have to return to the convergence theory from
Secs. 2.3 and 2.4, which requires information about the distribution of eigenval-
ues outside of the target interval, i.e., the DOS ρ(λ).

4For comparison, see also footnote 3.

15

effort NMVM [×106]
NS δ′/δ Nopt

p ηopt estimate numerical iterations Niter

flat DOS

125 0.25 9972 4107 6.16 6.23 5
150 0.50 4988 2052 3.69 3.74 5
175 0.75 3320 1368 2.87 2.90 5
200 1.00 2500 1023 2.45 2.50 5
300 2.00 1258 507 1.83 2.30 6∗

400 3.00 817 351 1.68 1.96 6
500 4.00 612 282 1.69 2.14 7∗

600 5.00 495 235 1.69 2.08 7∗

linear DOS

125 0.12 1037 427 0.64 0.65 5
150 0.22 565 233 0.42 0.42 5
175 0.32 388 160 0.34 0.34 5
200 0.41 303 125 0.30 0.30 5
300 0.73 170 70 0.25 0.31 6
400 1.00 124 51 0.24 0.30 6
500 1.24 99 41 0.25 0.30 6
600 1.45 85 36 0.26 0.36 7∗

Table 3: Numerical effort, in number of total spMVMs (NMVM), for the example of a flat and
linear DOS. In both cases, the NT = 100 central eigenvalues out of D = 40000 eigenvalues
are computed, with target interval IT = [−0.0025, 0.0025] (flat DOS) or IT = [−0.05, 0.05]
(linear DOS), and different number of search states NS . The accuracy goal is ε = 10−12.

Also reported are the search interval margin δ′, the optimal polynomial degree Nopt
p and

filter qualitity ηopt, the theoretical estimate for NMVM according to Eqs. (13), (14), and the
number of iterations Niter executed in the ChebFD scheme.

3.3. Numerical experiments for flat and linear DOS

The considerations from Sec. 2.4 explain how the number of search vectors
NS and the filter polynomial degree Np should be chosen depending on the
DOS. In Table 3 we summarize numerical experiments for the computation of
the NT = 100 central eigenvalues of a D = 40000 dimensional matrix. For
the flat DOS the target interval half width is δ = 2.5 × 10−3, for the linear
DOS δ = 0.05. The accuracy goal is ε = 10−12, the number of search vectors
ranges from 1.25 ≤ NS/NT ≤ 6. The estimate for the effort, measured by the
total number of spMVMs, is NMVM = η ×NS × (− log10 ε) as in Sec. 2.4. The
numerical value is NMVM = NiterNSNp.

In agreement with the theoretical estimates from Eqs. (13), (14) the numer-
ical data show that the effort increases significantly for NS < 2NT , becomes
smaller for NS & 2NT , but does not decrease further for NS & 4NT . Notice
how the overall effort for the linear DOS is approximately smaller by the factor
4
√
NT /D = 1/5 discussed previously.
In some cases (marked with a star in the table) the ChebFD algorithm

executes one additional iteration in comparison to the theoretical estimate for
Niter. In these cases, the residuals in the previous iteration have already dropped

16

to ≈ 2ε but not below ε. The one additional iteration increases the total effort
by a large percentage if NS/NT is too large. In practice, also the increasing
time required for orthogonalization slows down the computation for very large
NS . The data from Table 3 thus confirm our recommendation to choose NS as
a small multiple (2 ≤ NS/NT ≤ 4) of the number of target vectors NT .

4. Parallel implementation and performance engineering

The ChebFD scheme from the previous section is a straightforward and sim-
ple algorithm, which allows for clean implementation and careful performance
engineering. The most work-intensive task, and hence the most relevant for per-
formance analysis, is step 5 shown in Fig. 6: the application of the polynomial
filter. A key feature of our implementation is the use of sparse matrix multiple-
vector multiplication (spMMVM) as provided by the GHOST library [29], where
the sparse matrix is applied simultaneously to several vectors. As we demon-
strated previously for the KPM [6] and a block Jacobi-Davidson algorithm [39]
the reduction of memory traffic in spMMVM can lead to significant performance
gains over multiple independent spMVMs, where the matrix has to be reloaded
from memory repeatedly. Storage of block vectors in row major order is crucial
to avoid scattered memory access and improve cache utilization. Operations on
block vectors are intrinsic to the ChebFD scheme (see the two loops over k in
Fig. 6), and use of spMMVM promises substantial performance gains. GHOST
is an open-source library and is available for download5.

A thorough analysis of the optimization potential of block vector operations
within the context of KPM is given in Ref. [6]. The ChebFD computational
core differs from KPM only in the addition of the axpy vector operations in
lines 4,10 in Fig. 6. The NS independent axpy operations in the outer loop can
also be combined into a simultaneous block axpy operation with optimal cache
utilization. In our implementation the axpy operations are incorporated into
an augmented spMMVM kernel (contained in GHOST), which saves nb vec-
tor (re)loads from memory during one combined spMMVM+axpy execution.
The intention behind the application of the optimization techniques kernel fu-
sion and vector blocking is to increase the computational intensity (amount of
floating point operations per transferred byte) of the original series of strongly
bandwidth-bound kernels including several BLAS-1 calls and the sparse matrix
vector multiply. As the number of floating point operations is fixed for our
algorithm, this can only be achieved by lowering the amount of data transfers.

In our implementation we also compute the Chebyshev moments 〈~xk, ~wk〉
during step 5, which will allow us to monitor the spectral density contained in
the current search space (as in Eq. (6)) and thus check, e.g., the choice of NT
during execution of the algorithm. The computation of the dot products can
be integrated into the spMMVM kernels and does not affect performance for

5https://bitbucket.org/essex/ghost

17

https://bitbucket.org/essex/ghost

kernels with low computational intensity because no additional memory accesses
are required.

Extending the analysis from Ref. [6], we can adjust the expression of the
computational intensity (assuming perfect data re-use for the spMMVM input
block vector) I(nb) by taking the additional block axpy operation into account.
Sd (Si) denotes the size of a single matrix/vector data (index) element and Fa
(Fm) indicates the number of floating point operations per addition (multipli-
cation). Nnzr is the average number of non-zero entries per matrix row.

I(nb) =
Nnzr(Fa + Fm) + d9Fa/2e+ d11Fm/2e

Nnzr/nb(Sd + Si) + 5Sd

Flops

Byte
(15)

Obviously, the parameters depend on the underlying system matrix and data
types. Our computations are based on double precision data (complex for topo-
logical insulators and real for graphene) and Nnzr = 13 (4) for topological insula-
tors (graphene). Thus, for our application scenarios the following computational
intensities of the compute kernel can be given:

I(nb)
Topi =

146

260/nb + 80

Flops

Byte
, (16)

I(nb)
Graphene =

19

48/nb + 40

Flops

Byte
. (17)

4.1. Hardware testbed

We analyze the performance on an Intel Xeon E5-2697v3 (“Haswell-EP”)
CPU. It features 14 cores running at a nominal clock frequency of 2.6 GHz.
This CPU implements the AVX2 instruction set which involves 256-bit wide
vector processing units and fused multiply-add instructions (FMA). Hence, the
theoretical double precision floating point peak performance P peak adds up to
582.4 Gflop/s. The maximum attainable memory bandwidth b as measured
with a read-only micro-benchmark (vector reduction) is b = 64.7 GB/s. This
CPU is installed in the second phase of the SuperMUC6 cluster at the Leibniz
Supercomputing Centre (LRZ) on which the large-scale experiments of this work
have been performed. The Intel Compiler version 15.0 has been used throughout
all experiments, and Simultaneous Multithreading (SMT) threads have been
disabled.

The considered CPU has the Cluster on Die (CoD) operating mode en-
abled. This novel feature splits up a multicore CPU socket into two equally
sized non-uniform memory access (NUMA) domains, which should increase the
performance for workloads which are NUMA-aware and bound to the last level
cache or main memory. However, the number of NUMA domains doubles within
the compute nodes which may lead to significant performance degredation for
implementations which are not NUMA-aware or bandwidth limited applications
with a dynamic workload scheduling strategy.

6https://www.lrz.de/services/compute/supermuc/

18

https://www.lrz.de/services/compute/supermuc/

4 8 16 32 64 1281 2
Number of vectors n

b

0

10

20

30

40

50

60

P
e

rf
o

rm
a

n
c
e

 i
n

 G
fl
o

p
/s

P*
P*/Ω
P

meas

1

1.5

2

Ω

1 4 7 11 148
Number of cores (single socket)

0

10

20

30

40

50

60

70

80

P
e

rf
o

rm
a

n
c
e

 i
n

 G
fl
o

p
/s

DYNAMIC,10000 (OpenMP)

DYNAMIC,10000 (MPI+OpenMP)

STATIC (OpenMP)

STATIC (MPI+OpenMP)

NUMA border

Figure 8: Performance and data traffic overhead Ω (left panel) for the polynomial filter
kernel (Fig. 6) as a function of the block size nb in a single NUMA domain (7 cores, pure
OpenMP) with a topological insulator matrix for problem size 128×64×64 (matrix dimension
D = 221). In order to guarantee vectorized execution, the matrix was stored in SELL-
32-1 (with DYNAMIC,1000 OpenMP scheduling) for nb = 1 and SELL-1-1 (DYNAMIC,10000)
otherwise. On the right panel we show scaling behavior inside a NUMA domain and in a
full socket at nb = 16 for different OpenMP scheduling strategies and MPI+OpenMP hybrid
execution (one process per NUMA domain).

4.2. Performance modelling and analysis

The performance modeling approach largely follows the work presented in
Ref. [6] where we focused on an Intel Xeon Ivy Bridge CPU. In that work we
have demonstrated that the performance is limited by main memory bandwidth
for small nb and by on-chip execution for intermediate to large nb. In the
following we apply the same procedure to the Haswell-EP architecture, which
provides 29% higher main memory bandwidth and a twice higher floating point
performance due to the aforementioned FMA instructions.

Assuming memory-bound execution, the roofline performance model [40]
predicts an upper performance bound P ∗ as the product of computational in-
tensity and attainable memory bandwidth:

P ∗ = I(nb)b . (18)

As mentioned above, our formula for the computational intensity assumes per-
fect data re-use of the spMMVM input block vector. Due to the limited cache
size, this assumption is likely to be violated as the number of vectors nb increases.
The resulting data traffic overhead can be quantified as Ω = Vmeas/Vmin ≥ 1
with Vmin (Vmeas) being the minimum (measured) data volume. The data traf-
fic measurements were done with hardware performance counters using LIK-
WID [41]. This leads to a more accurate performance bound of P ∗/Ω.

It can be seen in Fig. 8 that the measured performance Pmeas is always within
80% of the prediction P ∗/Ω, which substantiates the high efficiency of our pure
OpenMP implementation in a single NUMA domain. Moreover we find that our

19

implementation on Haswell is always limited by main memory access and the
on-chip execution no longer imposes a prominent bottleneck (as it was the case
for Ivy Bridge [6]). Thus, there is no need to implement further low-level opti-
mizations in our kernels. The deviation from the model increases with increasing
nb, which is caused by other bottlenecks like in-core execution that gain rele-
vance for the increasingly computationally intensive kernel in this range. The
best performance in a single NUMA domain is obtained with DYNAMIC OpenMP
scheduling. However, this would lead to severe performance degradation on a
full socket due to non-local memory accesses. There are two ways to avoid this:
Use STATIC OpenMP scheduling or a hybrid MPI+OpenMP implementation
with one MPI process per NUMA domain. The performance of a statically
scheduled OpenMP execution is shown in the right panel of Fig. 8. In a single
NUMA domain it is slightly lower than for DYNAMIC scheduling, but thanks to the
NUMA-aware implementation in GHOST it scales across NUMA domains. Using
MPI+OpenMP instead of OpenMP only comes at a certain cost. For instance,
input vector data needs to be transferred manually which entails the assembly
of communication buffers. It turns out that the MPI+OpenMP performance
with DYNAMIC scheduling on a full socket is almost on par with the OpenMP-
only variant with STATIC scheduling; the MPI overhead is roughly compensated
by the higher single-NUMA domain performance. As expected, the statically
scheduled MPI+OpenMP variant shows the lowest performance on a full socket,
as it unifies both drawbacks: a lower single-NUMA domain performance and the
MPI overhead. In summary for our application scenario there is no significant
performance difference on a single socket between MPI+OpenMP+DYNAMIC and
OpenMP+STATIC. In our large-scale experiments we chose the best variant on
a single socket, namely pure OpenMP with STATIC scheduling.

5. Large-scale application of ChebFD

5.1. Application scenario

To demonstrate the potential of ChebFD for large-scale computations we
choose an application scenario from current quantum physics research, the com-
putation of the central eigenstates of a topological insulator as described in the
introduction. We use the model Hamiltonian [42]

H = −t
∑

n,j=1,2,3

(
Ψ†n+êj

Γ1 − iΓj+1

2
Ψn + H.c.

)
+
∑
n

Ψ†n
(
VnΓ0 + 2Γ1

)
Ψn ,

(19)
where the first term describes the hopping of electrons along the three-
dimensional cubic lattice (from site n to sites n ± êj), and the second term
contains the disorder potential Vn. Here, the Γj are 4× 4 Dirac matrices acting
on the local 2 × 2 sublattice and spin degrees of freedom. For a topological
insulator slab of Lx × Ly × Lz sites the matrix dimension is D = 4LxLyLz.

In Fig. 9 we show the DOS of this model as a function of energy (i.e.,
eigenvalue λ of H), without (Vn ≡ 0) and with (Vn ∈ [−V/2, V/2], uniform

20

0

0.1

0.2

ρ
(λ

)
/
D V=0

0

0.1

0.2

ρ
(λ

)
/
D V=2

-6 -4 -2 0 2 4 6

λ

0

0.1

0.2

ρ
(λ

)
/
D V=3

0

1

2
V=0

0

1

2

ρ
(λ

)
[1

0
-3

]

V=2

-0.1 -0.05 0 0.05 0.1

λ

0

1

2
V=3

target interval

Figure 9: DOS ρ(λ) for the topological insulator without (V = 0) and with (V 6= 0) disorder,
computed with KPM and stochastic trace evaluation [5]. Increasing the disorder shifts states
into the gap at the center of the spectrum, leading to the redistribution of the DOS as indicated
by the arrows. A zoom-in of the central region is shown in the right panels. The target interval
used for the ChebFD computations in the following figures is marked with the gray rectangle.

box distribution) disorder. Disorder fills the gap that exists in the DOS of the
system with a small number of states. Our goal is to compute these states,
which are those most relevant for physics applications, with ChebFD.

5.2. Numerical experiments

Two initial numerical experiments are presented in Figs. 10 and 11 for a
topological insulator with size 256×256×10 and matrix dimension D = 5×219 ≈
2.6 × 106. We set t = 1, and the disorder strength is V = 2.0. The matrix
spectrum is contained in the interval [a, b] = [−5.5, 5.5], the target interval is
[λ, λ] = [−0.06, 0.06]. From the DOS ρ(λ) in Fig. 9 we estimate the number
of target vectors as NT ≈ 124, while the true value found after convergence of
ChebFD is NT = 144. The difference (which is below 10−5D) is due to the
stochastic sampling of the matrix trace.

In Fig. 10 we illustrate the convergence of ChebFD for this example. In the
left panel we show, similar to Fig. 3, the density w(λ) of the (squared) weight wi
of the search vectors at the target eigenvectors (cf. Eq. (6)). Formally, w(λ) =∑D
i=1 w

2
i δ(λ− λi) with δ-peaks at the eigenvalues λi of H, and we have NS =∫ b

a
w(λ)dλ. Similar to the DOS we consider w(λ) to be a continuous function

for NS � 1, rather than a distribution. The quantity w(λ) is conveniently
estimated with KPM using the Chebyshev moments 〈~xk, TH(H)~xk〉 = 〈~xk, ~wk〉,
which can be computed during execution of the ChebFD core (step 5 from
Fig. 6) without incurring a performance penalty.

We observe in Fig. 10 the same effect as discussed previously for Fig. 3:
search vectors are compressed into the target space through polynomial filtering.
Because the target space can accommodate only NT < NS search vectors, finite
weight accumulates also around the target interval. As the residual of the Ritz
pairs computed from the current search space decreases (right panel) the search
vector weight w(λ) converges to the DOS ρ(λ) inside of the target interval.

21

-0.2 -0.1 0 0.1 0.2

λ

0

1000

2000

3000

4000

w
(λ

)
target interval

ρ(λ)

w(λ)

0 1×10
6

2×10
6

3×10
6

4×10
6

effort [spMVM]

10
-16

10
-12

10
-8

10
-4

10
0

re
s
id

u
a
l

Jackson

Lanczos (µ=1)

Lanczos (µ=2)

Lanczos (µ=3)

Figure 10: Convergence of ChebFD with increasing number of iterations, for the topological
insulator example (Eq. (19), matrix dimension 2.6×106) with parameters as given in the text,
and NS = 256, Np = 1438. Left panel: Weight w(λ) of search vectors at target eigenvectors
(see text) after 2 iterations. Shown is the DOS ρ(λ) from Fig. 9 for comparison. Right panel:
Smallest (open symbols) and largest (filled symbols) residual of the currently accepted Ritz
vectors with Ritz values in the target interval. Data are shown as a function of the total
number (Np ×NS × iterations) of spMVMs for the Jackson and Lanczos (µ = 1, 2, 3) kernels.
The performance of the best kernel (Lanczos µ = 2) is highlighted by the gray area.

Note that also in this example ‘ghost’ Ritz pairs with large residual occur in
the target interval. Ritz pairs are accepted as valid eigenpair approximations
according to the criteria stated in Sec. 3.

A comparison of the different kernels (Jackson and Lanczos in Fig. 10) shows
that convergence is indeed fastest with the Lanczos kernel. This result is consis-
tently reproduced in other applications. Therefore, we recommend the Lanczos
kernel and will use it in the remainder of the paper.

In Fig. 11 we repeat the numerical experiment from Fig. 7 for the present
example. We observe again that (i) the computational effort increases rapidly
for NS . 2NT (here, NS . 250 in the left panel), and (ii) the computational
effort becomes smaller if NS is increased to a small multiple of NT .

The data in Fig. 11 fully agree with our analysis from Secs. 2.3 and 2.4.
Assuming a linear DOS in the vicinity of the target interval (which is justified
by Fig. 9) the change of the computational effort with NS and Np can be
predicted with the theoretical estimate from Eq. (14) (dashed curves).

The computational effort is minimal for the largest number of search vectors
used in the present example (NS = 350 in the left panel). While the theoretical
estimate predicts that the computational effort would be reduced further for
larger NS ' 4NT ' 600, finite memory resources restrict the possible NS in
large-scale applications. The minimal effort predicted by theory (see text after
Eq. (14)) is NMVM = 1.06 × 106 for a linear DOS, while our best computation
required NMVM = 1.2 × 106. At the risk of overinterpreting this agreement
(e.g., the DOS is not perfectly linear in the present example) we find that the
algorithmic efficiency of our ChebFD implementation lies within 20% of the

22

150 200 250 300 350 400

N
S

0

2×10
6

4×10
6

6×10
6

e
ff
o
rt

 [
s
p

M
V

M
]

N
P
 = 862

N
P
 = 1438

N
P
 = 2590

0 2000 4000 6000 8000

N
P

0

2×10
6

4×10
6

6×10
6

N
S
 = 224

N
S
 = 256

N
S
 = 304

Figure 11: Computational effort of ChebFD for different NS and Np, similar to Fig. 7, for the
topological insulator example (Eq. (19)) with parameters as given in the text. The target space
contains NT = 144 vectors. The computation was stopped when all target vectors were found
with residual below ε = 10−9. Left panel: Number of spMVMs for fixed Np = 862, 1438, 2590
as a function of NS . Right panel: Number of spMVMs for fixed NS = 224, 256, 304 as a
function of Np. The dashed curves in both panels give the theoretical estimate of the minimal
effort for a linear DOS (cf. Eq. (14)).

expected theoretical optimum.

5.3. Large-scale topological insulator computations

We now examine the computational efficiency of our ChebFD implemen-
tation in large-scale computations. For the topological insulator application,
where ChebFD is required for the solution of large problems that can not be
treated with other techniques, the weak scaling performance is most relevant.

The weak scaling performance of the ChebFD computational core (step 5
from Fig. 6) is shown in Fig. 12, together with the influence of the block size nb
used in the spMMVM. Computations took place on up to 512 Haswell nodes of
SuperMUC at LRZ Garching7, with fixed problem size (D = 221 ≈ 2× 106) per
node. A correct choice of the block size nb can lead to a 2× gain in performance
(Fig. 12, left panel), which is in accordance with the single socket improvements
demonstrated in Fig. 8. Generally, moderately sized blocks (about nb = 26) are
preferential. The overall scalability of ChebFD does not depend on nb, as could
be expected because spMMVMs optimize local memory traffic on the node-level
but do not affect the inter-node communication volume. However, larger block
sizes become more effective with increasing number of nodes and problem size,
because in our implementation the size of MPI messages during spMMVM is
proportional to nb. Large nb thus reduces the inter-node communication effort
in terms of latency and message count. Comparing the single-node performance
numbers in Fig. 12 to the single-socket performance as discussed in Sec. 4, we

7see https://www.lrz.de/services/compute/supermuc/systemdescription/ for the hard-
ware description

23

https://www.lrz.de/services/compute/supermuc/systemdescription/

0

20

40

60

512 nodes

4 8 16 32 64 128
n

b

0

0.05

0.1

0.15

p
e

rf
o

rm
a

n
c
e

 i
n

 T
fl
o

p
/s

one node

1 2 8 32 128 512

number of nodes

0.1

1

10

100

0.5

5

50

p
e

rf
o

rm
a

n
c
e

 i
n

 T
fl
o

p
/s

n
b
= 4

n
b
= 8

n
b
= 16

n
b
= 32

n
b
= 64

n
b
= 128

1 8 128
0

50

100

p
e

rf
.

in
 G

fl
o

p
/s

/n
o

d
e

73%

Figure 12: Weak scaling performance for the polynomial filter kernel of the parallel ChebFD
implementation, for fixed problem size (128× 64× 64 slice, vector length 221) per node. Left
panels: Sustained performance accumulated over all nodes as a function of the block size nb

used in spMMVM, for a computation on 1 and 512 nodes. Right panel: Sustained performance
as a function of the number of compute nodes. The data points highlighted in gray are those
shown in the left panels. The inset shows the average performance per node as an indicator
for the parallel efficiency.

can observe a significant drop of parallel efficiency when going from one to two
sockets in a single node, which is due to the enabling of MPI communication.
Beyond a single node we achieve a parallel efficiency of 73% when scaling from
1 to 512 nodes. In Fig. 12 two drops of parallel efficiency can be observed in the
scaling range: from one to two nodes we are effectively enabling communication
over the network and from 128 to 512 nodes we encounter an effect of the special
network topology of the SuperMUC cluster. It is built of islands of 512 nodes
which internally have a fully non-blocking FDR14 Infiniband network. However,
a pruned tree connects those islands, causing the intra-island bandwidth to be
a factor of four larger than inter-island. While all jobs up to 128 nodes ran in a
single island, 512-node jobs were spread across two island by the batch system.
Both the step from one to two nodes and the step from one to two islands lead to
an increased influence of communication and to a decrease of parallel efficiency.

5.4. Large-scale benchmark runs

Additional benchmark data are shown in Tab. 4, using topological insulator
and graphene matrices with dimensions ranging up to D & 109. The graphene
matrices are obtained from the standard tight-binding Hamiltonian on the hon-
eycomb lattice with an on-site disorder term [1]. Generator routines for all
matrix examples are provided with the GHOST library.

At present, interior eigenvalues cannot be computed for such large matrix
dimensions with methods based on (direct or iterative) linear solvers, and thus
require a polynomial filtering technique like ChebFD. One observes that with
increasing matrix dimension the evaluation of the filter polynomial constitutes
an increasing fraction of the total runtime and quickly becomes the dominating
step. Our optimizations for the ChebFD computational core are thus especially

24

matrix nodes D [λ : λ]rel NT Np

runtime
[hours]

sust. perf.
[Tflop/s]

topi1 32 6.71e7 7.27e-3 148 2159 3.2 (83%) 2.96
topi2 128 2.68e8 3.64e-3 148 4319 4.9 (88%) 11.5
topi3 512 1.07e9 1.82e-3 148 8639 10.1 (90%) 43.9

graphene1 128 2.68e8 4.84e-4 104 32463 10.8 (98%) 4.6
graphene2 512 1.07e9 2.42e-4 104 64926 16.4 (99%) 18.2

Table 4: ChebFD benchmark runs on up to 512 SuperMUC Haswell nodes for topological
insulator (topi) and graphene (graphene) matrices, with matrix dimension D up to 109.
The central columns give the relative width of the target interval [λ, λ] in comparison to the
entire spectrum, the number of computed target eigenpairs (NT) and the degree of the filter
polynomial (Np). The last two columns give the total runtime with the percentage spent in
the polynomial filter evaluation step from Fig. 6 and the sustained performance of this step.
We used NS = 256 for all examples, and nb = 64 (128) for the topological insulator (graphene)
matrices.

relevant for large-scale computations, and the benchmark data from Fig. 12 and
Tab. 4 clearly demonstrate the potential of our ChebFD implementation.

Note the very high polynomial degree Np required for the graphene matri-
ces, where the target interval comprises less than 0.1% of the entire spectrum.
Evaluating filter polynomials causes no difficulty even for such extremely high
degrees because of the inherent stability of the Chebyshev recurrence.

5.5. Topological insulator application example

The good scalability and high performance of our ChebFD implementation
allows us to deal with the very large matrices that arise in the theoretical mod-
eling of realistic systems. To illustrate the physics that becomes accessible
through large-scale interior eigenvalue computations we consider the example
of gate-defined quantum dots in a topological insulator (Fig. 13), a primary
example for the functionalization of topological materials.

In this example a finite gate potential is tuned to a value (Vg = 0.11974) such
that the wave functions of the innermost eigenstates, i.e., those located at the
Fermi energy, are concentrated in the circular gate regions. Minimal changes of
the gate potential can lead to large changes of the wave functions, which gives
rise to a transistor effect that allows for the rapid switching between an ‘on’
and an ‘off’ state. While this effect can be studied already for small systems,
or is even accessible to analytical treatment due to the high symmetry of the
situation, the modeling of realistic systems requires the incorporation of disorder
at the microscopic level, which results either from material imperfections or
deliberate doping with impurity atoms.

The natural question then is how disorder modifies the transistor effect. To
answer this question the interior eigenstates must now be computed numeri-
cally, and large system sizes are required to correctly describe the effect of the
microscopic disorder on the mesoscopic quantum dot wave functions. An ex-
ample for such a computation with ChebFD is shown in Fig. 14. Eigenstates
close to the Fermi energy are still concentrated in the gate regions, although

25

x

y

z
gV

-0.02 -0.01 0 0.01 0.02
E

0

0.0001

0.0002

0.0003

0.0004

D
O

S
K

P
M

0

20

40

60

80

n
u
m

b
e
r

o
f
e
ig

e
n
v
a
lu

e
s

-6 -4 -2 0 2 4 6
0

0.1

0.2

 0 100 200 300 400 500

x

 0

 100

 200

 300

 400

 500

y

10
-6

10
-5

|Ψ
 (

x
,y

,z
=

0
)|

2

Figure 13: Schematic geometry of gate-defined quantum dots in a topological insulator sheet
(left panel), DOS ρ(λ) and interior eigenvalues computed with ChebFD (central panel), and
the wave function |ψ(x, y, z = 0)|2 in the xy plane belonging to the eigenvalue at the Fermi
energy marked with the green circle (right panel).

the circular shapes visible in the wave function from Fig. 13 are washed out
by disorder. Interestingly, the two nearby eigenstates shown in the picture are
concentrated in different gate regions, which is possible because disorder breaks
the perfect square symmetry of the arrangement. Therefore, disorder can in-
duce a new transistor effect, where a small gate potential switches an electric
current between different sides of the sample. Full exploration of this effect
certainly requires more realistic modeling of the situation. As the present ex-
amples demonstrate, ChebFD can become a relevant computational tool for
such explorations.

-0.02 -0.01 0 0.01 0.02
E

0

0.0001

0.0002

0.0003

0.0004

D
O

S
K

P
M

0

20

40

60

80

n
u

m
b

e
r

o
f

e
ig

e
n

v
a

lu
e

s

-6 -4 -2 0 2 4 6
0

0.1

0.2

 0 100 200 300 400 500

x

 0

 100

 200

 300

 400

 500

y

10
-6

10
-5

|Ψ
 (

x
,y

,z
=

0
)|

2

 0 100 200 300 400 500

x

 0

 100

 200

 300

 400

 500

y

10
-6

10
-5

|Ψ
 (

x
,y

,z
=

0
)|

2

Figure 14: Left panel: DOS and interior target eigenvalues computed with ChebFD for a
disordered (impurity-doped) topological insulator sheet with gate-defined quantum dots as in
the previous figure. The system size is Lx×Ly×Lz = 28×28×24, i.e., the matrix dimension
is D = 226 ' 1.6× 107, with disorder V = 1. Right panel: Wave function |ψ(x, y, z = 0)|2 in
the xy plane belonging to the two eigenvalues marked by green circles in the left panel.

26

6. Conclusions

Polynomial filtering techniques such as the ChebFD scheme examined in
the present paper are powerful tools for large-scale computations of many in-
terior eigenvalues of sparse symmetric matrices. These techniques combine two
aspects. On the one hand, they use polynomial filter functions to damp out
eigenvector contributions outside of the target interval. Polynomial filters allow
for simple evaluation through spMVM, and are thus applicable to large matri-
ces. On the other hand, these techniques rely on large search spaces, which can
lead to fast convergence also for moderate quality of the polynomial filters.

ChebFD is a straightforward implementation of polynomial filtering. Despite
its algorithmic simplicity, ChebFD is well suited for large-scale computations,
such as the determination of the 102 central eigenpairs of a 109-dimensional
matrix presented here. To our knowledge presently no other method is capable
of computations at this scale. These promising results indicate that ChebFD can
become a viable tool for electronic structure calculations in quantum chemistry
and physics, and for research into modern topological materials.

The present ChebFD scheme can be refined along several directions. First,
the construction of better polynomial filters could improve convergence. Second,
adaptive schemes that adjust the polynomial degree and the number of search
vectors according to the DOS, which can be computed with increasing accuracy
in the course of the iteration, might prove useful. Third, Ritz values should be
replaced by harmonic Ritz values in the computation, together with an improved
convergence criterion and locking of converged eigenpairs. Note, however, that
our theoretical analysis of ChebFD shows that none of these improvements
is truly crucial for the (fast) convergence of polynomial filtering: The most
important aspect is the “overpopulation” of the target space with search vectors,
i.e., the use of a sufficiently large search space.

A more radical alternative to ChebFD is the replacement of polynomial fil-
ters by rational functions as, e.g., in the FEAST and CIRR methods. From the
theoretical point of view, rational functions always lead to better convergence.
However, evaluation of rational functions of sparse matrices is non-trivial. Stan-
dard iterative solvers require too many additional spMVMs to be competitive
with polynomial filters, unless they can exploit additional structural or spectral
properties of the matrix [43]. At present it is not clear whether non-polynomial
filter functions can succeed in large-scale problems of the size reported here.
This question is currently under investigation.

The ChebFD algorithm implemented and investigated in the present work
should be of particular interest to physicists and chemists who increasingly
require high-performance tools for the computation of interior eigenvalues in
present and future research applications. The GHOST library, the ChebFD
code, and generator routines for all test cases are publicly available from the
ESSEX repository8.

8https://bitbucket.org/essex

27

https://bitbucket.org/essex

7. Acknowledgments

The research reported here was funded by Deutsche Forschungsgemeinschaft
through priority programmes 1459 “Graphene” and 1648 “Software for Exa-
scale Computing”. The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (http://www.gauss-centre.eu) for funding this work by
providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, http://www.lrz.de) through project pr84pi.
The GHOST-based implementation of ChebFD will become available as part of
the sparse solver library prepared in the ESSEX project9.

References

References

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K.
Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009)
109–162.

[2] M. Z. Hasan, C. L. Kane, Topological insulators, Rev. Mod. Phys. 82 (2010)
3045–3067.

[3] G. Schubert, H. Fehske, Metal-to-insulator transition and electron-hole
puddle formation in disordered graphene nanoribbons, Phys. Rev. Lett.
108 (2012) 066402.

[4] G. Schubert, H. Fehske, L. Fritz, M. Vojta, Fate of topological-insulator
surface states under strong disorder, Phys. Rev. B 85 (2012) 201105.

[5] A. Weiße, G. Wellein, A. Alvermann, H. Fehske, The kernel polynomial
method, Rev. Mod. Phys. 78 (2006) 275–306.

[6] M. Kreutzer, G. Hager, G. Wellein, A. Pieper, A. Alvermann, H. Fehske,
Performance engineering of the kernel polynomial method on large-scale
CPU-GPU systems, in: Proc. of the 29th IEEE International Parallel &
Distributed Processing Symposium IPDPS15, 2015, pp. 417–426.

[7] T. A. Manteuffel, The Tchebychev iteration for nonsymmetric linear sys-
tems, Numer. Math. 28 (1977) 307–327.

[8] T. A. Manteuffel, Adaptive procedure for estimating parameters for the
nonsymmetric Tchebychev iteration, Numer. Math. 31 (1978) 183–298.

[9] Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric
eigenvalue problems, Math. Comput. 42 (1984) 567–588.

9http://blogs.fau.de/essex

28

http://www.gauss-centre.eu
http://www.lrz.de
http://blogs.fau.de/essex

[10] D. C. Sorensen, Numerical methods for large eigenvalues problems, Acta
Numerica 11 (2002) 519–584.

[11] Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised Edi-
tion, Vol. 66 of Classics in Applied Mathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 2011.

[12] Y. Zhou, Y. Saad, M. L. Tiago, J. R. Chelikowsky, Self-consistent-field
calculations using Chebychev-filtered subspace iteration, J. Comput. Phys.
219 (2006) 172–184.

[13] D. Neuhauser, Bound state eigenfunctions from wave packets: Time →
energy resolution, J. Chem. Phys. 93 (1990) 2611–2616.

[14] V. A. Mandelshtam, H. S. Taylor, A low-storage filter diagonalization
method for quantum eigenenergy calculation or for spectral analysis of
time signals, J. Chem. Phys. 106 (1997) 5085–5090.

[15] V. A. Mandelshtam, H. S. Taylor, Harmonic inversion of time signals and
its applications, J. Chem. Phys. 107 (1997) 6756–6769.

[16] E. Di Napoli, E. Polizzi, Y. Saad, Efficient estimation of eigenvalue counts
in an interval, arXiv:1308.4275 (preprint) (2014).

[17] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems,
Phys. Rev. B 79 (2009) 115112.

[18] L. Krämer, E. Di Napoli, M. Galgon, B. Lang, P. Bientinesi, Dissecting the
FEAST algorithm for generalized eigenproblems, J. Comput. Appl. Math.
244 (2013) 1–9.

[19] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue
problems using numerical integration, J. Comput. Appl. Math. 159 (2003)
119–128.

[20] T. Sakurai, H. Tadano, CIRR: a Rayleigh-Ritz type method with contour
integral for generalized eigenvalue problems, Hokkaido Mathematical Jour-
nal 36 (2007) 745–757.

[21] O. Schenk, M. Bollhöfer, R. A. Römer, On large-scale diagonalization tech-
niques for the Anderson model of localization, SIAM Review 50 (2008)
91–112.

[22] PARDISO solver project, http://www.pardiso-project.org/.

[23] M. Bollhöfer, Y. Saad, O. Schenk, ILUPACK—preconditioning software
package, http://www.icm.tu-bs.de/~bolle/ilupack/.

[24] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42
(1990) 6561–6567.

29

http://arxiv.org/abs/1308.4275
http://www.pardiso-project.org/
http://www.icm.tu-bs.de/~bolle/ilupack/

[25] A. Alvermann, P. B. Littlewood, H. Fehske, Variational discrete variable
representation for excitons on a lattice, Phys. Rev. B 84 (2011) 035126.

[26] L. Krämer, Integration based solvers for standard and generalized hermi-
tian eigenvalue problems, Dissertation, Bergische Universität Wuppertal,
Germany (Apr. 2014).

[27] M. Galgon, L. Krämer, B. Lang, Adaptive choice of projectors in projection
based eigensolvers, Preprint BUW-IMACM 15/07 (2015).

[28] M. Galgon, L. Krämer, B. Lang, A. Alvermann, H. Fehske, A. Pieper,
G. Hager, M. Kreutzer, F. Shahzad, G. Wellein, A. Basermann, M. Röhrig-
Zöllner, J. Thies, Improved coefficients for polynomial filtering in ESSEX,
preprint (2016).

[29] M. Kreutzer, J. Thies, M. Röhrig-Zöllner, A. Pieper, F. Shahzad, M. Gal-
gon, A. Basermann, H. Fehske, G. Hager, G. Wellein, GHOST: Building
blocks for high performance sparse linear algebra on heterogeneous systems,
arXiv:1507.08101 (preprint) (2015).

[30] D. Jackson, On approximation by trigonometric sums and polynomials,
Trans. Am. Math. Soc. 13 (1912) 491–515.

[31] R. N. Silver, H. Röder, A. F. Voter, D. J. Kress, Kernel polynomial ap-
proximations for densities of states and spectral functions, J. Comp. Phys.
124 (1996) 115–130.

[32] A. Stathopoulos, K. Wu, A block orthogonalization procedure with con-
stant synchronization requirements, SIAM J. Sci. Comput. 23 (2002) 2165–
2182.

[33] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations, SIAM J. Sci. Comp. 34
(2012) 206–239.

[34] W. Kahan, Pracniques: Further remarks on reducing truncation errors,
Commun. ACM 8 (1965) 40.

[35] R. B. Morgan, Computing interior eigenvalues of large matrices, Linear
Algebra Appl. 154 (1991) 289–309.

[36] C. C. Paige, B. N. Parlett, H. A. van der Vorst, Approximate solutions and
eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl. 2
(1995) 115–133.

[37] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK users’ guide, http:

//www.caam.rice.edu/software/ARPACK/.

[38] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, SIAM, 2007.

30

http://arxiv.org/abs/1507.08101
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

[39] M. Röhrig-Zöllner, J. Thies, M. Kreutzer, A. Alvermann, A. Pieper,
A. Basermann, G. Hager, G. Wellein, H. Fehske, Increasing the perfor-
mance of the Jacobi-Davidson method by blocking, SIAM J. Sci. Comput.
37 (2015) C697–C722.

[40] S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual
performance model for multicore architectures, Commun. ACM 52 (2009)
65–76.

[41] J. Treibig, G. Hager, G. Wellein, LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments, in: Proceedings of
PSTI2010, the First International Workshop on Parallel Software Tools
and Tool Infrastructures, San Diego CA, 2010.

[42] M. Sitte, A. Rosch, E. Altman, L. Fritz, Topological insulators in magnetic
fields: Quantum Hall effect and edge channels with a nonquantized θ term,
Phys. Rev. Lett. 108 (2012) 126807.

[43] M. Galgon, L. Krämer, J. Thies, A. Basermann, B. Lang, On the parallel
iterative solution of linear systems arising in the FEAST algorithm for
computing inner eigenvalues, Parallel Comput. 49 (2015) 153–163.

31

	1 Introduction
	2 Polynomial filter functions
	2.1 Construction of polynomial filter functions
	2.2 Polynomial filtering: Numerical example
	2.3 Theoretical analysis of filter polynomial quality and ChebFD convergence
	2.4 Optimal choice of algorithmic parameters

	3 The Chebyshev filter diagonalization scheme
	3.1 Algorithm
	3.2 Parameter selection: Numerical experiment
	3.3 Numerical experiments for flat and linear DOS

	4 Parallel implementation and performance engineering
	4.1 Hardware testbed
	4.2 Performance modelling and analysis

	5 Large-scale application of ChebFD
	5.1 Application scenario
	5.2 Numerical experiments
	5.3 Large-scale topological insulator computations
	5.4 Large-scale benchmark runs
	5.5 Topological insulator application example

	6 Conclusions
	7 Acknowledgments

