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Abstract

We construct, analyse and assess various schemes of second order of accuracy in space and time
for model advection-diffusion-reaction differential equations. The constructed schemes are meant to
be of practical use in solving industrial problems and are derived following two related approaches,
namely ADER and MUSCL-Hancock. Detailed analysis of linear stability and local truncation error are
carried out. In addition, the schemes are implemented and assessed for various test problems. Empirical
convergence rate studies confirm the theoretically expected accuracy in both space and time.
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1 Introduction

Advection-diffusion-reaction equations are present in a wide range of physical/biological problems. The
Navier-Stokes equations are a prominent example, which constitute a major focus for the development of
numerical methods of practical use to the scientific community. A classical and successful approach for
solving the aforementioned and related equations are finite volume methods (e.g. see [37], [2], [14], [24]
and references herein).

A motivation of this paper concerns the simulation of low Mach number flows in a turbulent regime.
The phenomenon can be represented by the Navier-Stokes equations coupled to a RANS k− ε turbulent
model, see [1]. The approach introduces turbulent viscosity, which is typically computed by solving an
additional pair of advection-diffusion-reaction equations, that is equations for the turbulent kinetic energy
and dissipation rate. One issue here is the time dependency of the viscous term. This requires the use of
methods that are at least second-order accurate in space and time for all terms involved. In practice, it is
often the case that the numerical methods used are of low order of accuracy. Typically, methods may be
of second order in space but only first order in time, or may be second order in both space and time but
only for some of the terms in the equations. For diffusion equations a popular choice is the second-order
Crank-Nicolson method, see [29]. The accuracy for reaction terms, coupled to the remaining terms of the
equations, is usually sacrificed, resulting in overall low order of accuracy.

For advection equations, several approaches for constructing high-order methods have been put for-
ward. A classical example is the Lax-Wendroff scheme [22], [23]. This scheme is linear in the sense of
Godunov [15] and thus oscillatory, according to Godunov’s theorem [15]. We note that the oscillatory
nature remains so even when (physical) viscous terms are added. A major step forward in this direction
was the work of Kolgan [21], who introduced, for the first time, a numerical scheme that circumvents
Godunov’s theorem, via the construction of a non-linear scheme using non-linear reconstructions (limited
slopes), see [3] and [7] for further details. Since then, many more works have appeared in the literature,
reporting schemes, such as Total Variation Diminishing Methods (TVD) and Flux Limiter Methods (see,
for instance, [46], [47] and [31]). Comprehensive reviews are found in [37] and [24], for example.
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More advanced non-linear methods for advection dominated problems include the semi-discrete ENO,
see [16], and WENO, see [29] and [25], approaches. See also the method of Harten and collaborators [16],
which is a fully discrete high-order scheme. In [6], this scheme was called the HEOC scheme, and was
re-interpreted in terms of the solution of a generalised Riemann problem, solved in a particular way. If
fact, it is easily shown that the HEOC scheme is a generalisation of the MUSCL-Hancock method, see
[46].

The ADER approach, first put forward in [40], is also a fully discrete approach that relies on non-
linear reconstructions and the solution of the generalised Riemann problem, to any order of accuracy.
The resulting schemes are arbitrarily accurate in both space and time in the sense that they have no
theoretical accuracy barrier. An introduction to ADER schemes is found in Chapters 19 and 20 of [37].
Further developments and applications are found, for example, in [34], [38], [45], [35], [33], [36], [10], [32],
[44], [5], [49], [4], [20], [43], [26], [27], [17], [8], [9], [28], [12], [13], [11], [18].

The aim of this paper is to develop finite volume schemes of second-order in time and space to solve
the advection-diffusion-reaction equation, admitting space and time dependent diffusion coefficients. We
follow the ADER and MUSCL-Hancock methodologies and compare both approaches. Detailed analysis,
such as linear stability and accuracy in the sense of local truncation error is lacking for these methodologies
applied to advection-diffusion-reaction equations. The main objective of this paper is precisely to carry
out detailed stability and accuracy analysis of these methods. Moreover, to determine the stability region
and a new graphical methodology is introduced.

The outline of this paper is as follows. In Section 2 the advection-diffusion-reaction equation is
introduced. Section 3 is devoted to the development of a numerical scheme for the advection-diffusion-
reaction equation. The ADER approach is adopted to approximate linear advection-reaction equations
and is modified to account for the diffusion term. The methodology developed for the ADER scheme
to treat source-term like terms is applied to the MUSCL-Hancock method in Section 4. In Section 5,
we conduct a linear stability analysis of the schemes. Section 6 is devoted to the study of empirical
convergence rates of the scheme. Conclusions are drawn in Section 7 and A is devoted to the analysis of
local truncation errors of the proposed schemes.

2 The advection-diffusion-reaction equation

The advection-diffusion-reaction equation reads

∂tq(x, t) + λ∂xq(x, t) = ∂x (α∂xq) (x, t) + βq(x, t) (1)

where q(x, t) is the conservative variable; x, t are the spatial and temporal independent variables; λ is
the characteristic speed; α(x, t) is the diffusion coefficient, a prescribed function; and β is the coefficient
of the reaction term (source term).

In order to solve equation (1) we work in the finite volume framework. To start with, we consider
the control volume V = [xi− 1

2
, xi+ 1

2
] × [tn, tn+1] in the x − t plane, of dimensions, ∆x = xi+ 1

2
− xi− 1

2
,

∆t = tn+1 − tn. Then, exact integration of equation (1) in the control volume V gives

1

∆x

∫ x
i+1

2

x
i− 1

2

(
q(x, tn+1)− q(x, tn)

)
dx+

1

∆x

∫ tn+1

tn

(
f(q(xi+ 1

2
, t))− f(q(xi− 1

2
, t))
)
dt

=
1

∆x

∫ x
i+1

2

x
i− 1

2

(∫ tn+1

tn
∂x (α∂xq) (x, t) dx

)
dt+

1

∆x

∫ x
i+1

2

x
i− 1

2

(∫ tn+1

tn
βq(x, t) dx

)
dt .

Introducing the notation

qn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn+1) dx, qni =
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn) dx,

fni+ 1
2

=
1

∆t

∫ tn+1

tn
f(q(xi+ 1

2
, t)) dt, fni− 1

2
=

1

∆t

∫ tn+1

tn
f(q(xi− 1

2
, t)) dt,

2



gni =
1

∆t∆x

∫ x
i+1

2

x
i− 1

2

(∫ tn+1

tn
∂x (α∂xq) (x, t) dx

)
dt,

sni =
1

∆t∆x

∫ x
i+1

2

x
i− 1

2

(∫ tn+1

tn
βq(x, t) dx

)
dt,

we arrive at the exact relation

qn+1
i = qni −

∆t

∆x

(
fni+ 1

2
− fni− 1

2

)
+ ∆tgni + ∆tsni . (2)

Thus, we can construct a numerical method to find the solution of (1) at time tn+1 by interpreting
(2) in an approximate manner, that is by approximating the integrals in (2). We analyse two different
approaches for computing them, the ADER and the MUSCL-Hancock methodologies. For the sake of
simplicity, we will use the same notation for the approximate values than for the exact values of the
integrals in (2). It is appropriate to remark that the integral gni could be further integrated to yield
corresponding expressions for viscous numerical fluxes.

3 The ADER approach

The Arbitrary high order DErivative Riemann problem (ADER) approach was first put forward in [40]
for the linear advection equation in one and three space dimensions. In this section, we introduce a
modification of the ADER approach to solve the advection-diffusion-reaction equation. The proposed
method includes the following steps:

Step 1. Polynomial reconstruction. Following [40], we consider a reconstruction of the data in terms of
first-degree polynomials of the form

pi(x) = qni + ∆i(x− xi),

where ∆i denotes the spatial derivative of q(x, t) at time tn in volume i (or an approximation)
for i = 1, 2, . . . ,M , where M is the total number of finite volumes. In the present paper, we only
consider centred slopes, that is

∆i =
qni+1 − qni−1

2∆x
, (3)

which, as proved in A, will provide a scheme of second order accuracy in space and time. We note
however that the resulting schemes will be linear and hence oscillatory in the presence of large
spatial gradients.

Step 2. Solution of the generalized Riemann problem (GRP). To construct the numerical flux the fol-
lowing generalizations of the Classical Riemann Problem are made. On the one hand, the initial
condition is assumed to be a piecewise first-degree polynomial. On the other hand, the partial
differential equation accounts for the diffusion and reaction terms. That leads to the problem

∂tq (x, t) + λ∂xq (x, t) = ∂x (α∂xq) (x, t) + βq (x, t) ,

q(x, 0) =


pi(x), x < 0,

pi+1(x), x > 0.

(4)

Step 3. Source term and diffusion term. These terms are computed by approximating the integrals by
the mid-point rule in both space and time.

In the following sections we will develop the last two steps.
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3.1 Step 2. Solution of the generalized Riemann problem

For ease of presentation, two different cases for the diffusion term will be considered: zero diffusion term
and a space and time dependent diffusion coefficient.

3.1.1 Numerical flux without diffusion

Expressing the solution of the GRP at the interface as a Taylor series expansion in time we have

qi+ 1
2

= q(0, 0+) + τ∂tq(0, 0+) . (5)

We find the solution of (4) as given by two terms. One being the solution of a classical Riemann problem,
q(0, 0+), and the other as given by the high order term, τ∂tq(0, 0+).

The solution of the classical Riemann problem
∂tq (x, t) + λ∂xq (x, t) = 0,

q(x, 0) =


qni + 1

2∆x∆i, x < 0,

qni+1 − 1
2∆x∆i+1, x > 0,

is

q (x, t) = d
(0)

i+ 1
2

(x/t) =


qni +

1

2
∆x∆i,

x

t
< λ,

qni+1 −
1

2
∆x∆i+1,

x

t
> λ,

hence, the solution for x
t = 0 is given by

q(0, 0+) = d
(0)

i+ 1
2

(0) =


qni +

1

2
∆x∆i, λ > 0,

qni+1 −
1

2
∆x∆i+1, λ < 0.

(6)

On the other hand, regarding Cauchy-Kovalevskaya procedure and assuming a zero diffusion term, it
is verified

∂tq (x, t) = −λ∂xq (x, t) + βq (x, t) ,

thus, we can express (5) in terms of spatial derivatives

qi+ 1
2

= q(0, 0+) + τ [−λ∂xq(0, 0+) + βq(0, 0+)] . (7)

It is easy to show that the following evolution equation for the spatial derivative of the conservative
variable is valid

∂t(∂xq(x, t)) + λ∂(2)
x q(x, t) = β∂xq(x, t) . (8)

Neglecting the source term, a new classical Riemann problem can be set for the spatial gradient
∂t(∂xq(x, t)) + λ∂

(2)
x q(x, t) = 0,

∂xq(x, 0) =


∆i, x < 0,

∆i+1, x > 0.

(9)
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Its solution is

∂xq (x, t) = d
(1)

i+ 1
2

(x
t

)
=


∆i,

x

t
< λ,

∆i+1,
x

t
> λ,

(10)

and

∂xq(0, 0+) = d
(1)

i+ 1
2

(0) =


∆i, λ > 0,

∆i+1, λ < 0,

(11)

is the solution at x
t = 0.

Then, from (6) and (11), the sought complete solution reads

qi+ 1
2

= q(0, 0+) + τ∂tq(0, 0+) (12)

=


qni + 1

2∆x∆i + τ
[
−λ∆i + β

(
qni + 1

2∆x∆i

)]
λ > 0,

qni+1 − 1
2∆x∆i+1 + τ

[
−λ∆i+1 + β

(
qni+1 − 1

2∆x∆i+1

)]
λ < 0.

Performing exact integration, or equivalently applying the mid-point rule with τ = 1
2∆t, we obtain the

numerical flux,

fi+ 1
2

=


λ

{
qni + 1

2∆x∆i +
∆t

2

[
−λ∆i + β

(
qni + 1

2∆x∆i

)]}
λ > 0,

λ

{
qni+1 − 1

2∆x∆i+1 +
∆t

2

[
−λ∆i+1 + β

(
qni+1 − 1

2∆x∆i+1

)]}
λ < 0.

3.1.2 Numerical flux with diffusion

In order to treat the diffusion term we adopt the following strategy. The diffusion term is regarded as
a source term but is introduced in the Cauchy-Kovalevskaya procedure and is evaluated in an upwind
fashion. The upwinding of the diffusion term can be justified because in the case of constant diffusion
coefficient α, the second derivative of the solution q(x, y) of the linear advection equation, in fact any
order derivative, obeys identically the same linear advection equation. Hence we can pose and solve a
classical Riemann problem for these spatial derivatives leading effectively to upwinding the diffusion term.

The Cauchy-Kovalevskaya procedure used in the Taylor series expansion in time for the solution of
the GRP,

qi+ 1
2

= q(0, 0+) + τ∂tq(0, 0+),

gives
qi+ 1

2
= q(0, 0+) + τ [−λ∂xq(0, 0+) + ∂x (α∂xq) (0, 0+) + βq(0, 0+)] .

As anticipated previously, the term ∂x (α∂xqi) (0, 0+) is approximated in a central difference fashion
as follows

∂x (α∂xq) (0, 0+) =
1

∆x2

[
αi+ 1

2

(
qni+1 − qni

)
− αi− 1

2

(
qni − qni−1

)]
. (13)

The choice made for approximating the diffusion term in this manner is motivated by the fact that
in our existing 3D Navier-Stokes code in development this term will be computed by solving a pair of
advection-diffusion-reaction equations.
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For notational convenience we set (∆α∆)i = ∂x (α∂xq) (0, 0+). Integrating, the numerical flux results

fi+ 1
2

=


λ

{
qni + 1

2∆x∆i +
∆t

2

[
−λ∆i + β

(
qni + 1

2∆x∆i

)
+ (∆α∆)i

]}
λ > 0,

λ

{
qni+1 − 1

2∆x∆i+1 +
∆t

2

[
−λ∆i+1 + β

(
qni+1 − 1

2∆x∆i+1

)
+ (∆α∆)i+1

]}
λ < 0.

(14)

Remark 1. From now on, we will focus on the development and analysis of the schemes for λ > 0. The
results for λ < 0 can be obtained similarly.

Remark 2. The whole scheme can be derived from the finite volume framework, resulting in an intercell
numerical flux with two terms, one for the advection and one for the diffusion, see [42] and [39]. However,
it is worth mentioning that through an appropriated choice of the approximation for the slopes it will result
in the same numerical scheme than the one proposed in this paper.

Furthermore, our motivation is to couple the numerical method developed in this paper to an existing
three-dimensional Navier-Stokes, see [1], to this end the approach proposed here turns out to be very
convenient and achieves the order of accuracy sought.

3.2 Step 3. Approximation of the diffusion and reaction terms

Recall that second-order approximations to the integrals defining the finite volume method can be ob-
tained via the mid-point rule approximation, see [37]. This requires an approximation at the centre of the
volume at the half time, which is achieved by a Taylor expansion and the use of the Cauchy-Kovalevskaya
procedure, namely

qni = qni + τ (−λ∆i + (∆α∆)i + βqni ) .

3.3 Step 3.1. Diffusion term

The approximation of the diffusion term becomes

(∆α∆)i =
αn
i+ 1

2

∆i+ 1
2
− αn

i− 1
2

∆i− 1
2

∆x
=

1

∆x2

[
αn
i+ 1

2

(
qni+1 − qni

)
− αn

i− 1
2

(
qni − qni−1

)]
,

that is

(∆α∆)i =
1

∆x2

{[
αni+ 1

2
+

∆t

2
∂tαi+ 1

2

] [
qni+1 − qni +

∆t

2
(−λ (∆i+1 −∆i)

+ (∆α∆)i+1 − (∆α∆)i + β
(
qni+1 − qni

))]
+

[
αni− 1

2
+

∆t

2
∂tαi− 1

2

] [
qni−1 − qni +

∆t

2
(−λ (∆i−1 −∆i)

+ (∆α∆)i−1 − (∆α∆)i + β
(
qni−1 − qni

))]}
(15)

where the time derivative of the viscous coefficient can be computed as

∂tαi+ 1
2
≈ 1

2

(
αni+1 − α

n−1
i+1

∆t
+
αni − α

n−1
i

∆t

)
. (16)

If α is a function depending on conservative variables (which would be the case, for example, of the viscous
term for turbulent Navier-Stokes equations), we can also use the Cauchy-Kovalevskaya procedure.
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3.3.1 Step 3.2. Numerical source

Lumping together the contributions of the reactive and diffusion terms we get a numerical source term
as follows

si = βqi = β

[
qi +

∆t

2
(−λ∆i + (∆α∆)i + βqi)

]
. (17)

Gathering (14), (15) and (17), the numerical scheme for the advection-diffusion-reaction equation, with
λ > 0, reads

qn+1
i =qni −

λ∆t

∆x

{
qni +

1

2
∆x∆i +

∆t

2

[
−λ∆i + β

(
qni +

1

2
∆x∆i

)
+ (∆α∆)i

]
−qni−1 −

1

2
∆x∆i−1 −

∆t

2

[
−λ∆i−1 + β

(
qni−1 +

1

2
∆x∆i−1

)
+ (∆α∆)i−1

]}
+

∆t

∆x2

{[
αni+ 1

2
+

∆t

2
∂tαi+ 1

2

] [
qni+1 − qni +

∆t

2
(−λ (∆i+1 −∆i)

+ (∆α∆)i+1 − (∆α∆)i + β
(
qni+1 − qni

))]
+

[
αni− 1

2
+

∆t

2
∂tαi− 1

2

] [
qni−1 − qni +

∆t

2
(−λ (∆i−1 −∆i)

+ (∆α∆)i−1 − (∆α∆)i + β
(
qni−1 − qni

))]}
+ β∆t

[
qi +

∆t

2
(−λ∆i + (∆α∆)i + βqi)

]
. (18)

Finally, taking into account the centred approach of the slopes, (3) and (13), one obtains

qn+1
i =qni − c

{
2 + r

2

(
qni − qni−1

)
+

2− 2c+ r

8

(
qni+1 − qni − qni−1 + qni−2

)
+

∆t

2∆x2

[
αni+ 1

2

(
qni+1 − qni

)
− 2αni− 1

2

(
qni − qni−1

)
+ αni− 3

2

(
qni−1 − qni−2

)]}
+

∆t

∆x2

{[
αni+ 1

2
+

∆t

2
∂tαi+ 1

2

] [
2 + r

2

(
qni+1 − qni

)
− c

4

(
qni+2 − qni+1

−qni + qni−1

)
+

∆t

2∆x2

(
αni+ 3

2

(
qni+2 − qni+1

)
− 2αni+ 1

2

(
qni+1 − qni

)
+αni− 1

2

(
qni − qni−1

)) ]
+

[
αni− 1

2
+

∆t

2
∂tαi− 1

2

] [
2 + r

2

(
qni−1 − qni

)
− c

4

(
qni − qni−2 − qni+1 + qni−1

)
+

∆t

2∆x2

[
2αni− 1

2

(
qni − qni−1

)
−αni− 3

2

(
qni−1 − qni−2

)
− αni+ 1

2

(
qni+1 − qni

)] ]}
+ r

[
qni +

(
− c

4

(
qni+1 − qni−1

)
+

∆t

2∆x2

[
αni+ 1

2

(
qni+1 − qni

)
−αni− 1

2

(
qni − qni−1

)]
+
r

2
qni

)]
. (19)

where c = λ∆t
∆x denotes the Courant number and r = β∆t is called the reaction number.

Remark 3 (Constant diffusion coefficient). If we consider a constant diffusion coefficient and denote

α∆
(2)
i = (∆α∆)i, scheme (18) reads

qn+1
i =qni −

λ∆t

∆x

{
qni +

1

2
∆x∆i +

∆t

2

[
−λ∆i + β

(
qni +

1

2
∆x∆i

)
+ α∆

(2)
i

]

7



−qni−1 +
1

2
∆x∆i−1 −

∆t

2

[
−λ∆i−1 + β

(
qni−1 −

1

2
∆x∆i−1

)
+ α∆

(2)
i−1

]}
+
α∆t

∆x2

{(
qni+1 − 2qni + qni−1

)
+

∆t

2
[−λ (∆i+1 − 2∆i + ∆i−1)

+α
(

∆
(2)
i+1 − 2∆

(2)
i + ∆

(2)
i−1

)
+ β

(
qni+1 − 2qni + qni−1

)]}
+ β∆t

[
qni +

∆t

2

(
−λ∆i + α∆

(2)
i + βqni

)]
. (20)

Hence, the scheme for the advection-diffusion-reaction equation with constant diffusion coefficient becomes

qn+1
i =qni − c

{
2 + r

2

(
qni − qni−1

)
+

2− 2c+ r

8

(
qni+1 − qni−1 − qni + qni−2

)
+
d

2

[
qni+1 − 3qni + 3qni−1 − qni−2

]}
+d
{
qni+1 − 2qni + qni−1 −

c

4

(
qni+2 − 2qni+1 + 2qni−1 − qni−2

)
+
d

2

[
qni+2 − 4qni+1 + 6qni − 4qni−1 + qni−2

]
+
r

2

(
qni+1 − 2qni + qni−1

)}
+ r

[
qni −

c

4

(
qni+1 − qni−1

)
+
d

2

[
qni+1 − 2qni + qni−1

]
+
r

2
qni

]
. (21)

where d = α∆t
∆x2 .

Remark 4 (Advection-reaction equation). Assuming zero diffusivity, the scheme for the linear advection-
reaction equation is recovered from (18),

qn+1
i =qni −

λ∆t

∆x

{
qni +

1

2
∆x∆i +

∆t

2

[
−λ∆i + β

(
qni +

1

2
∆x∆i

)]
−qni−1 +

1

2
∆x∆i−1 −

∆t

2

[
−λ∆i−1 + β

(
qni−1 −

1

2
∆x∆i−1

)]}
+ β∆t

[
qni +

∆t

2
(−λ∆i + βqni )

]
. (22)

Furthermore, using centred slopes we get

qn+1
i =qni − c

[
2 + r

2

(
qni − qni−1

)
+

2− 2c+ r

8

(
qni+1 − qni − qni−1 + qni−2

)]
+ r

[
qni −

c

4

(
qni+1 − qni−1

)
+
r

2
qni

]
. (23)

Theorem 5. Schemes (19), (21) and (23) are second order in space and time.

Proof. The detailed proof is included in A.

Remark 6. In case the reconstruction done in Step 1 is done with constant polynomials and the half
in time evolution of the variables given by the Taylor series expansion is neglected, the resulting scheme
reduces to

qn+1
i =qni − c

(
qni − qni−1

)
− ∆t

∆x2

[
αni+ 1

2

(
qni+1 − qni

)
+ αni− 1

2

(
qni−1 − qni

)]
+ rqni . (24)

which is a first order in time and space scheme for the advection-diffusion-reaction equation (1).
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4 MUSCL-Hancock

The MUSCL-Hancock method, originally credited to Hancock in [47], is extended here to account for
the source and diffusion terms. The extension is motivated by the ADER framework introduced earlier.
First recall that the MUSCL-Hancock method for the homogeneous linear advection equation has the
following steps:

Step 1. Data reconstruction. First-degree polynomial for a cell i are used, namely

pi(x) = qni + ∆i(x− xi).

Step 2. Computation of boundary extrapolated values. Cell boundary values are computed by simply
evaluating the polynomials appropriately

qLi = pi(xi− 1
2
) = qni −

1

2
∆x∆i,

qRi = pi(xi+ 1
2
) = qni +

1

2
∆x∆i.

Step 3. Evolution of boundary extrapolated values. Boundary-extrapolated values are evolved by half
a time step,

q̄Ri = qRi −
∆t

2∆x

(
f
(
qRi
)
− f

(
qLi
))
,

q̄Li = qLi −
∆t

2∆x

(
f
(
qRi
)
− f

(
qLi
))
.

Step 4. Solution of the Riemann problem and numerical flux. The evolved boundary-extrapolated values
are used to define a classical Riemann problem at each intercell boundary,

∂tq (x, t) + λ∂xq (x, t) = 0,

q(x, 0) =


q̄Ri x < 0,

q̄Li+1 x > 0,

the solution of which is

q(x, t) =


q̄Ri

x

t
< λ,

q̄Li+1

x

t
> λ.

Hence, the sought intercell flux is given by

fMH
i+ 1

2
=


λq̄Ri = λ

(
qni + 1−c

2 ∆x∆i

)
λ > 0,

λq̄Li+1 = λ
(
qni+1 − 1+c

2 ∆x∆i+1

)
λ < 0.

Note that if no reconstruction is performed, the MUSCL-Hancock method reduces to the Godunov
first-order method, with the particular numerical flux employed in the last step.

By choosing centred slopes, as already done for ADER, and assuming λ > 0 (the discussion of the
case λ < 0 is analogous) we obtain the MUSCL-Hancock scheme for the linear advection equation:

qn+1
j = qnj − c

[
qnj − qnj−1 +

1− c
4

(
qnj+1 − qnj − qnj−1 + qnj−2

)]
. (25)
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4.1 Source and diffusion terms

The inclusion of reaction and diffusion terms is accomplished by modifying Step 3, in which such terms
at the half time are added to the evolution of boundary extrapolated values. Thus we obtain:

q̄Ri = qRi −
∆t

2

{
1

∆x

(
f
(
qRi
)
− f

(
qLi
))

− 1

∆x2
g
(

(α∆q)
R
i , (α∆q)

L
i

)
− s

(
qRi
)}

(26)

q̄Li = qLi+1 −
∆t

2

{
1

∆x

(
f
(
qRi+1

)
− f

(
qLi+1

))
− 1

∆x2
g
(

(α∆q)
R
i+1 , (α∆q)

L
i+1

)
− s

(
qLi+1

)}
(27)

with
g
(

(α∆q)
R
i , (α∆q)

L
i

)
= αni+ 1

2

(
qni+1 − qni

)
− αni− 1

2

(
qni − qni−1

)
.

The final step is as before, that is, the numerical flux is computed by solving the Riemann problem for the
linear advection equation with evolved boundary-extrapolated values as initial conditions. Just as ADER,
the numerical flux includes the contribution due to diffusion and source terms. Additional contributions
to the scheme resulting from diffusion and reaction are accounted for by following the ADER approach
introduced in Section 3.

Remark 7. The resulting schemes for the linear advection-diffusion-reaction equation, constructed from
the ADER and MUSCL-Hancock approaches, are algebraically identical.

5 Stability analysis

The stability analysis of the obtained schemes is divided into two cases. On the one hand, linear advection
equation allows for an easy computation of the stability region. On the other hand, advection-diffusion-
reaction equation with constant diffusion coefficient will be analysed thanks to graphical representation.

5.1 Linear advection equation

Stability analysis of linear models is done following von Neumann stability analysis procedure, see [48],
[30]. Let us consider the trial function

qni = AneIθi,

where A ∈ C represents an amplitude, I denotes the complex unity so that i is kept for the mesh, and
θ = P∆x is an angle with P the wave number in the x-direction. Then, (25) yields to

An+1eIθi = AneIθi − c
[
AneIθi −AneIθ(i−1) +

1− c
4

(
AneIθ(i−1)

−AneIθi −AneIθ(i−1) +AneIθ(i−2)
)]
,

A = 1− c
[
1− e−Iθ +

1− c
4

(
e−Iθ − 1− e−Iθ + e−2Iθ

)]
,

hence,

‖A‖2 = c (c− 1) (cos θ − 1)
2

[
1

2
c (c− 1) (cos θ + 1) + 1

]
+ 1.

The stability condition, ‖A‖2 ≤ 1, is verified if and only if

c (c− 1) (cos θ − 1)
2

[
1

2
c (c− 1) (cos θ + 1) + 1

]
≤ 0

10
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Figure 1: Representation in the complex plane of the amplification factor values for several values of c
with θ ∈ [−π, π]. It can be observed that c is bounded above by 1 when ‖A‖ is bounded by 1.

⇔ c (c− 1) (cos θ + 1) ≥ −2 and c ≤ 1.

From which it follows that the scheme is stable if the Courant number, c lies between zero and unity; it
is conditionally stable with stability condition

0 ≤ c ≤ 1.

Sometimes the amplification factor is a difficult expression to deal with. In order to make it easier,
we can represent the value of the function of the binomial expression of the amplification factor,

A : [−π, π]× R −→ C
(θ, c)  A(θ, c),

(28)

for different values of c, see [19]. In Figure 1, we can observe that the functions whose image is completely
contained in the square [−1, 1] × [−1, 1] ⊂ C are defined for c ∈ [0, 1]. This agrees with the analytical
results already obtained.

On the other hand, we can plot the function defined by the norm of the amplification factor,
‖A(θ, c)‖2 ∈ R. As A depends on two variables, θ and c, the plot, Figure 2a, is a surface in R3.
Drawing the contour lines we can confirm that the stability condition is verified if and only if 0 ≤ c ≤ 1.
In Figure 2b we consider c ∈ [0, 1.2] to remark that for any chosen c0 > 1 there exist θc0 ∈ [−π, π] such
that the values of ‖A(θc0 , c0)‖ are larger than one.
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Figure 2: Graph and contour lines of ‖A(θ, c)‖2 for scheme (25). The stability region is clearly determined
for 0 ≤ c ≤ 1.

5.2 Linear advection-diffusion-reaction equation

The amplification factor of scheme (20), which depends on the angle θ and on the parameters c = λ∆t
∆x ,

d = α∆t
∆x2 and r = β∆t, is computed using the von Neumann procedure obtaining

A =1− c
{

1− cos θ + I sin θ +
1− c

4
(2I sin θ − 1 + cos (2θ)− I sin (2θ))

+
r

2

[
1− cos θ + I sin θ +

1

4
(2I sin θ − 1 + cos (2θ)− I sin (2θ))

]
+
d

2
(4 cos θ − 2I sin θ − 3− cos (2θ − I sin (2θ)))

}
+ d

{
2 cos θ − 2− c

4
(2I sin (2θ)− 6I sin θ) +

d

2
(2 cos (2θ)− 8 cos θ + 6)

+
r

2
(2 cos θ − 2)

}
+ r

{
1− c

2
I sin θ + d (cos θ − 1) +

r

2

}
.

As the bounds of c, d and r in order to limit the amplification factor are interdependent, the compu-
tation of the constraints will produce complicated expressions. Still, a graphical representation provides
us with a good approach to determine the stability region.

Linear advection-reaction equation

The function related with the amplification factor of the linear advection-reaction equation results

A : [−π, π]× R× R −→ R
(θ, c, r) −→ A(θ, c, r).

Its graph is embedded in R4, therefore, instead of plotting contour lines, we represent the isosurface of
level one which splits R3 in two domains (see Figure 3). One of them, which contains the point (θ, c, r) =
(0, 0, 0), is the stability region of the scheme. Inside the other domain the scheme is unconditionally
unstable. Furthermore, the orthogonal planes to the r-axis, that is, the planes resulting for a fixed value
of r, provide the contour plots of level one for the linear advection-reaction equation related to the set r
(see the two-dimensional subplots of Figure 3 where S denotes the stability region of the scheme).

For instance, assuming r = −1 the value c = 1.1 guarantees the stability. However, we must carefully
analyse these results. For a specific problem, with a given mesh, setting r = −1 does not imply that the

12
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a

Figure 3: Stability region for the linear advection-reaction equation. The isosurface of level one splits R3

into the stability region, containing the origin, and the unstable region. Subplots a), b), c) represent the
contour plot of level one for the fixed values of r = 0, r = −1 and r = −1.9 respectively. The shaded
regions correspond to the stability region. The blue rectangles identified as S are the admissible regions
of stability.
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∆t is such that c = 1.1 and vice versa. A particular example will help us to understand the situation
better. We consider the linear advection-reaction equation

∂tq(x, t) + λ0∂xq(x, t) = β0q(x, t)

with fixed λ0 ∈ R+, β0 ∈ R−. If the mesh size is ∆x = ∆x0, then it is verified
r = β0∆t,

c =
λ0∆t

∆x0
.

(29)

So, if ∆t is computed from r = r0 fixed, then

c =
λ0r0

β0∆x0
(30)

is determined. Similarly, given c = c0 the value of ∆t is resolved and

r =
β0c0∆x0

λ0
. (31)

Hence, for r = −1 the value of c is determined and can be different from 1.1. In case it is bigger, we
would have fallen into the unstable region.

To avoid the previous trouble, we define rectangular cuboids

Oc,r =
{

(θ, c, r) | θ ∈ [−π, π], c ∈ [0, cM ], r ∈ [rm, 0], cM ∈ R+, rm ∈ R−
}

(32)

embedded in the stability region. Selecting cM = 1, the upper bound of c, and rm = −1, the lower bound
of of c, the resulting scheme is stable.

Linear advection-diffusion equation

The previous procedure can also be applied for the linear advection-diffusion equation. Hence, we
consider

A : [−π, π]× R× R −→ R
(θ, c, d) −→ A(θ, c, d)

and

Oc,d =
{

(θ, c, d) | θ ∈ [−π, π], c ∈ [0, cM ], d ∈ [0, dM ], cM , dM ∈ R+
}
. (33)

In Figure 4, we can observe that cM = 1 and dM = 0.5 generate an admissible cuboid.

Linear advection-diffusion-reaction equation

As the last step, we study the stability for the linear advection-diffusion-reaction equation. The
amplification factor function reads

A : [−π, π]× R× R× R −→ R
(θ, c, d, r) −→ A(θ, c, d, r).

so its graph belongs to R5 and the isosurfaces are embedded in R4. Admissible regions can be established
through 4-orthotopes,

Oc,d,r = {(θ, c, r, d) | θ ∈ [−π, π], c ∈ [0, cM ], d ∈ [0, dM ], r ∈ [rm, 0], (34)

cM , dM ∈ R+, rm ∈ R−
}
. (35)
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Figure 4: Stability region for the linear advection-diffusion equation. The isosurface of level one splits
R3 into the stability region, containing the origin, and the unstable region. Subplots a), b), c) represent
the contour plot of level one for the fixed values of d = 1, d = 0.5 and d = 0 respectively. The shaded
regions correspond to the stability region. The blue rectangles identified as S are the admissible regions
of stability.
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Figure 5: Stability region for the linear advection-diffusion-reaction equation with fixed reaction number
r = −0.5. The isosurface of level one splits R3 into the stability region, containing the origin, and the
unstable region. Subplots a), b), c) represent the contour plot of level one for the fixed values of d = 1,
d = 0.5 and d = 0 respectively. The shaded regions correspond to the stability region. The blue rectangles
identified as S are the admissible regions of stability.
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b) c)

c
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a

Figure 6: Stability region for the linear advection-diffusion-reaction equation with fixed reaction number
r = −1. The isosurface of level one splits R3 into the stability region, containing the origin, and the
unstable region. Subplots a), b), c) represent the contour plot of level one for the fixed values of d = 1,
d = 0.5 and d = 0 respectively. The shaded regions correspond to the stability region. The blue rectangles
identified as S are the admissible regions of stability.
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Figure 7: Two different views of the isosurface of level one of function mθ, (36), (grey) and the 4-orthotope
of stability O1, 14 ,−

1
2

for the linear advection-diffusion-reaction equation (blue).

To get an idea of the shape of the stability region, we can picture an evolutionary problem where one
of the variables, for instance r, plays the role of the time and the remaining ones are considered as spacial
variables. Therefore, the stability region is determined by the intersection of the stability regions for the
different snapshots of r. Figures 4-6 show the graphs obtained for fixed values of r. We can conclude
that cM = 1, dM = 1

4 and rm = − 1
2 define a 4-orthotope embedded in the stability region.

A new alternative way to depict the stability region is to plot the isosurface of level one of the function
defined by

mθ(c, d, r) = max
θ∈[−π,π]

‖A(θ, c, d, r)‖ . (36)

Figure 7 confirms that the 4-orthotope defined above, O1, 14 ,−
1
2
, is embedded in the stability region.

6 Numerical results

In this section, we present the results obtained for several test problems. The error is analysed by
computing the norms

ErrL1 = ‖q − q̂‖l∞(L1(Ω)) , ErrL2 = ‖q − q̂‖l∞(L2(Ω)) , ErrL∞ = ‖q − q̂‖l∞(L∞(Ω)),

where q̂ denotes the numerical solution and q is whether the exact solution or a reference solution
computed for a refined mesh if the problem does not have an analytical solution.

6.1 Test 1. Advection-reaction equation

We consider two different tests for the advection-reaction equation. For both of them, Dirichlet boundary
conditions are set. The exact solution is imposed at the boundary nodes and for the computation of the
numerical flux at the first node we use a forward approximation of the slope, namely,

∆1 =
q2 − q1

∆x
,

an analogous procedure is considered for the last node.

6.1.1 Test 1.1.

The first test problem studied is given by

∂tq(x, t) + ∂xq(x, t) = −q(x, t), q(x, 0) = exp(−2x2), (37)
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Figure 8: Test 1.1. Exact solution and numerical results obtained for the mesh with 32 nodes. Ω = [0, 2],
tend = 1, c = λ∆t

∆x = cM = 1.

with exact solution
q(x, t) = exp(−2(x− λt)2 + βt).

Seven meshes are considered. The time step is determined to guarantee that c and r belong to the
rectangular cuboid (35) defined by cM = 1, rm = −1. Since the time step condition imposed by cM is
lower than the defined by rm, the values of r are computed following (31).

The obtained r, errors and order are depicted in Table 1. The attained second order was theoretically
expected. The results for the mesh with 32 nodes are depicted in Figure 8.

It is important to notice that neither of the chosen values for cM and rm are the optimal in the
case of an advection-reaction equation. That is, within this test the exact solution is not expected to be
obtained.

6.1.2 Test 1.2.

The second test analysed present a discontinuity in the initial conditions:

∂tq(x, t) +
1

2
∂xq(x, t) = −q(x, t),

q(x, 0) =

{
1 x ∈

[
1
8 ,

1
2

]
,

0 x ∈
[
0, 1

8

)
∪
(

1
2 ,

3
2

]
.

(38)

Its exact solution reads

q(x, t) =

{
1 x− 1

2 t ∈
[

1
8 ,

1
2

]
,

0 x− 1
2 t ∈

[
0, 1

8

)
∪
(

1
2 ,

3
2

]
.

In Figure 9 we can observe that the loss of monotonicity of the scheme produces oscillations near the
discontinuity. This problem arises from considering centred slopes, (3), which provided a linear scheme.
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Cells ErrL1 OL1 ErrL2 OL2 ErrL∞ OL∞ r

8 2.15E − 2 2.17E − 02 2.95E − 02 − 1
8

16 7.10E − 3 1.6 6.97E − 3 1.64 1.03E − 2 1.52 − 1
16

32 1.95E − 3 1.87 1.86E − 3 1.91 2.77E − 3 1.9 − 1
32

64 5.02E − 4 1.96 4.73E − 4 1.98 7.00E − 4 1.99 − 1
64

128 1.27E − 4 1.99 1.18E − 4 2.0 1.74E − 4 2.01 − 1
128

256 3.19E − 5 2.0 2.96E − 5 2.0 4.33E − 5 2.01 − 1
256

512 7.98E − 6 2.0 7.40E − 6 2.0 1.08E − 5 2.0 − 1
512

Table 1: Test 1.1. Columns from second to seventh show the errors and convergence rates obtained. The
last column depicts the values obtained for r = β∆t = −∆t. Ω = [0, 2], tend = 1, c = λ∆t

∆x = cM = 1.

Cells ErrL1 OL1 ErrL2 OL2 ErrL∞ OL∞

8 2.76E − 04 4.21E − 04 7.76E − 04

16 1.32E − 04 1.2673 1.43E − 04 1.5478 2.07E − 04 1.5336

32 4.11E − 05 1.7220 4.01E − 05 1.8914 6.59E − 05 1.9226

64 1.25E − 05 1.8921 1.19E − 05 1.9551 2.48E − 05 1.9777

128 3.48E − 06 1.9437 3.24E − 06 1.9709 6.92E − 06 1.9850

256 9.13E − 07 1.9347 8.39E − 07 1.9501 1.79E − 06 1.9686

512 2.67E − 07 1.6799 2.38E − 07 1.7004 4.48E − 07 1.7376

Table 2: Test 2.1. Absolute errors and convergence rates obtained. Ω = [−1, 1], tend = 1, cM = 0.1,
dM = 0.25, rm = −0.25.

Indeed, we need to circumvent Godunov’s theorem to obtain a monotone scheme. This can be done by
including non-linear slopes. In the existing literature, the linear advection equation case was already
studied combining ADER schemes with ENO, WENO or WAF approaches obtaining good results.

6.2 Test 2. Advection-diffusion-reaction equation

Next, we consider two initial value problems for the advection-diffusion-reaction equation.

6.2.1 Test 2.1.

Following [41], we set a problem with constant diffusion coefficient:

∂tq(x, t) + 10∂xq(x, t)− 10−5∂(2)
x q(x, t) = −5q(x, t),

q(x, 0) = sin(πx)

in the computational domain Ω × T = [−1, 1] × [0, 1] with Dirichlet boundary conditions. The exact
solution reads

q(x, t) = exp((−απ2 + β)t) sin(π(x− λt)).

The numerical results obtained are detailed in Table 2. As the magnitude of the solution is small, relative
errors and orders of accuracy are also computed and depicted in Table 3 to facilitate the analysis of the
results. The expected second order is attained. The lose of accuracy in infinity norm for the two finer
meshes is due to the boundary condition approach.
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Figure 9: Test 1.2. Exact solution and numerical results obtained for the meshes with 32 and 512 nodes.
Ω = [0, 1.5], tend = 1, cM = 0.5, rm = −1.

Cells ErrrelL1 OrelL1 ErrrelL2 OrelL2 ErrrelL∞ OrelL∞

8 5.1E − 03 1.0191e− 02 2.0383e− 02

16 1.34E − 03 2.4668 3.78E − 03 1.9668 1.07E − 02 1.4668

32 9.82E − 05 3.2150 3.93E − 04 2.7150 1.57E − 03 2.2150

64 6.22E − 06 3.0442 3.52E − 05 2.5442 1.99E − 04 2.0442

128 5.25E − 07 2.9952 4.2E − 06 2.4952 3.36E − 05 1.9952

256 1.02E − 07 2.9426 1.16E − 06 2.4426 1.31E − 05 1.9426

512 4.05E − 08 2.5185 6.48E − 07 2.0185 1.03E − 05 1.5185

Table 3: Test 2.1. Relative errors and convergence rates obtained. Ω = [−1, 1], tend = 1, cM = 0.1,
dM = 0.25, rm = −0.25.
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Cells ErrL1 OL1 ErrL2 OL2 ErrL∞ OL∞

8 1.39 7.18E − 1 6.90E − 1

16 3.48E − 1 2.00 2.00E − 1 1.84 2.16E − 1 1.68

32 6.98E − 2 2.32 4.26E − 2 2.24 4.81E − 2 2.16

64 1.41E − 2 2.31 8.45E − 3 2.33 9.55E − 3 2.33

128 2.95E − 3 2.26 1.73E − 3 2.29 1.91E − 3 2.32

256 5.51E − 4 2.42 3.18E − 4 2.44 3.46E − 4 2.47

Table 4: Test 2.2. Errors and convergence rates obtained. Ω = [0, 2π], tend = 1, cM = 0.5, dM = 0.25,
rm = −0.5.

Cells c d r

8 0.5 6.37E − 7 −1.96E − 1

16 0.5 1.27E − 6 −9.82E − 2

32 0.5 2.55E − 6 −4.92E − 2

64 0.5 5.09E − 6 −2.45E − 2

128 0.5 1.02E − 5 −1.23E − 2

256 0.5 2.04E − 5 −6.14E − 3

Table 5: Test 2.2. Values of the parameters c, d and r for the computed time step. Ω = [0, 2π], tend = 1,
cM = 0.5, dM = 0.25, rm = −0.5.

6.2.2 Test 2.2.

We consider the computational domain Ω× T = [0, 2π]× [0, 1] and the initial value problem with a time
and space dependent diffusion coefficient given by

∂tq(x, t) + 10∂xq(x, t)− 10−5∂x
[
exp(x(t− 1)2)∂xq(x, t)

]
= −5q(x, t),

q(x, 0) = exp(sin2(x)),

with periodic boundary conditions. The exact solution for this problem is unknown. Therefore, in order
to obtain the error and the order of accuracy, we compare the obtained solutions with a reference solution
computed for a finer mesh (512 cells).

The obtained results, confirming second order of accuracy, are depicted in Table 4 and Figure 10.

6.3 Test 3. Diffusion equation

As a final example, we consider the non-linear diffusion problem proposed in [39]:

∂tq(x, t) = ∂x

[
(q(x, t))

−1
∂xq(x, t)

]
,

q(x, 0) =
sinh(2)

cosh(2)− sin
(√

2 (x− 1)
) (39)

with periodic boundary conditions in the computational domain Ω = [−
√

2π,
√

2π]. Its exact solution
reads

q(x, t) =
sinh(2t+ 2)

cosh(2t+ 2)− sin
(√

2 (x− 1)
) .
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Figure 10: Test 2.2. Exact solution and numerical results obtained for the meshes with 32 and 512 nodes.
Ω = [0, 2π], tend = 1, cM = 0.5, dM = 0.25, rm = −0.5.

The numerical results presented in Table 6 confirm second order of accuracy. Figure 11 shows the good
agreement between the exact solution and the computed solution for two different meshes (32 and 512
nodes).

7 Summary and conclusions

In this paper we have constructed numerical schemes of second order of accuracy in both space and time,
for solving advection-diffusion-reaction partial differential equations. To this end we have adopted the
ADER and the MUSCL-Hancock approaches. Second order of accuracy is ensured by approximating
appropriately the integrals that arise in the finite volume framework. For the model equation we have
performed a detailed linear stability as well as an accuracy analysis in terms of local truncation error.
Empirical convergence rate studies confirm the expected theoretical accuracy analysis. The numeri-

Cells ErrL1 OL1 ErrL2 OL2 ErrL∞ OL∞

8 1.71E − 01 6.32E − 02 3.57E − 02

16 3.29E − 02 2.3751 1.19E − 02 2.4118 7.56E − 03 2.2391

32 7.53E − 03 2.1268 2.79E − 03 2.0897 1.74E − 03 2.1176

64 1.83E − 03 2.0413 6.83E − 04 2.0296 4.39E − 04 1.989

128 4.52E − 04 2.0179 1.70E − 04 2.0103 1.09E − 04 2.0082

256 1.12E − 04 2.0075 4.23E − 05 2.004 2.73E − 05 1.9993

512 2.80E − 05 2.0035 1.06E − 05 2.0017 6.82E − 06 2.0005

Table 6: Test 3. Errors and convergence rates obtained. Ω = [−
√

2π,
√

2π], tend = 1, dM = 0.25.
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Figure 11: Test 3. Exact solution and numerical results obtained for the meshes with 32 and 512 nodes.
Ω = [−

√
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cal schemes studied will prove useful in solving systems of time-dependent advection-diffusion-reaction
equations for realist applications.
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A Truncation error

In this appendix, the order of accuracy of the attained schemes is analysed. Two distinct cases are
studied: the linear advection-reaction equation and the advection-diffusion-reaction equation with time
and space dependent diffusion coefficient.

A.1 Truncation error of the linear advection-reaction equation

Using Taylor series expansion, second order in space and time can be proved for scheme (22) with centred
slopes:

τnj =
1

∆t

[
q(xj , t

n+1)− q(xj , tn)
]

+
λ

∆x

{
[q(xj , t

n)− q(xj−1, t
n)]

+
1

4
[q(xj+1, t

n)− q(xj , tn)− q(xj−1, t
n) + q(xj−2, t

n)]

+
∆t

2

[
− λ

2∆x
[q(xj+1, t

n)− q(xj , tn)− q(xj−1, t
n) + q(xj−2, t

n)]

+
β

∆x

(
[q(xj , t

n)− q(xj−1, t
n)]

+
1

4
[q(xj+1, t

n)− q(xj , tn)− q(xj−1, t
n) + q(xj−2, t

n)]

)]}
− β

∆x

[
q(xj , t

n) +
∆t

2

(
− λ

2∆x
(q(xj+1, t

n)− q(xj−1, t
n)) + βq(xj , t

n)

)]
= ∂tq(xj , t

n) + λ∂xq(xj , t
n)− βq(xj , tn)

+λ

[
−1

2
∂(2)
x q(xj , t

n)∆x+
1

6
∂(3)
x q(xj , t

n)∆x2

+
1

4

[
2∂(2)
x q(xj , t

n)∆x− ∂(3)
x q(xj , t

n)∆x2
]]

+∆t

{
1

2
∂

(2)
t q(xj , t

n) +
λ

2

[
−λ

2

[
2∂(2)
x q(xj , t

n)− ∂(3)
x q(xj , t

n)∆x
]

+β

(
∂xq(xj , t

n)− 1

2
∂(2)
x q(xj , t

n)∆x+
1

6
∂(3)
x q(xj , t

n)∆x2
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+
1

4

[
2∂(2)
x q(xj , t

n)∆x− ∂(3)
x q(xj , t

n)∆x2
])]

− β

2

[
− λ

2∆x

(
2∂xq(xj , t

n)∆x+
1

3
∂(3)
x q(xj , t

n)∆x3

)
+ βq(xj , t

n)

]}
+O

(
∆t2

)
+ O

(
∆x2

)
+ O (∆x∆t)

=
∆t

2

[
∂

(2)
t q(xj , t

n)− λ2∂(2)
x q(xj , t

n) + 2λβ∂xq(xj , t
n)− β2q(xj , t

n)
]

+O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t)

= O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

The last equality arises from

∂
(2)
t q(xj , t

n)− λ2∂(2)
x q(xj , t

n) + λβ∂xq(xj , t
n) = −λβ∂xq(xj , tn)− β2q(xj , t

n)

which is obtained following the Cauchy-Kovalevskaya procedure.

A.2 Truncation error of the advection-diffusion-reaction equation

The truncation error of the scheme for the advection-diffusion-reaction equation with time and space
dependent diffusion coefficient is given by

τnj =
1

∆t

[
q(xj , t

n+1)− q(xj , tn)
]

+
λ

∆x

{
[q(xj , t

n)− q(xj−1, t
n)]

+
1

4
[q(xj+1, t

n)− q(xj , tn)− q(xj−1, t
n) + q(xj−2, t

n)]

+
∆t

2

[
− λ

2∆x
[q(xj+1, t

n)− q(xj , tn)− q(xj−1, t
n) + q(xj−2, t

n)]

+
1

∆x

[(
α(xj+ 1

2
, tn)

q(xj+1, t
n)− q(xj , tn)

∆x
− α(xj− 1

2
, tn)

q(xj , t
n)− q(xj−1, t

n)

∆x

)

−
(
α(xj− 1

2
, tn)

q(xj , t
n)− q(xj−1, t

n)

∆x
− α(xj− 3

2
, tn)

q(xj−1, t
n)− q(xj−2, t

n)

∆x

)]

+
β

∆x

(
[q(xj , t

n)− q(xj−1, t
n)] +

1

4
[q(xj+1, t

n)− q(xj , tn)

− q(xj−1, t
n) + q(xj−2, t

n)]

)]}
− 1

∆x2

{
α(xj+ 1

2
, tn)

[
q(xj+1, t

n)− q(xj , tn)

+
∆t

2

(
− λ [q(xj+2, t

n)− 2q(xj+1, t
n) + q(xj , t

n)] +
1

∆x2
α(xj+ 3

2
, tn)

[q(xj+2, t
n)− q(xj+1, t

n)]− 1

∆x2
α(xj+ 1

2
, tn) [2q(xj+1, t

n)− 2q(xj , t
n)]

+
1

∆x2
α(xj− 1

2
, tn) [q(xj , t

n)− q(xj−1, t
n)] + β [q(xj+1, t

n)− q(xj , tn)]
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+ α(xj− 1

2
, tn)

[
q(xj−1, t

n)− q(xj , tn) +
∆t

2

(
− λ [−q(xj+1, t

n) + 2q(xj , t
n)

− q(xj−1, t
n)]− 1

∆x2
α(xj+ 1

2
, tn) [q(xj+1, t

n)− q(xj , tn)]

+
1

∆x2
α(xj− 1

2
, tn) [2q(xj , t

n)− 2q(xj−1, t
n)]− 1

∆x2
α(xj− 3

2
, tn) [q(xj−1, t

n)

− q(xj−2, t
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− β

∆x

{
q(xj , t

n) +
∆t

2

[
− λ

2∆x
[q(xj+1, t

n)− q(xj−1, t
n)]

+
1

∆x2

(
α(xj+ 1

2
, tn) [q(xj+1, t

n)− q(xj , tn)]− α(xj− 1
2
, tn) [q(xj , t

n)− q(xj−1, t
n)]
)

+
β

2∆x
q(xj , t

n)

]}
where

α(xj+ 1
2
, tn) = α(xj+ 1

2
, tn) +

∆t

2
∂tα(xj+ 1

2
, tn),

α(xj− 1
2
, tn) = α(xj− 1

2
, tn) +

∆t

2
∂tα(xj− 1

2
, tn).

Then, we can proceed analysing each of the terms which depend on the diffusion term:

• Local truncation error contribution of the diffusion term to the flux term:

λ∆t

2∆x2

{[
α(xj+ 1

2
, tn)

q(xj+1, t
n)− q(xj , tn)

∆x
− α(xj− 1

2
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n)− q(xj−1, t

n)

∆x
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2
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2
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• Local truncation error contribution of the diffusion term:
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2
, tn)

[
q(xj−1, t

n)− q(xj , tn)

+
∆t

2

(
− λ [−q(xj+1, t

n) + 2q(xj , t
n)− q(xj−1, t

n)]

− 1

∆x2
α(xj+ 1

2
, tn) [q(xj+1, t

n)− q(xj , tn)]

+
1

∆x2
α(xj− 1

2
, tn) [2q(xj , t

n)− 2q(xj−1, t
n)]

− 1

∆x2
α(xj− 3

2
, tn) [q(xj−1, t

n)− q(xj−2, t
n)]

+ β [q(xj−1, t
n)− q(xj , tn)]

)]}
= − [∂xα(xj , t

n)) (∂xq(xj , t
n)]− α(xj+1, t

n) + α(xj−1, t
n)

2
∂(2)
x q(xj , t

n)

−λ∆t

2
(∂xα(xj , t

n))
(
∂(2)
x q(xj , t

n)
)

+ λ
∆t

2
α(xj , t

n)
(
∂(3)
x q(xj , t

n)
)

−∆t

2

[
(∂xq(xj , t

n))
(
∂(2)
x α(xj , t

n)
)

(∂xα(xj , t
n))

+ α(xj , t
n) (∂xq(xj , t

n))
(
∂(3)
x α(xj , t

n)
)

+ 2 (∂xα(xj , t
n))
(
∂(2)
x q(xj , t

n)
)

(∂xα(xj , t
n))

+ 3α(xj , t
n)
(
∂(2)
x q(xj , t

n)
)(

∂(2)
x α(xj , t

n)
)

+ (∂xα(xj , t
n))
(
∂(3)
x q(xj , t

n)
)
α(xj , t

n)

+ 3α(xj , t
n)
(
∂(3)
x q(xj , t

n)
)

(∂xα(xj , t
n))

+ α(xj , t
n)
(
∂(4)
x q(xj , t

n)
)
α(xj , t

n)

]
− β∆t

2

[
(∂xα(xj , t

n)) (∂xq(xj , t
n))

+ α(xj , t
n)
(
∂(2)
x q(xj , t

n)
) ]

+ O(∆x2) + O(∆x∆t)

= −∂x (α(xj , t
n)∂xq(xj , t

n)) +
∆t

2

{
∂x (∂tα(xj , t

n)∂xq(xj , t
n))

− λ∂x

(
α(xj , t

n)∂(2)
x q(xj , t

n)
)

+ ∂x

[
α(xj , t

n)∂(2)
x (α(xj , t

n)∂xq(xj , t
n))
]

+ β∂x (α(xj , t
n)∂xq(xj , t

n))

}
+ O(∆x2) + O(∆x∆t).

• Local truncation error contribution of the diffusion term to the source term:

− β∆t

2∆x2

{
α(xj+ 1

2
, tn) [q(xj+1, t

n)− q(xj , tn)]
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− α(xj− 1
2
, tn) [q(xj , t

n)− q(xj−1, t
n)]
}

= − β∆t

2∆x2

[
α(xj+ 1

2
, tn)

(
q(xj , t

n) + ∂xq(xj , t
n)∆x+

1

2
∂(2)q(xj , t

n)∆x2

+
1

6
∂(3)q(xj , t

n)∆x3 + O(∆x4)− q(xj , tn)

)
− α(xj− 1

2
, tn)

(
q(xj , t

n)− q(xj , tn)− ∂xq(xj , tn)∆x

+
1

2
∂(2)q(xj , t

n)∆x2 − 1

6
∂(3)q(xj , t

n)∆x3 + O(∆x4)

)]
= −β∆t

2∆x

[
∂xq(xj , t

n)
(
α(xj+ 1

2
, tn)− α(xj− 1

2
, tn)

)
+

1

2
∂(2)
x q(xj , t

n)∆x
(
α(xj+ 1

2
, tn) + α(xj− 1

2
, tn)

)
+

1

6
∂(3)
x q(xj , t

n)∆x2
(
α(xj+ 1

2
, tn)− α(xj− 1

2
, tn)

)
+ O(∆x3)

]
= −β∆t

2
∂x (α(xj , t

n)∂xq(xj , t
n)) + O(∆x2) + O(∆x∆t).

Gathering together the previous terms and the already obtained for the linear advection-reaction equation
(A.1), we get

τn = ∂tq(xj , t
n) + λ∂xq(xj , t

n)− ∂x [α(xj , t
n)∂xq(xj , t

n)]− βq(xj , tn)

+
∆t

2

[
∂

(2)
t q(xj , t

n) + λ∂x [−λ∂xq(xj , tn) + βq(xj , t
n)]

− β [−λ∂xq(xj , tn) + βq(xj , t
n)]

]
− ∆t

2

{
∂x [∂tα(xj , t

n)∂xq(xj , t
n)]

− λ∂x

[
α(xj , t

n)∂(2)
x q(xj , t

n)
]

+ ∂x

{
α(xj , t

n)∂(2)
x [α(xj , t

n)∂xq(xj , t
n)]
}

+ β∂x [α(xj , t
n)∂xq(xj , t

n)]

}
− β∆t

2
∂x [α(xj , t

n)∂xq(xj , t
n)]

+
∆t

2
∂(2)
x [α(xj , t

n)∂xq(xj , t
n)] + O

(
∆t2

)
+ O

(
∆x2

)
+ O (∆x∆t)

= O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

Where we have take into account that, following Cauchy-Kovalevskaya,

∂
(2)
t q − λ2∂(2)

x q − ∂x
[
α∂(2)

x (α∂xq)
]
− β2q + 2λβ∂xq − 2β∂x (α∂xq)

−∂x [(∂tα) (∂xq)] + λ∂(2)
x (α∂xq) + λ∂x

(
α∂(2)

x q
)

= 0.

Thus, we conclude that the scheme is second order in space and time.
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