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Abstract

In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations
that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on
unstructured grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form,
(ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and
(iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with
numerical test cases on highly irregular grids.

Keywords: energy conserving discretization, mimetic discretization, enstrophy conserving discretization, spectral
element method, incompressible Navier-Stokes equations

1. Introduction

1.1. Relevance of structure preserving methods

Structure-preserving discretizations are known for their robustness and accuracy. They conserve fundamental
properties of the equations (mass, momentum, kinetic energy, etc). For example, it is well known that the application
of conventional discretization techniques to inviscid flows generates artificial energy dissipation that pollutes the
energy spectrum. For these reasons, structure-preserving discretizations have recently gained popularity.

For a long time, in the development of general circulation models used in weather forecast, it has been noticed
that care must be taken in the construction of the discretization of physical laws. Phillips [1] verified that the long-
time integration of non-linear convection terms resulted in the breakdown of numerical simulations independently
of the time step, due to the amplification of weak instabilities. Later, Arakawa [2] proved that such instabilities
can be avoided if the integral of the square of the advected quantity is conserved (kinetic energy, enstrophy in 2D, for
example). Staggered finite difference discretizations that avoid these instabilities have been introduced both by Harlow
and Welch [3] and Arakawa and his collaborators [4, 5]. Lilly [6] showed that these discretizations could conserve
momentum, energy and circulation. At the same time, Piacseck and Williams [7] connected the conservation of energy
with the preservation of skew-symmetry of the convection operator at the discrete level. These ideas of staggering the
discrete physical quantities and of preserving the skew-symmetry of the convection operator have been successfully
explored by several authors aiming to construct more robust and accurate numerical methods.

In this work we focus on the incompressible Navier-Stokes equations, particularly convection-dominated flow
problems (e.g. wind turbine wake aerodynamics). It is widely known that in the absence of external forces and viscos-
ity these equations contain important symmetries or invariants, e.g. [8–11], such as conservation of kinetic energy. A
straightforward discretization using standard methods does not guarantee the conservation of these invariants. Discrete
energy conservation is important from a physical point of view, especially for turbulent flow simulations when Direct
Numerical Simulation (DNS) or Large Eddy Simulation (LES) are used. In these cases, the accurate reproduction
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of the energy spectrum is essential to generate the associated energy cascade. The numerical diffusion inherent (and
sometimes essential) to many discretizations can dominate both the molecular diffusion contribution (DNS) and the
sub-grid model contribution (LES). This negatively affects the energy spectrum and consequently the energy cascade.
Energy-conserving discretizations ensure that all diffusion is modelled and not a product of discretization errors. For
this reason, many authors have shown that energy-conserving schemes are essential both for DNS (e.g. [12–16]) and
LES simulations (e.g. [17–22]). In addition, discrete kinetic energy conservation provides a non-linear stability bound
to the solution (e.g. [23, 24]). This bound relaxes the characteristic stability constraints of standard methods, allowing
the choice of mesh and time step size to be based only on accuracy requirements. This is particularly relevant for LES
where mesh sizes have to be kept as large as possible, due to the still significant computational effort required for this
approach. Energy-conserving methods generate well-behaved global errors and adequate physical behaviour, even on
coarse meshes.

In two-dimensions, enstrophy is another conserved quantity of the flow when external forces and viscosity are
not present. The classical Arakawa scheme [2] and derived schemes exploit both the conservation of energy and
enstrophy. By doing so, these methods have far better long time simulation properties than competing methods that
do not conserve these two quantities.

1.2. Overview of structure preserving methods

Two of the most used approaches to construct energy preserving discretizations are: (i) staggering and (ii) skew-
symmetrization of the convective operator.

Most staggered grid methods date back to the pioneering work of Harlow and Welch [3], and Arakawa and col-
leagues [4, 5]. These methods employ a discretization that distributes the different physical quantities (pressure,
velocity, vorticity, etc) at different locations in the mesh (vertices, faces, cell centres). It can be shown that, by doing
so, important conservation properties can be maintained. Due to its success, much attention has been given to this
approach and several extensions to the original work have been made by several authors. Morinishi [25] has developed
a high-order version on Cartesian grids. Extensions to non-uniform meshes have been presented for example in [26]
for structured quadrilateral meshes and by several authors [27–30] for simplicial meshes.

The advantages of exploiting the skew-symmetry of the convection operator at the discrete level, were first iden-
tified by Piacseck [7]. Following his ideas, Verstappen and Veldman [15, 16, 31] and later Knicker [32] constructed
high order discretizations on Cartesian grids with substantially improved properties. Kok [33] presents another for-
mulation valid on curvilinear grids. The extension to simplicial grids has been reported for example in the works of
Vasilyev [34], Veldman [35] and van’t Hof [36].

At another level, Perot [37] suggested that a connection exists between the skew-self-adjoint formulation presented
by Tadmor [38] and box schemes. Box schemes or Keller box schemes are a class of numerical methods originally
introduced by Wendroff [39] for hyperbolic problems and later popularized by Keller [40, 41] for parabolic problems.
This method is face-based and space and time are coupled by introducing a space-time control volume. This method is
known to be physically accurate and successful application has been reported in [42–45]. More recently, this method
has been shown to be multisymplectic by Ascher [46] and Frank [47]. Perot, [48], also established a relation between
box schemes and discrete calculus and generalized it to arbitrary meshes.

Although most of the literature on the simulation of incompressible Navier-Stokes flows has been performed using
finite difference and finite volume methods, finite element methods have also been actively used and shared many of
the developments already discussed for finite differences and finite volumes. One of the initial challenges in using
finite elements for flow simulations lies in the fact that specific finite element subspaces must be used to discretize the
different physical quantities. The finite element subspaces must satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) (or
inf-sup) compatibility condition (see [49]), otherwise instability ensues. Several families of suitable finite elements
have been proposed in the literature, the most common being the Taylor-Hood family (Taylor and Hood [50]) and
the Crouzeix-Raviart family (Crouzeix and Raviart [51]). The underlying idea behind these different finite element
families is to use different polynomial orders for velocity and pressure. In essence, this is intimately related to the
staggering approach already discussed in the context of finite differences and finite volumes. Staggering is explicitly
mentioned in some finite element work, for example [52–56]. Another important aspect when using finite elements is
the weak formulation used for the convection term. Some of these forms (rotational and skew-symmetric) can retain
important symmetries of the original system of equations, this has been reported for example in [57–60]. Ensuring
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conservation in finite element discretizations is not straightforward, nevertheless examples in the literature exist, e.g.
[61, 62]. Also within the context of finite elements, Rebholz and co-authors, e.g. [63, 64], have developed several
velocity-vorticity discretizations for the 3D Navier-Stokes equations. These discretizations are capable of conserving
both energy and helicity.

One final aspect when discussing existing structure preserving methods is time integration. Many of the conserving
methods reported in the literature present proofs regarding spatial discretization. Nevertheless, when discrete time
evolution is taken into account many time integrators destroy the nice properties of the spatial discretization. The
relevance of time integration for the construction of structure preserving discretizations has been analyzed by Sanderse
[24].

1.3. Overview of mimetic discretizations

Over the years numerical analysts have developed numerical schemes which preserve some of the structure of the
differential models they aim to approximate, so in that respect the whole structure preserving idea is not new. One of
the contributions of mimetic methods is to identify the proper language in which to encode these structures/symmetries
is the language of differential geometry. Another novel aspect of mimetic discretizations is the identification of
the metric-free part of differential models, which can (and should) be conveniently described in terms of algebraic
topology. A general introduction and overview to spatial and temporal mimetic/geometric methods can be found in
[37, 65–67].

The relation between differential geometry and algebraic topology in physical theories was first established by
Tonti [68]. Around the same time Dodziuk [69] set up a finite difference framework for harmonic functions based
on Hodge theory. Both Tonti and Dodziuk introduce differential forms and cochain spaces as the building blocks
for their theory. The relation between differential forms and cochains is established by the Whitney map (k-cochains
→ k-forms) and the de Rham map (k-forms → k-cochains). The interpolation of cochains to differential forms on a
triangular grid was already established by Whitney, [70]. These interpolatory forms are now known as the Whitney
forms.

Hyman and Scovel [71] set up the discrete framework in terms of cochains, which are the natural building blocks
of finite volume methods. Later Bochev and Hyman [72] extended this work and derived discrete operators such as
the discrete wedge product, the discrete codifferential, the discrete inner product, etc.

In a finite difference/volume context Robidoux, Hyman, Steinberg and Shashkov, [73–80] used symmetry consid-
erations to discretize diffusion problems on rough grids and with non-smooth anisotropic diffusion coefficients. In a
more recent paper by Robidoux and Steinberg [81] a discrete vector calculus in a finite difference setting is presented.
Here the differential operators grad, curl and div are exactly represented at the discrete level and the numerical ap-
proximations are all contained in the constitutive relations, which are already polluted by modeling and experimental
error. For mimetic finite differences, see also Brezzi et al. [82, 83].

The application of mimetic ideas to unstructured staggered grids has been extensively studied by Perot, [29, 84–
87]. Especially in [37] where the rationale of preserving symmetries in numerical algorithms is lucidly described. The
most geometric approach is described in the work by Desbrun et al. [88–91] and the thesis by Hirani [92].

The Japanese papers by Bossavit, [93–97], serve as an excellent introduction and motivation for the use of differ-
ential forms in the description of physics and the use in numerical modeling. The field of application is electromag-
netism, but these papers are sufficiently general to extend to other physical theories.

In a series of papers by Arnold, Falk and Winther, [98–100], a finite element exterior calculus framework is
developed. Higher order methods are also described by Rapetti [101, 102] and Hiptmair [103]. Possible extensions to
spectral methods were described by Robidoux, [104]. A different approach for constructing arbitrary order mimetic
finite elements has been proposed by the authors [105–111].

Extensions of these ideas to polyhedral meshes have been proposed by Ern, Bonelle and co-authors in [112–115]
and by Brezzi and co-authors in [116–119]. These approaches provide more geometrical flexibility while maintaining
fundamental structure preserving properties.

Mimetic isogeometric discretizations have been introduced by Buffa et al. [120], Evans and Hughes [121], and
Hiemstra et al. [122].

Another approach develops a discretization of the physical field laws based on a discrete variational principle
for the discrete Lagrangian action. This approach has been used in the past to construct variational integrators for
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Lagrangian systems, e.g. [123, 124]. Recently, Kraus and Maj [125] have used the method of formal Lagrangians to
derive generalized Lagrangians for non-Lagrangian systems of equations. This allows to apply variational techniques
to construct structure preserving discretizations on a much wider range of systems.

1.4. Outline of paper
In this work we present a new exact mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral

element solver for the 2D incompressible Navier-Stokes equations. The essential ingredients to achieve this are: (i) a
velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the
divergence free nature of the velocity field, and (iii) a conserving time integrator. This results in a set of two decoupled
equations: one for the evolution of velocity and another one for the evolution of vorticity.

In Section 2 we present the spatial discretization. We start by introducting the (~u, ω) formulation based in the
rotational form in Section 2.1 and then in Section 2.2 the finite element discretization is discussed. This is followed
by the temporal discretization in Section 3. Once we have introduced the numerical discretization its conservation
properties are proved in Section 4. In Section 5 the method is applied and tested on two test cases. We start by testing
the accuracy of the method with a Taylor-Green vortex, for which the analytical solution is known. We finalize the
test cases with an inviscid shear layer roll-up test to illustrate the conservation properties of the method. In Section 6
we conclude with a discussion of the merits and limitations of this solver and future extensions.

2. Spatial discretization

2.1. The (~u, ω) formulation in rotational form
The evolution of 2D viscous incompressible flows is governed by the Navier-Stokes equations, which are most

commonly expressed as a set of conservation laws for momentum and mass involving the velocity ~u and pressure p:
∂~u
∂t

+
(
~u · ∇

)
~u + ∇p = ν∆~u + ~s,

∇ · ~u = 0,
(1)

with ν the kinematic viscosity, ~s the body force per unit mass, and ∆ = ∇ · ∇ the Laplace operator. These equations
are valid on the fluid domain Ω, together with suitable initial and boundary conditions. In this work we consider only
periodic boundary conditions and we set ~s = 0.

The form of the Navier-Stokes equations presented in (1) is the so called convective form. Its name stems from the
particular form of the nonlinear term

(
~u · ∇

)
~u, which underlines its convective nature. This form is not unique. Using

well known vector calculus identities it is possible to rewrite the nonlinear term in three other forms, see for example
Zang [126], Morinishi [25], and Rønquist [59].

The first alternative, called divergence form or conservative form, expresses the nonlinear term as a divergence:
∂~u
∂t

+ ∇ ·
(
~u ⊗ ~u

)
+ ∇p = ν∆~u,

∇ · ~u = 0.
(2)

The second alternative is obtained as a linear combination of the convective and divergence forms, producing a
skew-symmetric nonlinear term, thus its name skew-symmetric form:

∂~u
∂t

+
1
2

(
~u · ∇

)
~u +

1
2
∇ ·

(
~u ⊗ ~u

)
+ ∇p = ν∆~u,

∇ · ~u = 0.
(3)

The third and final alternative we consider here, the rotational form, makes use of the vorticity ω := ∇ × ~u:
∂~u
∂t

+ ω × ~u + ∇p̄ = ν∆~u,

∇ · ~u = 0,
(4)
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where the static pressure p has been replaced by the total pressure p̄ := 1
2~u · ~u + p.

A different, but equivalent, approach used to describe fluid flow problems resorts to expressing the momentum
equation in terms of the vorticity ω. By taking the curl of the momentum equation and using the kinematic definition
ω := ∇ × ~u we can obtain the flow equations based on vorticity transport:

∂ω

∂t
+

1
2

(
~u · ∇

)
ω +

1
2
∇ ·

(
~uω

)
= ν∆ω,

∇ · ~u = 0,
ω = ∇ × ~u .

(5)

This velocity-vorticity (~u, ω) formulation of the Navier-Stokes equations is of particular interest for vortex dominated
flows, see for example Gatski [127] for an overview and Daube [128] and Clercx [129] for applications.

All these different ways of expressing the governing equations of fluid flow are equivalent at the continuous level.
As stated before, one can start with (1) and derive all other sets of equations simply by using well known vector
calculus identities and definitions. The often overlooked aspect is that each of these formulations leads to a different
discretization, with its own set of properties, e.g. [25, 59, 126, 127]. Only in the limit of vanishing mesh size (h→ 0)
are the discretizations expected to be equivalent. This introduces an additional degree of freedom associated to the
choice of formulation that, combined with the discretization approach to use, will determine the final properties of the
method.

In this work we construct a (~u, ω) formulation by combining the rotational form (4) with the vorticity transport
equation (5), similar to the work of Benzi et al. [130] and Lee et al. [131]:

∂~u
∂t

+ ω × ~u + ∇p̄ = −ν∇ × ω,

∂ω

∂t
+

1
2

(
~u · ∇

)
ω +

1
2
∇ ·

(
~uω

)
= ν∆ω,

∇ · ~u = 0 ,

(6)

where we use the vector calculus identity ∆~u = ∇
(
∇ · ~u

)
− ∇ × ∇ × ~u to derive the equality ∆~u = −∇ × ω.

An important aspect we wish to stress at this point is that although at the continuous level the kinematic definition
ω := ∇×~u is valid, at the discrete level it is not always guaranteed that this identity holds. In fact, in the discretization
presented here this identity is satisfied only approximately. This, as will be seen, enables the construction of a mass,
energy, enstrophy and vorticity conserving discretization.

2.2. Finite element discretization
In this work we set out to construct a finite element discretization for the Navier-Stokes equations as given by (6).

In particular we use a mixed finite element formulation, for more details on the mixed finite elements see for example
[49]. The first step for developing this discretization is the construction of the weak form of (6):

Find ~u ∈ H(div,Ω), p̄ ∈ L2(Ω) and ω ∈ H(curl,Ω) such that:

〈
∂~u
∂t
,~v〉Ω + 〈ω × ~u,~v〉Ω − 〈 p̄,∇ · ~v〉Ω = −ν〈∇ × ω,~v〉Ω, ∀~v ∈ H(div,Ω),

〈
∂ω

∂t
, ξ〉Ω −

1
2
〈ω,∇ ·

(
~u ξ

)
〉Ω +

1
2
〈∇ ·

(
~uω,

)
, ξ〉Ω = ν〈∇ × ω,∇ × ξ〉Ω, ∀ξ ∈ H(curl,Ω),

〈∇ · ~u, q〉Ω = 0, ∀q ∈ L2(Ω) ,

(7)

where we have used integration by parts and the periodic boundary conditions to obtain the identities 〈 p̄,∇ · ~v〉Ω =

−〈∇ p̄,~v〉Ω, 〈ω,∇ ·
(
~u ξ

)
〉Ω = −〈

(
~u · ∇

)
ω, ξ〉Ω and 〈∇ × ω,∇ × ξ〉Ω = 〈∆ω, ξ〉Ω. The space L2(Ω) corresponds to square

integrable functions and the spaces H(div,Ω) and H(curl,Ω) contain square integrable functions whose divergence
and curl are also square integrable.

The second step is the definition of conforming finite dimensional function spaces, where we will seek our discrete
solutions for velocity ~uh, pressure p̄h and vorticity ωh:

~uh ∈ Uh ⊂ H(div,Ω), p̄h ∈ Qh ⊂ L2(Ω) and ωh ∈ Wh ⊂ H(curl,Ω). (8)
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As usual, each of these finite dimensional function spaces, Uh, Qh and Wh, has an associated finite set of basis
functions, ~ε U

i , εQ
i , εW

i , such that

Uh = span{~ε U
1 , . . . , ~ε

U
dU
}, Qh = span{εQ

1 , . . . , ε
Q
dQ
} and Wh = span{εW

1 , . . . , ε
W
dW
}, (9)

where dU , dQ and dW denote the dimension of the discrete function spaces and therefore correspond to the number of
degrees of freedom for each of the unknowns. As a consequence, the approximate solutions for velocity, pressure and
vorticity can be expressed as a linear combination of these basis functions

~uh :=
dU∑
i=1

ui ~ε
U

i , p̄h :=
dQ∑
i=1

pi ε
Q
i and ωh :=

dW∑
i=1

ωi ε
W
i , (10)

with ui, pi and ωi the degrees of freedom of velocity, total pressure and vorticity, respectively. Since the Navier-Stokes
equations form a time dependent set of equations, in general these coefficients will be time dependent, ui = ui(t),
pi = pi(t) and ωi = ωi(t).

The choice of the finite dimensional function spaces dictates the properties of the discretization. In order to have
exact conservation of mass we must exactly satisfy the divergence free constraint at the discrete level. A sufficient
condition that guarantees divergence-free velocities, e.g. [100, 132, 133], is:{

∇ · ~uh |~uh ∈ Uh
}
⊆ Qh . (11)

In other words, the divergence operator must map Uh into Qh:

Uh
∇·
−→ Qh . (12)

If we set
Uh = RTN and Qh = DGN−1 , (13)

where RTN are the Raviart-Thomas elements of degree N, see [134, 135], and DGN−1 are the discontinuous Lagrange
elements of degree (N − 1), see [135], we satisfy (12), see for example [100] for a proof. Additionally, this pair of
finite elements satisfies the LBB stability condition, see for example [100, 134].

What remains to define is the finite element space associated to the vorticity, Wh. Since we wish to exactly
represent the diffusion term in the momentum equation 〈∇ × ω,~vh〉Ω the space Wh must satisfy a relation similar to
(11)

{∇ × ωh |ωh ∈ Wh} ⊆ Uh . (14)

In other words, the curl operator must map Wh into Uh:

Wh
∇×
−→ Uh . (15)

The Lagrange elements of degree N, denoted by CGN in [135], satisfy (15), see [100], therefore we set

Wh = CGN . (16)

Together, the combination of these three finite element spaces forms a Hilbert subcomplex

0 −→ Wh
∇×
−→ Uh

∇·
−→ Qh −→ 0 , (17)

that mimics the 2D Hilbert complex associated to the continuous functional spaces:

0 −→ H(curl,Ω)
∇×
−→ H(div,Ω)

∇·
−→ L2(Ω) −→ 0 . (18)

The Hilbert complex is an important structure that is intimately related to the de Rham complex of differential forms.
The construction of a discrete subcomplex is an important requirement to obtain stable and accurate finite element
discretizations, see for example [93–97, 100, 105] for a detailed discussion.
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The finite element spatial discretization used in this work to construct an approximate solution of (6) is then
obtained by the following weak formulation

Find ~uh ∈ RTN , p̄h ∈ DGN−1 and ωh ∈ CGN such that:

〈
∂~uh

∂t
,~vh〉Ω + 〈ωh × ~uh,~vh〉Ω − 〈 p̄h,∇ · ~vh〉Ω = −ν〈∇ × ωh,~vh〉Ω, ∀~vh ∈ RTN ,

〈
∂ωh

∂t
, ξh〉Ω −

1
2
〈ωh,∇ ·

(
~uh ξh

)
〉Ω +

1
2
〈∇ ·

(
~uh ωh

)
, ξh〉Ω = ν〈∇ × ωh,∇ × ξh〉Ω, ∀ξh ∈ CGN ,

〈∇ · ~uh, qh〉Ω = 0, ∀qh ∈ DGN−1 .

(19)

Using the expansions for ~uh, p̄h and ωh in (10), (19) can be rewritten as

Find u ∈ RdU , p̄ ∈ RdQ and ω ∈ RdW such that:
dU∑
i=1

dui

dt
〈~ε U

i , ~ε
U
j 〉Ω +

dU∑
i=1

ui〈ωh × ~ε
U

i , ~ε
U
j 〉Ω −

dQ∑
k=1

pk〈ε
Q
k ,∇ · ~ε

U
j 〉Ω = −ν〈∇ × ωh, ~ε

U
j 〉Ω, j = 1, . . . , dU ,

dW∑
i=1

dωi

dt
〈εW

i , ε
W
j 〉Ω −

dW∑
i=1

ωi

2
〈εW

i ,∇ ·
(
~uh ε

W
j

)
〉Ω +

dW∑
i=1

ωi

2
〈∇ ·

(
~uh ε

W
i

)
, εW

j 〉Ω = ν

dW∑
i=1

ωi〈∇ × ε
W
i ,∇ × ε

W
j 〉Ω, j = 1, . . . , dW ,

dU∑
i=1

ui〈∇ · ~ε
U

i , ε
Q
j 〉Ω = 0, j = 1, . . . , dQ ,

(20)
with u := [u1, . . . , udU ]>, p̄ := [p1, . . . , pdQ ]> and ω := [ω1, . . . , ωdW ]>. Using matrix notation, (20) can be expressed
more compactly as 

Find u ∈ RdU , p̄ ∈ RdQ and ω ∈ RdW such that:

M
du
dt

+ R u − P p̄ = −ν l,

N
dω
dt
−

1
2

Wω +
1
2

W>ω = νLω,

D u = 0,

(21)

The coefficients of the matrices M, R and P, and the column vector l are given by

Mi j := 〈~ε U
j , ~ε

U
i 〉Ω, Ri j := 〈ωh × ~ε

U
j , ~ε

U
i 〉Ω, Pi j := 〈εQ

j ,∇ · ~ε
U

i 〉Ω and li := 〈∇ × ωh, ~ε
U

i 〉Ω. (22)

Similarly, the coefficients of the matrices N, W, L and D are given by

Ni j := 〈εW
j , ε

W
i 〉Ω, Wi j := 〈εW

j ,∇ ·
(
~uh ε

W
i

)
〉Ω, Li j := 〈∇ × εW

j ,∇ × ε
W
i 〉Ω and Di j := 〈∇ · ~ε U

j , ε
Q
i 〉Ω. (23)

3. Temporal discretization

In this section we present the time discretization. The choice of a time discretization is essential in preserving
invariants. Not all time integrators satisfy conservation of energy, even though the spatial discretization imposes
conservation of kinetic energy as a function of time, see [24]. In this work we choose to use a Gauss method. This
time integrator is a type of collocation method based on Gauss quadrature. It is known to be an implicit Runge-
Kutta method and to have optimal convergence order 2s for s stages. Two of its most attractive properties are that
(i) it conserves energy when applied to the discretization of the Navier-Stokes equations, see [24], and (ii) it is time-
reversible, see [67]. For a more detailed discussion of its properties and construction see [67]. Although any Gauss
integrator could be used, we choose the lowest order, s = 1, also known as the midpoint rule, because it enables the
construction of an explicit staggered integrator in time.
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When applied to the solution of a 1D ordinary differential equation of the form
d f
dt

= g( f (t), t),

f (0) = f0,
(24)

the one stage Gauss integrator results in the following implicit time stepping scheme

f k − f k−1

∆t
= g

(
f k + f k−1

2
, t +

∆t
2

)
, k = 1, . . . ,M, (25)

where f 0 = f0, ∆t is the time step and M is the number of time steps. The direct application of (25) to the discrete
weak form (19) results in

Find ~u k+1
h ∈ RTN , p̄ k+1

h ∈ DGN−1 and ω k+1
h ∈ CGN such that:

〈
~u k+1

h − ~u k
h

∆t
,~vh〉Ω + 〈ω̃

k+ 1
2

h ×
~u k+1

h + ~u k
h

2
,~vh〉Ω − 〈 ˜̄p

k+ 1
2

h ,∇ · ~vh〉Ω = −ν〈∇ × ω̃
k+ 1

2
h ,~vh〉Ω, ∀~vh ∈ RTN ,

〈
ω k+1

h − ω k
h

∆t
, ξh〉Ω −

1
2
〈
ω k+1

h + ω k
h

2
,∇ ·

(
~̃u k+ 1

2
h ξh

)
〉Ω +

1
2
〈∇ ·

~̃u k+ 1
2

h

ω k+1
h + ω k

h

2

 , ξh〉Ω = ν〈∇ ×
ω k+1

h + ω k
h

2
,∇ × ξh〉Ω, ∀ξh ∈ CGN ,

〈∇ · ~u k+1
h , qh〉Ω = 0, ∀qh ∈ DGN−1 ,

(26)
where, for compactness of notation, we have set

~̃u k+ 1
2

h :=
~u k+1

h + ~u k
h

2
and ω̃

k+ 1
2

h :=
ω k+1

h + ω k
h

2
. (27)

The time stepping scheme in (26) consists of a coupled system of nonlinear equations. Therefore its solution will
necessarily require an iterative procedure, which is computationally expensive. To overcome this drawback, instead of
defining all the unknown physical quantities ~uh, ωh and p̄h, at the same time instants tk we choose to stagger them in
time. In this way it is possible to transform (26) into two systems of quasi-linear equations. The unknown vorticity and
total pressure are defined at the integer time instants ω k

h , p̄ k
h and the unknown velocity is defined at the intermediate

time instants ~u k+ 1
2

h , see Figure 1. Taking into account this staggered approach, (26) can be rewritten as

Find ~u k+ 3
2

h ∈ RTN , p̄ k+1
h ∈ DGN−1 and ω k+1

h ∈ CGN such that:

〈
~u k+ 3

2
h − ~u k+ 1

2
h

∆t
,~vh〉Ω + 〈ω k+1

h ×
~u k+ 3

2
h + ~u k+ 1

2
h

2
,~vh〉Ω − 〈 p̄ k+1

h ,∇ · ~vh〉Ω = −ν〈∇ × ω k+1
h ,~vh〉Ω, ∀~vh ∈ RTN ,

〈
ω k+1

h − ω k
h

∆t
, ξh〉Ω −

1
2
〈
ω k+1

h + ω k
h

2
,∇ ·

(
~u k+ 1

2
h ξh

)
〉Ω +

1
2
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , ξh〉Ω = ν〈∇ ×
ω k+1

h + ω k
h

2
,∇ × ξh〉Ω, ∀ξh ∈ CGN ,

〈∇ · ~u k+ 3
2

h , qh〉Ω = 0, ∀qh ∈ DGN−1 ,
(28)

where ~u k+ 1
2

h and ω k
h are known at the start of each time step.

Using (21), it is possible to rewrite (28) in a compact matrix notation

Find u k+ 3
2

h ∈ RdU , p̄k+1 ∈ RdQ and ω k+1 ∈ RdW such that:

M
u k+ 3

2
h − u k+ 1

2

∆t
+ Rk+1 u k+ 3

2
h + u k+ 1

2

2
− P p̄k+1 = −ν lk+1,

N
ω k+1 − ω k

∆t
−

1
2

Wk+ 1
2
ω k+1 + ω k

2
+

1
2

(
Wk+ 1

2
)> ω k+1 + ω k

2
= νL

ω k+1 + ω k

2
,

D u k+ 3
2

h = 0,

(29)
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where all matrix operators are as in (22) and (23), with the exception of Rk+1, Wk+ 1
2 and lk+1, the coefficients of which

are
Rk+1

i j := 〈ω k+1
h × ~ε U

j , ~ε
U

i 〉Ω, lk+1
i := 〈∇ × ω k+1

h , ~ε U
i 〉Ω and W

k+ 1
2

i j := 〈εW
j ,∇ ·

(
~u k+ 1

2
h εW

i

)
〉Ω. (30)

To start the iteration procedure ~u
1
2

h and ω 0
h are required. Since only ~u 0

h and ω 0
h are known, the first time step needs

to be implicit, according to (26). Once ~u 1
h is known, (27) can be used to retrieve ~u

1
2

h . The remaining time steps can
then be computed explicitly with (28).

tk tk+1 tk+2

~u k
h , ω

k
h, p̄

k
h ~u k+1

h , ωk+1
h , p̄ k+1

h ~u k+2
h , ωk+2

h , p̄ k+2
h

tk tk+1 tk+2tk+
1
2 tk+

3
2

ωk
h, p̄

k
h ωk+1

h , p̄ k+1
h ωk+2

h , p̄ k+2
h~u

k+ 1
2

h ~u
k+ 3

2

h

Figure 1: Diagram of the time stepping. Left: all unknowns at the same time instant, as in (26). Right: staggered in
time unknowns, as in (28).

4. Conservation properties and time reversibility

It is known that in the absence of external forces and viscosity the incompressible Navier-Stokes equations contain
important symmetries or invariants, e.g. [8–11]. Conservation of mass, energy, enstrophy and total vorticity are such
invariants.

A discretization for the incompressible Navier-Stokes equations has been proposed in (28). In the following
sections we prove its conservation properties, with respect to mass, energy, enstrophy and vorticity. Additionally, we
also prove time reversibility.

4.1. Mass and vorticity conservation

Mass conservation is given by the divergence of the velocity field. Since with this discretization the discrete
velocity field is exactly divergence free mass is conserved.

Regarding vorticity conservation, the time evolution of vorticity is governed by the vorticity transport equation,
(6):

∂ω

∂t
+

1
2

(
~u · ∇

)
ω +

1
2
∇ ·

(
~uω

)
= ν∆ω. (31)

This equation, by (28), is discretized as
Find ω k+1

h ∈ CGN such that:

〈
ω k+1

h − ω k
h

∆t
, ξh〉Ω −

1
2
〈
ω k+1

h + ω k
h

2
,∇ ·

(
~u k+ 1

2
h ξh

)
〉Ω +

1
2
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , ξh〉Ω = ν〈∇ ×
ω k+1

h + ω k
h

2
,∇ × ξh〉Ω, ∀ξh ∈ CGN ,

(32)
Conservation of vorticity ωh corresponds to∫

Ω

ω k+1
h := 〈ω k+1

h , 1〉 = 〈ω k
h , 1〉 :=

∫
Ω

ω k
h . (33)

Therefore, the proof of conservation of vorticity is obtained from evaluating (32) for the special case ξh = 1:

〈
ω k+1

h − ω k
h

∆t
, 1〉Ω −

1
2
〈
ω k+1

h + ω k
h

2
,∇ · ~u k+ 1

2
h 〉Ω +

1
2
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , 1〉Ω = ν〈∇ ×
ω k+1

h + ω k
h

2
,∇ × 1〉Ω. (34)
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Since the function spaces have been chosen such that ∇ · ~uh = 0 is satisfied exactly, see Section 2.2, equation (34)
becomes

〈ω k+1
h , 1〉Ω +

∆t
2
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , 1〉Ω = 〈ω k
h , 1〉Ω. (35)

The second term on the left hand side can be rewritten as

〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , 1〉Ω :=
∫

Ω

∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 =

∫
∂Ω

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 · ~n, (36)

with ~n the outward unit normal at the boundary of Ω. At the continuous level, the boundary integral in (36) is trivially
equal to zero for periodic boundary conditions, which is the case we will consider here. Note that since the domain
is periodic, the nodes of the mesh at opposite sides of domain must coincide, otherwise the periodicity is lost. Since
ωh ∈ CGN , it is continuous across elements. In a similar way, the normal component of ~uh is continuous across
elements because ~uh ∈ RTN , see for example [100, 134, 135]. Therefore, in the case of periodic boundary conditions
the boundary integral in (36) will still be exactly equal to zero and (35) becomes

〈ω k+1
h , 1〉Ω = 〈ω k

h , 1〉Ω, (37)

which proves that vorticityWk
h is conserved because

Wk+1
h := 〈ωk+1

h , 1〉Ω = 〈ωk
h, 1〉Ω =:Wk

h (38)

is conserved.

4.2. Kinetic energy conservation
Kinetic energy conservation is one of the two secondary conservation properties of the numerical solver proposed

in this work. Here we prove that total kinetic energy K is conserved by (28).
At the continuous level, kinetic energy is defined as proportional to the L2(Ω) norm of the velocity velocity

K :=
1
2
‖~u‖L2(Ω) :=

1
2
〈~u, ~u〉, (39)

is conserved in the inviscid limit ν = 0, see for example [10, 11]. This definition can be directly extended to the
discrete level as

Kh :=
1
2
‖~uh‖L2(Ω) :=

1
2
〈~uh, ~uh〉. (40)

Therefore, kinetic energy conservation at the discrete level corresponds to

K
k+ 3

2
h :=

1
2
〈~u k+ 3

2
h , ~u k+ 3

2
h 〉 =

1
2
〈~u k+ 1

2
h , ~u k+ 1

2
h 〉 := K k+ 1

2
h . (41)

To prove this identity we take the first equation in (28) (momentum equation) in the inviscid limit ν = 0 and choose

~vh = 1
2~u

k+ 3
2

h + 1
2~u

k+ 1
2

h , resulting in

1
2
〈
~u k+ 3

2
h − ~u k+ 1

2
h

∆t
, ~u k+ 3

2
h + ~u k+ 1

2
h 〉Ω +

1
2
〈ω k+1

h ×
~u k+ 3

2
h + ~u k+ 1

2
h

2
, ~u k+ 3

2
h + ~u k+ 1

2
h 〉Ω −

1
2
〈p̄ k+1

h ,∇ ·
(
~u k+ 3

2
h + ~u k+ 1

2
h

)
〉Ω = 0. (42)

The term involving the total pressure p̄h is identically zero because the velocity field is divergence free at every time
step, due to the particular choice of function spaces, as discussed in Section 2.2. After rearranging, equation (42) then
becomes

1
2
〈~u k+ 3

2
h , ~u k+ 3

2
h 〉Ω +

∆t
2
〈ω k+1

h ×
~u k+ 3

2
h + ~u k+ 1

2
h

2
, ~u k+ 3

2
h + ~u k+ 1

2
h 〉Ω =

1
2
〈~u k+ 1

2
h , ~u k+ 1

2
h 〉Ω. (43)

Because of Lemma 1.3 in [136], (43) becomes

1
2
〈~u k+ 3

2
h , ~u k+ 3

2
h 〉Ω =

1
2
〈~u k+ 1

2
h , ~u k+ 1

2
h 〉Ω,

which proves (41).
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4.3. Enstrophy conservation

The second secondary conservation property of the numerical solver presented here is enstrophy conservation.
We then proceed to prove conservation of enstrophy E at the discrete level.

Similarly to kinetic energy, enstrophy is defined as proportional to the L2(Ω) norm of vorticity

E :=
1
2
‖ω‖L2(Ω) := 〈ω,ω〉Ω, (44)

and is also a conserved quantity in the inviscid limit ν = 0, see for example [10, 11]. This definition can be straight-
forwardly extended to the discrete level as

Eh :=
1
2
‖ωh‖L2(Ω) := 〈ωh, ωh〉Ω, (45)

This directly implies that conservation of enstrophy at the discrete level requires that

Ek+1
h :=

1
2
〈ω k+1

h , ω k+1
h 〉 =

1
2
〈ω k

h , ω
k
h 〉 := Ek

h. (46)

The proof of enstrophy conservation follows a similar approach to the one used for the proof of energy conserva-
tion. In this case we start with the second equation in (28) (vorticity transport equation) in the inviscid limit ν = 0 and
choose ξh = 1

2ω
k+1
h + 1

2ω
k
h , obtaining

1
2
〈
ω k+1

h − ω k
h

∆t
, ω k+1

h +ω k
h 〉Ω −

1
4
〈
ω k+1

h + ω k
h

2
,∇ ·

(
~u k+ 1

2
h

(
ω k+1

h + ω k
h

))
〉Ω +

1
4
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , ω k+1
h +ω k

h 〉Ω = 0.

(47)
The last two terms on the left hand side of (47) are equal and have opposite signs, therefore cancelling each other.
Conservation of enstrophy then follows directly.

4.4. Time reversibility

It is well known that the Navier-Stokes equations in the inviscid limit ν = 0 are time reversible, e.g. [10, 137]. This
important property has served in the past as a benchmark for numerical flow solvers [137] and for the construction of
improved LES subgrid models [138], for example. It is intimately related to the numerical dissipation and therefore it
is desirable to satisfy it.

To prove time reversibility of the proposed scheme we follow the same approach presented by Hairer et al. in [67].
Our time integrator Φ∆t is a one-step method since it uses only the information of the previous time step:

Φ∆t(~u
k+ 1

2
h , ω k

h ) = (~u k+ 3
2

h , ω k+1
h ).

A numerical one-step method Φ∆t is time-reversible, if it satisfies, see Hairer et al. [67],

Φ∆t ◦ Φ−∆t = id or equivalently Φ∆t = Φ−1
−∆t .

To prove time reversibility of our method we will show that Φ∆t ◦ Φ−∆t = id.

Start with known velocity ~u k+ 1
2

h at time instant tk+ 1
2 and known vorticity ω k

h at time instant tk. Advance both

quantities one time step to obtain the velocity ~u k+ 3
2

h at time instant tk+ 3
2 and the vorticity ω k+1

h at the time instant tk+1.
Reverse time and compute one time step. If the numerical method is time reversible the initial velocity and vorticity
fields must be retrieved, as represented in Figure 2. First we prove the reversibility of the vorticity time step and then
the reversibility of the velocity time step.
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tk tk+1tk+
1
2 tk+

3
2

ωk
h ωk+1

h , p̄ k+1
h~u

k+ 1
2

h ~u
k+ 3

2

h

Forward step

tk tk+1tk+
1
2 tk+

3
2

ωk
h ωk+1

h , p̄ k+1
h~u

k+ 1
2

h ~u
k+ 3

2

h

Backward step

Figure 2: Diagram of time reversibility. Left: forward step. Right: backward step.

4.4.1. Reversibility of vorticity time step
In the inviscid limit ν = 0, the forward vorticity time step, Figure 2 left, which advances the vorticity field from

the time instant tk to the time instant tk+1 is given by the second equation in (28) (vorticity transport equation)
Find ω k+1

h ∈ CGN such that:

〈
ω k+1

h − ω k
h

∆t
, ξh〉Ω −

1
2
〈
ω k+1

h + ω k
h

2
,∇ ·

(
~u k+ 1

2
h ξh

)
〉Ω +

1
2
〈∇ ·

~u k+ 1
2

h

ω k+1
h + ω k

h

2

 , ξh〉Ω = 0, ∀ξh ∈ CGN .
(48)

Using (29), this expression can be rewritten in matrix notation as an algebraic system of equations:

N
ω k+1 − ω k

∆t
−

1
2

Wk+ 1
2
ω k+1 + ω k

2
+

1
2

(
Wk+ 1

2
)> ω k+1 + ω k

2
= 0. (49)

Rearranging this expression it is possible to solve for ω k+1

ω k+1 =

(
N −

∆t
4

Wk+ 1
2 +

∆t
4

(
Wk+ 1

2
)>)−1 (

N +
∆t
4

Wk+ 1
2 −

∆t
4

(
Wk+ 1

2
)>)
ω k. (50)

If we now introduce the compact notation

A− := N −
∆t
4

Wk+ 1
2 +

∆t
4

(
Wk+ 1

2
)>

and A+ := N +
∆t
4

Wk+ 1
2 −

∆t
4

(
Wk+ 1

2
)>
, (51)

equation (50) becomes
ω k+1 = A−1

− A+ω
k. (52)

The backward time step for vorticity, Figure 2 right, is obtained by substituting ∆t by −∆t. Substituting this
transformation in (48) and using (29) leads to an expression identical to (49)

N
ω k − ω k+1

−∆t
−

1
2

Wk+ 1
2
ω k + ω k+1

2
+

1
2

(
Wk+ 1

2
)> ω k + ω k+1

2
= 0. (53)

This expression can be rearranged to yield a result similar to (52)

ω k = A−1
+ A−ω k+1. (54)

Combining the forward time step (52) with the backward time step (54) results in

ω k = A−1
+ A−

(
A−1
− A+ω

k
)

= ω k. (55)

Thus showing the reversibility of the vorticity time step.
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4.4.2. Reversibility of velocity time step
For the reversibility of the velocity time step consider first the forward time step, Figure 2 left, in the inviscid limit

ν = 0. The first equation in (28) (momentum equation) computes the evolution of the velocity field from time instant
tk+ 1

2 to the time instant tk+ 3
2

Find ~u k+ 3
2

h ∈ RTN , p̄ k+1
h ∈ DGN−1 such that:

〈
~u k+ 3

2
h − ~u k+ 1

2
h

∆t
,~vh〉Ω + 〈ω k+1

h ×
~u k+ 3

2
h + ~u k+ 1

2
h

2
,~vh〉Ω − 〈 p̄ k+1

h ,∇ · ~vh〉Ω = 0, ∀~vh ∈ RTN ,

〈∇ · ~u k+ 3
2

h , qh〉Ω = 0, ∀qh ∈ DGN−1 .

(56)

Using (29) we can write this expression as an algebraic system of equationsM
u k+ 3

2
h − u k+ 1

2

∆t
+ Rk+1 u k+ 3

2
h + u k+ 1

2

2
− P p̄k+1 = 0,

D u k+ 3
2

h = 0,

(57)

of which u k+ 3
2

h and p̄k+1 are the solution. Once p̄k+1 is known, it is possible to write an explicit expression for u k+ 3
2

h as
a function of u k+ 1

2 and p̄k+1

u k+ 3
2

h =

(
M +

∆t
2

Rk+1
)−1 (

M −
∆t
2

Rk+1
)

u k+ 1
2 + ∆t

(
M +

∆t
2

Rk+1
)−1

P p̄k+1. (58)

Introducing the compact notation

B+ := M +
∆t
2

Rk+1 and B− := M −
∆t
2

Rk+1, (59)

equation (58) becomes

u k+ 3
2

h = B−1
+ B− u k+ 1

2 + ∆t B−1
+ P p̄k+1. (60)

To compute the backward time step for velocity, Figure 2 right, we proceed in the same manner as for vorticity:
reverse the time step by replacing ∆t by −∆t. We can now apply this transformation to (56) and use (29) to obtain an
expression identical to (57) M

u k+ 3
2

h − u k+ 1
2

−∆t
+ Rk+1 u k+ 3

2
h + u k+ 1

2

2
− P p̄k+1 = 0,

D
(
u k+ 1

2

)
= 0,

(61)

If we assume for now that p̄k+1 is known and equal to the one obtained in the forward step, it is possible to use (61) to
write an expression equivalent to (60) but for the backward step

u k+ 1
2 = B−1

− B+ u k+ 3
2

h − ∆t B−1
− P p̄k+1. (62)

Replacing (60) into (62) yields

u k+ 1
2 = B−1

− B+

(
B−1

+ B− u k+ 1
2 + ∆t B−1

+ P p̄k+1
)

+ ∆t B−1
− P p̄k+1, (63)

which can be simplified to
u k+ 1

2 = u k+ 1
2 + ∆t B−1

− P
(
p̄k+1 − p̄k+1

)
. (64)

The last term on the right will be trivially equal to zero proving reversibility of the velocity time step. This term cancels
out because we assumed the total pressure computed with the backward time step is equal to the one computed in the
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forward step. For this reason, to finalise the proof we need to show that indeed the forward step total pressure is the
solution for the pressure in the backward step. We start with a modified version of (57)

M
u k+ 3

2
h − u k+ 1

2

∆t
+ Rk+1 u k+ 3

2
h + u k+ 1

2

2
− P p̄k+1 = 0,

D
(
u k+ 3

2
h + u k+ 1

2

)
= 0.

(65)

This system of equations is equivalent to (57) because the divergence of the discrete velocity is zero, therefore

D~u k+ 1
2

h = 0. Rearranging gives
(
M +

∆t
2

Rk+1
)

u k+ 3
2

h −

(
M −

∆t
2

Rk+1
)

u k+ 1
2 − ∆t P p̄k+1 = 0,

D
(
u k+ 3

2
h + u k+ 1

2

)
= 0.

(66)

In the same way the backwards step results in the following system of equations
−

(
M −

∆t
2

Rk+1
)

u k+ 1
2 +

(
M +

∆t
2

Rk+1
)

u k+ 3
2

h − ∆t P p̄k+1 = 0,

D
(
u k+ 3

2
h + u k+ 1

2

)
= 0.

(67)

The system (66) is the same as (67), therefore the pressure is necessarily the same in both cases. Thus proving the
reversibility of the velocity time step.

5. Numerical test cases

In order to verify the numerical properties of the proposed method we apply it to the solution of two well known
test cases: (i) Taylor-Green vortex and (ii) inviscid shear layer roll-up. With the first test the convergence properties
of the method will be assessed and with the second the time reversibility and mass, energy, enstrophy, and vorticity
conservation will be verified.

5.1. Order of accuracy study: Taylor-Green vortex
In order to verify the accuracy of the proposed numerical method we compare the numerical results against an

analytical solution of the Navier-Stokes equations. A suitable analytical solution is the Taylor-Green vortex, given by:

ux(x, y, t) = − sin(πx) cos(πy) e−2π2νt,

uy(x, y, t) = cos(πx) sin(πy) e−2π2νt,

p(x, y, t) =
1
4

(cos(2πx) + cos(2πy)) e4π2νt,

ω(x, y, t) = −2π sin(πx) sin(πy) e−2π2νt.

(68)

The solution is defined on the domain Ω = [0, 2] × [0, 2], with periodic boundary conditions. The initial condition for
both the velocity ~u 0

h and vorticity ω 0
h are given by the exact solution (68). The kinematic viscosity is set to ν = 0.01.

For this study we consider the evolution of the solution from t = 0 to t = 1.
The first study focusses on the time convergence. For this we have used 1024 triangular elements and polynomial

basis functions of degree p = 4 and time steps equal to ∆t = 1, 1
2 ,

1
4 ,

1
8 ,

1
16 . As can be observed in Figure 3 left,

this method achieves a first order convergence rate, as opposed to a second order convergence rate of an implicit
formulation, see [24].

Regarding the spatial convergence we have tested the convergence rate of discretizations with basis functions
of different polynomial degree, p = 1, 2, 4. In order not to pollute the spatial convergence rate with the temporal
integration error, we have used different time steps: ∆t = 2.5 × 10−2 for p = 1, ∆t = 1.0 × 10−3 for p = 2 and
∆t = 1.0 × 10−4 for p = 4. As can be seen in Figure 3, this method has a convergence rate of p-th order for basis
functions of polynomial degree p.
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Figure 3: Convergence plots of velocity error, ‖~u − ~uh‖L2(Ω). Left: error in velocity as function of time step size ∆t.
Right: error in velocity as function of mesh size, h, for basis functions of polynomial degree p = 1, 2, 4.

5.2. Time reversibility and mass, energy, enstrophy, and vorticity conservation: inviscid shear layer roll-up

The second group of tests focusses on the conservation properties of the proposed numerical method. For this
set of tests we consider inviscid flow ν = 0. We consider here the simulation of the roll-up of a shear layer, see e.g.
[24, 32, 139, 140]. This solution is particularly challenging because during the evolution large vorticity gradients
develop. Several methods are known to blow up, e.g. [139]. We consider on the periodic domain Ω = [0, 2π]× [0, 2π]
the following initial conditions for velocity ~u

ux(x, y) =


tanh

(
y − π

2

δ

)
, y ≤ π,

tanh
 3π

2 − y
δ

 , y > π,

uy(x, y) = ε sin(x), (69)

and vorticity ω

ω(x, y) =


1
δ

sech2
(

y − π
2

δ

)
, y ≤ π,

−
1
δ

sech2
 3π

2 − y
δ

 , y > π,

(70)

with δ = π
15 and ε = 0.05 as in [24, 32].

The small perturbation ε in the y-component of the velocity field will trigger the roll-up of the shear layer. We
show the contour lines of vorticity at t = 4 and t = 8, Figure 5 and Figure 6 respectively. The plots on the left side of
Figure 5 and Figure 6 correspond to a spatial discretization of 6400 triangular elements of polynomial degree p = 1
and time step size ∆t = 0.1. On the right we present the results for a spatial discretization of 6400 triangular elements
of polynomial degree p = 4 and time step size ∆t = 0.01. An example mesh with 1600 elements is shown in Figure 4.

Although it is possible to observe oscillations in the vorticity plots, especially for p = 1, none of them blows
up, as is reported in [139]. These oscillations necessarily appear whenever the flow generates structures at a scale
smaller than the resolution of the mesh. Since energy and enstrophy are conserved, there is no possibility for the
numerical simulation to dissipate the small scale information. This is a feature observed in all conserving inviscid
solvers without a small scale model.

In order to assess the conservation properties of the proposed method we computed the evolution of the shear-
layer problem from t = 0 to t = 16, using different time steps ∆t = 1, 1

2 ,
1
4 ,

1
8 . We have used a coarse grid with 6400

triangular finite elements and basis functions of polynomial degree p = 1 for the spatial discretization. In Figure 7
left we show the evolution of the kinetic energy error with respect to the initial kinetic energy, K(0)−Kh(t)

K(0) . This result
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Figure 4: Example mesh with 1600 triangular elements.
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Figure 5: Vorticity field of inviscid shear layer roll-up at t = 4 obtained with 6400 triangular finite elements, contour
lines (±1,±2,±3,±4,±5,±6) as in [32]. Left: solution with basis functions of polynomial degree p = 1 and time step
∆t = 0.1. Right: solution with basis functions of polynomial degree p = 4 and time step ∆t = 0.01.

confirms conservation of kinetic energy, as proven in Section 4.2. A similar study was performed for enstrophy in
Figure 7 right. The magnitude of the error observed is of machine precision, verifying conservation of enstrophy, as
proven in Section 4.3. The evolution of the error of total vorticity is shown in Figure 8 left. The error of vorticity
shows again an error of the order of machine precision. In Figure 8 right we show the divergence of the velocity field.
As can be seen, this discretization results in a velocity field that is divergence free.

In order to assess the conservation properties of the proposed method for long time simulations we computed the
evolution of the shear-layer problem from t = 0 to t = 128, using different time steps ∆t = 1, 1

2 ,
1
4 ,

1
8 . We have used

a very coarse grid with 100 triangular finite elements and basis functions of polynomial degree p = 4 for the spatial
discretization. In Figure 9 left we show the evolution of the kinetic energy error with respect to the initial kinetic
energy, K(0)−Kh(t)

K(0) . This result confirms conservation of kinetic energy, as proven in Section 4.2. The same study was
performed for enstrophy in Figure 9 right. The error observed is very small, verifying conservation of enstrophy, as
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Figure 6: Vorticity field of inviscid shear layer roll-up at t = 8 obtained with 6400 triangular finite elements, contour
lines (±1,±2,±3,±4,±5,±6) as in [32]. Left: solution with basis functions of polynomial degree p = 1 and time step
∆t = 0.1s. Right: solution with basis functions of polynomial degree p = 4 and time step ∆t = 0.01s.

proven in Section 4.3. The evolution of error for total vorticity is shown in Figure 10 left. The error of total vorticity
shows that this method is capable of conserving the total vorticity on long time simulations. In Figure 10 right we
show the divergence of the velocity field. As can be seen, this discretization results in a velocity field that is divergence
free. Similar results are obtained for p = 1.

The final test addresses time reversibility. In order to investigate this property of the solver, we let the flow evolve
from t = 0 to t = 8 and then reversed the time evolution and evolved again for the same time, corresponding to the
evolution from t = 8 to t = 0. We have performed this study with 6400 triangular finite elements of polynomial degree
p = 1 and different time steps ∆t = 1, 1

2 ,
1
4 ,

1
8 . In Figure 11 we show the error between the initial vorticity field and

the final vorticity field. As can be seen, the errors are in the order of 10−12, showing the reversibility of the method up
to machine accuracy.
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Figure 7: Simulation of shear-layer problem with 6400 triangular finite elements, basis functions of polynomial
degree p = 1, and different time steps ∆t = 1, 1

2 ,
1
4 ,

1
8 . Left: kinetic energy error with respect to initial kinetic energy,

K(0)−Kh(t)
K(0) . Right: enstrophy error with respect to initial enstrophy, E(0)−Eh(t)

E(0) .
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Figure 8: Simulation of shear-layer problem with 6400 triangular finite elements, basis functions of polynomial
degree p = 1, and different time steps ∆t = 1, 1
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8 . Left: total vorticity error with respect to initial total vorticity,

W(0) −Wh(t). Right: evolution of the divergence of the velocity field.
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Figure 9: Simulation of shear-layer problem with 100 triangular finite elements, basis functions of polynomial degree
p = 4, and different time steps ∆t = 1, 1
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8 . Left: kinetic energy error with respect to initial kinetic energy,

K(0)−Kh(t)
K(0) . Right: enstrophy error with respect to initial enstrophy, E(0)−Eh(t)
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Figure 10: Simulation of shear-layer problem with 100 triangular finite elements, basis functions of polynomial
degree p = 4, and different time steps ∆t = 1, 1

2 ,
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1
8 . Left: total vorticity error with respect to initial total vorticity,

W(0) −Wh(t). Right: evolution of the divergence of the velocity field.
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Figure 11: Error between the initial vorticity field and the vorticity field computed by evolving the inviscid Navier-
Stokes equations to t = 8s and then reversing the time step until t = 0s is reached again. The results shown correspond
to a mesh of 6400 triangular finite elements, polynomial degree p = 1, and different time steps ∆t = 1, 1

2 ,
1
4 ,

1
8 (starting

from the bottom right and going clockwise).
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6. Conclusions

This paper presents a new arbitrary order finite element solver for the Navier-Stokes equations. The advantages of
this method are: (i) high order character of the spatial discretization, (ii) geometric flexibility, allowing for unstruc-
tured triangular grids, (iii) exact preservation of conservation laws for mass, kinetic energy, enstrophy and vorticity,
and (iv) time reversibility.

The construction of a numerical flow solver with these properties leads to a very robust method capable of per-
forming very under-resolved simulations without the characteristic blow up of standard discretizations.

For a simpler Taylor-Green analytical solution, the convergence properties of the proposed method have been
shown. With the more challenging shear layer roll-up test case, we have shown the robustness of the method. Con-
servation of kinetic energy, enstrophy and vorticity up to machine accuracy was shown for this test case, even for low
order approximations.

Nevertheless, the proposed method still allows further improvement, mainly in terms of time integration. One of
the advantages of the method is the fact that the time integration method avoids the solution of a fully coupled non-
linear system of equations. Instead two quasi-linear systems of equations are solved, without the need for expensive
iterations for each time step. The downside of this approach is that, for now, the time integration convergence rate
is limited to first order. In the future we intend to compare this approach to a fully implicit formulation using higher
order Gauss integration. Another aspect which is currently being investigated is the treatment of solid boundaries.
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