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Abstract

A new method of moments for solving the population balance equation is

developed and presented. The moment projection method (MPM) is numer-

ically simple and easy to implement and attempts to address the challenge

of particle shrinkage due to processes such as oxidation, evaporation or dis-

solution. It directly solves the moment transport equation for the moments

and tracks the number of the smallest particles using the algorithm by Blum-

stein and Wheeler [Phys. Rev. B, 8:1764–1776, 1973]. The performance of

the new method is measured against the method of moments (MOM) and

the hybrid method of moments (HMOM). The results suggest that MPM

performs much better than MOM and HMOM where shrinkage is dominant.

The new method predicts mean quantities which are almost as accurate as

a high-precision stochastic method calculated using the established direct

simulation algorithm (DSA).
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1. Introduction1

Population balance equations (PBEs) have received considerable interest2

in the chemical engineering field due to its wide ranging applications from3

soot formation in combustion [1] to crystallisation [2]. The PBE describes4

the evolution of a particle size distribution (PSD) that is dependent on time,5

spatial location and a set of internal coordinates which characterise particle6

properties (e.g., surface area, volume and chemical composition) [3–6]. A7

typical PBE contains an inception term describing the formation of particles8

from the surrounding fluid, a coagulation term due to the collision and stick-9

ing of particles, a growth term due to surface reaction and condensation on10

individual particles, and a shrinkage term due to oxidation, evaporation or11

dissolution. In mathematics, PBEs are a series of integro-differential equa-12

tions which are often so complex that analytical solutions rarely exist [7].13

A number of methods have been proposed to solve these types of equa-14

tions [8–10]. In ref. [11] a stochastic method is developed to solve the PBE15

describing the evolution of soot particles in laminar premixed flames. Soot16

particles are represented by an ensemble of stochastic particles and parti-17

cle processes are treated probabilistically [11, 12]. The simulations can be18

proven to converge to the deterministic solution of the PBE [13]. However,19

the simulations can be prohibitively expensive when extended to particles20

with multidimensional internal coordinates [14, 15]. In sectional methods,21

the PSD is discretised into a number of bins, or sections. The PBE is then22
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transformed into a set of ordinary differential equations (ODEs) describing23

the evolution of quantities such as the mass and number of particles within24

each bin. Many of the proposed methods are limited to specific grids or25

to specific forms of the PBE. In ref. [16] a fixed pivot method is developed26

which is able to evolve any two arbitrary distribution properties by repre-27

senting the PSD as a delta function within each bin [16–20]. The moving28

pivot approach [16], which is an extension of the fixed pivot method, takes29

the pivot as the location of the delta function within each bin. When the30

PSD is heavily weighted towards one end of some of the bins, the moving31

pivot approach is more accurate than the fixed pivot approach. Recently,32

the traditional sectional method [21, 22] has been extended to conserve more33

than two moments in the discretised solution of the PBE using a high-order34

method [23]. Similar to stochastic methods, sectional methods are intuitive35

and accurate. However, a large number of bins may be required to obtain36

good accuracy which can make the method computationally expensive [24].37

For PBEs with only one or two internal coordinates the method of mo-38

ments (MOM) is widely used because of the low computational cost [25–29].39

The PBE is multiplied by property functions, e.g., integer powers of the40

internal coordinates, and integrated over state space. The resulting ODEs41

are then solved to yield integral quantities such as total particle number42

and mass. Depending on the coagulation kernel used the moment trans-43

port equations may not be closed, i.e., presence of fractional- or negative-44

order moments. In general, there are two ways to close the equations:45

(1) create a functional relationship between unknown moments and trans-46

ported moments such as in the method of moments with interpolative closure47
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(MOMIC) [6, 30, 31]; or (2) reconstruct the PSD from the transported mo-48

ments and approximate the unclosed terms using Gauss quadrature such as in49

the quadrature method of moments (QMOM) or direct quadrature method of50

moments (DQMOM) [24, 28, 29, 32–34]. MOMIC has been widely used due51

to its numerical simplicity and ease of implementation while being reasonably52

accurate in dealing with inception, coagulation and growth processes [30]. In53

ref. [35] it is found that the solution obtained using QMOM and DQMOM54

showed an excellent agreement with the analytical solution for aggregation55

and breakage problems. A review of the models of particle formation and56

the numerical methods used to solve them can be found in ref. [36].57

However, MOMIC, QMOM and DQMOM all fail in the treatment of58

shrinkage problems, where the pointwise value of the PSD at the smallest59

particle mass is required to close the moment equations [7, 37, 38]. Note60

that where the term shrinkage is used, it is implied that depletion is in-61

cluded. This problem is addressed in ref. [39] by introducing a source term62

for the smallest particles in what is known as the hybrid method of moment63

(HMOM). HMOM adopts the idea of DQMOM where the PSD is discretised64

into small and large particles and the production of the smallest particle is as-65

sumed to be proportional to the mass lost from the large particles. However,66

as we will show later, this assumption is too coarse and can overestimate the67

production of the smallest particles. In ref. [37] a finite-size domain complete68

set of trial functions method of moments (FCMOM) is proposed that uses a69

series of Legendre polynomials to obtain a continuous reconstruction of the70

PSD, thus generating information about the smallest particles. However, this71

approach cannot guarantee the positivity of the reconstructed PSD because72
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only a finite number of polynomials can be determined [38]. An alterna-73

tive method is the extended quadrature method of moments (EQMOM) [38]74

where the PSD is approximated by continuous non-negative kernel density75

functions, e.g., gamma, beta or lognormal functions. High accuracy can be76

achieved in terms of the reconstructed PSD. Information about the shape77

of the PSD is needed a priori to select a suitable kernel density function;78

otherwise, a large number of kernel functions are required which can make79

this method excessively complicated and computationally expensive.80

The purpose of this paper is to present a new method, the moment pro-81

jection method (MPM), which is able to robustly handle the shrinkage of82

particles while retaining numerical simplicity. The paper is organized as fol-83

low. Section 2 presents moment methods for solving the population balance84

equation. The detailed mathematical formulation of MPM and related algo-85

rithms are introduced. In Section 3, MPM is compared with MOM, HMOM86

and the stochastic method for the processes of inception, coagulation, growth87

and shrinkage. In Section 4 principal conclusions are summarised.88

2. Moment methods for solving the population balance equation89

2.1. Population balance equation90

We consider a spatially homogeneous problem with a discrete-mass dis-91

tribution where the smallest particles have a mass of m1 and particles in the92

mass class i have a mass of mi = im1 [31]. All particles are spherical and93

have constant density. The PBE governing the evolution of the distribution94

can be written as:95
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dN(i, t)

dt
= R(i, t) +G(i, t) +W (i, t) + S(i, t), i = 1, 2, . . . ,∞, (1)

where N(i, t) is the number of particles belonging to the mass class i at96

time t (which we will refer to as Ni from hereon), and R, G, W and S are97

the inception, coagulation, surface growth and shrinkage terms, respectively,98

the notation consistent with ref. [30]. This is known as a particle number99

representation of the PSD. The specific functional forms of the source terms100

used in this work will be discussed in Section 3.101

2.2. Moment equation102

As already mentioned before, an efficient approach for solving the PBE103

is MOM where the PBE is transformed into a set of moment equations and104

integral values such as the total particle number and mass can be computed.105

This is achieved by applying the definition, moment of order k of the PSD106

Mk =
∞∑
i=1

ikNi, k = 0, 1, 2, . . . , (2)

to Eq. (1), leading to:107

dMk

dt
= Rk(M) +Gk(M) +Wk(M) + Sk(M,N1). (3)

Note that the source terms on the right-hand side of Eq. (3) are now a func-108

tion of moments; in addition, the shrinkage term is a function of the number109

of the smallest particle, N1. When the source terms contain complex kernels,110

fractional- or negative-order moments are encountered [26]. Therefore, the111

mathematical difficulty of MOM lies in obtaining closure for these moment112

6



source terms using a finite set of moments. This requires either a priori113

specification of the PSD or a suitable closure scheme. In MOMIC [30], clo-114

sure is accomplished by Lagrange polynomial interpolation of the logarithm115

of the whole-order moments whose values are available at each integration116

step of Eq. (3). By separating interpolation for positive- and negative-order117

moments, MOMIC shows very high accuracy in the treatment of unimodal118

PSDs undergoing coagulation and growth and also good accuracy for bi-119

modal PSDs formed from the competition between persistent inception and120

coagulation [30, 31]. Another type of closure scheme uses Gauss quadratures121

such as in QMOM where the PSD is represented by a weighted summation122

of Dirac delta functions [32]. The general form of the moment equation in123

QMOM can be written as:124

dM̃k

dt
= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij), j = 1, . . . , N, (4)

where wj and ij, respectively, are the weights and abscissas of the delta func-125

tions which can be derived from the moments using the product difference126

(PD) algorithm [40]. N is the number of delta functions. M̃ is the empiri-127

cal moment determined from the product of wj and ij and, therefore, is an128

approximation of M of the true PSD. We use the symbol “∼” to express129

approximations of the particle quantities of Eqs. (2) and (3). DQMOM is130

similar to QMOM except that in DQMOM transport equations for wj and131

ij are directly solved:132

dwj
dt

= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij),

dij
dt

= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij).

(5)
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Note the absence of a shrinkage source term as both of these methods are un-133

able to handle shrinkage. Although DQMOM is superior to QMOM in terms134

of computational efficiency [35], to determine the source terms for wj and ij,135

inversion of a matrix composed of the abscissas is required. When some of the136

abscissas are not distinct the matrix may exhibit singularity problems, i.e.,137

the rank of the matrix is lower than its dimension, thus making its inversion138

impossible [34]. This implies that not all of the delta functions are required139

to represent the PSD. This situation arises, for example, when the PSD is140

unimodal; all the delta functions would be located at the same position asso-141

ciated with the mode of the distribution. This has been addressed by adding142

small perturbations to the non-distinct abscissas [34]. Another important143

case is when the PSD is generated from an inception process; at the first144

time step wj and ij would be undefined. To overcome this problem “seeds”145

have been introduced with negligibly small weights and abscissas which did146

not lead to any discernable difference in the moments [34].147

2.3. Moment projection method148

In MPM, we approximate the true PSD by assuming that all particles149

are distributed into a finite number of particle mass classes. The k-th order150

empirical moment can then be expressed as:151

M̃k = αk1Ñα1 +

Np∑
j=2

αkj Ñαj , (6)

where αj is the particle mass and Ñαj refers to the number of particles of152

the mass αj. Np is the number of particle mass classes and is a user-defined153

parameter. Mathematically, αj and Ñαj can be interpreted as the particle154
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number representation of ij and wj in QMOM and DQMOM. MPM uses αj155

and Ñαj as an assumption of the form of the PSD itself, in a similar vein156

to the fixed pivot method [16]. By construction the number of moments157

that can be obtained are bounded to Np because the particle masses and158

particle number determined in MPM only ensure the first few corresponding159

moments are equal to those from the true PSD:160

M̃k = Mk, k = 0, . . . , 2Np − 2. (7)

From Eq. (3), it follows that:161

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃,N1). (8)

In order to evaluate the boundary flux (N1) present in the shrinkage term,162

we fix the first particle mass to be equal to the smallest particle mass of the163

true PSD: α1 = m1. Therefore, Ñα1 , the number of particles of the mass α1,164

reflects the number of the smallest particles of the true PSD. The moment165

transport equations in MPM can then be given as:166

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1). (9)

The problem now lies in determining αj and Ñαj while ensuring that α1 = m1167

(see Eq. (6)). This can be achieved by using the Blumstein-Wheeler algo-168

rithm [41] which was originally applied to the moments of the frequency169

distribution of harmonic solids. A real symmetric tridiagonal matrix is con-170

structed from a series of recursion coefficients of orthogonal polynomials com-171

posed of moments [42, 43]. αj and Ñαj can be determined by solving for the172

eigenvalues and eigenvectors of the matrix. As for the requirement that α1173
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be fixed to be equal to m1, this can be fulfilled simply by modifying the last174

recursion coefficient of the tridiagonal matrix using m1. The full algorithm175

can be found in Appendix A. Algorithm 1 describes the numerical procedure176

of MPM.177

There are two important differences between MPM and QMOM. First,178

the source terms for M̃k in MPM are directly evaluated using the moment179

transport equation. This allows us to take advantage of the accuracy and180

computational efficiency of MOMIC to handle inception, growth and coagu-181

lation, while we close the moment equation for shrinkage by approximating182

the boundary flux term N1 with the number of particles of the smallest mass183

Ñα1 . By contrast, in QMOM evaluation of integrals of the source terms in-184

volve the unknown PSD and is approximated with a Gaussian quadrature [24,185

33]. The second difference is the algorithm used to obtain αj and Ñαj from186

the moments in MPM, or weights and abscissas in QMOM. In QMOM this187

is achieved through the Gordon algorithm [40], in which a moment matrix188

is constructed according to a “product-difference” recursion relation to ob-189

tain the coefficients of a continued fraction. While in MPM we apply the190

Blumstein-Wheeler algorithm [41] where the derivation is given in terms of191

orthogonal polynomials which is more straightforward than that given by192

Gordon [40] in terms of continued fractions. Furthermore, this algorithm193

can be easily modified to treat the cases in which zero, one or two particle194

mass classes are fixed.195
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Algorithm 1: Moment projection method algorithm.
Input: Moments of the PSD Mk(t0) for k = 0, . . . , 2Np − 2 or the PSD itself

N(i, t0) for i = 1, . . . , imax (imax: the largest particle mass) at initial

time t0; final time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, . . . , 2Np − 2 at final

time tf where Np is the number of particle masses used to

approximate the PSD.

Calculate the moments of the true PSD using Eq. (2):

Mk(t0) =

imax∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

For M̃k = Mk, solve Eq. (6) for Ñα1
(α1 is fixed) and αj and Ñαj

(j = 2, . . . , Np) using Algorithm 2:

M̃k(t0) = αk1Ñα1
(t0) +

Np∑
j=2

αkj Ñαj
(t0), k = 0, . . . , 2Np − 2.

t←− t0, M̃k(t)←− M̃k(t0);

while t < tf do

Integrate Eq. (9) over the time interval [ti, ti + h] (using an ODE solver):

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1),

with initial condition:  M̃k(ti)

Ñα1(ti)

 =

 M̃k,i

Ñα1,i

 ,

where Rk(M̃), Gk(M̃), Wk(M̃) and Sk(M̃, Ñα1
) are given by Eqs. (11),

(14), (16) and (18), respectively.

Use Blumstein algorithm to update αj and Ñαj , and assign solution at

ti+1 = ti + h:  M̃k,i+1

Ñα1,i+1

←
 M̃k(ti + h)

Ñα1
(ti + h)

 .

i←− i+ 1;

196
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3. Numerical results197

To assess the performance of MPM, numerical results are compared to198

those from MOM, HMOM and the stochastic method. We test the method for199

the individual processes of inception, coagulation, growth and shrinkage, then200

for all of these processes combined. As the focus of this paper is on MPM’s201

ability to handle shrinkage, we devise a number of test cases where different202

types of PSDs are supplied as the initial condition and present the errors in203

the moments relative to a high-precision stochastic solution calculated using204

the direct simulation algorithm (DSA) [13]. The high-precision solution was205

obtained using 131,072 stochastic particles and a single run; the remainder of206

the numerical and model parameters used may be found in Table 1. HMOM207

was originally developed for bivariate PBEs [39, 44]. We modify this method208

to make it applicable for monovariate PBEs. Pertinent details of the method209

can be found in Appendix B.210

Table 1: Numerical and model parameters used for stochastic solution

Description Value

Number of splits 100

Time step 0.001 s

Number of stochastic particles 131,072

Number of runs 1

Maximum zeroth moment 1× 1018 #/m3

In this work constant kernels are used. The use of more realistic Brow-211

nian collision kernels would lead to a closure problem due to fractional-212
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and negative-order moments which would appear on the right-hand side of213

Eq. (9). The way in which MPM is formulated means that these source terms214

can be closed using MOMIC; however, this introduces an interpolation error.215

The aim here is to investigate the MPM error in isolation.216

3.1. Pure inception217

Inception is the formation of particles from the surrounding fluid and is a218

common phenomenon in the chemical engineering field. By definition these219

particles have the smallest mass m1 and is assumed to be equal to 1. In this220

work the inception rate is assumed to be:221

R(i, t) = Im1 , (10)

where the inception kernel Im1 = 100 s−1. The moment source term due to222

inception can be derived to be:223

Rk(M) = mk
1Im1 , k = 0, . . . , 2Np − 2. (11)

It can be seen that the moment source term is only dependant on the smallest224

particle mass and the inception kernel. Simulations are performed where a225

log-normal distribution is supplied as the initial condition:226

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100, (12)

which is shown in Fig. 1 (continuous line). Also shown in Fig. 1 (dotted227

line) is the PSD computed by solving the master equation after 10 seconds228

of pure inception. It develops a mode at the smallest particles because only229

particles with the smallest mass are formed. We now want to see whether230

MPM is able to capture this increase in the number of the smallest particles.231
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The particle masses αj and the corresponding number of particles Ñαj from232

MPM are shown in Fig. 2. Four particles masses (Np = 4) are used to233

approximate the PSD. As α1 is fixed to be equal to the smallest particle234

mass, the particle masses remain unchanged. The number of particles of the235

smallest mass Ñα1 does indeed increase (linear because of constant rate) while236

the other Ñαj (j = 2, 3, 4) do not change. As a further point of comparison237

the zeroth and first moments are compared with those from MOM, HMOM238

and the stochastic method in Fig. 3. All the methods give the same results.239

The continuous inception of particles leads to a linear increase in the total240

number and mass of particles, M0 and M1, respectively.241
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3.2. Pure coagulation242

Coagulation is a nonlinear process that describes the collision and sticking243

of particles. The source term for coagulation considered in this work is of244
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the form:245

G(i, t) =
1

2

i∑
j=1

KCgNjNi−j −
∞∑
j=1

KCgNiNj. (13)

The first term on the right-hand side of Eq. (13) refers to the formation of246

particles of mass i due to collisions between all combinations of particles247

with masses that sum to i. It contains a factor of a 1/2 to avoid double248

counting. The second term represents the destruction of particles of mass i249

due to collisions between particles of mass i and particles of any other mass j.250

The coagulation kernel KCg is usually dependent on the collision regime and251

the collision diameter. In this work, this kernel is assumed to be a constant:252

KCg = 2× 10−4 s−1. The moment source term due to coagulation is:253

Gk(M) =



− 1/2KCgM
2
0 , k = 0,

0, k = 1,

1

2

k−1∑
r=1

k
r

KCgMrMk−r, k = 2, . . . , 2Np − 2.

(14)

The same log-normal distribution in Eq. (12) is supplied as the initial condi-254

tion and the evolution of the PSD under pure coagulation is shown in Fig. 4.255

The PSD is computed using the stochastic method because for the given co-256

agulation kernel and simulation time, if the master equation were to be used,257

particles would rapidly reach the maximum mass class which would introduce258

errors. Multiple coagulation peaks are formed as particles collide and stick259

together, and these particles in turn collide and stick, and so forth. Figure 5260

shows that αj (j = 2, 3, 4) increase reflecting an increase in the average par-261

ticle mass. An increase in Ñα2 is observed at the beginning of the simulation262

due to the collision and sticking of the smallest particles. The time evolution263
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of M0 and M1 computed using the different methods are compared in Fig. 6.264

Since no fractional- or negative-order moments are present in the moment265

source term, all the methods generate the same results. Coagulation is a266

nonlinear process, therefore, we observe a nonlinear decrease in M0 while M1267

remains unchanged.268
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Figure 4: Evolution of the PSD computed using the stochastic method under pure coag-

ulation.

3.3. Pure growth269

Growth is a process whereby particles increase in mass due to surface270

reaction or condensation. Here we consider a growth process where its source271

term is of the form of:272

W (i, t) = KG(Ni−δ −Ni), (15)

17



0 2 4 6 8 1 0
0

8 0

1 6 0

2 4 0

3 2 0

α4

α3

α2

a j(d
im

en
sio

nle
ss

)

T i m e  ( s )

α1

0 2 4 6 8 1 0
0

2 5 0

5 0 0

7 5 0

1 0 0 0

Na
j (d

im
en

sio
nle

ss
)

T i m e  ( s )

~

~
~
~

N α 4

N α 3

N α 2

N α 1
~

Figure 5: Evolution of the particle masses αj (left panel) and the corresponding number

of particles Ñαj
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pure coagulation.

where the growth kernel KG = 20 s−1, and δ is the change in particle mass273

after a growth process and is assumed to be 1. The moment source term can274
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be expressed as:275

Wk(M) =


0, k = 0,

KG

k∑
r=1

k
r

 δrMk−r, k = 1, . . . , 2Np − 2.
(16)

Again, the log-normal distribution in Eq. (12) is supplied as the initial con-276

dition. Figure 7 shows the evolution of the PSD computed by solving the277

master equation under pure growth. The PSD shifts towards larger particle278

masses; however, the distribution widens and the peak decreases in magni-279

tude consistent with a growth process. The simulation results using MPM280

is similar to that of pure coagulation. αj (j = 2, 3, 4) increase as shown in281

Fig. 8 and the mean quantities computed using MPM are in agreement with282

MOM, HMOM and the stochastic method as shown in Fig. 9. The total par-283

ticle number remains unchanged while a linear increase in the total particle284

mass is observed.285

3.4. Pure shrinkage286

Shrinkage is the opposite of growth but with an important difference:287

when particles of the smallest mass shrink they are removed from the system288

which leads to a decrease in the total particle number. Here we consider the289

source term for shrinkage of the form:290

S(i, t) = KSk(Ni+δ −Ni), (17)

where the shrinkage kernel KSk = 30 s−1 and δ is the change in particle mass291

after a shrinkage process and is assumed to be 1. The moment source term292
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Figure 7: Evolution of the PSD computed by solving the master equation under pure

growth.

for shrinkage can then be expressed as:293

Sk(M,N1) =


−KSkN1, k = 0,

KSk

k∑
r=1

k
r

 (−δ)rMk−r, k = 1, . . . , 2Np − 2.
(18)

It can be seen that the zeroth order shrinkage moment source term, S0, is294

dependent on the number of particles of the smallest mass, N1. To obtain295

closure of Eq. (18), N1 has to be determined. However this value is unknown296

because it depends on the number of the larger particles which shrink to297

form the smallest particles. A worst case scenario is assuming N1 = 0 when298

solving MOM for shrinkage such as used in this work. In MPM, we fix the first299
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Figure 9: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under

pure growth.

particle mass, α1, to be equal to the smallest mass so that the corresponding300

number of particles, Ñα1 , can be used as an approximation of N1 of the true301

PSD.302
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So far we have looked at the performance of MPM for the individual303

processes of inception, growth and coagulation where only a log-normal dis-304

tribution is supplied as the initial condition. Since the focus of this paper is305

on the development of a method which is able to handle shrinkage, a more306

rigorous investigation is warranted. Five different types of PSDs are supplied307

as the initial condition and for each case the number of particles masses, Np,308

is varied.309

Case 1 A log-normal distribution which we have seen before but we repeat

here for ease of reference:

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100.

Case 2 Another log-normal distribution where the average particle mass is310

about three orders-of-magnitude larger than the smallest particle mass:311

N(i, t = 0) = 104 exp(−(log(i)− log(1000))2/0.01), i = 1, 2, . . . , 3000.

(19)

Case 3 A unimodal distribution:312

N(i = 30, t = 0) = 100. (20)

Case 4 A parabolic distribution:313

N(i, t = 0) = 300i− 10i2, i = 1, 2, . . . , 30. (21)

Case 5 A uniform distribution:314

N(i, t = 0) = 10, i = 1, 2, . . . , 30. (22)
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To determine the error in the moments computed using MPM the follow-315

ing relative error metric is used:316

Mk,error =
|M̃k −Mk|
Mk + η

, (23)

where M̃k is the k-th order moment calculated using MPM while Mk is from317

a high-precision stochastic solution. η is a constant assumed to be 1. The318

purpose of introducing η is to prevent the error metric from tending towards319

infinity because as particles shrink and are removed from the system Mk320

would tend towards zero.321

For Case 1, a log-normal distribution is supplied as the initial condition.322

Evolution of the PSD computed by solving the master equation under pure323

shrinkage is shown in Fig. 10. The distribution shifts towards the smallest324

particle mass and at t = 2 s all the particles have been removed from the325

system.326

The simulation results using MPM where five particle masses (Np = 5)327

are used to approximate the PSD are shown in Fig. 11. αj (j = 2, 3, 4, 5)328

move towards the smallest particle mass before flattening out as almost all329

the particles have been removed. Large particles shrink to form smaller330

ones, therefore, Ñαj (j = 2, 3, 4, 5) decreases while Ñα1 increases. However,331

once the rate of removal of the smallest particles is greater than the rate of332

formation from large particles Ñα1 also decreases.333

The relative error for moments of order k = 0 to 8 (Np = 5; k = 0, . . . , 2Np − 2)334

using MPM is shown in Fig. 12. The errors gradually increase over time as335

the moments tend towards zero. However, at t = 1 s, when almost no parti-336

cles are left in the system, the errors are at most ∼ 10 %.337
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Figure 10: Evolution of the PSD computed by solving the master equation under pure

shrinkage (Case 1).

To investigate the influence of the number of particle masses, Np, on the338

accuracy of MPM, Np is varied from 3 to 5. (We see little decrease in the error339

forNp > 5.) The zeroth and first moments computed using MPM for different340

Np are compared with the stochastic solution in Fig. 13. M̃0 computed341

using MPM for Np = 3 (dashed line) shows an obvious discrepancy with342

M0 computed using the stochastic method (continuous line). By contrast,343

the results obtained using Np = 4 and 5 show a good agreement with the344

stochastic solution. M̃1 does not display any sensitivity to Np. The time-345

averaged (t = 0 to 1.5 s) relative moment error, Mk,error, is shown in Table 2346

as a function of Np and k. A higher accuracy is observed when larger values of347

Np are used; the errors show about an order of magnitude decrease whenNp is348
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(right panel) using MPM under pure shrinkage. The PSD

at t = 0 s in Fig. 10 (continuous line) is supplied as the initial condition

(Case 1). A total of five particle masses are used to approximate the PSD.

increased from 3 to 5. As more particle masses are used, the approximation349

made on the pointwise value of the PSD (Ñα1 u N1) is closer to the real350

value. However, the higher-order moments tend to exhibit a larger error351

than lower-order moments. As can be seen in Fig. 12, errors in the higher-352

order moments are initially small; however, as the simulation proceeds, the353

moments tend towards zero making the relative errors large. Nevertheless,354

these errors decrease significantly with an increase Np. For example, M4,error355

decreases from 0.3088 to 0.2053 when Np is increased from 3 to 4, and M6,error356

decreases from 0.3515 to 0.2522 when Np is increased from 4 to 5.357

The ability of different methods to handle shrinkage can be seen in Fig. 14.358

MOM does not account for the consumption of particles due to shrinkage359

therefore M̃0 remains constant; however, the behaviour of M̃1 is somewhat360

more reasonable. M̃1 is set to be equal to M̃0 whenever M̃1 falls below361

M̃0 to ensure that the moments are strictly monotonic. HMOM performs362
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Figure 12: Error in the k-th order moment using MPM relative to a high-precision

stochastic solution under pure shrinkage. Errors correspond to Case 1 where

a log-normal distribution is supplied as the initial condition.

much better as it includes a source term to account for the consumption363

of the smallest particles. As large particles shrink to eventually form the364

smallest particles, it was assumed that the number of the smallest particles365

formed from the large particles is proportional to the mass lost from the large366

particles [39] (see Appendix B). This assumption is too coarse. Initially,367

the mass of large particles can decrease without there being a change in368

the number of particles. HMOM overestimates the number of the smallest369

particles, and therefore M0. However, small particles are easier to remove;370

therefore, the trend reverses and HMOM underestimates M0 (and M1). By371

contrast, the moments computed using MPM for Np = 4 shows an excellent372
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Figure 13: Sensitivity of the zeroth moment M0 (left panel) and the first moment M1

(right panel) to the number of particle masses, Np, using MPM under pure

shrinkage. Results correspond to Case 1 where a log-normal distribution is

supplied as the initial condition. The stochastic solution is shown as a point

of reference.

agreement with the stochastic solution.373
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Figure 14: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM (four particle masses), MOM, HMOM and the

stochastic method under pure shrinkage. Results correspond to Case 1 where

a log-normal distribution is supplied as the initial condition.
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Table 2: Average error in the k-th order moment using MPM relative to a high-precision

stochastic solution, for different number of particle masses, Np, under pure

shrinkage. Errors correspond to Case 1 where a log-normal distribution is sup-

plied as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.0912 0.0304 0.0104

1 0.1179 0.0399 0.0103

2 0.1711 0.0793 0.0201

3 0.2362 0.1393 0.0548

4 0.3088 0.2053 0.1123

5 - 0.2767 0.1802

6 - 0.3515 0.2522

7 - - 0.3269

8 - - 0.4041

For Case 2, another lognormal distribution is adopted where the average374

particle mass is about three orders-of-magnitude larger than the smallest375

particle mass. Figure 15 compares the zeroth and first order moments com-376

puted using MPM for different Np and the stochastic method. Compared377

with Case 1, MPM performs relatively poorly. M̃0 obtained using MPM378

for Np = 3 and 4 do not match the stochastic solution well. However the379

discrepancy becomes less obvious with each increase in Np suggesting that es-380

timation of the boundary flux term is closer to the real solution. By contrast,381

M̃1 obtained using MPM shows an excellent agreement with the stochastic382

solution.383
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Figure 15: Sensitivity of the zeroth moment M0 (left panel) and the first moment M1

(right panel) to the number of particle masses, Np, using MPM under pure

shrinkage. Results correspond to Case 2, where a log-normal distribution is

supplied as the initial condition. The average particle mass is about three

orders-of-magnitude larger than the smallest particle mass. The stochastic

solution is shown as a point of reference.

Table 3 lists the time-averaged relative moment errors for Case 2. In384

general, the moment errors are larger than for Case 1. This is because the385

PSD spans a much larger mass range than in Case 1, which makes it nu-386

merically more challenging for MPM to approximate the boundary flux term387

accurately. However, the moment errors show a systematic decrease with388

each increase in Np.389

Figure 16 compares the zeroth and first order moments obtained by dif-390

ferent methods for Case 2. Again, MOM could not predict the decrease in391

the number of particles, and HMOM exhibits very large moment errors due392

to the overestimation of the formation of the smallest particles. Although393

MPM does not show as high accuracy as it does for Case 1, it is still the394

most accurate among the moment methods.395
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Table 3: Average error in the k-th order moment using MPM relative to a high-precision

stochastic solution, for different number of particle masses, Np, under pure

shrinkage. Errors correspond to Case 2 where a lognormal distribution is sup-

plied as the initial condition. The average particle mass is about three orders-

of-magnitude larger than the smallest particle mass.

k Np = 3 Np = 4 Np = 5

0 0.1406 0.1262 0.0918

1 0.1472 0.1285 0.0921

2 0.2020 0.1488 0.1099

3 0.2842 0.1758 0.1544

4 0.3408 0.2364 0.1823

5 - 0.3390 0.2122

6 - 0.3733 0.2934

7 - - 0.3757

8 - - 0.4387

The results for Case 3 where a unimodal distribution is supplied as the ini-396

tial condition are similar to Case 1 and are shown in Fig. 17 and Table 4. For397

Case 4, a parabolic distribution is supplied as the initial condition. Figure 18398

shows that M̃0 computed using MPM for Np = 3 shows a poor agreement399

with the stochastic solution. Even if Np is increased to 4, a slight discrep-400

ancy can still be observed. A satisfactory agreement is obtained when Np401

is increased to 5. The conclusions drawn from the corresponding average402

relative error in Table 5 are similar to those for previous cases. For Case 5,403

a uniform distribution is supplied as the initial condition. The results are404
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Figure 16: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM (four particle masses), MOM, HMOM and the

stochastic method under pure shrinkage. Results correspond to Case 2 where

a log-normal distribution is supplied as the initial condition. The average par-

ticle mass is about three orders-of-magnitude larger than the smallest particle

mass.

similar to those for Case 4 and are shown in Fig. 19 and Table 6.405

Based on the five cases considered above, we conclude that MPM is able406

to simulate the shrinkage of different types of PSDs as long as a sufficient407

number of particle masses are used. Np = 4 is a good compromise between408

accuracy and computational efficiency.409

3.5. Combined processes410

We looked at the processes of inception, coagulation, growth and shrink-411

age in isolation. Now we test MPM against MOM, HMOM and the stochastic412

method for all of these processes combined. Two types of PSDs are supplied413

as the initial condition and the shrinkage kernel is varied to simulate rela-414

tively weak (Case 7) and strong (Case 8) shrinkage:415

31



0 1 2 3 4
0 . 0

0 . 3

0 . 6

0 . 9

1 . 2
M 0 (d

im
en

sio
nle

ss
)

T i m e  ( s )

 S t o c h a s t i c
 M P M  w i t h  N p  =  3
 M P M  w i t h  N p  =  4
 M P M  w i t h  N p  =  5

x  1 0 2

0 1 2 3 4
0 . 0

0 . 8

1 . 6

2 . 4

3 . 2

M 1 (d
im

en
sio

nle
ss

)

T i m e  ( s )

 S t o c h a s t i c
 M P M  w i t h  N p  =  3
 M P M  w i t h  N p  =  4
 M P M  w i t h  N p  =  5

x  1 0 3

Figure 17: Sensitivity of the zeroth moment M0 (left panel) and the first moment M1

(right panel) to the number of particle masses, Np, using MPM under pure

shrinkage. Results correspond to Case 3 where a unimodal distribution is

supplied as the initial condition. The stochastic solution is shown as a point

of reference.
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Figure 18: Sensitivity of the zeroth moment M0 (left panel) and the first moment M1

(right panel) to the number of particle masses, Np, using MPM under pure

shrinkage. Results correspond to Case 4 where a parabolic distribution is

supplied as the initial condition. The stochastic solution is shown as a point

of reference.
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Table 4: Average error in the k-th order moment using MPM relative to a high-precision

stochastic solution, for different number of particle masses, Np, under pure

shrinkage. Errors correspond to Case 3 where a unimodal distribution is supplied

as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.0256 0.0053 0.0009

1 0.0366 0.0057 0.0008

2 0.0701 0.0143 0.0014

3 0.1158 0.0381 0.0049

4 0.1667 0.0756 0.0170

5 - 0.1206 0.0408

6 - 0.1689 0.0749

7 - - 0.1163

8 - - 0.1615

Case 6 Inception kernel Im1 = 100 s−1, growth kernel KG = 20 s−1, coagu-

lation kernel KCg = 2 × 10−4 s−1 and shrinkage kernel KSk = 30 s−1 with a

log-normal distribution as the initial condition (see Eq. (12)):

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100.

Case 7 Im1 = 100 s−1, KG = 20 s−1, KCg = 2× 10−4 s−1 and KSk = 22 s−1

with a unimodal distribution as the initial condition (see Eq. (20)):

N(i = 30, t = 0) = 100.

Case 8 Im1 = 100 s−1, KG = 20 s−1, KCg = 2× 10−4 s−1 and KSk = 30 s−1
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Table 5: Average error in the k-th order moment using MPM relative to a high-precision

stochastic solution, for different number of particle masses, Np, under pure

shrinkage. Errors correspond to Case 4 where a parabolic distribution is supplied

as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.1456 0.0512 0.0088

1 0.1605 0.0665 0.0126

2 0.1965 0.0981 0.0261

3 0.2413 0.1383 0.0501

4 0.2912 0.1827 0.0832

5 - 0.2294 0.1226

6 - 0.2775 0.1659

7 - - 0.2113

8 - - 0.2577

with a unimodal distribution as the initial condition (see Eq. (20)):

N(i = 30, t = 0) = 100.

For Case 6, the shrinkage kernel is larger than the growth kernel, there-416

fore, there is a net shrinkage of particles and the PSD shifts towards the small-417

est particle mass as shown in Fig. 20. By the end of simulation (t = 10 s),418

no particles are left in the system. MOM predicts a slight decrease in M̃0419

as shown in Fig. 21 due to the interplay between inception and coagulation.420

M̃1 computed using MOM decreases much faster than the stochastic solu-421

tion. As we saw in the Section 3.4, M̃1 would eventually fall below M̃0 under422
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Figure 19: Sensitivity of the zeroth moment M0 (left panel) and the first moment M1

(right panel) to the number of particle masses, Np, using MPM under pure

shrinkage. Results correspond to Case 5 where a uniform distribution is sup-

plied as the initial condition. The stochastic solution is shown as a point of

reference.

pure shrinkage as the MOM formulation does not include a source term to423

account for the consumption of particles due to shrinkage. To maintain the424

monotonicity of moments, from about t = 2.5 s onwards, M̃1 is set to be425

equal to M̃0. HMOM reproduces the decreasing trend in M0 and M1, how-426

ever, there is an obvious discrepancy compared with the stochastic solution.427

By contrast, M̃0 and M̃1 obtained using MPM for Np = 4 is in a much better428

agreement with the stochastic solution compared with MOM and HMOM.429

For Case 7, a unimodal distribution where its mode is located at a mass430

of 30 evolves into a bimodal distribution under the combined effects of incep-431

tion, coagulation, growth and shrinkage as shown in Fig. 22. There is only a432

slight shift in the position of the second mode of the distribution because the433

shrinkage kernel is only slightly larger than the growth kernel. As shown in434

Fig. 23, M̃0 and M̃1 computed using MPM show a good agreement with the435
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Table 6: Average error in the k-th order moment using MPM relative to a high-precision

stochastic solution, for different number of particle masses, Np, under pure

shrinkage. Errors correspond to Case 5 where a uniform distribution is supplied

as the initial condition

k Np = 3 Np = 4 Np = 5

0 0.0642 0.0156 0.0036

1 0.0795 0.0168 0.0023

2 0.1218 0.0369 0.0046

3 0.1735 0.0734 0.0148

4 0.2294 0.1192 0.0368

5 - 0.1689 0.0699

6 - 0.2203 0.1109

7 - - 0.1565

8 - - 0.2043

stochastic solution while MOM and HMOM fail to even match. The perfor-436

mance of MOM and HMOM is similar to Case 6 except that MOM predicts437

a nonlinear increase in M̃0. This shows that while inception is dominant,438

nonlinear effects from coagulation is significant.439

For Case 8, the shrinkage kernel, KSk, is increased to 30 s−1 while the440

inception, coagulation and growth kernels are the same as in Case 7. A441

bimodal distribution is again observed in Fig. 24. This time however the442

PSD shifts towards smaller particle masses at a much faster speed within the443

same period of time, simulating a situation with a strong particle shrinkage.444

Comparison of M0 and M1 between the different methods is shown in Fig. 25445
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Figure 20: Evolution of the PSD computed using the stochastic method under all particle

processes (Case 6).

and the conclusion that can be drawn is similar to Case 7.446
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Figure 21: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method un-

der all particle processes. Results correspond to Case 6 where a log-normal

distribution is supplied as the initial condition.

4. Conclusion447

A new moment projection method (MPM) for solving the population bal-448

ance equation (PBE) has been developed and presented. The main advan-449

tages of this method are its ease of implementation and numerical robustness450

as well as its ability to deal with particle shrinkage. It directly solves the451

moment transport equation for the moments so that the source terms can452

be readily evaluated using the method of moments with interpolative closure453

(MOMIC). A set of particle masses are used to approximate the discrete-454

mass distribution where one of the particle masses is fixed at the smallest455

particle. The algorithm by Blumstein and Wheeler is used to track the num-456

ber of these particles which eliminates the need for matrix inversion which457

can lead to singularity problems. The new method is compared with the458

method of moments (MOM) and the hybrid method of moments (HMOM),459
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Figure 22: Evolution of the PSD computed using the stochastic method under all particle

processes but with relatively weak shrinkage (Case 7).

first for the individual processes of particle inception, coagulation, growth460

and shrinkage (constant kernels), then for all of these processes combined;461

different types of particles size distributions (PSDs) are supplied as an initial462

condition. It is shown that MPM is just as accurate as MOM and HMOM463

when used to treat inception, coagulation and growth. However, when it464

comes to shrinkage, MPM performs much better than MOM and HMOM.465

The accuracy of MPM improves with the number of particle masses, Np,466

and Np = 5 is found to provide an excellent agreement with a high-precision467

stochastic solution calculated using the direct simulation algorithm (DSA).468

Higher-order moments computed using MPM show larger relative errors than469
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Figure 23: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under

all particle processes. Results correspond to Case 7 where a unimodal distri-

bution is supplied as the initial condition and shrinkage is relatively weak.

lower-order moments consistent with other moment methods. These errors470

gradually increase with time because the moments tend towards zero. As471

fragmentation (or breakage) is a quite a common phenomena, future work472

includes extension of MPM to include the fragmentation process. The per-473

formance of the method using physically realistic Brownian kernels is also to474

be investigated.475
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Figure 24: Evolution of the PSD computed using the stochastic method under all particle

processes but with relatively strong shrinkage (Case 8).

Nomenclature479

Upper-case Roman

G Source term due to coagulation

I Inception rate

KCg Coagulation kernel

KG Growth kernel

KSk Shrinkage kernel

480
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Figure 25: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under

all particle processes. Results correspond to Case 8 where a unimodal distri-

bution is supplied as the initial condition and shrinkage is relatively strong.

M Moment

N Number

P Symmetric tridiagonal matrix which is a function of recursion

coefficients a and b

R Source term due to inception

S Source term due to shrinkage

W Source term due to growth

Z Matrix with components Z which are a function of the moments

M

Lower-case Roman

a, b Recursion coefficients

481
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h Time interval

i Abscissa of delta function

m Mass

r Recursive function

t Time

v Eigenvector of matrix P

w Weight of delta function

Greek

α Particle mass

η User defined constant in relative moment error

δ Particle mass change in a growth or shrinkage process

Subscripts

α Particle mass

f Final

L Large

max Maximum

p Particle

0 Initial or smallest

Symbols

482
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x̃ Approximation of x

Abbreviations

DQMOM Direct quadrature method of moments

DSA Direct simulation algorithm

EQMOM Extended quadrature method of moments

FCMOM Finite-size domain complete set of trial functions method of mo-

ments

HMOM Hybrid method of moments

MOM Method of moments

MOMIC Method of moments with interpolative closure

MPM Moment projection method

ODE Ordinary differential equation

PBE Population balance equation

PD Product difference

PSD Particle size distribution

QMOM Quadrature method of moments
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Appendix A. Blumstein-Wheeler algorithm484

This algorithm is used to determine the particle masses and the numbers485

used to approximate the PSD from the empirical moments. The algorithm is486

implemented in Matlab and makes use of the eig function to determine the487

eigenvalues and eigenvectors.488
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Algorithm 2: Blumstein-Wheeler algorithm.

Input: The empirical moments M̃k for k = 0, 1, . . . , 2Np − 2.

Output: The particle masses αj and the corresponding number of particles Ñαj for

j = 1, 2, . . . , Np.

Create a Np × 2Np matrix Z with zeros in all elements.

Determine the elements of the first row of matrix Z: Z1,l = M̃l−1 for l = 1, . . . , 2Np − 1.

For a1 = M̃1/M̃0 and b1 = 0, determine the recursion coefficients ak and bk:

for k = 2 to Np do

for l = k to 2Np − 1 do
The elements of Z must satisfy the following recursion relation:

Zk,l = Zk−1,l+1 − ak−1Zk−1,l − bk−1Zk−1,l;

ak =
Zk,k+1

Zk,k
−

Zk−1,k

Zk−1,k−1
; bk =

Zk,k

Zk−1,k−1
.

For r1 = 1/(m1 − a1) where m1 is the smallest particle mass, determine the recursion

function:

rk = 1/(m1 − ak − bkrk−1) k = 2, . . . , Np − 1.

As we fix the smallest particle mass, replace aNp with:

aNp = m1 − bNprNp−1.

Construct a symmetric tridiagonal matrix P with ak as the diagonal and the square roots of

bk as the co-diagonal:

P =



a1 −
√
b2 0 · · · 0

−
√
b2 a2 −

√
b3 · · · 0

0 −
√
b3 a3 · · · 0

...
...

...
. . .

...

0 0 0 · · · aNp


.

Solve for the eigenvalues V and eigenvectors D of matrix P:

[
V,D

]
= eig(P).

Solve for αj and Ñαj :

αj = V(j, j), Ñαj = M̃0D(1, j)2.

489
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Appendix B. Hybrid method of moments490

HMOM was originally developed for bivariate PBEs based on particle491

volume and surface area [39, 44]. Here we revise the method to be based on492

particle mass and we focus on the shrinkage process. Particles are discretised493

into two modes: particles of the smallest mass i0 and particles of large mass494

iL [39, 44]. Based on this concept, the k-th order moment is:495

Mk = Ni0i
k
0 +NiLi

k
L, (B.1)

where Ni0 and NiL are the number of particles of mass i0 and iL, respectively.496

Combining Eqs. (2) and (17), we get:497

dMk

dt
= −KSki

k
0Ni0 +KSk

∞∑
i=i0+δ

((i− δ)k − ik)Ni, (B.2)

where KSk is the shrinkage kernel and δ is the change in mass after a shrink-498

age process. The first term corresponds to the removal of the smallest par-499

ticles when they shrink and the second term corresponds to the formation500

of the smallest particles when large particles shrink. Combining Eqs. (B.1)501

and (B.2):502

dMk

dt
=


−KSkNi0 , k = 0,

KSk

k∑
r=1

k
r

 (−δ)r(ik−r0 Ni0 + ik−rL NiL), k > 0.
(B.3)

The source term for Ni0 is given by ref. [39]:503

dNi0

dt
= lim

k→−∞

dMk/dt

ik0
. (B.4)

Applying Eq. (B.4) to Eq. (B.2) we get:504

dNi0

dt
= −KSkNi0 +KSkNi0+δ. (B.5)
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The first term is the destruction of the smallest particles and the second term505

corresponds to the intermodal transfer of particles from the second mode to506

the first during a shrinkage process. To close this latter term, in ref. [44] it507

is assumed that the number of particles transferred from the large particles508

to the smallest particles is proportional to the total mass lost from the large509

particles with a coefficient, C, equal to the mass ratio between the two modes510

i0/iL:511

Ni0+δ = CδML
−1 =

i0δ

i2L
NiL , (B.6)

where the superscript L refers to the contribution to the moment from the512

second mode. Combining Eqs. (B.5) and (B.6):513

dNi0

dt
= −KSkNi0 +

i0δ

i2L
KSkNiL . (B.7)

The remaining two quantities in Eq. (B.3) are obtained from the two known514

moments [44]:515

NiL = M0 −Ni0 , (B.8)

and516

iL =
M1 −Ni0i0

NiL

. (B.9)

Algorithm 3 describes the numerical procedure of HMOM for the shrink-517

age process. The HMOM approach for other processes (inception, coagula-518

tion and growth) can be obtained in a similar way, but the details are not519

given here for simplicity.520
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Algorithm 3: Hybrid method of moments algorithm.
Input: PSD supplied as initial condition N(i, t0) for i = 1, . . . ,∞ at initial

time t0; final time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, 1, . . . at final time

tf.

Calculate the moments of the true PSD using Eq. (2):

Mk(t0) =

∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

Determine the number and mass of the large particles NiL(t0) and iL(t0),

respectively, by solving Eqs. (B.8) and (B.9).

t←− t0, M̃k(t)←− M̃k(t0);

while t < tf do

Integrate Eq. (B.3) for the moments M̃k(t+ h) over the time interval

[t, t+ h] (using an ODE solver) with Ni0(t), NiL(t) and iL(t) as the

initial condition.

Integrate Eq. (B.7) for the number of smallest particles Ñi0(t+ h) over the

time interval [t, t+ h] with Ni0(t), NiL(t) and iL(t) as the initial

condition.

Determine NiL(t+ h) using Eq. (B.8) with the obtained M0(t+ h) and

Ni0(t+ h).

Determine iL(t+ h) using Eq. (B.9) with the obtained M1(t+ h),

Ni0(t+ h) and NiL(t+ h).

Increment t←− t+ h.

521
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