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The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi 
iterative method to solve linear systems of equations (Au = b) associated with elliptic 
problems. It inherits its robustness and accelerates its convergence rate computing a set of 
P relaxation factors that result from a minimization problem. In a typical SRJ scheme, the 
former set of factors is employed in cycles of M consecutive iterations until a prescribed 
tolerance is reached. We present the analytic form for the optimal set of relaxation factors 
for the case in which all of them are strictly different, and find that the resulting algorithm 
is equivalent to a non-stationary generalized Richardson’s method where the matrix of 
the system of equations is preconditioned multiplying it by D = diag(A). Our method to 
estimate the weights has the advantage that the explicit computation of the maximum 
and minimum eigenvalues of the matrix A (or the corresponding iteration matrix of 
the underlying weighted Jacobi scheme) is replaced by the (much easier) calculation of 
the maximum and minimum frequencies derived from a von Neumann analysis of the 
continuous elliptic operator. This set of weights is also the optimal one for the general 
problem, resulting in the fastest convergence of all possible SRJ schemes for a given grid 
structure. The amplification factor of the method can be found analytically and allows for 
the exact estimation of the number of iterations needed to achieve a desired tolerance. 
We also show that with the set of weights computed for the optimal SRJ scheme for a 
fixed cycle size it is possible to estimate numerically the optimal value of the parameter 
ω in the Successive Overrelaxation (SOR) method in some cases. Finally, we demonstrate 
with practical examples that our method also works very well for Poisson-like problems 
in which a high-order discretization of the Laplacian operator is employed (e.g., a 9- or 
17-points discretization). This is of interest since the former discretizations do not yield 
consistently ordered A matrices and, hence, the theory of Young cannot be used to predict 
the optimal value of the SOR parameter. Furthermore, the optimal SRJ schemes deduced 
here are advantageous over existing SOR implementations for high-order discretizations of 
the Laplacian operator in as much as they do not need to resort to multi-coloring schemes 
for their parallel implementation.
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1. Introduction

The Jacobi method [1] is an iterative algorithm to solve systems of linear equations. Due to its simplicity and its con-
vergence properties it is a popular choice as preconditioner, in particular when solving elliptic partial differential equations. 
However, its slow rate of convergence, compared to other iterative methods (e.g. Gauss–Seidel, SOR, Conjugate gradient, 
GMRES), makes it a poor choice to solve linear systems. The scheduled relaxation Jacobi method [2], SRJ hereafter, is an 
extension of the classical Jacobi method, which increases the rate of convergence in the case of linear problems that arise 
in the finite difference discretization of elliptic equations. It consists of executing a series of weighted Jacobi steps with 
carefully chosen values for the weights in the sequence. The SRJ method can be expressed for a linear system Au = b as

un+1 = un + ωn D−1(b − Aun), (1)

where D is the diagonal of the matrix A. If we consider a set of P different relaxation factors, ωn , n = 1, . . . , P , such that 
ωn > ωn+1 and we apply each relaxation factor qn times, the total amplification factor after M :=∑P

n=1 qn iterations is

G M(κ) =
P∏

n=1

(1 − ωnκ)qn , (2)

which is an estimation of the reduction of the residual during one cycle (M iterations). In the former expression κ is a 
function of the wave-numbers obtained from a von Neumann analysis of the system of linear equations resulting from the 
discretization of the original elliptical problem by finite differences (for more details see [2,3]). Yang & Mittal [2] argued 
that, for a fixed number P of different weights, there is an optimal choice of the weights ωn and repetition numbers qn

that minimizes the maximum per-iteration amplification factor, �M(κ) = |G M(κ)|1/M , in the interval κ ∈ [κmin, κmax] and 
therefore also the number of iterations needed for convergence. The boundaries of the interval in κ correspond to the 
minimum and the maximum weight numbers allowed by the discretization mesh and boundary conditions used to solve 
the elliptic problem under consideration.

In the aforementioned paper, [2] computed numerically the optimal weights for P ≤ 5 and Adsuara et al. [3] extended 
the calculations up to P = 15. The main properties of the SRJ, obtained by [2] and confirmed by [3], are the following:

1. Within the range of P studied, increasing the number of weights P improves the rate of convergence.
2. The resulting SRJ schemes converge significantly faster than the classical Jacobi method by factors exceeding 100 in the 

methods presented by [2] and ∼ 1000 in those presented by [3]. Increasing grid sizes, i.e. decreasing κmin, results in 
larger acceleration factors.

3. The optimal schemes found use each of the weights multiple times, resulting in a total number of iterations M per 
cycle significantly larger than P , e.g. for P = 2, [2] found an optimal scheme with M = 16 for the smallest grid size 
they considered (N = 16), while for larger grids M notably increases (e.g., M = 1173 for N = 1024).

The optimization procedure outlined by [2] has a caveat though. Even if the amplification factor were to reduce mono-
tonically by increasing P , for sufficiently high values of P , the number of iterations per cycle M may be comparable to the 
total number of iterations needed to solve a particular problem for a prescribed tolerance. At this point, using a method 
with higher P , and thus higher M , would increase the number of iterations to converge, even if the �(κ) is nominally 
smaller. With this limitation in mind we outline a procedure to obtain optimal SRJ schemes, minimizing the total num-
ber of iterations needed to reduce the residual by an amount sufficient to reach convergence or, equivalently, to minimize 
|G M(κ)|. Note that the total number of iterations can be chosen to be equal to M without loss of generality, i.e. one cycle 
of M iterations is needed to reach convergence. To follow this procedure one should find the optimal scheme for fixed 
values of M , and then choose M such that the maximum value of |G M (κ)| is similar to the residual reduction needed to 
solve a particular problem. The first step, the minimization problem, is in general difficult to solve, since fixing M gives an 
enormous freedom in the choice of the number of weights P , which can range from 1 to M . However, the numerical results 
of [2] and [3], seem to suggest that in general increasing the number of weights P will always lead to better convergence 
rates. This leads us to conjecture that the optimal SRJ scheme, for fixed M , is the one with P = M , i.e. all weights are 
different and each weight is used once per cycle, qi = 1, (i = 1, . . . , M). In terms of the total amplification factor G M (κ), it 
is quite reasonable to think that if one maximizes the number of different roots by choosing P = M , the resulting function 
is, on average, closer to zero than in methods with smaller number of roots, P < M , and one might therefore expect smaller 
maxima for the optimal set of coefficients. One of the aims of this work is to compute the optimal coefficients for this 
particular case and demonstrate that P = M is indeed the optimal case.

Another goal of this paper is to show the performance of optimal SRJ methods compared with optimal SOR algorithms 
applied to a number of different discretizations of the Laplacian operator in two-dimensional (2D) and three-dimensional 
(3D) applications (Sect. 3). We will show that optimal SRJ methods applied to high-order discretizations of the Laplacian, 
which yield iteration matrices that cannot be consistently ordered, perform very similarly to optimal SOR schemes (when an 
optimal SOR weight can be computed). We will further discuss that the trivial parallelization of the SRJ methods outbalances 
the slightly better scalar performance of SOR in some cases (Sect. 3.3). Also, we will show that the optimal weight of the 
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SOR method can be suitably approximated by functions related to the geometric mean of the set of weights obtained for 
optimal SRJ schemes. This is of particular relevance when the iteration matrix is non-consistently ordered and hence, the 
analytic calculation of the optimal SOR weight is extremely intricate.

2. Optimal P = M SRJ scheme

Let us consider a SRJ method with P = M and hence qn = 1, (n = 1, . . . , M). For this particular choice, the amplification 
factor G M(κ) is a polynomial of degree M in κ with M different roots. In this case, the set of weights ωn that minimizes 
the value of the maximum of |G M (κ)|, given by Eq. (2), in the interval κ ∈ [κmin, κmax], 0 < κmin ≤ κmax,1 can be determined 
by the definition of the amplification factor

G M(0) = 1, (3)

and by the following M conditions2:

G M(κn) = −G M(κn+1), n = 0, . . . , M − 1, (4)

where κ0 = κmin, κM = κmax, and κn , n = 1, . . . , M − 1 are the relative extrema of the function G M (κ). To simplify further 
we rescale κ as follows:

κ̃ = 2
κ − κmin

κmax − κmin
− 1. (5)

As a function of κ̃ the amplification factor is G̃ M (κ̃) = G M(κ(κ̃)). In the resulting interval, κ̃ ∈ [−1, 1], there is a unique 
polynomial of degree M such that the absolute value of G̃ M (κ̃) at the extrema κ̃i is the same (fulfilling Eqs. (4)) and such 
that G̃ M(κ̃(0)) = 1. This polynomial is proportional to the Chebyshev polynomial of first kind of degree M , T M (κ), which 
can be defined through the identity T M (cos θ) = cos(M θ). This polynomial satisfies that

|T M(−1)| = |T M(κ̃n)| = |T M(+1)| = 1, n = 1, . . . , M − 1, (6)

with κ̃i being the local extrema of T M(κ̃) in [−1, 1]. The constant of proportionality can be determined from Eq. (3), and 
the amplification factor reads in this case

G̃ M(κ̃) = T M(κ̃)

T M(κ̃(0))
; κ̃(0) = − (1 + κmin/κmax)

(1 − κmin/κmax)
< −1. (7)

This result is equivalent to Markoff’s theorem.3 Note that the value of κ̃(0) does not depend on the actual values of κmin
and κmax, but only on the ratio κmin/κmax. The roots and local extrema of the polynomial T M (κ̃) are located, respectively, 
at

ω̃−1
n = − cos

(
π

2n − 1

2M

)
, n = 1, . . . , M, (8)

κ̃n = cos
(
π

n

M

)
, n = 1, . . . , M − 1, (9)

which coincide with those of G̃ M (κ̃). Therefore, the set of weights

ωn = 2

[
κmax + κmin − (κmax − κmin) cos

(
π

2n − 1

2M

)]−1

, n = 1, . . . , M, (10)

corresponds to the optimal SRJ method for P = M .
We have found with the simple analysis of this section that the optimal SRJ scheme when P = M is fixed turns out 

to be closely related to a Chebyshev iteration or Chebyshev semi-iteration for the solution of systems of linear equations 
(see, for instance, [6] for a review). This is especially easy to realize if we consider the original formulation of this kind of 
methods, which appeared in the literature as special implementations of the non-stationary or semi-iterative Richardson’s 
method (RM, hereafter; see, e.g., [7,8] for generic systems of linear equations, or [9] for the application to boundary-value 
problems). Yang & Mittal [2] argued that, for a uniform grid, Eq. (1) is identical to that of the RM [10]. There is, nevertheless, 
a minor difference between Eq. (1) of the SRJ method and the RM as it has been traditionally written [11], that using our 
notation would be un+1 = un + ω̂n(b − Aun), which gives the obvious relation ω̂n = ωnd−1, in the case in which all elements 
in D are the same and equal to d. We note that this difference disappears in more modern formulations of the RM (e.g., 

1 In this work, κmin and κmax are assumed to be strictly positive as the discretization of an elliptic problem leads to a matrix A that is positive definite. 
In problems where it is not, a simple option is to work with the matrix AT A and the equivalent system AT Au = AT b.

2 These conditions result from the solution of a global min–max optimization problem over G M(κ) or, equivalently, over �M (κ) (see Appendix B of [2]).
3 For an accessible proof of the original theorem [4], see Young’s textbook [5], Theorem 9-3.1.
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[12]), in which the RM is also written as a fix point iteration of the form un+1 = T un + c, with T = I − B−1 A, c = B−1b and 
B any non-singular matrix. Differently from the RM in its definition by Young [11], our method in the case M = 1 would 
fall in the category of stationary Generalized Richardson’s (GRF) methods according to the textbook of Young [5, Chap. 3]. 
GRF methods are defined by the updating formula

un+1 = un +P(Aun − b) (11)

where P is any non-singular matrix (in our case, P = −ωn D−1). In the original work of Richardson [10], all the values of 
ω̂−1

n where set either equal or evenly distributed in [a, b], where a and b are, respectively, lower and upper bounds to the 
minimum and maximum eigenvalues, λi of the matrix A (optimally, a = min (λi), b = max (λi)). If a single weight is used 
throughout the iteration procedure, a convenient choice is ω̂ = 2/(b + a).4

Yang & Mittal [2] state that the SRJ approach to maximizing convergence is fundamentally different from that of the 
stationary RM. They argue that the RM aims to reduce �(κ) uniformly over the range [κmin, κmax] by generating equally 
spaced nodes of � in this interval, while SRJ methods set a min–max problem whose goal is to minimize |�|max.5 As a 
result, SRJ methods require computing a set of weights yielding two differences with respect to the non-stationary RM in 
its original formulation [2]:

1. The nodes in the SRJ method are not evenly distributed in the range [κmin, κmax];
2. Optimal SRJ schemes naturally have many repetitions of the same relaxation factor whereas RM generated distinct 

values of ω̂n in each iteration of a cycle.

From these two main differences, Yang & Mittal [2] conclude that while optimal SRJ schemes actually gain in convergence 
rate over Jacobi method as grids get larger, the convergence rate gain for Richardson’s procedure (in its original formulation) 
never produces acceleration factors larger than 5 with respect to the Jacobi method. This result was supported by Young 
in his Ph.D. thesis [13, p. 4], but on the basis of employing orderings of the weights which did pile-up roundoff errors, 
preventing a faster method convergence (see point 2 below).

The difference outlined in point 1 above is non existent for GRF methods, where the eigenvalues of A are not necessarily 
evenly distributed in the spectral range of matrix A (i.e., in the interval [a, b]). We note that Young [7] attempted to chose 
the ω̂n parameters of the RM to be the reciprocals of the roots of the corresponding Chebyshev polynomials in [a, b], which 
resulted in a method that is almost the same as ours, but with two differences:

First, we do not need to compute the maximum and minimum eigenvalues of the matrix A; instead, we compute κmax
and κmin, which are related to the maximum and minimum frequencies that can be developed on the grid of choice employ-
ing a straightforward von Neumann analysis. Indeed, this procedure to estimate the maximum and minimum frequencies 
for the elliptic operators (e.g., the Laplacian) in the continuum limit allows applying it to matrices that are not necessarily 
consistently ordered, like, e.g., the ones resulting from the 9-point discretization of the Laplacian [14]. In Sect. 3.3 we show 
how our method can be straightforwardly prescribed in this case and other more involved (high-order) discretizations of 
the Laplacian.

Second, in Young’s method [7] the two-term recurrence relation given by Eq. (1) turned out to be unstable. Young found 
that the reason for the instability was the build up of roundoff errors in the evaluation of the amplification factor (Eq. (2)), 
which resulted as a consequence of the fact that many of the values of ωn can be much larger than one. Somewhat unsuc-
cessfully, Young [7] tried different orderings of the sequence of weights ωn , and concluded that, though they ameliorated 
the problem for small values of M , did not cure it when M was sufficiently large. Later, Young [11,15] examines a number 
of orderings and concluded that some gave better results than others. However, the key problem of existence of orderings 
for which RM defines a stable numerical algorithm amenable to a practical implementation was not shown until the work 
of Anderssen & Golub [16]. These authors showed that employing the ordering developed by Lebedev & Finogenov [17] for 
the iteration parameters in the Chebyshev cyclic iteration method, the RM devised by Young [7] was stable against the pile-
up of round-off errors. However, Anderssen & Golub [16] left open the question of whether other orderings are possible. 
In our case, numerical stability is brought about by the ordering of the weights in the iteration procedure. This ordering 
is directly inherited from the SRJ schemes of [2], and notably differs from the prescriptions given for two- or three-term 
iteration relations in Chebyshev semi-iterations [6] and from those suggested by [7]. Indeed, the ordering we use differs 
from that of [17–19] (see Appendix A). Thus, though we do not have a theoretical proof for it, we empirically confirm that 
other alternative orderings work.

Taking advantage of the analysis made by [7], we point out that the average rate of convergence of the method in a cycle 
of M iterations is

R M = 1

M
log |T M(κ̃(0))|, (12)

4 In the case of SRJ schemes with P = M , it is easy to demonstrate (see Appendix B) that the harmonic mean of the weights ωn very approximately 
equals the value of the inverse weight of the stationary RM (2d−1/(κmax + κmin) � 2/(b + a)).

5 We note that this argument does not hold in the implementation of the non-stationary RM method made by Young [7], since in this case one also 
attempts to minimize |�|max.
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Fig. 1. Plot �M (κ) for the following different values of M (5, 10, 15, and 50) for a bidimensional mesh of 128 × 128 points. One can see that all the extrema 
are equal. The plot also shows that the higher the value of M , the lower the local maxima of �M . A color version of the figure can be found in the online 
version.

and it is trivial to prove that for κ ∈ [κmin, κmax]

G M(κ) ≤
∣∣∣∣ 1

T M(κ̃(0))

∣∣∣∣< 1, (13)

providing a simple way to compute an upper bound for the amplification factor for the optimal scheme. This condition also 
guarantees the convergence of the optimal SRJ method. Therefore, if we aim to reduce the initial residual of the method by 
a factor σ , we have to select a sufficiently large M such that

σ ≥ |T M(κ̃(0))|−1. (14)

It only remains to demonstrate that the optimal SRJ scheme with P = M is also the optimal SRJ scheme for any P ≤ M . 
Markoff’s theorem states that for any polynomial Q (x) of degree smaller or equal to M , such that ∃x0 ∈ R, x0 < −1, with 
Q (x0) = 1, and Q (x) 	= T M(x)/T M(x0), then

max |Q (x)| > max

∣∣∣∣ T M(x)

T M(x0)

∣∣∣∣ ∀x ∈ [−1,1]. (15)

This theorem implies that any other polynomial of order P ≤ M , different from Eq. (7), is a poorer choice as amplification 
factor. The first implication is that G M (κ̃(0)) < G M−1(κ̃(0)), i.e., increasing M decreases monotonically the amplification 
factor G M(κ). As a consequence, the per iteration amplification factor �M(κ) also decreases by increasing M . The second 
consequence is that the case P < M results in an amplification factor with larger extrema than the optimal P = M case, 
and hence proves that our numerical scheme leads to the optimal set of weights for any SRJ method with M steps. This 
confirms our intuition that adding additional roots to the polynomial would decrease the value of its maxima, resulting in 
faster numerical methods. Though the SRJ algorithm with P = M we have presented here turns out to be nearly equivalent 
to the non-stationary RM of Young [7], in order to single it out as the optimum among the SRJ schemes, we will refer to it 
as the Chebyshev–Jacobi method (CJM) henceforth.

Finally, we plot in Fig. 1 the per-iteration amplification factor, �M (κ), for different values of M . It is evident from the 
plot that all the maxima are of equal height, and that the maxima decrease as M increases.

3. Numerical examples

3.1. Laplace equation

In order to assess the performance of the new optimal set of schemes devised, we resort to the same prototype numerical 
example considered in [2], namely, the solution of the Laplace equation with homogeneous Neumann boundary conditions 
in two spatial dimensions, in Cartesian coordinates and over a domain with unitary size:
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Fig. 2. Left: Evolution of the residual ||rn||∞ , defined in Eq. (18), as a function of the number of iterations for the problem set in Eq. (16) and a Cartesian 
grid of 256 × 256 uniform zones. The different color lines correspond to different schemes (see legends). We can observe that the reduction of the residual 
is faster in the new Chebyshev–Jacobi schemes than in the corresponding SRJ schemes with the same value of M . Right: We show three examples where 
we computed the optimal value of the M for reaching the desired residual in one cycle. The cases P = 1939, 2470 and 3000 correspond to schemes that 
(theoretically) should reduce the initial residual by factors � 106, 108 and 1010. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂x2
u(x, y) + ∂2

∂ y2
u(x, y) = 0, (x, y) ∈ (0,1) × (0,1)

∂

∂x
u(x, y)

∣∣∣∣
x=0

= ∂

∂x
u(x, y)

∣∣∣∣
x=1

= 0, y ∈ (0,1)

∂

∂ y
u(x, y)

∣∣∣∣
y=0

= ∂

∂ y
u(x, y)

∣∣∣∣
y=1

= 0, x ∈ (0,1).

(16)

We consider a spatial discretization of the Laplacian operator employing a second-order, 5-point formula


uij = 1

h2

[
ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4uij

]
, (17)

where we are assuming that the grid spacing, h, is the same along the x and y directions. In all examples presented in this 
work, we will use initial random data to initialize our computations. To compare the performance of different numerical 
schemes we monitor the evolution of the difference between two consecutive approximations of the solution for the model 
problem specified in Eq. (16),

||rn||∞ = max
i j

|un
ij − un−1

i j |, (18)

where un
ij is the numerical approximation computed after n iterations at the grid point (xi, y j).

In Fig. 2 (left), we compare the evolution of the residual as a function of the number of iterations for several SRJ schemes, 
as well as for the new schemes developed here. The violet line corresponds to the best SRJ scheme presented in [2] for the 
solution of the problem set above and a spatial grid of Nx × N y = 256 × 256 uniform zones, i.e. the SRJ scheme with P = 5
and M = 780. Comparing with the new CJM for P = M = 780 (orange line in Fig. 2 left), it is evident that the new scheme 
reduces the number of iterations to reach the prescribed tolerance (||rn||∞ ≤ 10−10 in this example) by about a factor of 5. 
We also include in Fig. 2 (left; green line) the residual evolution corresponding to the best SRJ optimal algorithm developed 
by [3] for the proposed resolution, namely, the scheme with P = 15 levels and M = 1160. It is obvious that even the CJM 
with P = M = 780 reduces the residual faster than the P = 15 SRJ scheme. However, since the P = 15 SRJ scheme requires 
a larger value of M than in the case of P = 5, for a fair comparison, we also include in Fig. 2 (left; blue line) the CJM with 
P = M = 1160. The latter is the best performing scheme, thought the difference between the two new CJM with different 
values of P is very small (in Fig. 2 the blue and orange lines practically overlap).

A positive property of the new algorithm presented in Sect. 2 is its predictability, i.e., the easiness to estimate the size 
of the M-cycle in order to reduce the tolerance by a prescribed amount (Eq. (14)). Indeed, it is not necessary to monitor 
the evolution of the residual in every iteration (as in many other non-stationary methods akin to the Richardson’s method 
– e.g., in the gradient method), with the obvious reduction in computational load per iteration that this implies. In Fig. 2
(right) we show that our algorithm performs as expected, reducing the initial residual by factors of larger than 106, 108 and 
1010 in a single cycle consisting of P = 1939, 2470 and 3000 iterations, respectively, since for the problem at hand we have 
κmin = sin ( π )

2 = 3.76491 × 10−5, κmax = 2, and thus, κ̃(0) = −1.00004.
2×256
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Fig. 3. The evolution of the residual for the solution of the Poisson equation (19) in 3D, with N = 128 (left panel) and N = 256 (right panel) for different 
iterative methods. The apparent faster convergence of Jacobi relative to Gauss–Seidel is due to the shown small interval of iterations which was chosen 
to highlight the convergence behavior of CJM relative to SOR. Gauss–Seidel actually reaches the desired tolerance faster than Jacobi in all examples, as 
expected. A color version of the figure can be found in the online version.

In this simple example the upper bound for the residual obtained from Eq. (14) is very rough and clearly overestimates 
the number of iterations to reduce the residual below the prescribed values. In more complex problems this will not 
necessarily be the case as we will show in the following, more demanding example.

3.2. Poisson equation in 3D

Here we test the CJM and the predictability of the residual evolution in a three-dimensional elliptic equation with a 
source term. For this test, we use infrastructure provided by the Einstein Toolkit [20,21]. The actual calculation is finding the 
static field of a uniformly charged sphere of radius R in 3D Cartesian coordinates subject to Dirichlet boundary conditions, 
solving the Poisson equation:


φ(x, y, z) = −4πρ, (19)

where ρ = 3Q
4π R3 and Q is the charge of the sphere. We solve the elliptic equation (19) with a standard second-order 

accurate 7-point stencil with hx = hy = hz = h


uijk = 1

h2

[
ui−1, jk + ui+1, jk + ui, j−1,k + ui, j+1,k + ui, j,k−1 + uij,k+1 − 6uijk

]
. (20)

We consider two different grid sizes with Nx = N y = Nz = N = 128 and Nx = N y = Nz = N = 256 points and the 
following iterative methods: Jacobi, Gauss–Seidel (SOR with ω = 1), SOR with the optimal relaxation factor ωopt =
2/(1 + sin (π/N)), and CJM with the optimal sequence of weights for a given resolution. The results for the two grid 
resolutions are shown in Fig. 3. Both SOR and CJM (slightly less than twice the number of iterations of SOR) are more than 
an order of magnitude faster than the Jacobi and Gauss–Seidel methods. While the CJM method is not as fast as SOR when 
using the optimal relaxation factor ωopt, we note here two arguments that should favor the use of the CJM over SOR: Firstly, 
Young’s theory of relating ωopt to the spectral radius of the Jacobi iteration matrix ρ( J ) via ωopt = 2/(1 +√1 − ρ( J )2) only 
applies when the original matrix of the linear system Au = b is consistently ordered. Secondly, the CJM method is trivially 
parallelized, while SOR requires multicolor schemes for a successful parallelization, as we will discuss below presenting 
results for 9-point and 17-point Laplacians in 2D.

Next, we solve equation (19) subject to reflection symmetry (homogeneous Neumann boundary conditions) at the x = 0, 
y = 0, z = 0 planes (so-called octant symmetry) with Nx = N y = Nz = N = 64 points, using the same iterative methods 
as before. For the CJM, we choose the same sequence of weights as those we used for the full 3D domain using N = 128
points. Because of the boundary conditions used to impose octant symmetry, the resulting matrix A is non-consistently 
ordered and hence there is no analytic expression to calculate ωopt for SOR; in this case we test a sequence of values of ω
to empirically estimate the optimal value for the given problem. The residuals of the different iterative methods are shown 
in Fig. 4. The CJM now performs better than SOR for any ω we have tested. Furthermore, as seen in the plot, SOR is very 
sensitive to the exact value of ω that is chosen, as is well known. The CJM method is free of this need to estimate and 
choose a sensitive parameter.
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Fig. 4. The evolution of the residual for the solution of the Poisson equation (19) in 3D using octant symmetry, with N = 64 for different iterative methods 
and different relaxation factors ω in SOR. The apparent faster convergence of Jacobi relative to Gauss–Seidel is due to the shown small interval of iterations 
which was chosen to highlight the convergence behavior of CJM relative to SOR. Gauss–Seidel actually reaches the desired tolerance faster than Jacobi in 
all examples, as expected. A color version of the figure can be found in the online version.

Fig. 5. Schematic representation of the 9- and 17-point stencils. The black and red lines correspond to the standard stencil S+ and rotated stencil S× , 
respectively. See main text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

3.3. CJM for non-consistently ordered matrices: high-order discretization of the Laplacian operator in 2D with 9 and 17 points

As we have already mentioned, Young’s theory of relating the optimal SOR parameter to the spectral radius of the Jacobi 
iteration matrix does not apply in the case of non-consistently ordered (NCO) matrices. In this section, we will investigate 
two of these cases, namely a 9-point and 17-point discretization of the Laplacian in 2D.

One way of obtaining this type of discretizations is doing a convex combination between the discretization of the Lapla-
cian operator using the standard stencil, S+ , with its discretization in a rotated stencil, S× (see Fig. 5):

αS+ + (1 − α)S× . (21)

Writing α as a rational number a/b, the resulting 9-points discretized Laplacian is


uij = 1

2bh2

[
2aui−1, j + 2aui+1, j + 2aui, j−1 + 2aui, j+1 + (b − a)ui−1, j−1 + (b − a)ui+1, j+1 + (b − a)ui−1, j+1

+ (b − a)ui+1, j−1 − 4(a + b)ui, j

]
, (22)

where, for simplicity, we assume that the grid spacing, h, is the same in the x- and y-directions. From this general form, 
we can recover the standard 5-points discretization simply taking a = b = 1. In the same way, we can recover the 9-points 
discretization of the Laplacian studied in [14] by imposing a = 2 and b = 3:


uij = 1

6h2

[
4ui−1, j + 4ui+1, j + 4ui, j−1 + 4ui, j+1 + ui−1, j−1 + ui+1, j+1 + ui−1, j+1 + ui+1, j−1 − 20ui, j

]
. (23)

From the von Neumann stability analysis of Eq. (16), we obtain the following expression of the amplification factor for the 
Laplacian discretization of Eq. (22)

G M = 1 − ω

[
2a

sin2 kx
x + 2a
sin2 ky
y + b − a [

1 − cos (kx
x) cos (ky
y)
]]

. (24)

a + b 2 a + b 2 a + b
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For α = a = b = 1, we recover the expression of the amplification factor shown in [2,3]. It is easy to check that when a = 2
and b = 3, Eq. (24) reduces to

G M = 1 − ω

5

[
4 sin2 kx
x

2
+ 4 sin2 ky
y

2
+ 1 − cos (kx
x) cos (ky
y)

]
. (25)

The factor multiplying ω in the previous expression is related to the weights of any SRJ scheme and singularly with the 
CJM. As a function of the wave number κ , the minimum amplification factor results for kx = ky = π/L, while the maxi-
mum amplification factor is attained for kx = π/
x and ky = π/
y, with respective wave numbers κmin and κmax, whose 
expressions are

κmin = 4

5
sin2 π

2Nx
+ 4

5
sin2 π

2N y
+ 1

5

[
1 − cos

π

Nx
cos

π

N y

]
, (26)

κmax = 8

5
. (27)

It can be shown that the 9-point discretization of the Laplacian provides a fourth-order accurate method for the Poisson 
equation when the source term is smooth [22].

Next, we consider the case of a 17-point discretization of the Laplacian. From the general form of Eq. (21), again writing 
α = a/b one obtains


uij = 1

24bh2

[
− 2aui−2, j + 32aui−1, j + 32aui+1, j − 2aui+2, j − 2aui, j−2 + 32aui, j−1 + 32aui, j+1 − 2aui, j+2

− (b − a)ui−2, j−2 + 16(b − a)ui−1, j−1 + 16(b − a)ui+1, j+1 − (b − a)ui+2, j+2 − (b − a)ui−2, j+2

+ 16(b − a)ui−1, j+1 + 16(b − a)ui+1, j−1 − (b − a)ui+2, j−2 − 60(a + b)ui, j

]
. (28)

The standard 9-point discretization of the Laplacian is recovered for a = b = 1 in Eq. (28). Performing the von Neumann 
stability analysis for Eq. (16), we obtain the following expression of the amplification factor for the Laplacian discretization 
of Eq. (28)

G M = 1 − ω
1

15(a + b)

[
− 2a

(
sin2(kx
x) + sin2(ky
y)

)+ 32a

(
sin2

(
kx
x

2

)
+ sin2

(
ky
y

2

))

− (b − a)
([1 − cos(2kx
x) cos(2ky
y)] − 16[1 − cos(kx
x) cos(ky
y)])], (29)

and, therefore, taking into account the minimum and maximum wave numbers as in the previous case, the extremal values 
of κ are:

κmin = 1

15(a + b)

[
− 2a

(
sin2 π

Nx
+ sin2 π

N y

)
+ 32a

(
sin2 π

2Nx
+ sin2 π

2N y

)

− (b − a)

(
[1 − cos

2π

Nx
cos

2π

N y
] − 16[1 − cos

π

N y
cos

π

N y
]
)]

, (30)

κmax = 64a

15(a + b)
. (31)

Let us consider the particular case a = 1 and b = 2. For the Laplacian discretization (28), we have


uij = 1

48h2

[
− 2ui−2, j + 32ui−1, j + 32ui+1, j − 2ui+2, j − 2ui, j−2 + 32ui, j−1 + 32ui, j+1 − 2ui, j+2 − ui−2, j−2

+ 16ui−1, j−1 + 16ui+1, j+1 − ui+2, j+2 − ui−2, j+2 + 16ui−1, j+1 + 16ui+1, j−1 − ui+2, j−2 − 180ui, j

]
(32)

and the expressions for κmin and κmax of Eqs. (30) and (31) reduce to

κmin = 1

45

[
− 2

(
sin2 π

Nx
+ sin2 π

N y

)
+ 32

(
sin2 π

2Nx
+ sin2 π

2N y

)

− [1 − cos
2π

Nx
cos

2π

N y
] + 16[1 − cos

π

N y
cos

π

N y
]
]

(33)

κmax = 64
(34)
45
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Fig. 6. Evolution of the residual for the solution of the Poisson equation (35) in 2D, with 5-points discrete Laplacian (Eq. (17); top left panel), 9-points 
(Eq. (23); right panels) and 17-points Laplacian (Eq. (32); bottom left panel) for different iterative methods and for the resolutions indicated in the legends. 
Note that the top and bottom right panels correspond to a problem set up with Nx = N y = 128 and Nx = N y = 256 points, respectively. A color version of 
the figure can be found in the online version.

Next, we numerically test the performance of the CJM for the two high-order discretizations of the Laplacian operator 
we have discussed above. To do so, we numerically solve the following problem:


u = −(x2 + y2)exy, (35)

in the unit square with appropriate Dirichlet boundary conditions. The boundaries are specified easily in this case, since 
there exists an analytic solution for the problem at hand that we can compute at the edges of the computational domain. 
The analytic solution reads

u(x, y) = −exy . (36)

In Fig. 6 we show the residual evolution obtained when solving problem (35) with different high-order discretizations of 
the Laplacian. In the top left panel we use the classical 5-points discrete approximation for the Laplacian (Eq. (17)). It is 
evident that our method almost reaches the performance of the optimal SOR [23]. In fact, as we prove in Appendix B this 
optimal weight for the SOR method coincides, up to first order with the geometrical mean of the weights obtained with our 
optimal scheme. In the right panels we display the evolution of the residual when solving the same problem but using the 
9-point discretization of the Laplacian proposed by [14] (Eq. (23)). In the top right panel of Fig. 6, we use a mesh with 128 
points in each dimension, while in the bottom right panel we use 256 points per dimension. In both cases, the performance 
is comparable with the optimal SOR whose weight is calculated in [14]. Finally, the left-bottom panel of Fig. 6 shows the 
number of iterations when solving the same problem, but using a 642 grid and our 17-points Laplacian (Eq. (32)), with the 
optimal CJM obtained with the κmin and κmax of Eqs. (30) and (31) (i.e., in the case a = 1, b = 2, which gives equal weight 
to all points in the neighborhood). In this case, the optimal weight of the SOR is unknown, so we compute the numerical 
solution for several values of the SOR weight. Remarkably, the CJM scheme compares fairly well with SOR.

Last but not least, we are interested in the parallel implementation of these schemes. It is known that in the case of 
the standard 5-points discretization of the Laplacian, one needs to implement a red-black coloring strategy for the efficient 
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Fig. 7. Norm-1 error of the numerical solution with respect to the analytic solution (Eq. (36)) for the Jacobi method (left panel) and CJM (right panel) 
with different resolutions and orders of discretization of the Laplacian in Eq. (35). The numerical solution is evolved until the norm-1 error reaches, 
approximately, 10−6. We also annotate besides each of the lines the time needed to run the model at hand normalized to the run time of the fastest case. 
A color version of the figure can be found in the online version.

parallel implementation of SOR. In the case of the 9-points discretization of the Laplacian, [14] points out that one needs 
four colors for a parallel implementation. Furthermore, the ordering strategy with more than two colors is not unique. 
Adams [14] find 72 different four-color orderings, which lead to different convergence rates. In contrast, our CJM scheme 
(as any SRJ scheme) is trivially parallelizable since there is no need for a coloring strategy and, consequently, it possesses a 
unique convergence rate. We find that the tiny performance difference between the SOR method, when applied to problems 
where the optimal weight is unknown, and the CJM is outbalanced by the simplicity in the parallelization of the latter.

The numerical solution of physical problems in computational physics often involves solving elliptic–hyperbolic PDEs 
when (physical) constraints need to be enforced during the evolution of the system. A popular example is the so-called 
projection scheme used to enforce the zero divergence of the magnetic field constraint in magnetohydrodynamics [24], which 
involves the solution of a Poisson equation. Similarly, projection schemes can be used in incompressible hydrodynamics to 
ensure that the zero divergence of the velocity field constraint is fulfilled (see, e.g. [25–27]). A final example is the nu-
merical integration of the Einstein equations, where the construction of initial data involves solving the so-called constraint 
equations, a set of elliptic PDEs (see e.g. [28] for a detailed review). A popular way of evolving the resulting initial data 
is via the hyperbolic BSSN [29,30] scheme. Projection schemes obtain the same order of accuracy as the underlying base 
schemes [31], which means that high-order finite differences are desirable when solving elliptic PDEs associated with pro-
jection schemes in combination with high-order methods in resolving the hyperbolic evolution equations. An example for 
the use of a 13-point stencil for the Laplacian when using a projection scheme in incompressible fluid flows can be found 
in [32]. Similarly, constraint fulfilling initial data for the numerical integration in time needs to be constructed with the 
same spatial accuracy as the one employed in the finite difference scheme used to solve the hyperbolic evolution equations. 
In numerical relativity simulations, it is customary to use a fourth-order Runge–Kutta time integration, which requires at 
least fourth order finite differencing in spatial derivatives (see [33] for a review).

Furthermore, to discuss advantages arising from higher order discretizations, let us consider Eq. (35) once more. As we 
know the analytic solution to our problem (Eq. (36)), we can monitor the real error at each iteration in the computation 
of our numerical solution.6 In Fig. 7 we show that a significantly higher number of grid points is needed when employing 
lower order discretization stencils in order to achieve approximately the same error (i.e. a solution of the same quality). 
With a mesh of only 32 × 32 points we reach the sought accuracy goal employing a discretization of the Lagrangian with 
a 17-points stencil. To achieve the same accuracy with our 9-point stencil discretization, about 128 × 128 grid zones are 
needed, resulting in approximately 4 to 10 times more iterations than with the 17-points stencil when using the CJM or 
the Jacobi schemes, respectively. In the case of the standard second-order 5-point stencil, the grid should contain more than 
256 × 256 points and the number of iterations increases by about 60 times when applying the Jacobi method, and 10 times 
in CJM with respect to the number required when using the maximum order stencil. Although each step of the iterative 
algorithm performs more operations for higher order discretizations, this penalty is negligible compared to the considerable 
reduction in the number of iterations, which in turn translates into a huge decrease in the actual calculation time (see the 
labels of Fig. 7). Therefore, we have shown that not only the number of iterations increases when employing low order 
discretizations of the Laplacian, but also that the computational time needed to arrive to a prescribed norm-1 error goal is 
also substantially larger.

6 In actual computations, where we do not know the real error, we monitor the residual that shall be proportional to the real error.
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As a final point we note that these NCO matrices lead to more compact stencils which effectively reduce the communi-
cations in parallelizations with distributed memory (message passing paradigm).

4. Conclusions

In this work we have obtained the optimal coefficients for the SRJ method to solve linear systems arising in the finite 
difference discretization of elliptic problems in the case P = M , i.e., using each weight only once per cycle. We have proven 
that these are the optimal coefficients for the general case, where we fix P but allow for repetitions of the coefficients 
(P ≤ M). Furthermore, we have provided a simple estimate to compute the optimal value of M to reduce the initial residual 
by a prescribed factor.

We have tested the performance of the method with two simple examples (in 2 and 3 dimensions), showing that the 
analytically derived amplification factors can be obtained in practice. When comparing the optimal P = M set of coefficients 
with those in the literature [2,3], our method always gives better results, i.e., it achieves a larger reduction of the residual 
for the same number of iterations M . Additionally, the new coefficients can be computed analytically, as a function of M , 
κmax, and κmin, which avoids the numerical resolution of the minimization problem involved in previous works on the SRJ. 
The result is a numerical method that is easy to implement, and where all necessary coefficients can easily be calculated 
given the grid size, boundary conditions and tolerance of the elliptic problem at hand before the actual iteration procedure 
is even started.

We have found that following the same philosophy that inspired the development of SRJ methods, the case P = M
results in an iterative method nearly equivalent to the non-stationary Richardson method as implemented by Young [7]; 
namely, where the coefficients ωn are taken to be the reciprocals of the roots of the corresponding Chebyshev polynomials 
in the interval bounding the spectrum of eigenvalues of the matrix (A) of the linear system. Furthermore, inspired by the 
same ideas as in the original SRJ methods, the actual minimum and maximum eigenvalues of A do not need to be explicitly 
computed. Instead, we resort to a (much simpler) von Neumann analysis of the linear system which yields the values of 
the κmin and κmax that replace the (larger) values of the minimum and maximum eigenvalues of A.7 The key to our success 
in the practical implementation of the Chebyshev–Jacobi methods stems from a suitable ordering (or scheduling) of the 
weights ωn in the algorithm. Though other orderings have also been shown to work, our choice clearly limits the growth of 
round-off errors when the number of iterations is large. This ordering is inherited from the SRJ schemes.

We have also tested the performance of the CJM for more than second order discretizations of the elliptic Laplacian 
operator. These cases are especially involved since the matrix of iteration cannot be consistently ordered. Thus, Young’s 
theory cannot be employed to find the value of the optimal weight of a SOR scheme applied to the resulting problems. 
For the particular case of the 9-points discretization of the Laplacian, even though the iteration matrix cannot be consis-
tently ordered, Adams [14] found the optimal weight for the corresponding SOR scheme in a rather involved derivation. 
Comparing the results for the numerical solution of a simple Poisson-like problem of the SOR method derived by Adams 
and the CJM we obtain here for the same 9-points discretization of the Laplacian, it is evident that both methods perform 
quite similarly (though the optimal SOR scheme is still slightly better). However, the SOR method requires a multi-coloring 
parallelization strategy with up to 72 four-color orderings (each with different performance), when applied to the 9-points 
discretizations of the Laplacian operator. The parallelization strategy is even more intricate when a 17-points discretization 
of the Laplacian is used. In contrast, CJM methods are trivially parallelizable and do not require any multi-coloring strategy. 
Thus, we conclude that the slightly smaller performance difference between the CJM and the SOR method in sequential 
applications is easily outbalanced in parallel implementations of the former method. Furthermore, we have shown that em-
ploying higher order discretizations of the Lagrangian operator is very advantageous to reduce both the number of iterations 
and the computational time needed to reach a preestablished real error goal (i.e., the true error one makes comparing the 
exact solution of a problem with the numerical approximation of it). Given the stencil increase needed to implement a 
17-points discretization of the Lagrangian, we infer that a parallel implementation of this method may require a very mod-
est increment in the number of zones transferred as internal boundaries among different computational subdomains. Hence, 
applying high-order discretizations of the Laplacian is ideally suited for problems that combine the solution of elliptic and 
hyperbolic systems of coupled equations (e.g., as in the case of Euler–Poisson systems dealing with self-gravitating fluids).
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Appendix A. Ordering of the weights

As we point out in Sect. 2, the ordering of the weights ωn is the key to avoid the pile up of roundoff errors. In this 
appendix, we show that the ordering provided by [2] for SRJ schemes, and that we also use for the optimal P = M schemes, 
differs from the one suggested by other authors.

Lebedev & Finogenov [17] provided orderings for the cases in which the number of weights is a power of 2. Translated 
to our notation, we shall have M = 2r , r = 0, 1, . . .. In such a case, let the ordering of the set (ω1, ω2, . . . , ωM) as obtained 
from Eq. (10), be mapped with the vector of indices (1, 2, . . . , M). Let us consider an integer permutation of the vector of 
indices of order M , �M := ( j1, j2, . . . , jM), where (1 ≤ jk ≤ M, ji 	= jk), which are constructed according to the following 
recurrence relation:

�20 = �1 := (1) and �2r−1 := ( j1, j2, . . . , j2r−1) (A.1)

�2r = �M := ( j1,2r + 1 − j1, j2,2r + 1 − j2, . . . , j2r−1 ,2r + 1 − j2r−1) (A.2)

In particular, we have,

�2 = (1,2),

�4 = (1,4,2,3),

�8 = (1,8,4,5,2,7,3,6),

�16 = (1,16,8,9,4,13,5,12,2,15,7,10,3,14,6,11).

In contrast, we can obtain different SRJ schemes, and correspondingly, different orderings, for the same number of weights, 
because of the later depend on the number of points employed in the discretization (see Eq. (10)). Furthermore, the ordering 
also depends on the tolerance goal, σ (which sets the value of M; Eq. (14)). Next we list some of the orderings we can 
obtain for different discretizations (annotated in parenthesis in the form Nx × N y) and values of σ :

�
SRJ
2 = (1,2),

�
SRJ
4 = (1,4,3,2),

�
SRJ
8 = (1,8,5,2,3,7,4,6) for (4 × 4,σ = 0.01),

(1,8,5,3,6,2,7,4) for (8 × 8,σ = 0.15),

�
SRJ
16 = (1,15,9,2,12,3,4,13,5,6,7,8,10,11,14,16) for (4 × 4,σ = 2 × 10−5),

(1,16,9,6,12,3,14,7,10,4,13,5,15,8,2,11) for (8 × 8,σ = 6 × 10−3),

which obviously differ from the orderings � j for j ≥ 4.
We note that [18] provided also orderings for arbitrary values of M , which coincide with those of Lebedev & Finogenov 

[17] when M is a power of 2 (i.e., M = 2r ). Finally, more recently, Lebedev & Finogenov [19] have extended their previous 
work to a larger number of cases (e.g., M = 2r3s) and applied also to Chebyshev iterative methods. We remark that the SRJ 
ordering of the weights can be applied to arbitrary values of M .

Appendix B. Properties of the weights

In this appendix we show some algebraic properties of the weights of the CJM. The first one is that the harmonic mean 
of the weights equals the average of the maximum and minimum weight numbers:

Theorem 1. Let ωi be the weights given by Eq. (10). Then it holds that

1

M

M∑
i=1

ω−1
i = κmax + κmin

2
. (B.1)

Proof.

1

M

M∑
i=1

ω−1
i = (κmax + κmin)

2
− (κmax − κmin)

2M

M∑
i=1

cos

(
π(i − 1/2)

M

)
. (B.2)

Let j ∈ [1, M/2]. Since

cos

(
π( j − 1/2)

)
= − cos

(
π((M − j + 1) − 1/2)

)
, (B.3)
M M



J.E. Adsuara et al. / Journal of Computational Physics 332 (2017) 446–460 459
all the terms in the summation cancel out, except the central one in case M is odd. In this last case, M = 2n + 1, and the 
only remaining term is cos

(
π(n+1/2)

2n+1

)
= cos

(
π
2

)= 0. In general, the summation reads

1

M

M∑
i=1

ω−1
i = κmax + κmin

2
. � (B.4)

Corollary. Since the relation between the weights of the stationary RM and the CJM is ω̂ = ωd−1 , where D = diag(A), having all its 
elements equal to d, and since ω̂ = 2/(a + b), where a = min (λi) and b = max (λi), being λi the eigenvalues of matrix A, it turns out 
that

2d−1

κmax + κmin
= 2

a + b
= ω̂. (B.5)

Theorem 2. Let ωi be the weights given by Eq. (10). Then it holds that

lim
n→+∞

[
n∏

i=1

ω−1
i

]1/n

=
(√

κmax + √
κmin

2

)2

. (B.6)

Proof. Let us define A = (κmax + κmin)/2 and B = (κmax − κmin)/2. It is well known that the Chebyshev polynomials of first 
kind of degree n, Tn(x), satisfy the following recurrence relation:

T0(x) = 1; T1(x) = x; Tn(x) = 2x Tn(x) − Tn−1(x),n > 2. (B.7)

From this property, it is easy to check that the leading coefficient of Tn(x) is 2n−1. Taking into account the leading coefficient 
and the roots of Tn(x) from Eq. (8), we get that

Tn(x) = 2n−1
n∏

k=1

{
x − cos

[
(2k − 1)π

2n

]}
. (B.8)

Therefore,

n∏
i=1

ω−1
i =

[
A − B cos

( π

2n

)][
A − B cos

(
3π

2n

)]
. . .

[
A − B cos

(
(2n − 1)π

2n

)]

= Bn

2n−1
Tn

(
A

B

)
= Bn

2n

⎡
⎣
⎛
⎝ A

B
−
√

A2

B2
− 1

⎞
⎠

n

+
⎛
⎝ A

B
+
√

A2

B2
− 1

⎞
⎠

n⎤
⎦ , (B.9)

where last equality uses the explicit expression of Tn(x) for x = A/B > 1. From this equality, we can bound the geometrical 
mean of the inverse of the weights ωi :

B

2

⎛
⎝ A

B
+
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− 1

⎞
⎠ . (B.10)

Taking limits for n → ∞, we obtain that

lim
n→+∞

[
n∏

i=1

ω−1
i

]1/n

= 1

2

(
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√
A2 − B2

)
=
(√
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κmin

2

)2

. � (B.11)
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