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Abstract

We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-

order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3

dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive

linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations

often arise from time discretization of parabolic equations that model various biological and physical

phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The

analyses of the schemes involve the characterization of the strictly convex energies associated

with the equations. We first give a general framework for PSD in generic Hilbert spaces. Based

on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate

is shown for the nonlinear PSD iteration. We then apply the general the theory to the fourth

and sixth-order problems of interest, making use of Sobolev embedding and regularity results to

confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our

results include a sharper theoretical convergence result for p-Laplacian systems compared to what

may be found in existing works. We demonstrate rigorously how to apply the theory in the finite

dimensional setting using finite difference discretization methods. Numerical simulations for some

important physical application problems – including thin film epitaxy with slope selection and the

square phase field crystal model – are carried out to verify the efficiency of the scheme.

Keywords: Fourth-order nonlinear elliptic equation, sixth-order nonlinear elliptic equation, p-

Laplacian operator, steepest descent, pre-conditioners, finite differences, Fast Fourier transform, thin

film epitaxy, square phase field crystal model.

1 Introduction

Let Ω ⊂ Rd , d = 2, 3, be a rectangular domain. In this work we are interested in efficient solution

techniques for fourth and sixth-order nonlinear elliptic equations that have p-Laplacian terms. The

fourth-order problem reads as follows: given f Ω-periodic, find u Ω-periodic such that

u − s∇ · (|∇u|p−2∇u) + sε2∆2u = f , (1.1)

∗Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (wfeng1@vols.utk.edu)
†Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (asalgad1@utk.edu)
‡Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747 (cwang1@umassd.edu)
§Corresponding author: Department of Mathematics, The University of Tennessee, Knoxville, TN 37996

(swise1@utk.edu)

1

ar
X

iv
:1

60
7.

01
47

5v
2 

 [
m

at
h.

N
A

] 
 2

4 
N

ov
 2

01
6



where 0 < ε ≤ 1 and s is a positive parameter. The sixth-order problem is as follows: given f , g

Ω-periodic, find u, w Ω-periodic such that

u − ∆w = g, (1.2a)

sλu − s∇ ·
(
|∇u|p−2∇u

)
+ sε2∆2u − w = f , (1.2b)

where 0 < ε ≤ 1, s > 0, and λ ≥ 0 are parameters. The highest order positive diffusion term,

parameterized by ε, is often referred to as the surface diffusion, following the thin film applications

described below.

We will refer to problems (1.1) and (1.2a) – (1.2b) as regularized p-Laplacian problems. However,

this is primarily for ease of reference. The highest order order surface diffusion term, though param-

eterized by the “small” coefficient ε > 0, must be present for the related physical models to make

sense and is not an artificial regularization. In other words, we will not consider and are not concerned

with the singular limit ε↘ 0.

These model equations arise most commonly from the time discretization for certain time-dependent

physical models. For example, consider the thin epitaxial film model with slope selection

∂tu = ∇ ·
(
|∇u|2∇u

)
− ∆u − ε2∆2u,

in [28, 33, 36, 39]. The 4-Laplacian, in combination with the other terms, gives energetic preference to

facets with unit slope, a continuum-level model of the Ehrlich-Schwoebel kinetic barrier. The highest

order term models a small amount of surface diffusion, which smooths out the facets somewhat. In

the square Swift-Hohenberg (SH) equation

∂tu = −(1 + ∆)2u − βu + ηu3 − u5 + α
(
|∇u|2∇u

)
, α > 0, β, η ∈ R,

studied in [12, 22, 20, 30], and the square phase field crystal (SPFC) equation

∂tu = ∆
(
γ0u + γ1∆u + ε2∆2u −∇ ·

(
|∇u|2∇u

))
, γ0 ∈ R, γ1 > 0,

studied in [16, 19, 20, 30], the 4-Laplacian term gives preference to square-symmetry patterns. In gen-

eral, such localized structures play important roles in biological, chemical, and physical processes [23].

For these time-dependent problems, convex splitting schemes have been proposed and analyzed

in [33, 36] to obtain unconditional unique solvability and unconditional energy stability. The convex

splittings scheme for the thin film model is [36]

um − s∇ · (|∇um|2∇um) + sε2∆2um = um−1 − s∆um−1,

where s > 0 is the time step size, and the superscripts indicate the time discretizations. The convex

splitting scheme for the SPFC model – which can be inferred from the general principles in [36, 38] –

is precisely

um − ∆wm = um−1,

sγ0u
m − s∇ ·

(
|∇um|2∇um

)
+ sε2∆2um − wm = − sγ1∆um−1,

assuming γ0, γ1 ≥ 0. These schemes are nonlinear and require one to deal with the p-Laplacian term

at the implicit time level. We remark that there are also second-order-in-time convex splitting schemes

for such nonlinear parabolic equations, as described in [33], which have similar nonlinear structures.

In any case, solving nonlinear elliptic equations with the p-Laplacian term is challenging, because of
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its highly nonlinear nature. In [33, 36], the authors used a nonlinear conjugate gradient algorithm to

solve the nonlinear system at each implicit time step. Such naive gradient methods are guaranteed to

converge due to the global convexity of the equations, but are not necessarily efficient.

Several works develop and analyze numerical schemes for nonlinear elliptic equations involving the

p-Laplacian operator. The works [3, 4, 25, 29, 35, 40, 41] are based on finite element approximations

in space. Recently, the vanishing moment method for the p-Laplacian was proposed in [18]. In that

method, the highest order term is purely artificial, whereas, for the models above, the surface diffusion

term is small, but non-vanishing. A hybridizable discontinuous Galerkin method for the p-Laplacian

was proposed in [11]. Of these works, [25, 40, 41] are primarily focused on efficient solvers for the

elliptic equations with p-Laplacian terms, rather than, say, error estimates.

The main goal of this paper is to design a general framework of preconditioned steepest descent

(PSD) methods for certain nonlinear elliptic equations with p-Laplacian terms. The main idea is

to use a linearized version of the nonlinear operator as a pre-conditioner, or in other words, as a

metric for choosing the search direction. We propose and analyze the preconditioned steepest descent

methods for both the fourth- and sixth-order p-Laplacian problems mentioned above. Herein we

present numerical simulations for the 6-Laplacian thin film epitaxy and the H−1 gradient flow SPFC

model by using the proposed method. While we restrict our focus to the p-Laplacian problems herein,

the search direction framework is general and can be applied to other nonlinear equations, such as the

Cahn-Hilliard (CH) equation [6, 8, 31, 34], functionalized Cahn-Hilliard (FCH) Equation [9, 14, 17],

for example.

The convergence analyses of the nonlinear iteration algorithms we propose for the p-Laplacian

equations are quite challenging, due to the highly nonlinear nature of the problems. However, we are

able to recast the equations as equivalent minimization problems involving strictly convex functionals

in generic Hilbert spaces. Once this is done, we are able to characterize the properties of general

pre-conditioners that will result in geometric convergence rates. This general approach is applicable

to both the 4th and 6th order equations at the space-continuous level, as well as the approximation

of these problems in finite dimensions using finite differences as we show. Though we do not explore

it here, we remark that the theory is extendible to the pseudo-spectral, spectral-Galerkin, and mixed

finite element settings as well, using the appropriate discrete Gagliardo-Nirenburg inequalities. To our

knowledge, the only related theoretical results available in the existing literature are to be found in [25],

in which finite element PSD solvers were designed and analyzed. Specifically, it was proved in [25] that

their method converges with the rate O(k−β), where k is the iteration index and β = p
p−2 > 0. In this

article, we provide a theoretical analysis with a geometric convergence rate O(αk), with 0 < α < 1,

for the finite difference PSD solver applied to the regularized p-Laplacian problems.

For such nonlinear analyses, the essential difficulty has always been associated with the subtle

fact that the numerical solution has to be bounded uniformly in certain functional norms, so that a

bound for the iteration error could be established. For the p-Laplacian problems, typically a uniform

W 1,p bound of the numerical solution is available at each iteration stage, and such a bound may be

used to derive an O(k−β) convergence rate for the PSD iteration. However, for the regularized p-

Laplacian problems, one observes that a linear operator with higher-order diffusion may be utilized so

that a uniform H2 bound of the numerical solution may be obtained. Specifically, the existence of the

surface diffusion term ε2∆2u enables us to derive a geometric convergence rate O(αk) for the PSD

iteration, which gives a sharper theoretical result than the existing one in [25]. Our strategy comes at

a cost that we point out at the offset: a linear, positive, constant-coefficient operator of order 4 or 6

must be inverted to obtain the search direction. But, since we are interested in applications involving

coarsening processes over periodic domains, the FFT can be utilized to make this process efficient.

The remainder of the paper is organized as follows. In section 2, we present a general precondi-
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tioned steepest descent (PSD) method for nonlinear equations in generic Hilbert spaces, and provide

the convergence rate estimates for the PSD method. The application of the general theory to the

fourth-order regularized p-Laplacian problem is formulated in section 3. The PSD scheme for the

sixth-order regularized p-Laplacian problem is outlined in section 4. Subsequently, in section 5, we

introduce a two-dimensional finite difference discretization and provide the fully discrete convergence

analysis. Applications to thin film epitaxy with slope selection and the SPFC model and the numerical

results are presented in section 6. The concluding remarks are offered in section 7. In the Appendix,

we give the proof of a few discrete Sobolev inequalities.

2 Preconditioned Steepest Descent Methods

2.1 The Classical Setting: Linear SPD Systems in Finite Dimensions

Before we get to the general case, let us quickly review the convergence theory for preconditioned

steepest decent methods for solving the linear system Au = f, where A ∈ Rm×msym is positive definite.

This is closely related to the preconditioned conjugate gradient (PCG) method, though may be less

familiar to the reader. Solving Au = f is, of course, equivalent to minimizing the quadratic energy

E[v] := 1
2 vTAv − vT f. Suppose that L ∈ Rm×msym is also positive definite. Here A is the stiffness

matrix and L is the pre-conditioner. The idea is that L ≈ A, but the former is “easier to invert.”

The preconditioned steepest decent algorithm for approximating the solution to Au = f is given in

Algorithm 1 [2, 26].

Data: u0, f ∈ Rm
r0 := f − Au0;

d0 := L−1r0;

for k = 0, · · · , kmax − 1 do

αk := (dTk rk)/(dTk Adk);

uk+1 := uk + αkdk ;

rk+1 := f − Auk+1;

if ‖rk+1‖ < tol or k = kmax − 1 then

u? := uk+1;

exit for loop;

else

dk+1 := L−1rk+1;

end

end

Result: u?
Algorithm 1: Preconditioned Steepest Descent

Here dk ∈ Rm is called the search direction and rk ∈ Rm is called the residual. We observe that

αk = argmin
α∈R

E[uk + αdk ] = argzero
α∈R

δE[uk + αdk ](dk) =
dTk rk

dTk Adk
.

We have the classical convergence result:

‖u− uk‖A ≤
(
κ− 1

κ+ 1

)k
‖u− u0‖A ,

where κ := λm
λ1

, and λm is the largest eigenvalue of L−1A, and λ1 is the smallest [2, 26, 32].
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2.2 Non-Quadratic Energy Functionals in Generic Hilbert Spaces

Here we review the general theory for preconditioned steepest descent in a generic Hilbert space

[1, 10, 15, 26]. Suppose that H is a (real) Hilbert space with the inner product ( · , · )H and induced

norm ‖ · ‖H. We consider an energy functional E[ · ] : H → R with the following properties:

(E1) E is twice Fréchet differentiable for all points ν ∈ H. For each fixed ν ∈ H, δE[ν]( · ) : H → R
is the continuous linear functional equal to the first Fréchet derivative at ν, and, for each fixed

ν ∈ H, δ2E[ν]( · , · ) : H×H → R is the continuous bilinear operator equal to the second Fréchet

derivative at ν.

(E2) For every ν ∈ H,

0 ≤ δ2E[ν](ξ, ξ), ∀ ξ ∈ H, (2.1)

and

0 < δ2E[ν](ξ, ξ), ∀ ξ ∈ H \ {0} . (2.2)

This implies the strict convexity of E.

(E3) E is coercive with respect to the norm on H, i.e., there exist constants C1 > 0, C2 ≥ 0 such

that

C1 ‖ν‖2
H ≤ E[ν] + C2, ∀ ν ∈ H.

If E satisfies (E1) – (E3), it follows [10] that there is is a unique element u ∈ H with the property

that

E[u] ≤ E[ν], ∀ ν ∈ H, with E[u] < E[ν], for ν 6= u,

and this minimizer further satisfies

δE[u](ξ) = 0, ∀ ξ ∈ H.

We wish to construct, via preconditioned steepest descent (PSD), a sequence that converges to

the unique minimizer. By H′ we denote the continuous dual of H. When it is convenient, we use the

symbol 〈 · , · 〉H : H′×H → R to denote the dual pairing between H′ and H. Consider a linear operator

L : H → H′. This operator L, which we call the pre-conditioner induces a bilinear form on H:

(ν, ξ)L := 〈L[ν], ξ〉H = L[ν](ξ), ∀ ν, ξ ∈ H.

We assume that L satisfies the following properties:

(L1) ( · , · )L : H ×H → R is symmetric, i.e.,

(ν, ξ)L = (ξ, ν)L, ∀ ν, ξ ∈ H;

(L2) ( · , · )L is continuous with respect to the standard topology of H, i.e., there is some C3 > 0

such that

|(ν, ξ)L| ≤ C3 ‖ν‖H ‖ξ‖H , ∀ ν, ξ ∈ H;

(L3) ( · , · )L is coercive with respect to H, i.e., there is some C4 > 0 such that

C4 ‖ν‖2
H ≤ (ν, ν)L, ∀ ν ∈ H.
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It follows that ( · , · )L : H×H → R is an inner product on H, equivalent to the primary inner product

( · , · )H. The induced norm, ‖ν‖L :=
√

(ν, ν)L, is equivalent to the primary norm. By the Riesz

Representation Theorem, if f ∈ H′, then there exists a unique uf ∈ H such that

(uf , ξ)L = f [ξ] = 〈f , ξ〉H, ∀ξ ∈ H,

with

‖uf ‖L = ‖f ‖L−1 := sup
06=ξ∈H

f [ξ]

‖ξ‖L
,

where the second norm is the L-induced operator norm.

Suppose that uk ∈ H is given. We define the following search direction problem: find dk ∈ H
such that (

dk , ξ
)
L = −δE

[
uk
]

(ξ), ∀ξ ∈ H. (2.3)

We call dk the k th search direction. In operator form, we write L[dk ] = −δE[uk ] in H′. The functional

−δE
[
uk
]

is called the residual of uk . By the Riesz Representation Theorem, we discover that

− δE
[
uk
]

(dk) =
∥∥dk∥∥2

L =
∥∥δE [uk]∥∥2

L−1 . (2.4)

We then define the next iterate uk+1 as

uk+1 := uk + αkd
k , (2.5)

where αk ∈ R is the unique solution to

αk := argmin
α∈R

E[uk + αdk ] = argzero
α∈R

δE[uk + αdk ](dk). (2.6)

Therefore, we have the fundamental orthogonality relation

δE[uk + αkd
k ](dk) = δE[uk+1](dk) = 0. (2.7)

It follows that the sequence
{
uk
}∞
k=0
⊂ H generated by the preconditioned steepest descent algorithm

converges to the unique minimizer u ∈ H. We now wish to estimate the convergence rate.

2.3 Estimates of the Convergence Rate for the PSD Method

We summarize some standard results.

Proposition 2.1. Suppose that E satisfies (E1) – (E3). It follows that, for any ν, ξ ∈ H,

δE[ν](ξ − ν) ≤ E[ξ]− E[ν] ≤ δE[ξ](ξ − ν), (2.8)

and, consequently,

0 ≤ (δE[ξ]− δE[ν]) (ξ − ν).

Proposition 2.2. Suppose that E satisfies (E1) – (E3). Let
{
uk
}∞
k=0
⊂ H be computed via (2.5).

Then, for every k ≥ 0 we have E[uk+1] ≤ E[uk ]. Furthermore, αk > 0, as long as uk 6= u.
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Proof. Using the orthogonality relation (2.7) and the convexity inequality (2.8), we find

E[uk+1]− E[uk ] ≤ δE[uk+1](uk+1 − uk) = αkδE[uk+1](dk) = 0.

Now, suppose dk 6= 0. Then, by Taylor’s theorem, (2.4), and (2.2),

E[uk+1] = E[uk ]− αk
∥∥dk∥∥2

L +
α2
k

2
δ2E[θk ](dk , dk) > E[uk ]− αk

∥∥dk∥∥2

L .

Equivalently, we get

αk
∥∥dk∥∥2

L > E[uk ]− E[uk+1] ≥ 0,

which implies that αk > 0.

Proposition 2.3. Suppose that E satisfies (E1) – (E3) and u ∈ H is the unique minimizer of E. Then,

for any ξ ∈ H,

0 ≤ E[ξ]− E[u] ≤ (δE[ξ]− δE[u]) (ξ − u) = δE[ξ](ξ − u),

and, consequently,

0 ≤ E[uk ]− E[u] ≤
(
δE[uk ]− δE[u]

)
(uk − u) = δE[uk ](uk − u). (2.9)

Proof. This follows immediately from (2.8), because δE[u](ξ) = 0, for all ξ ∈ H.

Now, we make the following further assumptions about the pre-conditioner L with respect to the

derivatives of the energy E:

(L4) There is a constant C5 > 0 such that

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (2.10)

for all ν, ξ ∈ H.

(L5) Suppose B := {ν ∈ H | E[ν] ≤ E0} is non-empty. (This is the the case if, for example, one

chooses E0 = E[0].) There is a constant C6 = C6(E0) > 0 such that, for all ν ∈ B, and any

ξ ∈ H, ∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

L . (2.11)

Remark 2.4. We note that, practically speaking, (L5) is harder of the last two conditions to enforce.

In some sense, if the norm induced by L is not “strong” enough, then there does not exist C6 > 0 so

that (L5) is satisfied.

Theorem 2.5. Suppose that assumptions (E1) – (E3) and (L1) – (L5) are valid. Let
{
uk
}∞
k=0
⊂ H

be the sequence generated by (2.5). Then

0 ≤ E[uk ]− E[u] ≤ (C7)k(E[u0]− E[u]), (2.12)

where

0 < C7 := 1−
C5

2C6
< 1. (2.13)
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Proof. Consider the function g(α) := E[uk + αdk ] − E[uk ], α ∈ R. Then g(0) = 0, and g has a

global minimum at αk > 0. By coercivity and continuity of E, there is a βk , αk < βk <∞, such that

g(βk) = 0, and, for all α ∈ [0, βk ],

E[uk + αdk ] ≤ E[uk ] ≤ E[u0] =: E0.

By Taylor’s theorem, there is a γ = γ(uk , dk , α) ∈ (0, 1), such that

E[uk + αdk ]− E[uk ] = αδE[uk ](dk) +
α2

2
δ2E[θk ](dk , dk),

where θk := uk + (1− γ)αdk . By convexity of E,

E[θk ] ≤ γE[uk ] + (1− γ)E[uk + αdk ] ≤ E[uk ] ≤ E[u0] = E0.

Using estimate (2.11) – with the set B defined with respect to E0 = E[u0] – and norm equality (2.4),

we get, for all α ∈ [0, βk ],

g(α) = E[uk + αdk ]− E[uk ] ≤ αδE[uk ](dk) +
α2

2
C6

∥∥dk∥∥2

L

=
(
− α+

α2

2
C6

) ∥∥δE[uk ]
∥∥2

L−1 =: f (α). (2.14)

Now, the function f (α) is quadratic, f (0) = 0, f (βk) ≥ g(βk) = 0, and f ′(0) < 0. See Figure 1.

Thus f has a minimum in (0, βk). In fact, the minimum is achieved at 0 < σk := 1
C6
< βk . Then we

α

f (α)

g(α)

βk

σk

0

Figure 1: The functions g(α) = E[uk +αdk ]−E[uk ] and f (α) =
(
−α+ α2

2
C6

) ∥∥δE[uk ]
∥∥2

L−1 from (2.14). The function

g, which is strictly convex, is dominated by the function f , which is quadratic, on the interval [0, βk ].

have

E[uk + αkd
k ]− E[uk ] ≤ g(σk) = E[uk + σkd

k ]− E[uk ] ≤ −
1

2C6

∥∥δE[uk ]
∥∥2

L−1 = f (σk),

or, equivalently,

E[uk ]− E[uk+1] ≥
1

2C6

∥∥δE[uk ]
∥∥2

L−1 .
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Now, using estimates (2.9) and (2.10) we obtain

0 ≤ E[uk ]− E[u] ≤
1

C5

∥∥δE[uk ]
∥∥2

L−1 .

Combining the last two estimates, we get the result

0 ≤ E[uk ]− E[u] ≤
2C6

C5

(
E[uk ]− E[uk+1]

)
,

or, equivalently,

0 ≤ E[uk+1]− E[u] ≤
(

2C6

C5
− 1

)(
E[uk ]− E[uk+1]

)
.

Since E[uk+1] > E[u], as long as uk+1 6= u, and E[uk ] ≥ E[uk+1], this last inequality implies that

0 <
C5

2C6
< 1.

A little more manipulation reveals the equivalent inequality

0 ≤ E[uk+1]− E[u] ≤
(

1−
C5

2C6

)(
E[uk ]− E[u]

)
,

and the result follows.

If the following property holds, we get a simple corollary of the last theorem.

(L6) There is a constant C8 > 0, such that, for every ν, ξ ∈ H,

C8 ‖ξ‖2
L ≤ |δ2E[ν](ξ, ξ)|. (2.15)

This implies the strong convexity of E and is, therefore, stronger that (E2).

Corollary 2.6. Suppose that assumptions (E1) – (E3) and (L1) – (L6) are valid. Let
{
uk
}∞
k=0
⊂ H

be the sequence generated by (2.5), and define ek := u − uk . Then

∥∥ek∥∥2

L ≤ (C7)k
E[u0]− E[u]

C8
. (2.16)

Proof. By Taylor’s theorem and estimate (2.15), we have

E[uk ]− E[u] = δE[u](ek) +
1

2
δ2E[θk ](ek , ek)

=
1

2
δ2E[θk ](ek , ek) ≥ C8

∥∥ek∥∥2

L , (2.17)

where θk is in the line segment from uk to u. The result follows from (2.12).
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3 Nonlinear Elliptic Equations on Periodic Domains

3.1 Notation for Periodic Sobolev Spaces

For the remainder of paper Ω ⊂ Rd with d = 2, 3 is a rectangular domain. In what follows, if d = 2

we assume p ∈ [2,∞); whereas if d = 3 we suppose p ∈ [2, 6]. Most of the physically relevant cases

correspond to p being an even integer, however, all of our arguments hold for any value of p in the

indicated ranges. The Sobolev spaces of periodic functions are defined as follows: for q ∈ [1,∞], we

set

W k,q
per (Ω) :=

{
u ∈ W k,q

loc (Rd)
∣∣∣ u is Ω− periodic

}
,

where k ∈ N is the differentiability index. Observe that W 0,q
per (Ω) =: Lqper(Ω) = Lq(Ω). We denote the

norm of W k,q
per (Ω) by ‖ · ‖W k,q , or just ‖ · ‖Lq when k = 0. In the case q = 2 and k = 0, we denote by

(·, ·) and ‖ · ‖ the inner product and norm, respectively. We set Hkper(Ω) = W k,2
per (Ω) and immediately

remark that, given the range of p, we have H2
per(Ω) ↪→ W 1,p

per (Ω). For k ∈ N, the continuous dual of

Hkper(Ω) is denoted by H−kper (Ω) and their pairing by 〈·, ·〉k . We set 〈·, ·〉 := 〈·, ·〉1.

If L2
0(Ω) denotes the set of functions in L2(Ω) with zero mean, we define

H̊1
per(Ω) := H1

per(Ω) ∩ L2
0(Ω), H̊−1

per(Ω) :=
{
v ∈ H−1

per(Ω)
∣∣ 〈v , 1〉 = 0

}
.

We define a linear operator T : H̊−1
per(Ω) → H̊1

per(Ω) via the following variational problem: given

ζ ∈ H̊−1
per(Ω), T[ζ] ∈ H̊1

per(Ω) solves

(∇T[ζ],∇χ) = 〈ζ, χ〉, ∀ χ ∈ H̊1
per(Ω).

From the Riesz representation theorem it immediately follows that T is well-defined. We define the

inner product

(ζ, ξ)H̊−1
per

:= (∇T[ζ],∇T[ξ]) = 〈ζ,T[ξ]〉 = 〈ξ,T[ζ]〉, ∀ ζ, ξ ∈ H̊−1
per(Ω).

The induced norm is denoted ‖ · ‖H̊−1
per

. The following facts can be easily established [13]:

Lemma 3.1. On H̊−1
per(Ω) the norm ‖ · ‖H̊−1

per
equals the operator norm: for all ζ ∈ H̊−1

per(Ω),

‖ζ‖H̊−1
per

= sup
0 6=χ∈H̊1

per(Ω)

〈ζ, χ〉
‖∇χ‖ .

Consequently, we have |〈ζ, χ〉| ≤ ‖ζ‖H̊−1
per
‖∇χ‖, for all χ ∈ H1

per(Ω) and ζ ∈ H̊−1
per(Ω). Furthermore,

for all ζ ∈ L2
0(Ω), we have the Poincaré type inequality: ‖ζ‖H̊−1

per
≤ C ‖ζ‖, for some C > 0.

3.2 A Fourth-Order Regularized p-Laplacian Problem

We consider the following weak formulation of (1.1): given f ∈ L2
per(Ω), find u ∈ H2

per(Ω) such that

(u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ) = (f , ξ) , ∀ ξ ∈ H2

per(Ω), (3.1)

where 0 < ε ≤ 1 and s > 0 are parameters. Equation (3.1) is mass conservative in the following

sense: (u − f , 1) = 0. One can show that the solution of the weak formulation is a minimizer of the

following energy: for any ν ∈ H2
per(Ω),

E[ν] :=
1

2
‖ν − f ‖2 +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2. (3.2)
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It is not difficult to show that E satisfies (E1) – (E3). The first derivative of E at a point ν may be

calculated as follows: for any ξ ∈ H2
per(Ω),

dτE[ν + τξ]|τ=0 = δE[ν](ξ) = (ν − f , ξ) + s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) .

Thus, our original problem is equivalent to the following: find u ∈ H2
per(Ω), such that, for all ξ ∈

H2
per(Ω), δE[u](ξ) = 0, which is equivalent to (3.1). This problem has a unique solution, which is, in

turn, the unique minimizer of the energy (3.2):

u := argmin
ν∈H2

per(Ω)

E[ν].

The following estimate holds: for all ν, ξ ∈ H2
per(Ω),

|δE[ν](ξ)| ≤ ‖ν − f ‖ · ‖ξ‖+ s ‖∇ν‖p−1
Lp ‖∇ξ‖Lp + sε2 ‖∆ν‖ · ‖∆ξ‖ .

The second variation is a continuous bilinear operator. Given a fixed ν ∈ H2
per(Ω), the action of the

second variation on the arbitrary pair (ξ, η) ∈ H2
per(Ω)×H2

per(Ω) is given by

δ2E[ν](ξ, η) = (ξ, η) + s
(
|∇ν|p−2∇ξ,∇η

)
+ (p − 2)s

(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (∆ξ,∆η) ,

and we have the bound∣∣δ2E[ν](ξ, η)
∣∣ ≤ ‖ξ‖ · ‖η‖+ s ‖∇ν‖p−2

Lp ‖∇ξ‖Lp ‖∇η‖Lp
+ (p − 2)s ‖∇ν‖p−2

Lp ‖∇ξ‖Lp ‖∇η‖Lp + sε2 ‖∆ξ‖ · ‖∆η‖ . (3.3)

For this problem we define the pre-conditioner L : H2
per(Ω)→ H−2

per(Ω) via

〈L[ν], ξ〉 := (ν, ξ) + s (∇ν,∇ξ) + sε2 (∆ν,∆ξ) , ∀ ξ ∈ H2
per(Ω).

Clearly, this is a positive, symmetric operator, and it satisfies assumptions (L1) – (L3), and one can

see the similarities with the nonlinear operator in (3.1). We now proceed to find the positive constants

for which C5, C6, C8 assumptions (L4) – (L6) are satisfied.

Remark 3.2. We could also consider the possibility of changing the metric in the descent direction

calculation by, for example, defining the linear operator Lk : H2
per(Ω)→ H−2

per(Ω) via

〈Lk [ν], ξ〉 := (ν, ξ) + s
(∣∣∇uk ∣∣p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) , ∀ ξ ∈ H2

per(Ω).

This is similar to the idea in [26]. The search direction is then found as follows: find dk ∈ H2
per(Ω)

such that

〈Lk [dk ], ξ〉 = −δE
[
uk
]

(ξ), ∀ ξ ∈ H2
per(Ω).

Our theory does not cover this case, and we will not consider it further here. We plan to examine this

in a future work.

Lemma 3.3. Suppose that p ∈ [2,∞) when d = 2, and p ∈ [2, 6], if d = 3. For any ξ ∈ H2
per(Ω), we

have

‖∇ξ‖Lp ≤ C9

{
‖ξ‖

1
p · ‖∆ξ‖

p−1
p , if d = 2, p ∈ [2,∞),

‖ξ‖
3

2p
− 1

4 · ‖∆ξ‖
5
4
− 3

2p , if d = 3, p ∈ [2, 6],
(3.4)

for some C9 = C9(d, p) > 0.
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Proof. This follows from the Gagliardo-Nirenberg interpolation inequality and elliptic regularity.

Lemma 3.4. For any ν, ξ ∈ H2
per(Ω),

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (3.5)

where C5 = min
(

1
2 , εs

− 1
2

)
. Let E0 be given, such that B :=

{
ν ∈ H2

per(Ω)
∣∣ E[ν] ≤ E0

}
is non-

empty. For any ν ∈ B and any ξ ∈ H2
per(Ω),∣∣δ2E[ν](ξ, ξ)

∣∣ ≤ C6 ‖ξ‖2
L , (3.6)

where

C6 =


1 + 1

p (p − 1)
2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 for p ∈ [2,∞), d = 2,

1 + (p − 1)
(

4p
6−p

) p−6
4p
(

4p
5p−6

) 6−5p
4p
s

6−p
4p ε

6−5p
2p C2

9C
p−2
10 for p ∈ [2, 6), d = 3,

1 + (p − 1) ε−2C2
9C

p−2
10 for p = 6, d = 3,

(3.7)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

Proof. Clearly

(δE[ξ]− δE[ν]) (ξ − ν) = ‖ξ − ν‖2 + sε2 ‖∆(ξ − ν)‖2

+ s
(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
.

In addition, the following estimate is available:(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
≥

1

2p−2
‖∇(ξ − ν)‖pLp ≥ 0, for p ≥ 2. (3.8)

The simple interpolation inequality

‖∇ξ‖2 ≤ ‖ξ‖ · ‖∆ξ‖, ∀ξ ∈ H2
per(Ω),

in conjunction with Young’s inequality yields

1

2
‖ξ − ν‖2 +

sε2

2
‖∆(ξ − ν)‖2 ≥ s

1
2 ε ‖ξ − ν‖ · ‖∆(ξ − ν)‖ ≥ s

1
2 ε ‖∇(ξ − ν)‖2 .

As a consequence, we get

(δE[ξ]− δE[ν]) (ξ − ν) ≥ ‖ξ − ν‖2 + sε2 ‖∆(ξ − ν)‖2

≥
1

2
‖ξ − ν‖2 +

1

2
sε2 ‖∆(ξ − ν)‖2 + s

1
2 ε ‖∇(ξ − ν)‖2 ,

and we conclude that estimate (3.5) is valid by choosing C5 = min( 1
2 , εs

− 1
2 ).

Next we derive (3.6). Suppose ν ∈ B. From (3.3) we have∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ ‖ξ‖2 + (p − 1)s ‖∇ν‖p−2

Lp ‖∇ξ‖
2
Lp + sε2 ‖∆ξ‖2 . (3.9)

Now, since ν ∈ B,

‖∇ν‖Lp ≤ (pE0)
1
p =: C10.
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Suppose that d = 2. An application of the Sobolev inequality (3.4) in Lemma 3.3 indicates that

p
1
p

(
p

p − 1

) p−1
p

ε
2(p−1)
p s

(p−1)
p C−2

9 ‖∇ξ‖
2
Lp ≤ p

1
p ‖ξ‖

2
p ·
(

p

p − 1

) p−1
p

ε
2(p−1)
p s

p−1
p ‖∆ξ‖

2(p−1)
p

≤ ‖ξ‖2 + sε2 ‖∆ξ‖2 ,

where Young’s inequality is applied in the second step. It follows that,

(p − 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp ≤

1

p
(p − 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10

(
‖ξ‖2 + sε2 ‖∆ξ‖2

)
. (3.10)

Substituting (3.10) in (3.9) yields

∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ (1 +

1

p
(p − 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10

)
(‖ξ‖2 + sε2 ‖∆ξ‖2).

We conclude that estimate (3.6) is valid by choosing

C6 = 1 +
1

p
(p − 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 .

Note that both C9 and C10 are ε and s independent. Following the similar arguments, for p ∈
[2, 6), d = 3, we get

C6 = 1 + (p − 1)

(
4p

6− p

) p−6
4p
(

4p

5p − 6

) 6−5p
4p

s
6−p
4p ε

6−5p
2p C2

9C
p−2
10 .

For the case p = 6, d = 3, the Sobolev inequality (3.4) degenerates to ‖∇ξ‖Lp ≤ C9 ‖∆ξ‖, for any

ξ ∈ H2
per(Ω). Hence, we have

‖ξ‖2 + sε2 ‖∆ξ‖2 ≥ sε2 ‖∆ξ‖2 ≥ sε2C−2
9 ‖∇ξ‖

2
Lp ,

and ∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ (1 + (p − 1) ε−2C2

9C
p−2
10

)
(‖ξ‖2 + ε2 ‖∆ξ‖2).

Therefore, estimate (3.6) is valid by choosing

C6 = 1 + (p − 1) ε−2C2
9C

p−2
10 .

That we can take C8 = C5 is the result of a simple calculation that we omit for the sake of brevity.

The proof is complete.

4 A Sixth-Order Regularized p-Laplacian Problem

We now study problem (1.2a) – (1.2b). A weak formulation is given as follows: for f , g ∈ L2
per(Ω),

find u ∈ H2
per(Ω) and w ∈ H1

per(Ω) such that

(u, χ) + (∇w,∇χ) = (g, χ) , ∀ χ ∈ H1
per(Ω), (4.1a)

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ) − (w, ξ) = (f , ξ) , ∀ ξ ∈ H2

per(Ω), (4.1b)
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where λ ≥ 0, and ε ∈ (0, 1]. This problem is mass-conservative, in the sense that (u − g, 1) = 0, and

(w − sλg+ f , 1) = 0, and it can be recast as a minimization problem with an energy that involves the

H̊−1
per norm. In particular, for any ν ∈ H̊2

per(Ω) we define

E[ν] =
1

2
(ν − g + ḡ,T[ν − g + ḡ]) +

λs

2
‖ν + ḡ‖2 − (ν, f ) +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2

=
1

2
‖ν − g + ḡ‖2

H̊−1
per

+
λs

2
‖ν + ḡ‖2 − (ν, f ) +

s

p
‖∇ν‖pLp +

sε2

2
‖∆ν‖2 , (4.2)

where by ḡ we denote the average of g over Ω. Observe that ν − g + ḡ ∈ H̊−1
per, which is required for

this energy to make sense. It is straightforward to show that E satisfies (E1) – (E3), with respect to

the Hilbert space H = H̊2
per(Ω). The first variation of E is given as follows: for any ξ ∈ H̊2

per(Ω),

dτE[ν + τξ]|τ=0 = δE[ν](ξ) = (T[ν − g + ḡ], ξ) + λs (ν + ḡ, ξ)− (f , ξ)

+ s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (∆ν,∆ξ) .

The unique minimizer of E – let us call it u? ∈ H̊2
per(Ω) for the moment – satisfies δE[u?](ξ) = 0, for

all ξ ∈ H̊2
per(Ω). By the definition of the T operator, there is a unique element w? ∈ H̊1

per(Ω) such

that

w? := −T[u? − g + ḡ].

Therefore, we have, for all ξ ∈ H̊2
per(Ω),

sλ (u? + ḡ, ξ) + s
(
|∇u?|p−2∇u?,∇ξ

)
+ sε2 (∆u?,∆ξ)− (w?, ξ) = (f , ξ) .

Setting u := u? + ḡ and w := w? + sλḡ − f̄ and using the fact that ξ is of zero mean, we have

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (∆u,∆ξ)− (w, ξ) = (f , ξ) , ∀ ξ ∈ H̊2

per.

Using the definition of the T operator again, we conclude that w? ∈ H̊1
per(Ω) satisfies

(∇w?,∇χ) = − (u? − g + ḡ, χ) ,

for all χ ∈ H̊1
per(Ω), which implies that

(∇w,∇χ) = − (u − g, χ) .

It follows that solving (4.1a) – (4.1b) is equivalent to minimizing the coercive, strictly convex energy

(4.2), after the appropriate affine change of variables.

The second variation of E is a continuous bilinear operator. Given a fixed ν ∈ H̊2
per(Ω), the action

of the second variation on the arbitrary pair (ξ, η) ∈ H̊2
per(Ω)× H̊2

per(Ω) becomes

δ2E[ν](ξ, η) = (ξ,T[η]) + λs (ξ, η) + s
(
|∇ν|p−2∇ξ,∇η

)
+ (p − 2)s

(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (∆ξ,∆η) .

Similar to the estimate in the fourth-order case (3.3), we have the bound∣∣δ2E[ν](ξ, η)
∣∣ ≤ ‖ξ‖H̊−1

per
‖η‖H̊−1

per
+ λs ‖ξ‖ · ‖η‖+ s ‖∇ν‖p−2

Lp ‖∇ξ‖Lp ‖∇η‖Lp

+ (p − 2)s ‖∇ν‖p−2
Lp ‖∇ξ‖Lp ‖∇η‖Lp + sε2 ‖∆ξ‖ · ‖∆η‖ ,

14



which implies that∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ ‖ξ‖2

H̊−1
per

+ sλ ‖ξ‖2 + (p − 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp + sε2 ‖∆ξ‖2 , (4.3)

for all ν, ξ ∈ H̊2
per(Ω).

For the sixth order problem, we define the pre-conditioner L : H̊2
per(Ω)→ H̊−2

per(Ω) via

〈L[ν], ξ〉 := sλ (ν, ξ) + (ν, ξ)H̊−1
per

+ s (∇ν,∇ξ) + sε2 (∆ν,∆ξ) , ∀ ξ ∈ H̊2
per(Ω). (4.4)

This operator satisfies (L1) – (L3). To show that it satisfies (L3) – (L6), we need some technical

results.

Lemma 4.1. For every ξ ∈ H̊2
per(Ω) we have

‖ξ‖ ≤ ‖ξ‖
2
3

H̊−1
per
‖∆ξ‖

1
3 , (4.5)

and

‖∇ξ‖ ≤ ‖ξ‖
1
3

H̊−1
per
‖∆ξ‖

2
3 . (4.6)

Proof. Using integration by parts we get

‖∇ξ‖2 = −(ξ,∆ξ) ≤ ‖ξ‖ · ‖∆ξ‖. (4.7)

The definition of the H̊−1
per(Ω) norm implies that

‖ξ‖2 = (ξ, ξ) ≤ ‖ξ‖H̊−1
per
‖∇ξ‖. (4.8)

Therefore, a combination of (4.7) and (4.8) leads to

‖∇ξ‖ ≤ ‖ξ‖
1
2 · ‖∆ξ‖

1
2 ≤ ‖ξ‖

1
4

H̊−1
per
‖∇ξ‖

1
4 · ‖∆ξ‖

1
2 ,

so that

‖∇ξ‖
3
4 ≤ ‖ξ‖

1
4

H̊−1
per
‖∆ξ‖

1
2 .

which yields the second inequality. The first may be proved in a similar way.

Similar to before, the Gagliardo-Nirenberg inequality, together with elliptic regularity, yield the

following interpolation result.

Lemma 4.2. Suppose that p ∈ [2,∞) when d = 2, and p ∈ [2, 6], if d = 3. For any ξ ∈ H̊2
per(Ω), we

have

‖∇ξ‖Lp ≤ C9


‖ξ‖

2
3p

H̊−1
per
‖∆ξ‖1− 2

3p , if d = 2, p ∈ [2,∞),

‖ξ‖
1
p
− 1

6

H̊−1
per
‖∆ξ‖

7
6
− 1
p , if d = 3, p ∈ [2, 6],

(4.9)

for some C9 = C9(d, p) > 0.

We can now find the coefficients C5, C6, and C8, which establish properties (L4) – (L6) and

therefore guarantee the geometric convergence of the PSD method for the sixth-order case.
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Lemma 4.3. For any ν, ξ ∈ H̊2
per(Ω), we have

C5 ‖ξ − ν‖2
L ≤ (δE[ξ]− δE[ν]) (ξ − ν), (4.10)

where C5 = min
(

1
3 , ε

4
3 s−

1
3

)
. Let E0 be given such that B :=

{
ξ ∈ H̊2

per(Ω)
∣∣ E[ξ] ≤ E0

}
is non-

empty. For any ν ∈ B and any ξ ∈ H̊2
per(Ω), the following estimate is valid:∣∣δ2E[ν](ξ, ξ)

∣∣ ≤ C6 ‖ξ‖2
L , (4.11)

where

C6 =


1 + (p − 1)

(
3p
2

)− 2
3p

(
3p

3p−2

) 2−3p
3p
ε

4−6p
3p s

2
3pC2

9C
p−2
10 , for p ∈ [2,∞), d = 2,

1 + (p − 1)
(

6p
6−p

) p−6
6p
(

6p
7p−6

) 6−7p
6p
ε

6−7p
3p s

6−p
6p C2

9C
p−2
10 , for p ∈ [2, 6), d = 3,

1 + (p − 1)ε−2C2
9C

p−2
10 , for p = 6, d = 3,

(4.12)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

Proof. The proof is similar to that of Lemma 3.4. Using (3.8) again, we have

(δE[ξ]− δE[ν]) (ξ − ν) = sλ ‖ξ − ν‖2 + ‖ξ − ν‖2
H̊−1

per
+ sε2 ‖∆(ξ − ν)‖2

+ s
(
|∇ξ|p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
.

≥ sλ ‖ξ − ν‖2 + ‖ξ − ν‖2
H̊−1

per
+ sε2 ‖∆(ξ − ν)‖2

≥ sλ ‖ξ − ν‖2 +
2

3
‖ξ − ν‖2

H̊−1
per

+
1

3
sε2 ‖∆(ξ − ν)‖2

+ s
2
3 ε

4
3 ‖∇(ξ − ν)‖2 ,

where the last step is a consequence of the interpolation inequality (4.6):

1

3
‖ξ − ν‖2

H̊−1
per

+
2

3
sε2 ‖∆(ξ − ν)‖2 ≥ s

2
3 ε

4
3 ‖ξ − ν‖

2
3

H̊−1
per
‖∆(ξ − ν)‖

4
3 ≥ s

2
3 ε

4
3 ‖∇(ξ − ν)‖2 .

We conclude that estimate (4.10) holds by choosing C5 = min( 1
3 , ε

4
3 s−

1
3 ).

Next we derive (4.11). Inequality (4.3) yields∣∣δ2E[ν](ξ, ξ)
∣∣ ≤ sλ ‖ξ‖2 + ‖ξ‖2

H̊−1
per

+ (p − 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp + sε2 ‖∆ξ‖2 .

Since ν ∈ B, ‖∇ν‖Lp ≤ (E(u0))
1
p =: C10. Suppose that d = 2. An application of the Sobolev

inequality (4.9) from Lemma 4.2 indicates that, for every ξ ∈ H̊2
per(Ω),

(
3p

2

) 2
3p
(

3p

3p − 2

) 3p−2
3p

ε
6p−4

3p s
3p−2

3p C−2
9 ‖∇ξ‖

2
Lp

≤
(

3p

2

) 2
3p

‖ξ‖
4

3p

H̊−1
per

(
3p

3p − 2

) 3p−2
3p

ε
6p−4

3p s
3p−2

3p ‖∆ξ‖
6p−4

3p

≤ ‖ξ‖2
H̊−1

per
+ sε2 ‖∆ξ‖2 ,
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where, in the last step, we applied Young’s inequality. It follows that,

(p − 1)s ‖∇ν‖p−2
Lp ‖∇ξ‖

2
Lp

≤ (p − 1)

(
3p

2

)− 2
3p
(

3p

3p − 2

) 2−3p
3p

ε
4−6p

3p s
2

3pC2
9C

p−2
10

(
‖ξ‖2

H̊−1
per

+ sε2 ‖∆ξ‖2
)
.

As a result, estimate (4.11) is valid by choosing

C6 = 1 + (p − 1)

(
3p

2

)− 2
3p
(

3p

3p − 2

) 2−3p
3p

ε
4−6p

3p s
2

3pC2
9C

p−2
10 .

Similarly, For p ∈ [2, 6), d = 3, we have(
6p

6− p

) 6−p
6p
(

6p

7p − 6

) 7p−6
6p

ε
7p−6

3p s
7p−6

6p C−2
9 ‖∇ξ‖

2
Lp

≤
(

6p

6− p

) 6−p
6p

‖ξ‖
6−p
3p

H̊−1
per

(
6p

7p − 6

) 7p−6
6p

ε
7p−6

3p s
7p−6

6p ‖∆ξ‖
7p−6

3p

≤ ‖ξ‖2
H̊−1

per
+ sε2 ‖∆ξ‖2 .

As a result, estimate (4.11) is valid by choosing

C6 = 1 + (p − 1)

(
6p

6− p

) p−6
6p
(

6p

7p − 6

) 6−7p
6p

ε
6−7p

3p s
6−p
6p C2

9C
p−2
10 .

For the case p = 6, d = 3, the Sobolev inequality (4.9) degenerates, as before. But it is

straightforward to show that estimate (4.11) is valid upon choosing

C6 = 1 + (p − 1)ε−2C2
9C

p−2
10 .

As before, we omit the simple argument that one may take C8 = C5 to satisfy (L6). The proof is

complete.

5 Finite Difference Spatial Discretization in 2D

5.1 Notation

In this subsection we define the discrete spatial difference operators, function space, inner products

and norms, following the notation used in [24, 33, 36, 37, 38]. Let Ω = (0, Lx)× (0, Ly ), where, for

simplicity, we assume Lx = Ly =: L > 0. We write L = m · h, where m is a positive integer. The

parameter h = L
m is called the mesh or grid spacing. We define the following two uniform, infinite

grids with grid spacing h > 0:

E := {xi+ 1
2
| i ∈ Z}, C := {xi | i ∈ Z},

where xi = x(i) := (i − 1
2 ) · h. Consider the following 2D discrete periodic function spaces:

Vper :=
{
ν : E × E → R

∣∣∣ νi+ 1
2
,j+ 1

2
= νi+ 1

2
+αm,j+ 1

2
+βm, ∀ i , j, α, β ∈ Z

}
,

Cper :=
{
ν : C × C → R

∣∣ νi ,j = νi+αm,j+βm, ∀ i , j, α, β ∈ Z
}
,

Eew
per :=

{
ν : E × C → R

∣∣∣ νi+ 1
2
,j = νi+ 1

2
+αm,j+βm, ∀ i , j, α, β ∈ Z

}
,

Ens
per :=

{
ν : C × E → R

∣∣∣ νi ,j+ 1
2

= νi+αm,j+ 1
2

+βm, ∀ i , j, α, β ∈ Z
}
.
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The functions of Vper are called vertex centered functions; those of Cper are called cell centered

functions. The functions of Eew
per are called east-west edge-centered functions, and the functions of

Ens
per are called north-south edge-centered functions. We also define the mean zero space

C̊per :=

ν ∈ Cper

∣∣∣∣∣∣ h
2

|Ω|

m∑
i ,j=1

νi ,j =: ν = 0

 .
We now define the important difference and average operators on the spaces:

Axνi+ 1
2
,� :=

1

2
(νi+1,� + νi ,�) , Dxνi+ 1

2
,� :=

1

h
(νi+1,� − νi ,�) ,

Ayν�,i+ 1
2

:=
1

2
(ν�,i+1 + ν�,i) , Dyν�,i+ 1

2
:=

1

h
(ν�,i+1 − ν�,i) ,

with Ax , Dx : Cper → Eew
per if � is an integer, and Ax , Dx : Ens

per → Vper if � is a half-integer, with

Ay , Dy : Cper → Ens
per if � is an integer, and Ay , Dy : Eew

per → Vper if � is a half-integer. Likewise,

axνi ,� :=
1

2

(
νi+ 1

2
,� + νi− 1

2
,�

)
, dxνi ,� :=

1

h

(
νi+ 1

2
,� − νi− 1

2
,�

)
,

ayν�,j :=
1

2

(
ν�,j+ 1

2
+ ν�,j− 1

2

)
, dyν�,j :=

1

h

(
ν�,j+ 1

2
− ν�,j− 1

2

)
,

with ax , dx : Eew
per → Cper if � is an integer, and ax , dx : Vper → Ens

per if � is a half-integer; and with

ay , dy : Ens
per → Cper if � is an integer, and ay , dy : Vper → Eew

per if � is a half-integer.

Define the 2D center-to-vertex derivatives Dx , Dy : Cper → Vper component-wise as

Dxνi+ 1
2
,j+ 1

2
:= Ay (Dxν)i+ 1

2
,j+ 1

2
= Dx(Ayν)i+ 1

2
,j+ 1

2

=
1

2h

(
νi+1,j+1 − νi ,j+1 + νi+1,j − νi ,j

)
,

Dyνi+ 1
2
,j+ 1

2
:= Ax(Dyν)i+ 1

2
,j+ 1

2
= Dy (Axν)i+ 1

2
,j+ 1

2

=
1

2h

(
νi+1,j+1 − νi+1,j + νi ,j+1 − νi ,j

)
.

The utility of these definitions is that the differences Dx and Dy are collocated on the grid, unlike

the case for Dx , Dy . Define the 2D vertex-to-center derivatives dx , dy : Vper → Cper component-wise

as

dxνi ,j := ay (dxν)i ,j = dx(ayν)i ,j

=
1

2h

(
νi+ 1

2
,j+ 1

2
− νi− 1

2
,j+ 1

2
+ νi+ 1

2
,j− 1

2
− νi− 1

2
,j− 1

2

)
,

dyνi ,j := ax(dyν)i ,j = dy (axν)i ,j

=
1

2h

(
νi+ 1

2
,j+ 1

2
− νi+ 1

2
,j− 1

2
+ νi− 1

2
,j+ 1

2
− νi− 1

2
,j− 1

2

)
.

Now the discrete gradient operator, ∇vh: Cper → Vper × Vper, is defined as

∇vhνi+ 1
2
,j+ 1

2
:= (Dxνi+ 1

2
,j+ 1

2
,Dyνi+ 1

2
,j+ 1

2
).

The standard 2D discrete Laplacian, ∆h : Cper → Cper, is given by

∆hνi ,j := dx(Dxν)i ,j + dy (Dyν)i ,j =
1

h2

(
νi+1,j + νi−1,j + νi ,j+1 + νi ,j−1 − 4νi ,j

)
.
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The 2D vertex-to-center average, A : Vper → Cper, is defined to be

Aνi ,j :=
1

4

(
νi+1,j + νi−1,j + νi ,j+1 + νi ,j−1

)
.

The 2D skew Laplacian, ∆vh : Cper → Cper, is defined as

∆vhνi ,j = dx(Dxν)i ,j + dy (Dyν)i ,j

=
1

2h2

(
νi+1,j+1 + νi−1,j+1 + νi+1,j−1 + νi−1,j−1 − 4νi ,j

)
.

The 2D discrete p-Laplacian operator is defined as

∇vh ·
(
|∇vhν|

p−2∇vhν
)
i j

:= dx(r Dxν)i ,j + dy (r Dyν)i ,j ,

with

ri+ 1
2
,j+ 1

2
:=
[

(Dxu)2
i+ 1

2
,j+ 1

2

+ (Dyu)2
i+ 1

2
,j+ 1

2

] p−2
2
.

Clearly, for p = 2, ∆vhν = ∇vh ·
(∣∣∇vhν∣∣p−2∇vhν

)
.

Now we are ready to define the following grid inner products:

(ν, ξ)2 := h2
m∑
i=1

n∑
j=1

νi ,jψi ,j , ν, ξ ∈ Cper,

〈ν, ξ〉 := (A(νξ), 1)2 , ν, ξ ∈ Vper,

[ν, ξ]ew := (Ax(νξ), 1)2 , ν, ξ ∈ Eew
per,

[ν, ξ]ns := (Ay (νξ), 1)2 , ν, ξ ∈ Ens
per.

Suppose that ζ ∈ C̊per, then there is a unique solution Th[ζ] ∈ C̊per such that −∆hTh[ζ] = ζ. We

often write, in this case, Th[ζ] = −∆−1
h ζ. The discrete analogue of the H̊−1

per inner product is defined

as

(ζ, ξ)−1 := (ζ,Th[ξ])2 = (Th[ζ], ξ)2 , ζ, ξ ∈ C̊per.

where summation-by-parts [33, 38] guarantees the symmetry and the second equality.

We now define the following norms for cell-centered functions. If ν ∈ C̊per, then ‖ν‖2
−1 = (ν, ν)−1.

If ν ∈ Cper, then ‖ν‖2
2 := (ν, ν)2; ‖ν‖pp := (|ν|p, 1)2 (1 ≤ p < ∞), and ‖ν‖∞ := max 1≤i≤m

1≤j≤n

∣∣νi ,j ∣∣.
Similarly, we define the gradient norms: for ν ∈ Cper,

‖∇vh ν‖
p
p := 〈|∇vhν|p, 1〉, |∇vh ν|p := [(Dxν)2 + (Dyν)2]

p
2 = [∇vhν · ∇vhν]

p
2 ∈ Vper, 2 ≤ p <∞,

and

‖∇hν‖2
2 := [Dxν,Dxν]ew + [Dyν,Dyν]ns .

5.2 Discrete Sobolev Inequalities

Lemma 5.1. Suppose that p ∈ [2,∞), d = 2, we have

‖∇vhξ‖p ≤ C9

 ‖ξ‖
1
p

2 · ‖∆hξ‖
p−1
p

2 , ∀ ξ ∈ Cper,

‖ξ‖
2

3p

−1 · ‖∆hξ‖
1− 2

3p

2 , ∀ ξ ∈ C̊per,

for some C9 = C9(p) > 0.
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The proof for p = 4, d = 2 can be found in the appendix. Following the similar arguments, the

other cases can be proved.

Remark 5.2. Though we have focused on the case d = 2 in this section, we can also define our

operators and norms, in particular ∇vhξ and
∥∥∇vhξ∥∥p, in three space dimensions. Then for p ∈ [2, 6],

we expect

‖∇vhξ‖p ≤ C9

 ‖ξ‖
3

2p
− 1

4

2 ‖∆hξ‖
5
4
− 3

2p

2 , ∀ ξ ∈ Cper,

‖ξ‖
1
p
− 1

6

−1 ‖∆hξ‖
7
6
− 1
p

2 , ∀ ξ ∈ C̊per,

for some C9 = C9(d = 3, p) > 0.

5.3 Convergence for the Discretized Fourth-Order Problem

The discrete version of (1.1) can be expressed as follows: given f ∈ Cper, find u ∈ Cper such that

u − s∇vh ·
(
|∇vhu|

p−2∇vhu
)

+ sε2∆2
hu = f . (5.1)

This represents a second-order approximation of the solution of (1.1). As in the space continuous

case, we formulate an equivalent minimization problem. Using the definitions from subsection 5.1, we

have the following discrete energy: given f ∈ Cper, for any ν ∈ Cper, define

Eh[ν] :=
1

2
‖ν − f ‖2

2 +
s

p
‖∇vhν‖

p
p +

sε2

2
‖∆hν‖2

2. (5.2)

This (discrete) energy satisfies (E1) – (E3). The discrete variational derivative at ν ∈ Cper is

δEh[ν](ξ) := dτEh[ν + τξ]|τ=0

= (ν − f , ξ)2 + s〈|∇vhν|p−2Dxν,Dxξ〉+ s〈|∇vhν|p−2Dyν,Dyξ〉+ sε2(∆hν,∆hξ)2

= (ν − f , ξ)2 + s〈|∇vhν|p−2∇vhν,∇vhξ〉+ sε2(∆hν,∆hξ)2

=
(
ν − f − s∇vh ·

(
|∇vhν|

p−2∇vhν
)

+ sε2∆2
hν, ξ

)
2
,

for all ξ ∈ Cper, where we have used summation-by-parts [33, 38] to obtain the last equality. Given a

fixed ν ∈ Cper, the action of the second variation on the arbitrary pair (ξ, η) ∈ Cper × Cper is given by

δ2Eh[ν](ξ, η) = (ξ, η)2 + s〈|∇vhν|p−2∇vhξ,∇vhη〉
+ (p − 2)s〈|∇vhν|p−4∇vhν · ∇vhξ,∇vhν · ∇vhη〉+ sε2 (∆hξ,∆hη)2 .

We have the bound:∣∣δ2Eh[ν](ξ, η)
∣∣ ≤ ‖ξ‖2 ‖η‖2 + s ‖∇vhν‖

p−2
p ‖∇vhξ‖p ‖∇

v
hη‖p

+ (p − 2)s ‖∇vhν‖
p−2
p ‖∇vhξ‖p ‖∇

v
hη‖p + sε2 ‖∆hξ‖2 ‖∆hη‖2 . (5.3)

For this problem, we define the pre-conditioner via

(ν, ξ)Lh = Lh[ν](ξ) := (ν, ξ)2 + s [Dxν,Dxξ]ew + s [Dyν,Dyξ]ns + sε2(∆hν,∆hξ)2

= (ν − s∆hν + sε2∆2
hν, ξ)2,
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for all ν, ξ ∈ Cper, where we have used summation-by-parts to establish the second equality. In other

words,

Lh[ν] = ν − s∆hν + sε2∆2
hν.

One will notice the similarity of the pre-conditioner with the nonlinear operator in (5.1). The induced

norm is

‖ν‖2
Lh := (ν, ν)Lh = ‖ν‖2

2 + s ‖∇hν‖2
2 + sε2 ‖∆hν‖2 ,

defined for every ν ∈ Cper.

Mimicking the proofs in the continuous case, using summation-by-parts in place of integration-by-

parts, and Lemma 5.1, we get the following result, whose proof is omitted:

Lemma 5.3. For any ν, ξ ∈ Cper,

C5 ‖ξ − ν‖2
Lh ≤ (δEh[ξ]− δEh[ν]) (ξ − ν), (5.4)

where C5 = min
(

1
2 , εs

− 1
2

)
. Let E0 be given, such that B := {ν ∈ Cper | Eh[ν] ≤ E0} is non-empty.

For any ν ∈ B and any ξ ∈ Cper, we have∣∣δ2Eh[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

Lh , (5.5)

where

C6 = 1 +
1

p
(p − 1)

2p−1
p ε

−2(p−1)
p s

1
pC2

9C
p−2
10 , (5.6)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

5.4 Convergence for the Discretized Sixth-Order Problem

The (second-order accurate) discrete version of (1.2a) – (1.2b) can be expressed as follows: given

f , g ∈ Cper, find u, w ∈ Cper such that

u − ∆hw = g,

sλu − s∇vh ·
(
|∇vhu|

p−2∇vhu
)

+ sε2∆2
hu − w = f .

As before, it is convenient to switch to the mean-zero version: find u?, w? ∈ C̊per such that

u? − ∆hw? = g − g,

sλu? − s∇vh ·
(
|∇vhu?|

p−2∇vhu?
)

+ sε2∆2
hu? − w? = f − f .

Similar to fourth-order regularized p-Laplacian problem, we define the following discrete energy:

for every ν ∈ C̊per

Eh[ν] :=
1

2
‖ν − g + ḡ‖2

−1 +
λs

2
‖ν + ḡ‖2

2 − (ν, f ) +
s

p
‖∇vhν‖

p
p +

sε2

2
‖∆hν‖2

2 .

For the discrete sixth order problem, we define a linear operator Lh : C̊per → C̊per via

(ν, ξ)Lh = Lh[ν](ξ) := sλ (ν, ξ)2 + (ν, ξ)−1 + s [Dxν,Dxξ]ew + s [Dyν,Dyξ]ns + sε2(∆hν,∆hξ)2

=
(
sλν − s∆hν + sε2∆2

hν − Th [−ν] , ξ
)

2
,

where the second equality may be seen using summation-by-parts [33, 38]. This operator satisfies

(L1) – (L3), and the next result, which we give without proof for the sake of brevity, shows that (L4)

– (L6) are satisfied as well.
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Lemma 5.4. For any ν, ξ ∈ C̊per, the following inequality is valid

C5 ‖ξ − ν‖2
Lh ≤ (δEh[ξ]− δEh[ν]) (ξ − ν),

where C5 = min
(

1
3 , ε

4
3 s−

1
3

)
. Let E0 be given such that B :=

{
ξ ∈ C̊per

∣∣ Eh[ξ] ≤ E0

}
is non-empty.

For any ν ∈ B, we have ∣∣δ2Eh[ν](ξ, ξ)
∣∣ ≤ C6 ‖ξ‖2

Lh ,

for all ξ ∈ C̊per, where

C6 = 1 + (p − 1)

(
3p

2

)− 2
3p
(

3p

3p − 2

) 2−3p
3p

ε
4−6p

3p s
2

3pC2
9C

p−2
10 ,

and C10 = (pEh,0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

6 Numerical Experiments

In this section we perform some numerical experiments to support the theoretical results. The finite

difference search direction equations and Poisson equations are solved efficiently using the Fast Fourier

Transform (FFT). We would like to point out that the Fourier pseudo-spectral method can be used

to discretize space, and, once again, one can utilize the FFT for the inversion of the linear systems.

For descriptions of the pseudo-spectral methods, see, for example, [5, 7, 21].

6.1 Thin Film Epitaxy Model with Slope Selection

In this section we recall the convex splitting numerical scheme in [36] for the thin film epitaxy model

with slope selection. Suppose that Ω ⊂ R2 is a rectangular domain. The energy of an epitaxial thin

film is given by

E [u] =

∫
Ω

{
1

p
|∇u|p −

1

2
|∇u|2 +

ε2

2
|∆u|2

}
dx, ∀ u ∈ H2

per(Ω),

where, p ≥ 4 is even, u : Ω→ R is the height film, and ε is a constant. The L2 gradient flow is

∂tu = −w, w := δE = −∇ ·
(
|∇u|p−2∇u

)
+ ∆u + ε2∆2u, (6.1)

and w is called the chemical potential. The model predicts the emergence of a faceted thin film,

whose facets have slopes of magnitude approximately one, that coarsens over time. The fully-implicit

convex splitting scheme in 2D [36] can be written in operator format as Nh[un+1] = f , where

Nh[ν] := ν − s∇vh ·
(
|∇vhν|

p−2∇vhν
)

+ ε2s∆2
hν, f = un − s∆vhu

n, (6.2)

and s > 0 is the time step. Hence, the scheme can be reformulated as the fourth-order problem (5.1)

with f = un − s∆vhu
n and p ≥ 4 and even.

In way of summary, to solve Nh[u] = f , suppose that iterate uk ∈ Cper is given. (Note that k is

the PSD solver iteration index, not the time step index, the latter of which we usually denote by n.)

We first compute the search direction dk ∈ Cper via (2.3):

Lh[dk ] = dk − s∆hd
k + sε2∆2

hd
k = − δEh[uk ]

= −
(
uk − f − s∇vh ·

(∣∣∇vhuk ∣∣p−2∇vhuk
)

+ sε2∆2
hu
k
)

= f −Nh[uk ],
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where Eh is as defined in (5.2). This equation is efficiently solved using FFT. Once dk is found, we

perform a line-search according to (2.6): find αk ∈ R such that q(αk) = 0, where

q(α) := δEh[uk + αdk ](dk)

=
(
uk + αdk − f − s∇vh ·

(∣∣∇vh(uk + αdk)
∣∣p−2∇vh(uk + αdk)

)
+ sε2∆2

h(uk + αdk), dk
)

2

=
(
Nh[uk + αdk ]− f , dk

)
2
.

The approximation sequence is then updated via uk+1 = uk + αkd
k . When p = 4 (p = 6), a short

calculation shows that q is a cubic (quintic) polynomial whose coefficients can be easily obtained.

Moreover, the theory predicts that there is a unique global root for q.

6.1.1 Convergence and complexity of the PSD solver

In this subsection we demonstrate the accuracy and efficiency of the PSD solver by using the epitaxial

thin film model with slope selection. We present the results of some convergence tests and perform

some sample computations to demonstrate the convergence and near optimal complexity with respect

to the grid size h.

Table 1: Errors, convergence rates, average iteration numbers and average CPU time for each time step. Parameters

are given in the text, and the initial data are defined in (6.3). The refinement path is s = 0.1h2.

p = 4 p = 6

hc hf ‖δu‖2 Rate #iter Tcpu(hf ) ‖δu‖2 Rate #iter Tcpu(hf )
3.2
16

3.2
32 6.2192× 10−3 - 4 0.0007 9.3074× 10−3 - 5 0.0009

3.2
32

3.2
64 1.2685× 10−3 2.29 2 0.0024 1.6392× 10−3 2.51 3 0.0032

3.2
64

3.2
128 2.6046× 10−4 2.28 2 0.0114 2.9046× 10−4 2.50 2 0.0141

3.2
128

3.2
256 5.9639× 10−5 2.13 2 0.0475 6.5325× 10−5 2.15 2 0.0616

3.2
256

3.2
512 1.4526× 10−5 2.04 2 0.3560 1.5886× 10−5 2.04 2 0.4636

To simultaneously demonstrate the spatial accuracy and the efficiency of the solver, we perform a

typical time-space convergence test for the fully discrete scheme (6.2) for the slope selection model. As

in [33, 36], we perform the Cauchy-type convergence test using the following periodic initial data [33]:

u(x, y , 0) = 0.1 sin2

(
2πx

L

)
· sin

(
4π(y − 1.4)

L

)
−0.1 cos

(
2π(x − 2.0)

L

)
· sin

(
2πy

L

)
, (6.3)

where Ω = (0, 3.2)2. In this test, we compute the Cauchy difference, δu := uhf (T ) − Ifc (uhc (T )),

where hc = 2hf , and Ifc is a bilinear interpolation operator that maps the coarse grid approximation

uhc onto the fine grid. We take a quadratic refinement path, i.e., s = h2/10, to equalize the spatial

and temporal error contributions. At the final time, T = 0.32, we expect the global error to be

O(s) +O(h2) = O(h2) in the discrete ‖ · ‖2 and ‖ · ‖∞ norms, as h, s → 0. The other parameter is

given by ε = 0.1. The norms of Cauchy difference, the convergence rates, average iteration number

and average CPU time can be found on Table 1. Second-order convergence is observed. At the same

time, the average iteration count for the solver remains at around 2. Since we are using a quadratic

refinement path, increasing the grid size by a factor of two (decreasing the grid spacing by 2) means
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increasing the number of time-space degrees of freedom by a factor of 16. But the CPU time increases

at a much slower rate. The complexity can be offset, of course, by the fact the starting guesses for

the solver at each independent time level are better for smaller time step sizes.
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Figure 2: Complexity tests showing the solver performance for changing values of h, ε, s and p. Parameters are given

in the text.

To more directly investigate the complexity of the PSD solver we perform another series of tests

to determine the dependences of the convergence rates on ε, h, s, and p, in particular. Consider the

following spatially periodic function parametrized by s:

ũ(x, y , s) =
1

2π
sin
(

2πx
)

cos
(

2πy
)

cos(s). (6.4)

First we calculate f := Nh [Ih (ũ( · , · , s))] ∈ Cper, where Ih : C0
per(Ω) → Cper is the canonical

grid projection operator. Then we compute the sequence
{
uk
}∞
k=0

via the PSD algorithm, with the

initialization

u0
i ,j = ũ(pi , pj , 0) + s2 sin

(
4πpi

)
sin
(

6πpj
)
,

hence uk → Ih (ũ( · , · , s)), as k → ∞. Define γk := ‖uk − Ih (ũ( · , · , s)) ‖∞. We stop the PSD

algorithm when γk ≤ τ := 1× 10−8.
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In Figure 2 we plot γk versus k , on a semi-log scale, for various choices of h, ε, s and p. In

Figure 2(a) p = 4, s = 0.01 and ε = 0.03; in Figure 2(b) p = 4, s = 0.01 and h = 1/512; in Figure

2(c) p = 4, h = 1/512 and ε = 0.03; in Figure 2(d): h = 1/512, s = 0.01 and ε = 0.03. As can

be seen in Figure 2(a), the convergence rate (as gleaned from the error reduction) is nearly uniform

and nearly independent of h. Figures 2 (b) and (c) indicate that more PSD iterations are required for

smaller values of ε and larger values of s, respectively. Figure 2(d) shows that the number of PSD

iterations increases with the value of p. These general trends are expected form the theory.

t = 10 t = 1000

t = 3000 t = 6000

t = 8000 t = 10000

Figure 3: Time snapshots of the evolution with PSD solver for the epitaxial thin film growth model with p = 4 at

t = 10, 1000, 3000, 6000, 8000 and 10000. Left: contour plot of u, Right: contour plot of ∆u. The parameters are

ε = 0.03,Ω = [12.8]2, s = 0.01. These simulation results are consistent with earlier work on this topic in [33, 36, 39].

6.1.2 Long-time coarsening behavior for the thin film model with p = 4, 6

Coarsening processes in thin film systems can take place on very long time scales [27]. In this subsec-

tion, we perform (now standard) long time behavior tests for p = 4, 6. Such test, which have been

performed in many places, will confirm the expected coarsening rates and serve as benchmarks for our
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Figure 4: Log-log plot of Roughness and energy evolution for the simulation depicted in Figure 3.

solver. See, for example, [33, 36]. The initial data for the simulations are taken as essentially random:

u0
i ,j = 0.05 · (2ri ,j − 1), (6.5)

where the ri ,j are uniformly distributed random numbers in [0, 1]. Time snapshots of the evolution for

the epitaxial thin film growth model with p = 4 can be found in Figure 3. The coarsening rates for

the p = 4 case are given in Figure 4. These simulation results are consistent with earlier work on this

topic in [33, 36, 39], showing the surface roughness, W , grows like t
1
3 and the energy, E, decays like

t−
1
3 . We also present the numerical simulations for the epitaxial thin film growth model with p = 6

in Figure 5. Notice in Figure 5 that the evolution process is significantly different from the process

depicted in Figure 3.

6.2 Square Phase Field Crystal Model

Suppose that Ω ⊂ Rd , d = 2, 3 is a rectangular domain. The energy of square phase field crystal

(SPFC) model is given by [16, 19, 20, 30]:

E [u] =

∫
Ω

{
γ0

2
u2 −

γ1

2
|∇u|2 +

ε2

2
|∆u|2 +

1

4
|∇u|4

}
dx,

where u : Ω → R corresponds to the number density field of the atoms, and ε > 0, γ0, γ1 ≥ 0 are

parameters. The SPFC model is the H−1 gradient flow of this energy and is given by

∂tu = ∆w, w := δE = γ0u + γ1∆u + ε2∆2u −∇ ·
(
|∇u|2∇u

)
.

We propose the following fully-implicit, nonlinear convex-splitting scheme

un+1 − ∆hw
n+1 = g, sγ0u

n+1 − s∇vh ·
(∣∣∇vhun+1

∣∣2∇vhun+1
)

+ sε2∆2
hu
n+1 − wn+1 = f , (6.6)

where g = un and f = −γ1∆hu
n. Using the techniques of [36, 38], we can prove that this scheme is

unconditionally energy stable. The fully discrete scheme can also be rewritten in operator format as

Nh[un+1] = f , where

Nh[ν] := sγ0ν + sε2∆2
hν − s∇vh ·

(
|∇vhν|

2∇vhν
)
− Th[−ν + g].
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t = 10 t = 1000

t = 3000 t = 6000

Figure 5: Time snapshots of the evolution with PSD solver for the epitaxial thin film growth model with p = 6 at

t = 10, 1000, 3000 and 6000. Left: contour plot of u, Right: contour plot of ∆u. The parameters are ε = 3.0×10−2,Ω =

[12.8]2, s = 0.01.

We can shift the scheme from the affine space of solutions – whose elements ν satisfy (ν − g, 1)2 = 0 –

to the mean zero space, but this is not necessary for practical implementation. Otherwise, this scheme

is in the scope of our theory, and, according to the prescription in Section 5.4, the pre-conditioner

should be

Lh[ν] := sγ0ν − s∆hν + sε2∆2
hν − Th[−ν].

Given uk ∈ Cper, with
(
uk − g, 1

)
2

= 0, we compute the search direction dk ∈ C̊per by solving the sixth

order linear problem Lh[dk ] = f −Nh[uk ] using FFT. Once dk is found, we perform the line-search:

find αk ∈ R such that q(αk) = 0, where

q(α) =
(
Nh[uk + αdk ]− f , dk

)
2
.

After this, we update the approximation via uk+1 = uk + αkd
k . As before, q is a cubic polynomial

(since p = 4) whose coefficients can be precomputed. But this time, two of the coefficients involve

the Th = −∆−1
h operator. Specifically, for q(α) we need to compute(

Th
[
uk − f + αdk

]
, dk
)

2
=
(
Th
[
uk − f

]
, dk
)

2
+ α

(
Th
[
dk
]
, dk
)

2

=
(
uk − f ,Th

[
dk
])

2
+ α

(
dk ,Th

[
dk
])

2
,

where we have use the linearity and symmetry properties of the Th operator. These terms have only

to be calculated once per line search, and can be efficiently computed using FFT. In fact, observe

that we only need to compute Th
[
dk
]
, at the cost of a single FFT, per line search!

The 4-Laplacian term in (6.6) gives preference to rotationally invariant patterns with square sym-

metry. We perform a simple test showing the emergence of these patterns in this subsection. The

initial data for those simulations are similar to (6.5), but we add nucleation sites at specific locations in
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the domain. The rest of the parameters are given by ε = 1.0; λ = γ0 = 0.5; γ1 = 2.0; Ω = (0, 100)2;

and s = 0.01. The time snapshots of the evolution by using the given parameters are presented in

Figures 6 (one nucleation site) and 7 (four nucleation sites). These tests confirm the emergence of

the rotationally invariant square-symmetry patterns in the density field u.

t = 1, 10 t = 20, 40

t = 60, 80 t = 100, 200

t = 500, 1000 t = 5000, 9000

Figure 6: Time snapshots of the evolution with PSD solver for squared phase field crystal model at t =

1, 10, 20, 40, 60, 80, 100, 200, 500, 1000, 5000 and 9000. The parameters are ε = 1.0, λ = 0.5, γ1 = 2.0,Ω = [100]2

and s = 0.01.

7 Summary

A preconditioned steepest descent (PSD) solver is proposed and analyzed for fourth and sixth-order

regularized p-Laplacian equations. Solution of the highly nonlinear equations are equivalent to the

minimizations of the associated convex energies. The energy dissipation property of the PSD solver

leads to a bound for the numerical solution at each iteration stage. This fact, coupled with an upper-

bound for the second derivative of the energy with respect to the metric induced by the pre-conditioner,

leads to a geometric convergence rate for our (PSD) solver, which is proved rigorously for both the

28



t = 1, 10 t = 20, 40

t = 60, 80 t = 100, 200

t = 600, 800 t = 1000, 3000

Figure 7: Time snapshots of the evolution with PSD solver for squared phase field crystal model at t =

1, 10, 20, 40, 60, 80, 100, 200, 600, 800, 1000 and 3000. The parameters are ε = 1.0, λ = 0.5, γ1 = 2.0,Ω = [100]2

and s = 0.01.

continuous and discrete space cases. Various numerical results are presented in this article, including a

convergence test and a complexity analysis for the PSD solver, as well as long-time simulation results

for the thin film epitaxy model with slope selection (both p = 4 and p = 6) and the square phase field

crystal model.
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A Proof of discrete Sobolev inequality

Herein we only present the proof of (5.1) in Lemma 5.1 with d = 2 and p = 4. The other cases can

be handled in the same way. Without loss of generality, we assume that m = N = 2K + 1 is odd and

Lx = Ly = L, so that h = L
N = L

2K+1 . We use N, rather than m, for the mesh size, as it is more

standard.

For simplicity of presentation, we are focused on the estimate of ‖Dxu‖4, and we aim to establish

the following estimate:

‖Dxu‖4 ≤ C
(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 , ∀ u ∈ C̊per

where C
(1)
0 > 0 depends upon L, but is independent of h and u. Due to the periodic boundary conditions

for u and its cell-centered representation, it has a corresponding discrete Fourier transformation:

ui ,j =

K∑
`,m=−K

ûN`,me2πi(`xi+myj )/L,

where xi = (i − 1
2 )h, yj = (j − 1

2 )h, and ûN`,m are discrete Fourier coefficients. Then we make its

extension to a space-continuous function:

uF(x, y) =

K∑
`,m=−K

ûN`,me2πi(`x+my)/L.

Similarly, we denote the grid function f := Dxu ∈ Eew
per. The periodic boundary conditions for f and

its (east-west-edge-centered) mesh location indicates the following discrete Fourier transformation:

fi+1/2,j =

K∑
`,m=−K

f̂ N`,me2πi(`xi+1/2+myj )/L,

with f̂ N`,m the discrete Fourier coefficients. Its extension to a space-continuous function is given by

fF(x, y) =

K∑
`,m=−K

f̂ N`,me2πi(`x+my)/L.

Meanwhile, we observe that ûN0,0 = 0 and f̂ N0,0 = 0. The first identity comes from the fact that

u = 0, while the second one is due to the fact that f = Dxu = 0, for any periodic grid function u.

The following preliminary estimates will play a very important role in the later analysis.

Lemma A.1. We have

‖u‖2 = ‖uF‖, (A.1)

4

π2
‖∆uF‖ ≤ ‖∆hu‖2 ≤ ‖∆uF‖, (A.2)

‖∂x fF‖ ≤
∥∥∂2
xuF

∥∥ , ‖∂y fF‖ ≤ ‖∂x∂yuF‖ , (A.3)

‖fF‖H̊−1
per
≤ ‖uF‖ . (A.4)
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Proof. Parseval’s identity (at both the discrete and continuous levels) implies that

N−1∑
i ,j=0

|ui ,j |2 = N2
K∑

`,m=−K
|ûN`,m|2,

‖uF‖2 = L2
K∑

`,m=−K
|ûN`,m|2. (A.5)

Based on the fact that hN = L, this in turn results in

‖u‖2
2 = ‖uF‖2 = L2

K∑
`,m=−K

|ûN`,m|2,

so that (A.1) is proven.

For the comparison between f = Dxu and ∂xuF, we look at the following Fourier expansions:

fi+1/2,j = (Dxu)i+1/2,j =
ui+1,j − ui ,j

h

=

K∑
`,m=−K

w`û
N
`,me2πi(`xi+1/2+myj )/L,

fF(x, y) =

K∑
`,m=−K

w`û
N
`,me2πi(`x+my)/L,

∂xuF(x, y) =

K∑
`,m=−K

ν`û
N
`,me2πi(`x+my)/L,

with

w` = −
2i sin `πh

L

h
, ν` = −

2`πi

L
.

A comparison of Fourier eigenvalues between |w`| and |ν`| shows that

2

π
|ν`| ≤ |w`| ≤ |ν`|, for − K ≤ ` ≤ K. (A.6)

For the estimate (A.2), we look at similar Fourier expansions:

(∆hu)i ,j =

K∑
`,m=−K

(
w2
` + w2

m

)
ûN`,me2πi(`xi+myj )/L,

∆uF(x, y) =

K∑
`,m=−K

(
ν2
` + ν2

m

)
ûN`,me2πi(`x+my)/L.

In turn, an application of Parseval’s identity yields

‖∆hu‖2
2 = L2

K∑
`,m=−K

∣∣w2
` + w2

m

∣∣2 |ûN`,m|2, (A.7)

‖∆uF‖2 = L2
K∑

`,m=−K

∣∣ν2
` + ν2

m

∣∣2 |ûN`,m|2. (A.8)

31



The eigenvalue comparison estimate (A.6) implies the following inequality:

4

π2

∣∣ν2
` + ν2

m

∣∣ ≤ ∣∣w2
` + w2

m

∣∣ ≤ ∣∣ν2
` + ν2

m

∣∣ , for − K ≤ `,m ≤ K. (A.9)

As a result, inequality (A.2) comes from a combination of (A.7), (A.8) and (A.9).

For the estimate (A.3), we observe the following Fourier expansions:

∂x fF(x, y) =

K∑
`,m=−K

ν`w`û
N
`,me2πi(`x+my)/L,

∂2
xuF(x, y) =

K∑
`,m=−K

ν2
` û
N
`,me2πi(`x+my)/L,

which in turn leads to (with an application of Parseval’s identity)

‖∂x fF‖2 = L2
K∑

`,m=−K
|ν`w`|2 |ûN`,m|2, (A.10)

∥∥∂2
xuF

∥∥2
= L2

K∑
`,m=−K

|ν`|4|ûN`,m|2. (A.11)

Similarly, the following inequality could be derived, based on the eigenvalue comparison estimate (A.6):

|ν`w`|2 ≤ |ν`|4, for − K ≤ `,m ≤ K. (A.12)

Consequently, a combination of (A.10), (A.11) and (A.12) leads to the first inequality in (A.3). The

second inequality, ‖∂y fF‖ ≤ ‖∂x∂yuF‖, could be derived in the same manner.

For the last estimate (A.4), we observe that

‖fF‖2
H̊−1

per
= L2

K∑
(`,m) 6=0,`,m=−K

1

|ν2
` + ν2

m|
· |w`|2|ûN`,m|2.

Meanwhile, the derivation of the following inequality is straight forward:

1

|ν2
` + ν2

m|
· |w`|2 =

|w`|2

|ν2
` + ν2

m|
≤
|ν`|2

|ν`|2
≤ 1, ∀(`,m) 6= 0,

in which the eigenvalue estimate (A.6) was used again in the second step. In comparison with (A.5),

we arrive at (A.4). The proof of Lemma A.1 is complete.

The following lemma gives a bound of the discrete ‖ · ‖4 norm of the grid function f , in terms of

the continuous L4 norm of its continuous version fF.

Lemma A.2. We have

‖f ‖4 ≤
√

2‖fF‖L4 . (A.13)
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Proof. We denote the following grid function

gi+1/2,j =
(
fi+1/2,j

)2
.

A direct calculation shows that

‖f ‖4 = (‖g‖2)
1
2 . (A.14)

Note that both norms are discrete in the above identity. Moreover, we assume the grid function g has

a discrete Fourier expansion as

gi+1/2,j =

K∑
`,m=−K

(ĝNc )`,me2πi(`xi+1/2+myj ),

and denote its continuous version as

G(x, y) =

K∑
`,m=−K

(ĝNc )`,me2πi(`x+my) ∈ PK = span
{

e2πi(`x+my) : `,m = −K, . . . , K
}
.

With an application of the Parseval equality at both the discrete and continuous levels, we have

‖g‖2
2 = ‖G‖2 =

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 . (A.15)

On the other hand, we also denote

H(x, y) = (fF(x, y))2 =

2K∑
`,m=−2K

(ĥN)`,me2πi(`x+my) ∈ P2K .

The reason for H ∈ P2K is because fF ∈ PK . We note that H 6= G, since H ∈ P2K , while G ∈ PK ,

although H and G have the same interpolation values on at the numerical grid points (xi , yj+1/2). In

other words, g is the interpolation of H onto the numerical grid point and G is the continuous version

of g in PK . As a result, collocation coefficients ĝNc for G are not equal to ĥN for H, due to the aliasing

error. In more detail, for −K ≤ `,m ≤ K, we have the following representations:

(ĝNc )`,m =



(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m+N + (ĥN)`+N,m+N , ` < 0, m < 0,

(ĥN)`,m + (ĥN)`+N,m, ` < 0, m = 0,

(ĥN)`,m + (ĥN)`+N,m + (ĥN)`,m−N + (ĥN)`+N,m−N , ` < 0, m > 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m−N + (ĥN)`−N,m−N , ` > 0, m > 0,

(ĥN)`,m + (ĥN)`−N,m, ` > 0, m = 0,

(ĥN)`,m + (ĥN)`−N,m + (ĥN)`,m+N + (ĥN)`−N,m+N , ` > 0, m < 0,

(ĥN)`,m + (ĥN)`,m+N , ` = 0, m < 0,

(ĥN)`,m, ` = 0, m = 0,

(ĥN)`,m + (ĥN)`,m−N , ` = 0, m > 0.

With an application of Cauchy inequality, it is clear that

K∑
`,m=−K

∣∣(ĝNc )`,m
∣∣2 ≤ 4

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

. (A.16)
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Meanwhile, an application of Parseval’s identity to the Fourier expansion (A) gives

‖H‖2 =

∣∣∣∣∣
2K∑

`,m=−2K

(ĥN)`,m

∣∣∣∣∣
2

.

Its comparison with (A.15) indicates that

‖g‖2
2 = ‖G‖2 ≤ 4 ‖H‖2 , i.e. ‖g‖2 ≤ 2 ‖H‖ , (A.17)

with the estimate (A.16) applied. Meanwhile, since H(x, y) = (fF(x, y))2, we have

‖fF‖L4 = (‖H‖)
1
2 . (A.18)

Therefore, a combination of (A.14), (A.17) and (A.18) results in

‖f ‖4 = (‖g‖2)
1
2 ≤ (2 ‖H‖)

1
2 ≤
√

2 ‖fF‖L4 .

This finishes the proof of (A.13).

Now we proceed into the proof of Proposition 5.1.

Proof. We begin with an application of (A.13) in Lemma A.2:

‖Dxu‖4 = ‖f ‖4 ≤
√

2‖fF‖L4 . (A.19)

Meanwhile, using the fact that fF = 0, we apply the 2-D Sobolev inequality and get

‖fF‖L4 ≤ C‖fF‖
H

1
2
≤ C‖fF‖

1
4

H̊−1
per
· ‖∇fF‖

3
4 . (A.20)

Moreover, the estimates (A.1) – (A.4) (in Lemma A.1) indicate that

‖fF‖H̊−1
per
≤ ‖uF‖ = ‖u‖2, (A.21)

‖∂x fF‖ ≤
∥∥∂2
xuF

∥∥ ≤ M0 ‖∆uF‖ ≤
π2M0

4
‖∆hu‖2,

‖∂y fF‖ ≤ ‖∂x∂yuF‖ ≤ M0 ‖∆uF‖ ≤
π2M0

4
‖∆hu‖2,

so that

‖∇fF‖ ≤
√

2π2M0

4
‖∆hu‖2, (A.22)

where the following elliptic regularity estimate is applied:∥∥∂2
xuF

∥∥ , ‖∂x∂yuF‖ ≤ M0 ‖∆uF‖ .

Therefore, a substitution of (A.21), (A.22) and (A.20) into (A.19) results in

‖Dxu‖4 ≤ C(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 , with C

(1)
0 = 2−5/8M

3
4

0 π
3/2.

The estimate for ‖Dyu‖4 could be derived in the same fashion. The result is stated below; its

proof is skipped for the sake of brevity.

‖Dyu‖4 ≤ C(1)
0 ‖u‖

1
4
2 · ‖∆hu‖

3
4
2 .

Moreover, by the definition of Dxu and Dyu we get

‖Dxu‖4 = ‖Ay (Dxu)‖4 ≤ ‖Dxu‖4, ‖Dyu‖4 = ‖Ax(Dyu)‖4 ≤ ‖Dyu‖4.

As a consequence, the first case of (5.1) (with d = 2, p = 4) is valid, by setting C0 =
√

2C
(1)
0 . The

other cases could be analyzed in the same way. This finishes the proof of Proposition 5.1.
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