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Abstract

We propose an all regime Lagrange-Projection like numerical scheme for 2D
homogeneous models for two-phase flows. By all regime, we mean that the
numerical scheme is able to compute accurate approximate solutions with an
under-resolved discretization, i.e. a mesh size and time step much bigger than the
Mach numberM of the mixture. The key idea is to decouple acoustic, transport
and phase transition phenomenon using a Lagrange-Projection decomposition
in order to treat implicitly (fast) acoustic and phase transition phenomenon
and explicitly the (slow) transport phenomena. Then, extending a strategy
developed in the case of the usual gas dynamics equations, we alter the numerical
flux in the acoustic approximation to obtain an uniform truncation error in terms
of M . This modified scheme is conservative and endowed with good stability
properties with respect to the positivity of the density and preserving the mass
fraction within the interval (0, 1). Numerical evidences are proposed and show
the ability of the scheme to deal with cases where the flow regime may vary
from low to high Mach values.
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1. Introduction

The simulation of two-phase flows accounting for mass transfer between a
liquid and its vapor phase pertains to a wide range of industrial applications.
They may bring to play very different flow regimes stemming from low-velocity
steady flows in heat exchangers to water hammer effects in pipes that involve
cavitation phenomena near closing valves in pipes. A significant factor for such
regime discrepancy lies in the fact that the sound velocity in a two-phase mixture
is considerably lower than in the pure phase [1, 2]. Therefore, if phase change
occurs in a flow it may result in a large variations of the Mach numberM across
the computational domain.

In the present work, we intend to focus on the simulation of compressible
two-phase flows with mass transfer phenomena that may experience important
Mach number variations. Among the vast diversity of two-phase flows models,
we choose a simple framework that entails phase change by considering a com-
pressible Homogeneous Relaxation Model frequently referred to as HRM and
its related Homogeneous Equilibrium Model (HEM), see [3, 4, 5, 6, 7] and ref-
erences therein. We propose a collocated Finite Volume method that addresses
two important issues if one needs to use the same model for both low-velocity
and fast dynamics processes.

The first issue concerns the lack of accuracy in the low-Mach regime of
Godunov-type schemes when using an under-resolved mesh. This problem has
been widely investigated in the case of the gas dynamics equations, see [8], [9],
[10], [11] , [12], [13], [14], [15], [16], [17], [18]. The analysis of these authors
may rely on different arguments like the analysis of the viscosity matrix [8], an
asymptotic expansion in terms of Mach number [9], a detailed study in [12] that
seeks invariance properties of the numerical scheme transposing the framework
of Schochet to the discrete setting, and also an analysis based on the so-called
Asymptotic Preserving property in [15]. Nevertheless the resulting cure usually
boils down to reducing the numerical diffusion in the momentum equation for
low Mach number values. Some works have been devoted to the extension of
those strategies to two-phase flows [5, 19, 20, 21].

The second problem we address is the CFL restriction on the time step for
explicit Finite Volume methods that involve the (fast) acoustic and phase tran-
sition phenomena. It seems natural to seek for numerical schemes that enable
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the use of large time steps constrained only by the (slow) material phenomena,
see [10, 22, 15, 23, 18].

Numerical schemes that can tackle both issues, namely: accuracy for mesh
sizes that do not depend on the Mach number and also stability for time steps
that are not constrained by the Mach value are usually referred to as all regime,
like the methods proposed in [10, 15, 18].

In the present work, we propose an extension of the method proposed in [18]
for the gas dynamics equations to the case of homogeneous models for two-phase
flows. An operator splitting strategy allows to decouple the acoustic, transport
and phase transition phenomena. The approximation algorithm is split into
three steps : an acoustic step, a transport step and a phase transition step.
A mixed implicit-explicit method is obtained by using implicit updates for the
acoustic and phase transition steps, and an explicit update for the transport
step. Then, a modification of fluxes for the acoustic step allow to recover a
truncation error that is uniform with respect to the Mach number. The re-
sulting scheme allows to cope with unstructured meshes and compressible flows
equipped with very general Equation of State (EOS). Finally, let us mention
that the overall procedure is shown to be a conservative discretization (except
for the mass fraction due to phase transition) and endowed with good stability
properties with respect to the positivity of the density and ensuring that the
mass fraction remains in the interval (0, 1). We also prove the validity of a
discrete entropy inequality in 2D and for general meshes.

2. Governing equations and low-Mach number regime

Governing equations. Let us note (x1, x2) ∈ R2 and ∇ = (∂x1
·, ∂x2

·), we
are interested in the two-dimensional homogeneous relaxation model (HRM)

∂t(ρY ) +∇ · (ρY u) = λ0ρ (Y ∗(ρ, e)− Y ) ,

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · [(ρE + p)u] = 0,

(1)

where Y , ρ, u = (u, v)t, E denotes the mass fraction, the density, the velocity
vector and the total energy of the mixture. The pressure p = pHRM(ρ, e, Y ) is
assumed to be a given function of the density ρ, the internal energy e = E− |u|

2

2

of the mixture and the mass fraction Y . The mass fraction at thermodynamic
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equilibrium Y ∗(ρ, e) is a given function of the density and the internal energy
of the mixture. For HRM, the thermodynamic equilibrium Y = Y ∗(ρ, e) is not
instantaneously achieved but is reached at relaxation rate λ0 > 0. We refer
for instance the reader to [3, 4, 5, 6] and the references therein. We make the
assumption that c2 = ∂ρp

HRM + pHRM∂ep
HRM/ρ2 > 0, where c is the sound

velocity of the (HRM) system.

Remark 1. We note that in the limit λ0 →∞, the (HRM) system (1) converges
at least formally toward the homogeneous equilibrium model (HEM) given by

Y = Y ∗(ρ, e),

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇pHEM = 0,

∂t(ρE) +∇ ·
[(
ρE + pHEM

)
u
]

= 0,

(2)

where pHEM(ρ, e) = pHRM(ρ, e, Y ∗(ρ, e)).

Dimensionless governing equations. We are now interested in the be-
havior of the HRM system with respect to the variation of the Mach regime. In
order to characterize the Mach regime of the flow, we consider a rescaling of the
equations. Let us introduce the following non-dimensional quantities :

x̃1 =
x1

L
, x̃2 =

x2

L
, t̃ =

t

T
, ρ̃ =

ρ

ρ0
, ũ =

u

u0
, ṽ =

v

v0
, ẽ =

e

e0
, p̃ =

p

p0
, c̃ =

c

c0
.

The parameters L, T , u0 = v0 = L
T , ρ0, e0 = ρ0p0 and c0 =

√
p0
ρ0

denote
respectively a characteristic length, time, velocity, density, internal energy, pres-
sure, and sound speed of the mixture. If M = u0

c0
is the so-called Mach-number

and if we note ∇̃ = (∂x̃1
·, ∂x̃2

·), then system (1) reads
∂t̃(ρ̃Y ) + ∇̃ · (ρ̃Y ũ)− λ0T ρ̃ (Y ∗(ρ0ρ̃, e0ẽ)− Y ) = 0,

∂t̃ρ̃+ ∇̃ · (ρ̃ũ) = 0,

∂t̃(ρ̃ũ) + ∇̃ · (ρ̃ũ⊗ ũ) + 1
M2 ∇̃p̃ = 0,

∂t̃(ρ̃ẽ) + ∇̃ · [(ρ̃ẽ+ p̃)ũ] + M2

2

[
∂t̃(ρ̃|ũ|2) + ∇̃ · (ρ̃|ũ|2ũ)

]
= 0,

(3)

This system motivates the following definition.

Definition 1. In the following, the flow is said to be in the low-Mach regime if
and only if the Mach number M � 1 and ∇̃p̃ = O(M2).
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Remark 2. If the term ∇̃p̃ does not remain of magnitude O(M2) then the vari-
ation of ρ̃ũ will reach a magnitude O

(
1
M

)
or O

(
1
M2

)
. These large magnitude

variations of the momentum will induce a growth of the Mach number and thus
change the Mach regime.

Remark 3. The source term in the mass fraction equation may be stiff if the
relaxation toward thermodynamic equilibrium is much faster than the convective
part of the system (λ0T � 1).

Remark 4. Let us underline that the definition of a relevant Mach number,
and a fortiori the definition of a low Mach regime for two-phase flow models is
not a trivial matter in the general case. Indeed, many models involve several
material velocities and several sound velocities, like in the Baer-Nunziato model
[24] or the model of Cheng, Drew and Lahey [25]. Nevertheless, in the case of
the HEM or HRM models without velocity drift law, there is a natural definition
for the sound velocity, the Mach number and the low Mach regime.

Before going any further, let us underline that the present work does not
involve the study of the rescaled system (3) in the limit regime M → 0. This
delicate question has been widely investigated over the past years and is still a
rich field of research [9, 15, 19]. We focus here on a simpler task that consists
in examining the consistency with (3) of a rescaled numerical scheme in the low
Mach regime. We shall see that this only involves evaluating the truncation
error of the rescaled numerical scheme (in the sense of Finite Difference) and
determining how it depends on the Mach number. Let us emphasize that this
procedure only relies on a local behavior of the solution and does not require
specific hypotheses besides the (local) smoothness of the solution and the (local)
low Mach regime hypothesis.

3. Acoustic-transport-phase transition operator splitting strategy

In this section, we propose a three-step approximation strategy based on
an operator splitting for approximating the solutions of (1). The aim of this
splitting is to decouple acoustic, transport and phase transition phenomena.
Using the chain rule for the space derivatives, we split system (1) into the
following three subsystems. The first subsystem describe the transport process
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and reads 
∂t(ρY ) + u · ∇(ρY ) = 0,

∂tρ + u · ∇(ρ) = 0,

∂t(ρu) + u · ∇(ρu) = 0,

∂t(ρE) + u · ∇
(
ρE
)

= 0.

(4)

The second subsystem governs the acoustic phenomena, namely

∂t(ρY ) + (ρY )∇ · u = 0, ∂tρ+ ρ∇ · u = 0,

∂t(ρu) + (ρu)∇ · u +∇p = 0, ∂t(ρE) + (ρE)∇ · u +∇ · [pu] = 0,

Or equivalently with τ = 1
ρ the specific volume

∂tY = 0,

∂tτ − τ∇ · u = 0,

∂tu + τ∇p = 0,

∂tE + τ∇ · (pu) = 0.

(5)

This system is nothing but the gas dynamics equations in Lagrangian coordi-
nates, so that the proposed transport-acoustic decomposition is nothing but
the natural (and physically relevant) Lagrange-Projection strategy. This is an
original approach for treating low Mach regimes that was first proposed in [18],
other works using a fixed-mesh Lagrange-Projection splitting have also been
presented in [26, 27].
The third subsystem accounts for mass transfer between phases and reads

∂t(ρY ) = λ0ρ (Y ∗(ρ, e)− Y ) ,

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρE) = 0,

or equivalently 
∂tY = λ0 (Y ∗(ρ, e)− Y ) ,

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρE) = 0.

(6)

Let us mention that this transport/acoustic/phase transition splitting separates
physical phenomena that happen at speed u0/c0/λ0 that may differ from several
order of magnitude. From a numerical point of view, such a decomposition
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is very helpful to design large time step implicit-explicit strategy with CFL
restriction based only on the slow phenomenon [22, 23, 18].

4. Numerical scheme

Let us suppose that the domain Ω ⊂ R2 is discretized by N cells Ωi. Let Γij

be the common edge of two neighbouring cells Ωi and Ωj and nij be the unit
vector normal to Γij pointing from Ωi to Ωj . We define N(i) the set of indices
1 ≤ j ≤ N such that Ωi and Ωj have a common face (figure 4). Let ∆t > 0

be the time step, we define the intermediate times tn = n∆t for n ∈ N. If b is
a fluid parameter, in the sequel, we will note bni (resp. bn+1

i ) the approximate
value of b within the cell Ωi at instant t = tn (resp. t = tn+1).

Ωk

Ωj

njk

N

S

Figure 1: the face Γjk = Ωj ∩ Ωk defined the segment (NS) has a unit normal vector njk

oriented from Ωj to Ωk.

Given a fluid state (Y, ρ, ρu, ρv, ρE)ni , 1 ≤ i ≤ N at instant tn, this splitting
algorithm may be decomposed as follows

1. Acoustic step : Update the fluid state (Y, ρ, ρu, ρv, ρE)ni to the value
(Y, ρ, ρu, ρv, ρE)n+1−

i by approximating the solution of (5);

2. Transport step : Update the fluid state (Y, ρ, ρu, ρv, ρE)n+1−
i to the value

(Y , ρ, ρu, ρv, ρE)i by approximating the solution of (4);

3. Phase transition step : Update the fluid state (Y , ρ, ρu, ρv, ρE)i to the
value (Y, ρ, ρu, ρv, ρE)n+1

i by approximating the solution of (6).

Remark 5. It is interesting to note that a different order of splitting could have
been considered a priori in order to approximate the three operators. However,
the proposed order enjoys the following desirable properties: first, it yields a
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conservative discretization for the global mass, the momentum and the total
energy. This feature is important for simulations of flows developing shocks in
the computational domain. Moreover, in the limit λ0 → +∞, the third step that
accounts for mass transfer boils down to restoring the Y = Y ∗ equilibrium for
the HEM system, before evaluating the pressure and the sound velocity of the
Lagrange step. These nice properties are not natural with a different order of
splitting.

Let us now detail each step of the algorithm.

Acoustic step (Lagrange step). Regarding the acoustic step (5) we propose
the following update formulas

un+1−
i = uni − τni ∆t

∑
j∈N(i)

σijp
∗,θ
ij nij ,

Πn+1−
i = Πn

i − τni ∆t
∑

j∈N(i)

σij(aij)
2u∗ij ,

Y n+1−
i = Y ni ,

τn+1−
i = τni + τni ∆t

∑
j∈N(i)

σiju
∗
ij ,

En+1−
i = Eni − τni ∆t

∑
j∈N(i)

σijp
∗,θ
ij u

∗
ij ,

(7)

where σij = |Γij |/|Ωi| and Π is an unknown associated with the so-called Suliciu
relaxation approximation and given at time tn by Πn

i = p(ρni , e
n
i , Y

n
i ), see [28,

29, 30].
The three scalar quantities aij , p

∗,θ
ij , and u∗ij represent respectively an average

sound velocity, a pressure and normal velocity at the face Γij and are given by
aij = max

(
(ρc)ni , (ρc)

n
j

)
,

u∗ij = 1
2n

T
ij

(
uni + unj

)
− 1

2aij

(
Πn
j −Πn

i

)
,

p∗,θij = 1
2

(
Πn
i + Πn

j

)
− aijθij

2 nTij
(
unj − uni

)
.

(8)

We remark that the modification of classical fluxes thanks to θij will allow to
avoid spurious numerical diffusion in the low Mach regime, as proposed recently
in [18] such a modification is the key point to make the scheme accurate in
the low Mach regime. The classical Suliciu relaxation fluxes correspond to the
choice θij = 1.
At this stage, the CFL restriction of this explicit scheme is based on the (fast)
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acoustic waves and reads

∆t max
1≤j≤N

[
τnj

(
max
i∈N(j)

σijaij

)]
≤ 1

2
. (9)

To obtain a time step definition based only on the slow waves, following ideas
developed in [22, 23, 18], we propose to use an implicit scheme for the acoustic
step. We use (7) with a new definition of the pressure and normal velocity at
the interface Γij given by

aij = max
(
(ρc)ni , (ρc)

n
j

)
,

u∗ij = 1
2n

T
ij

(
un+1−
i + un+1−

j

)
− 1

2aij

(
Πn+1−
j −Πn+1−

i

)
,

p∗,θij = 1
2

(
Πn+1−
i + Πn+1−

j

)
− aijθij

2 nTij
(
un+1−
j − un+1−

i

)
.

(10)

Thanks to the Suliciu-type relaxation strategy, scheme (7)-(10) is valid for any
pressure law and only requires to solve a linear problem with respect to variables
u and Π. Then other update formulas for variables Y , τ and E are evaluated
explicitly, while the scheme is actually implicit.

Transport step (Projection step). In order to approximate the solutions of
(4), we simply use an upwind Finite-Volume scheme : Let ϕ ∈ {ρY, ρ, ρu, ρE},
we set

ϕi = ϕn+1−
i −∆t

 ∑
j∈N(i)

(σiju
∗
ijϕ

n+1−
ij )

+ ∆tϕn+1−
i

 ∑
j∈N(i)

(σiju
∗
ij)

 , (11)

where ϕn+1−
ij is defined by the upwind choice with respect to the sign of u∗ij ,

namely

ϕn+1−
ij =

{
ϕn+1−
i , if u∗ij > 0,

ϕn+1−
j , if u∗ij ≤ 0.

(12)

The CFL restriction of this explicit scheme is based on the (slow) material waves
and reads

∆t max
1≤j≤N

 ∑
i∈N(j)

(σij |u∗ij |)

 ≤ 1. (13)

Phase transition step (Source terms step). To approximate system (6),
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we propose a pointwise implicit evaluation{
Y n+1
i = Y i + λ0∆t

(
Y ∗(ρi, ei)− Y n+1

i

)
,

ϕn+1
i = ϕi, ϕ ∈ {ρ, ρu, ρE}.

(14)

The implicit treatment is particularly important for large values of λ0 to avoid
a CFL restriction based on the (fast) phase transition phenomenon.

Remark 6. In the limit λ0 → +∞, this step may be replaced by the projection
on the thermodynamic equilibrium{

Y n+1
i = Y ∗(ρi, ei),

ϕn+1
i = ϕi, ϕ ∈ {ρ, ρu, ρE}.

(15)

to obtain a numerical scheme for the HEM system (2).

Overall numerical scheme. The overall numerical scheme composed by
the discretization (7)-(11)-(14) is conservative with respect to the variables ρ,
ρu, ρE for both the implicit solver (10) and the explicit solver (8). The update
from tn to tn+1 reads after easy calculations

(ρY )n+1
i = (ρY )ni − ∆t

∑
j∈N(i)

σij(ρY )n+1−
ij u∗ij + λ0∆tρn+1

i

(
Y ∗(ρi, ei)− Y n+1

i

)
,

ρn+1
i = ρni − ∆t

∑
j∈N(i)

σijρ
n+1−
ij u∗ij ,

(ρu)
n+1
i = (ρu)ni − ∆t

∑
j∈N(i)

σij

(
(ρu)

n+1−
ij u∗ij + p∗,θij nij

)
,

(ρE)n+1
i = (ρE)ni − ∆t

∑
j∈N(i)

σij

(
(ρE)n+1−

i + p∗,θij

)
u∗ij .

(16)
For the sake of clarity, let us briefly recall the different steps of the method

that shall be referred to as LPS-IMEX(θ). Assume that (ρY, ρ, ρu, ρE)nj is
known, (ρY, ρ, ρu, ρE)n+1

j is computed by the following three steps :
(i) compute (ρY, ρ, ρu, ρE)n+1−

j from (ρY, ρ, ρu, ρE)nj with (7)-(10),
(ii) compute (ρY , ρ, ρu, ρE)j from (ρY, ρ, ρu, ρE)n+1−

j with (11)-(12),
(iii) compute (ρY, ρ, ρu, ρE)n+1

j from (ρY , ρ, ρu, ρE)j with (14) for HRM or
with (15) for HEM.

We also define the method that shall be referred to as LPS-EX(θ). Assume
that (ρY, ρ, ρu, ρE)nj is known, (ρY, ρ, ρu, ρE)n+1

j is computed by the following
three steps :
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(i) compute (ρY, ρ, ρu, ρE)n+1−
j from (ρY, ρ, ρu, ρE)nj with (7)-(8),

(ii) compute (ρY , ρ, ρu, ρE)j from (ρY, ρ, ρu, ρE)n+1−
j with (11)-(12),

(iii) compute (ρY, ρ, ρu, ρE)n+1
j from (ρY , ρ, ρu, ρE)j with (14) for HRM or

with (15) for HEM.

The difference between these methods is that the Lagrange step is implicit
for the LPS-IMEX(θ) scheme and explicit for the LPS-EX(θ) scheme. The
source terms step is treated implicitly and the transport step explicitly in both
schemes.

5. Main properties

We now give the main properties of the LPS-EX(θ) and LPS-IMEX(θ)
schemes.

Theorem 2. Under the acoustic CFL condition (9) and the material CFL con-
dition (13), the LPS-EX(θ) scheme is well-defined and satisfies the following
properties

(i) it is a conservative scheme for ρ, ρu and ρE. It is also a conservative
scheme for ρY when there is no mass transfer between phases (λ0 = 0).

(ii) the density ρni is positive for all i and n > 0 provided that ρ0
i is positive

for all i.
(iii) Y ni ∈ [0, 1] for all i and n > 0 provided that Y 0

i ∈ [0, 1] for all i and
ei > 0 for all i and n ≥ 0.

(iv) if θ = O(M), then the truncation error of the numerical scheme is
uniform with respect to M < 1.

(v) it is not stable in the uniform sense with respect to the Mach number M .

Let us underline that the acoustic CFL condition (9) is independent of the
modification θ.

Theorem 3. Under the material CFL condition (13), the LPS-IMEX(θ) scheme
is well-defined and satisfy the following properties

(i) it is a conservative scheme for ρ, ρu and ρE. It is also a conservative
scheme for ρY when there is no mass transfer between phases (λ0 = 0).

(ii) the density ρni is positive for all i and n > 0 provided that ρ0
i is positive

for all i.
(iii) Y ni ∈ [0, 1] for all i and n > 0 provided that Y 0

i ∈ [0, 1] for all i and
ei > 0 for all i and n ≥ 0.

11



(iv) if θ = O(M), then the truncation error of the numerical scheme is
uniform with respect to M < 1.

(v) it is stable in the uniform sense with respect to the Mach number M .
(vi) the linear system with respect to the variables un+1−

i and Πn+1−
i issued

from equations (7) and (10) and supplemented by Neumann boundary conditions
admits a unique solution for any choice of ∆t ≥ 0 and θ ≥ 0.

Remark 7. For the LPS-EX(θ) scheme, we may prove the positivity of the
internal energy and a discrete entropy inequality under a condition on the mod-
ification θ, see appendix Appendix B for more details. Under this condition, we
have in particular ei > 0 for all i and n ≥ 0.

Proof of property (i) is easily obtained from (16) and is thus left to the
reader (see also [18]). Proof of property (vi) may be found in [18].

Proof of properties (ii) and (iii). Let us consider that Y ni ∈ [0, 1], ρni > 0

and ei > 0 for all i, we are going to show that Y n+1
i ∈ [0, 1] and ρn+1

i > 0 for
all i :

• Acoustic step : the mass fraction is unchanged in this step Y n+1−
i = Y ni .

Thus, we have Y n+1−
i ∈ [0, 1] for all i.

The density is given by

ρn+1−
i = ρni

1 + ∆t
∑

j∈N(i)

σiju
∗
ij

−1

,

so that we have ρn+1−
i > 0 for all i thanks to the CFL condition (13).

• Transport step : the upwind choice (12) is such that

u∗ijϕ
n+1−
ij = (u∗ij)

+ϕn+1−
i + (u∗ij)

−ϕn+1−
j ,

where u+ = u+|u|
2 and u− = u−|u|

2 . Injecting those expressions in the
transport step (11) for the density and the mass fraction holds

ρi =

1 + ∆t
∑

j∈N(i)

σij(u
∗
ij)
−

 ρn+1−
i −∆t

∑
j∈N(i)

σij
(
u∗ij
)−
ρn+1−
j ,

Y i =
(
ρn+1−
i

ρi

)1 + ∆t
∑

j∈N(i)

σij(u
∗
ij)
−

Y n+1−
i −∆t

∑
j∈N(i)

σij
(
u∗ij
)−(ρn+1−

j

ρi

)
Y n+1−
j .

12



As (u∗ij)
− ≤ 0, under the CFL condition (13), ρi (resp. Y i) is a convex

combination of ρn+1−
i (resp. Y n+1−

i ) and ρn+1−
j (resp. Y n+1−

j ) for j ∈
N(i). Thus, we have ρi > 0 and Y i ∈ [0, 1] for all i.

• Phase transition step : the density is unchanged in this step ρn+1
i = ρi,

so that ρn+1
i > 0 for all i.

The mass fraction update writes for HRM

Y n+1
i =

(
1

1 + λ0∆t

)
Y i +

(
λ0∆t

1 + λ0∆t

)
Y ∗(ρi, ei),

and for HEM
Y n+1
i = Y ∗(ρi, ei),

In both cases, Y n+1
i may be seen as a convex combination of Y ∗(ρi, ei)

and Y i. We assumed that ei > 0 and proved that ρi > 0 for all i, so that
Y ∗(ρi, ei) ∈ [0, 1] by definition of the function Y ∗. Thus Y n+1

i ∈ [0, 1] for
all i.

This conclude the proof. �

Behavior with respect to the Mach regime. In order to prove (iv) and (v),
we are now interested in the behavior of the numerical scheme with respect to
the Mach regime. Namely, we study the dependence with respect to the Mach
number M of both the CFL stability condition and the truncation error.
Introducing the rescaling and tilde variables defined earlier into (8) we get ũ∗ij = 1

2n
T
ij

(
ũni + ũnj

)
− 1

M
1

2ãij

(
Π̃n
j − Π̃n

i

)
,

p̃∗,θij = 1
2

(
Π̃n
i + Π̃n

j

)
−M ãijθij

2 nTij
(
ũnj − ũni

)
.

(17)

For (10) we get

 ũ∗ij = 1
2n

T
ij

(
ũn+1−
i + ũn+1−

j

)
− 1

M
1

2ãij

(
Π̃n+1−
j − Π̃n+1−

i

)
,

p̃∗,θij = 1
2

(
Π̃n+1−
i + Π̃n+1−

j

)
−M ãijθij

2 nTij
(
ũn+1−
j − ũn+1−

i

)
.

(18)

The rescaling of the acoustic step (7) reads

13





ũn+1−
i = ũni −

1

M2
τ̃ni ∆t̃

∑
j∈N(i)

σ̃ij p̃
∗,θ
ij nij ,

Π̃n+1−
i = Π̃n

i − τ̃ni ∆t̃
∑

j∈N(i)

σ̃ij(ãij)
2ũ∗ij ,

Y n+1−
i = Y ni ,

τ̃n+1−
i = τ̃ni + τ̃ni ∆t̃

∑
j∈N(i)

σ̃ij ũ
∗
ij ,

Ẽn+1−
i = Ẽni − τ̃ni ∆t̃

∑
j∈N(i)

σ̃ij p̃
∗,θ
ij ũ

∗
ij ,

(19)

where σ̃ij =
σij
L and ãij =

aij
ρ0c0

. Note that the CFL restriction of the explicit
acoustic step reads now

∆t̃ max
1≤j≤N

[
τ̃nj

(
max
i∈N(j)

σ̃ij ãij

)]
≤ M

2
. (20)

The rescaling of the transport step (11) reads for ϕ̃ ∈ {ρ̃Y, ρ̃, ρ̃ũ, ρ̃Ẽ}

ϕ̃i = ϕ̃n+1−
i −∆t̃

 ∑
j∈N(i)

σ̃ij ũ
∗
ijϕ̃

n+1−
ij

+ ∆t̃ϕ̃n+1−
i

 ∑
j∈N(i)

σ̃ij ũ
∗
ij

 . (21)

The CFL restriction associated with the transport step is

∆t̃ max
1≤j≤N

 ∑
i∈N(i)

(σ̃ij |ũ∗ij |)

 ≤ 1. (22)

Finally the phase transition step (14) becomes{
Y n+1
i = Y i + λ0T∆t̃

(
Y ∗(ρi, ei)− Y n+1

i

)
,

ϕ̃n+1
i = ϕ̃i, ϕ̃ ∈ {ρ̃, ρ̃ũ, ρ̃Ẽ}.

(23)

Proof of property (v). We define h̃ = h/L where h is the mesh size. The
acoustic CFL restriction (20) is very restrictive in low Mach regime as ∆t̃ =

O
(
Mh̃

)
, while the transport CFL restriction (22) is uniform with respect to

the Mach number ∆t̃ = O
(
h̃
)
. Thus the LPS-IMEX(θ) scheme is stable in

the uniform sense with respect to the Mach number M , while the LPS-EX(θ)
scheme is not. �
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Proof of property (iv). In order to evaluate the truncation error in the low
Mach regime, we use the classical tool of modified equations. With a slight
abuse of notation, we consider ϕ̃(xi, t

n) = ϕ̃ni so that we can substitute these
functions in discrete formulas.
We assume that we are in low Mach regime, namely M � 1 and ∇̃p̃ = O(M2).
This hypothesis yields that for j ∈ N(i), we have Π̃n

j = Π̃n
i + O(M2h̃) and

Π̃n+1−
j = Π̃n+1−

i +O(M2h̃) for the discrete unknowns.
The rescaled discretization of the acoustic step (19) is consistent with

∂t̃Y = O
(
∆t̃
)
,

∂t̃τ̃ − τ̃∇̃ · ũ = O
(
∆t̃
)

+O
(
Mh̃

)
,

∂t̃ũ + τ̃
M2 ∇̃p̃(ρ̃, ẽ, Y ) = O

(
∆t̃
)

+O
(
θ
M h̃
)
,

∂t̃Ẽ + τ̃∇̃ ·
(
p̃(ρ̃, ẽ, Y )ũ

)
= O

(
∆t̃
)

+O
(
Mh̃

)
+O

(
θMh̃

)
.

for both the implicit solver (18) and the explicit solver (17).
The rescaled discretization of the transport step (22) is consistent with

∂t̃ϕ̃+ ũ · ∇̃ϕ̃ = O
(
∆t̃
)

+O
(
h̃
)

+O
(
Mh̃

)
for ϕ̃ ∈ {ρ̃Y, ρ̃, ρ̃ũ, ρ̃Ẽ}

The rescaled discretization of the phase transition step (23) is consistent
with {

∂t̃(ρ̃Y ) = λ0T (ρ̃Y ∗(ρ̃, ẽ)− ρ̃Y ) +O
(
∆t̃
)
,

∂t̃ϕ̃ = O
(
∆t̃
)

for ϕ̃ ∈ {ρ̃, ρ̃ũ, ρ̃Ẽ}.

So that the equivalent equation verified by the overall rescaled scheme reads

∂t(ρY ) +∇ · (ρY u) = λ0ρ (Y ∗(ρ, e)− Y ) +O
(
∆t̃
)

+O
(
h̃
)

+O
(
Mh̃

)
,

∂tρ+∇ · (ρu) = O
(
∆t̃
)

+O
(
h̃
)

+O
(
Mh̃

)
,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = O
(
∆t̃
)

+O
(
θh̃
M

)
+O

(
h̃
)

+O
(
Mh̃

)
,

∂t(ρE) +∇ · [(ρE + p)u] = O
(
∆t̃
)

+O
(
h̃
)

+O
(
Mh̃

)
+O

(
θMh̃

)
.

As a consequence, provided that we impose the asymptotic behavior θ =

O(M), the truncation error of scheme (19)-(21)-(23) is uniform with respect to
M for both the implicit solver (18) and the explicit solver (17). This concludes
the proof of property (iv). �
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Let us note that the classical Suliciu relaxation fluxes obtained for θ = 1 do
not have a truncation error that is uniform with respect to the Mach number.

6. Numerical results

We propose to test both LPS-IMEX(θ) and LPS-EX(θ) schemes against low
Mach number test cases and order 1 Mach number test cases. LPS-EX(θ) com-
putations are performed with a time step satisfying both (9) and (13), while
LPS-IMEX(θ) computations are performed with a time step defined by an ex-
plicit evaluation of (13) (explicit means here that u∗ defined by (8) is used to
evaluate ∆t).

So far, the value of the θij parameter has not been specified. Actually, the
numerical evidences presented here will focus on the following three choices:

• θ = 1, we will simply set θij = 1.

• θ = O(M), we will set θij = min(Mn
ij , 1), where Mn

ij =
|u∗
ij |

max(ci,cj)
is an

evaluation of the Mach number at each mesh interface and at time tn (u∗ij
is defined by (8)).

• θ = 0, we will simply set θij = 0.

Let us recall that the classical Suliciu relaxation fluxes correspond to the choice
θ = 1 and are expected to have too much numerical diffusion in the low Mach
regime. The choice θ = O(M) is based on a flow sensor Mn

ij that locally evalu-
ates the Mach number. We expect this value to be sufficiently low to improve
the accuracy of the scheme in the low Mach regime, see properties (iv) of the-
orem 2 and 3. The case θ = 0 corresponds to a centered discretization of the
pressure gradient in the Lagrange step and is used to show the robustness of
the numerical scheme with respect to the choice of θij . Let us note that one
may choose any value 0 ≤ θij < 1 to obtain different numerical fluxes having
less numerical diffusion than the classical Suliciu relaxation fluxes.

For the sake of reproducibility, we shall use a simplified two-phase thermody-
namic mixture model: we consider a mixture of two perfect gases with different
adiabatic coefficients γ1 > γ2 > 1. We refer for instance the reader to [6] and
the references therein. We assume that λ0 → ∞, so that the thermodynamic
equilibrium is instantaneously achieved. The mass fraction, pressure and sound
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speed of the mixture are given by

(Y ∗ , pHEM , c2)(ρ, e) =


(1 , (γ1 − 1)ρe , γ1(γ1 − 1)e) if ρ < ρ∗1,((

ρ∗1
ρ

)(
ρ−ρ∗2
ρ∗1−ρ∗2

)
, (γ1 − 1)ρ∗1e , (γ1 − 1)2

(
ρ∗1
ρ

)2

e

)
if ρ∗1 ≤ ρ ≤ ρ∗2,

(0 , (γ2 − 1)ρe , γ2(γ2 − 1)e) if ρ∗2 < ρ,

where

ρ∗1 =
1

exp(1)

(
γ2 − 1

γ1 − 1

) γ2
γ2−γ1

, ρ∗2 =
1

exp(1)

(
γ2 − 1

γ1 − 1

) γ1
γ2−γ1

.

Unless otherwise stated, we consider γ1 = 2, γ2 = 1.4, which gives ρ∗1 '
3.1205576, ρ∗2 ' 7.801394. Figure (2) displays the sound speed as a function
of the density for e = 1000. We observe a large decrease of the sound speed
when mixture occurs. This behavior is quite common in mixture equation of
state and will induce a rise of the Mach number, so that the ability to simulate
a wide range of flow regimes is of utmost importance for a numerical method to
simulate homogeneous models for two phase flows.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2  3  4  5  6  7  8  9

sound speed

Figure 2: Mixture of two perfect gases with different adiabatic coefficients (γ1 = 2, γ2 = 1.4).
Sound speed as a function of the density for e = 1000.

6.1. Low Mach number examples

We consider low Mach test cases and try to examine two questions : the accu-
racy gain for simulations on coarse grid in the low Mach regime using θ = O(M)

or θ = 0 instead of θ = 1 , then the benefit of using a semi-implicit strategy in
terms of CPU time.
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Bubble in a vortex test case (10−4 ≤ M ≤ 10−1) . The computational
domain is Ω = [0, 1]

2. The initial condition is given by

p(x, y, t = 0) = 1000,

ρ(x, y, t = 0) =

{
1 if (x− 0.5)2 + (y − 0.25)2 ≤ 0.01,

10 if (x− 0.5)2 + (y − 0.25)2 > 0.01,

Y (x, y, t = 0) =

{
1 if (x− 0.5)2 + (y − 0.25)2 ≤ 0.01,

0 if (x− 0.5)2 + (y − 0.25)2 > 0.01,

u(x, y, t = 0) = 2 sin2(πx) sin(πy) cos(πy),

v(x, y, t = 0) = −2 sin(πx) cos(πx) sin2(πy).

We impose no-slip boundary conditions. The Mach number for the resulting
flows is of order 10−4 in phase 1 (Y = 1) and 10−3 in phase 2 (Y = 0) so that
pure phases are in the low Mach regime. Nevertheless, since the sound speed of
the mixture is smaller than the sound speed of pure phase, we observe a Mach
number that goes up to 10−1 in the mixture. We plot the solution at time
t = 0.5s.

Figure (3)-(5) display the results obtained with the LPS-EX(θ) scheme for
θ = 1 and θ = O(M). We use as a reference solution an approximation com-
puted with LPS-EX(θ = 1) using a 1.6 × 105-cell triangular mesh. The choice
θij = min(Mn

ij , 1) leads to approximations that are much more accurate than
θij = 1. On figures (4)-(5), we obtain similar results for the LPS-IMEX(θ)
scheme. The LPS-IMEX(θ) and LPS-EX(θ) schemes for θ = O(M) require re-
spectively 2479s=41min19s and 16465s=4h34min25s of CPU time, so that using
an implicit solver for the acoustic step is 6.6 times faster.

(a) (b) (c) (d)

Figure 3: Bubble in a vortex test case. Profile at time t = 0.5 s of the velocity magnitude
for (a) LSP-EX(θ = 1), (b) LSP-EX(θ = O(M)) with a 200 × 200-cell Cartesian mesh, (c)
velocity magnitude obtained with the reference solution and (d) Mach number obtained with
the reference solution.

Subsonic flow in a channel with bump (10−3 ≤ M ≤ 10−2) . We
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Figure 4: Bubble in a vortex test case. Profile at time t = 0.5 s of the velocity magnitude
for the LSP-IMEX(θ = 1) scheme (left) and the LSP-IMEX(θ = O(M)) scheme (right) on a
200× 200-cell Cartesian mesh. To be compared with (a), (b) and (c) in figure 3.

(a) (b) (c) (d) (e)

Figure 5: Bubble in a vortex test case. Profile at time t = 0.5 s of the mass fraction for (a)
LSP-EX(θ = 1), (b) LSP-EX(θ = O(M)), (c) LSP-IMEX(θ = 1) , (d) LSP-IMEX(θ = O(M))
with a 200× 200-cell Cartesian mesh and (e) mass fraction of the reference solution.

consider now the case of a subsonic flow passing a channel with a 20% sinusoidal
bump (see figure 6). A similar test was proposed by [5]. We propose here an
adapted version with our simplified EOS for the sake of reproducibility.

Figure 6: 80× 20 quadrangular mesh of a 20% sinusoidal bump.

The initial condition is given by

(ρ, Y, p, u, v)(x, y, t = 0) = (7.81, 0, 3124, uin, 0).

We impose an inlet boundary condition at 0×[0, 1] : (e+p/ρ, u, v) = (1400, uin, 0)

and an outlet boundary condition at 4× [0, 1] : p = 3124. Wall boundary con-
ditions are set on the other boundaries. At the inflow, the fluid is composed of
pure phase 2 which is very close to the saturation state. As the pressure drops
down with the section restriction, a small concentration of phase 1 appears in-
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ducing a large change of the Mach number. The flow regime is determined by
the choice of uin > 0. We consider two configurations, uin = 0.2 leading to a
subsonic flow, while uin = 12 leads to a transonic flow and will be used in the
next paragraph. We let the flow evolves until it converges to a stationary state.
All tests are performed on a 80× 20 quadrangular mesh.

Figures 7 and 8 display the flow profile at t = 5s, we observe that LPS-EX(θ)
and LPS-IMEX(θ) schemes are more diffusive for θ = 1 than for θ = O(M) or
θ = 0. In terms of CPU time, for θ = O(M), we observe that the LPS-IMEX(θ)
scheme is 79.2 times faster than the LPS-EX(θ) scheme thanks to the use of a
material velocity CFL condition (13).

Figure 7: Subsonic flow in a channel with bump. Profile at t = 5s of the velocity magnitude
for (a) LPS-EX(θ = 1), (b) LPS-EX(θ = O(M)), (c) LPS-EX(θ = 0), (d) LPS-IMEX(θ = 1),
(e) LPS-IMEX(θ = O(M)), (f) LPS-IMEX(θ = 0) using a 80× 20 quadrangular mesh.

6.2. Compressible flow examples

In this section, we assess the ability of our operator splitting scheme to
handle cases where the flow is not in the low Mach regime over the whole com-
putational domain. This is an important issue since the modification introduced
by θ modifies the numerical diffusion of the scheme, which is relevant in the low
Mach number regime, but might give rise to instabilities when the Mach number
is of order 1 or larger. We will see that even with a centered pressure discretiza-
tion, ie. for θ = 0, the solution remains stable.
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Figure 8: Subsonic flow in a channel with bump. Profile at t = 5s of the (a) velocity magnitude,
(b) pressure, (c) mass fraction and (d) Mach number for the LPS-IMEX(θ = 0)) using a 80×20
quadrangular mesh.

Two-rarefaction Riemann problem with appearance of phase 1 (1 ≤
M) . The computational domain is Ω = [0, 1]. The adiabatic coefficients are
γ1 = 1.6, γ2 = 1.4, which yields ρ∗1 ' 6.2855651, ρ∗2 ' 9.4283477. The initial
condition is given by

(ρ, Y, p, u)(x, t = 0) =

{
(10, 0, 1,−2), for x < 0.5,

(10, 0, 1, 1), for x > 0.5.

We impose Neumann boundary conditions and plot the solution at time t = 0.1s.
For the initial condition, the medium is composed by pure phase 2 only, but an
intermediate zone with pure phase 1 appears for t > 0.

Figure (9) displays the results obtained with LPS-EX(θ) and LPS-IMEX(θ)
schemes for θ = 1 and θ = 0. We use as a reference solution an approximation
computed with LPS-EX(θ = 1) using a 10 000-cell mesh. All schemes show
a good agreement with the reference solution. The LPS-EX(θ = 0) and LPS-
IMEX(θ = 0) schemes are slightly less diffusive than the LPS-EX(θ = 1) and
LPS-IMEX(θ = 1) schemes. Let us underline that despite part of the solutions
clearly do not belong to the low Mach regime since M ≈ 5.4 in the left part
of the domain and M ≈ 2.7 in the right part of the domain, the schemes LPS-
EX(θ = 0) and LPS-IMEX(θ = 0) are stable and provide good numerical results
while involving a centered pressure discretization with θij = 0.

Remark 8. The numerical diffusion of the mass fraction generates a mixture
zone where the sound speed is much smaller than in pure phases. This leads to
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an overshot for the Mach number value to be observed in figure 9.

Figure 9: Two-rarefaction Riemann problem with appearance of phase 1. Profile at t = 0.1
s of the (a) density, (b) velocity magnitude, (c) pressure, (d) mass fraction and (e) Mach
number for the LPS-EX(θ = 1), LPS-EX(θ = 0), LPS-IMEX(θ = 1), LPS-IMEX(θ = 0) using
a 1000-cell grid, together with reference solution.

Transonic flow in a channel with bump (10−1 ≤ M ≤ 1.12) . We
consider now the case of a transonic flow passing a channel with a 20% sinusoidal
bump, see figure 6. The initial and boundary conditions were presented in the
previous section for a subsonic flow in a channel with bump. We consider here
the configuration uin = 12 that leads to a transonic flow.

Figure 10 and 11 display the results obtained with LPS-EX(θ) and LPS-
IMEX(θ) schemes for θ = 1, θ = O(M) and θ = 0. All schemes are able to
compute accurate approximate solutions. The results obtained with θ = 0 are
slightly less diffused than the results obtained with θ = 1 and θ = O(M).

7. Conclusion

We proposed an operator splitting discretization strategy for a HRM and a
HEM two-phase flow model with mass transfer and velocity equilibrium. The
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Figure 10: Transonic flow in a channel with bump. Profile at t = 5s of the velocity magnitude
for (a) LPS-EX(θ = 1), (b) LPS-EX(θ = O(M)), (c) LPS-EX(θ = 0), (d) LPS-IMEX(θ = 1),
(e) LPS-IMEX(θ = O(M)), (f) LPS-IMEX(θ = 0) using a 80× 20 quadrangular mesh.

Figure 11: Transonic flow in a channel with bump. Profile at t = 5s of the (a) velocity
magnitude, (b) pressure, (c) mass fraction and (d) Mach number for LPS-EX(θ = 0) using a
80× 20 quadrangular mesh.
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splitting decouples the transport, acoustic and mass transfer phenomena. The
overall algorithm is conservative with respect to the global mass, global mo-
mentum and global total energy. The scheme allows the use of unstructured
two-dimensional meshes and for one-dimensional problems, the treatment of
the convective part boils down to a classical Lagrange-Remap procedure. A
first numerical scheme using an explicit time update was proposed. Under a
classical CFL condition, this numerical scheme enjoys stability properties: pos-
itivity of the global mass, the mass fraction and satisfies a discrete entropy
inequality.

Considering one-dimensional problems, we performed an analysis of the trun-
cation error to shed light on its dependency on the Mach number M in the low
Mach regime. In order to obtain a numerical scheme whose truncation error
is uniform with respect to M in the low Mach regime, we proposed a simple
modification of the numerical flux in the acoustic step. It is possible to show
that this modified numerical scheme can be obtained equivalently thanks to an
approximate Riemann solver that is consistent in the integral sense. As a result,
the modified numerical scheme is shown to enjoy the same stability properties
as the first splitting scheme under the same CFL conditions.

We also proposed a semi-implicit version of the algorithm that allows to
obtain a numerical scheme that is stable under a CFL conditions that involves
only the material velocity and with a truncation error that is uniform with
respect to M .

The present work deals with simple two-phase flows in an academic setting.
Further developments using the HRM and HEM models will consider a drift
velocity, friction and energy source terms and gravity. Finally, as far as more
complex two-phase flows models are concerned, a Lagrange-Remap like algo-
rithm using the same kind of operator splitting has already been proposed for
the Baer-Nunziato system in [31]. The study of the low Mach behavior of this
numerical scheme has to be performed. Since the Baer-Nunziato model com-
prises several material and sound velocities, this task is not a straightforward
extension of the analysis presented in the present paper for the HRM and HEM
models.
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Appendix A. Approximate Riemann solver for the modified acoustic
scheme

In this section, we consider only one-dimensional problems and denote x ∈ R,
the space variable. The numerical scheme (7)-(8) belongs to the category of flux-
based solver. Indeed, this solver relies on an update formula (7) that involves
the modified fluxes (8). We will prove in this section that this modified flux
solver can also be obtained thanks to an approximate Riemann solver in the
sense of Harten, Lax and Van Leer [32], that is consistent with the integral form
of the system

∂tW + ∂mF(W) = 0, (A.1)

where W = (Y, τ, u, v, E,Π)T , F(W) = (0,−u,Π, 0,Πu, a2u)T , and the mass
variable m is defined by dm = ρ(x, tn)dx. This property is crucial in the
following and is very easy to use in order to establish the forthcoming stability
results.

Remark 9. It is interesting to note that the corresponding approximate Rie-
mann solver is not unique. In fact, for any given numerical flux Fθ(WL,WR),
we are able to construct an infinity of approximate Riemann solvers in the sense
of Harten, Lax and Van Leer, that are consistent with the integral form of A.1
and such that the flux coincides with Fθ(WL,WR). We refer to the proof of
proposition 1 below, where the corresponding approximate Riemann solvers de-
pend on the value of the constant parameter a > 0.

If ∆t > 0 and ∆xj > 0 denote respectively the time and space step of cell
j, we set ∆mj = ρnj ∆xj and we consider the one-dimensional scheme

Wn+1−
j = Wn

j −
∆t

∆mj

(
Fj+1/2 − Fj−1/2

)
,

Fj+1/2 = Fθ(Wn
j ,W

n
j+1),

Fθ(WL,WR) = (0,−u∗,Π∗,θ, 0,Π∗,θu∗, a2u∗)T ,

(A.2a)

(A.2b)

(A.2c)

where u∗ and Π∗,θ are given by
u∗ =

(uR + uL)

2
− 1

2a
(ΠR −ΠL),

Π∗,θ =
(ΠR + ΠL)

2
− θa

2
(uR − uL).

(A.3a)

(A.3b)

This one-dimensional scheme allows to recover scheme (7)-(8) by taking for u
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(resp. v) the normal velocity (resp. the tangential velocity) at the face where
we estimate the numerical flux. Besides we have the following property :

Proposition 1. There exists a simple approximate Riemann solver that is an
approximation of the Riemann problem associated with system (A.1) and whose
associated flux matches the flux of the modified acoustic solver (A.2)-(A.3).
More precisely, there exists a self-similar function

Wθ
RP

(m
t

;WL,WR

)
= (Y, τ, u, v, E,Π)

(m
t

;WL,WR

)
=



WL, if m/t < −a,

W∗,θ
L , if −a ≤ m/t < 0,

W∗,θ
R , if 0 ≤ m/t < +a,

WR, if +a ≤ m/t.
(A.4)

such that

Fθ(WR,WL) = F(WL)−
∫ 0

−∞
[Wθ

RP(ξ;WL,WR)−WL] dξ

= F(WR) +

∫ +∞

0

[Wθ
RP(ξ;WL,WR)−WR] dξ

=
1

2
(F(WL) + F(WR))− a

2

(
W∗,θ

L −WL

)
− a

2

(
WR −W∗,θ

R

)
.

(A.5)

The states W∗,θ
L = (Y ∗,θL , τ∗,θL , u∗,θL , v∗,θL , E∗,θL ,Π∗,θL )T and W∗,θ

R = (Y ∗,θR , τ∗,θR , u∗,θR , v∗,θR , E∗,θR ,Π∗,θR )T

are given by

Y ∗,θL = YL, Y ∗,θR = YR,

τ∗,θL = τL +
1

a
(u∗ − uL), τ∗,θR = τR +

1

a
(uR − u∗),

u∗,θL = u∗ +
1

2
(θ − 1)(uR − uL), u∗,θR = u∗ +

1

2
(1− θ)(uR − uL),

v∗,θL = vL, v∗,θR = vR,

E∗,θL = EL +
1

a
(ΠLuL −Π∗,θu∗), E∗,θR = ER +

1

a
(Π∗,θu∗ −ΠRuR)

Π∗,θL = Π∗,θ=1, Π∗,θR = Π∗,θ=1.

(A.6a)

(A.6b)

(A.6c)

(A.6d)

(A.6e)

(A.6f)

We define Π∗ = Π∗,θR = Π∗,θL , (Y ∗L , τ
∗
L, v
∗
L) = (Y ∗,θL , τ∗,θL , v∗,θL ) and (Y ∗R, τ

∗
R, v

∗
R) =

(Y ∗,θR , τ∗,θR , v∗,θR ) that are independant of θ.

Proof. Wθ
RP is consistent with the integral form of the system (A.1), if for a
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given WL and WR, we have : F(WR)−F(WL) = −a(W∗,θ
L −WL) +a(WR−

W∗,θ
R ), which reads

W∗,θ
R + W∗,θ

L = WR + WL −
1

a
(F(WR)− F(WL)). (A.7)

If the resulting flux of this approximate Riemann solver is F θ(WL,WR), then
(A.5) is verified and yields

2F θ(WL,WR) = F(WR) + F(WL)− a(W∗,θ
L −WL)− a(WR −W∗,θ

R )

or equivalently

W∗,θ
R −W∗,θ

L = WR −WL +
1

a

(
2F θ(WL,WR)− F(WL)− F(WR)

)
. (A.8)

Both (A.7) and (A.8) provide

W∗,θ
L = WL−

1

a
(F θ(WL,WR)−F(WL)), W∗,θ

R = WR+
1

a
(F θ(WL,WR)−F(WR)).

This definition of W∗,θ
L and W∗,θ

R as a function of WL and WR corresponds to
(A.6) and verifies (A.7) and (A.8). This yields the desired results.

Using this approximate Riemann solver, we deduce that the modified acous-
tic solver (A.2) is stable under the CFL condition

2a∆t ≤ ∆mj ,

that does not depend on the modification θ. Moreover, when θ = 1 the self-
similar function Wθ

RP defined in proposition 1 degenerates to the exact solution
of the Riemann problem associated with the system (A.1).

If one takes into account the equilibrium projection step of the relaxation
strategy into the approximate Riemann solver of proposition 1, we have ΠL =

p(τL, eL, YL), and ΠR = p(τR, eR, YR). Under this assumption, it is easy to
check that the first coordinates (Y, τ, u, v, E) of the self-similar function Wθ

RP

are consistent with the integral form of the system

∂tV + ∂mF(V) = 0, (A.9)

where V = (Y, τ, u, v, E)T et F(V) = (0,−u, p, 0, pu)T .
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Finally, the numerical scheme (7)-(8) may be rewritten using intermediate states
of the approximate Riemann solver of property 1 under the form

Wn+1−
i =

1− τni ∆t
∑

j∈N(i)

σijaij

Wn
i + τni ∆t

∑
j∈N(i)

σijaijW
n,∗,θ
ij , (A.10)

where Wn,∗,θ
ij = W∗,θ

L is given by (A.6) for WL = Wn
i and WR = Wn

j , with
u = nTiju and v = ||u − (nTiju)nij ||. This form of the scheme will be usefull to
study stability property of the acoustic solver. We prove in particular a discrete
entropy inequality in the next section.

Appendix B. Discrete entropy inequality

In this section, we prove a discrete entropy inequality for the LPS-EX(θ)
scheme. We consider the HRM system (1). We denote τ = 1/ρ and s the specific
entropy. We assume as given a mixture equation of state (τ, s, Y ) 7→ eHRM that
verifies

∂τe
HRM < 0, ∂se

HRM > 0, ∂ττe
HRM > 0. (B.1)

The mixture entropy s = sHRM(τ, e, Y ) verifies e = eHRM(τ, s, Y ), we de-
fine the pressure pHRM = −∂τeHRM and the sound speed of the mixture c =

τ
√
∂ττeHRM. We also assume that

(τ, e, Y ) 7→ −sHRM is convex. (B.2)

Finally, as Y ∗(ρ, e) corresponds to the thermodynamic equilibrium, we assume
that function Y 7→ sHRM(τ, e, Y ) is minimal at Y = Y ∗(ρ, e).

In the sequel, I(b, b′) ⊂ R denotes the interval between b ∈ R and b′ ∈ R.
We consider the sub-caracteristic condition

τ∗L > 0, −∂τpHRM(τ, sL, YL) ≤ a2, ∀τ ∈ I(τL, τ
∗
L),

τ∗R > 0, −∂τpHRM(τ, sR, YR) ≤ a2, ∀τ ∈ I(τR, τ
∗
R),

(B.3)

and we begin by proving two technical results.

Lemma 1. We consider for θ = 1 the approximate Riemann solver of property
1, whose intermediate states are given by (A.6). Suppose that (B.3) is verified.
Let sk = sHRM(τk, ek, Yk), k = L,R and e∗k = E∗,θ=1

k − (u∗,θ=1
k )2/2 − (v∗k)2/2,
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we have

e∗k − eHRM(τ∗k , sk, Yk)−
(
pHRM(τ∗k , sk, Yk)−Π∗

)2
2a2

≥ 0. (B.4)

Proof. We consider the case k = R and let τ ∈ I(τR, τ
∗
R)

φ(τ) = eHRM(τ, sR, YR)− pHRM(τ, sR, YR)2

2a2
− eHRM(τ∗R, sR, YR) +

pHRM(τ∗R, sR, YR)2

2a2

+ pHRM(τ∗R, sR, YR)

(
τ +

pHRM(τ, sR, YR)

a2
− τ∗R −

pHRM(τ∗R, sR, YR)

a2

)
.

We have φ′(τ) =
(
pHRM(τ, sR, YR)− pHRM(τ∗R, sR, YR)

) (
1− ρ2c2(τ, sR, YR)/a2

)
.

If τR > τ > τ∗R (resp. τR < τ < τ∗R), conditions on the equation of state
(B.1) give pHRM(τ, sR, YR) − pHRM(τ∗R, sR, YR) < 0 (resp. pHRM(τ, sR, YR) −
pHRM(τ∗R, sR, YR) > 0) and together with hypothesis (B.3) this yields φ′(τ) ≥ 0

(resp. φ′(τ) ≤ 0). As φ(τ∗R) = 0 , we obtain that φ(τR) > φ(τ∗R) = 0 for τ ∈
I(τR, τ

∗
R). Using the Riemann invariant jump relation (e∗R − Π∗

2a2 ) = (eR − ΠR
2a2 ),

one obtains 0 < φ(τR) = e∗R− eHRM(τ∗R, sR, YR)− 1
2a2 (pHRM(τ∗R, sR, YR)−Π∗)2.

The same lines apply for the case k = L.

Lemma 2. Let θ ∈ R and e∗,θk = E∗,θk − (u∗,θk )2/2− (v∗k)2/2 for k = L,R, then
we have

e∗,θk −e
HRM(τk, sk, Yk)− 1

2a2

(
pHRM(τk, sk, Yk)−Π∗

)2
+

(1− θ)2(uR − uL)2

8
≥ 0, k = L,R.

(B.5)

Proof. One has u∗,θR = u∗ + (1− θ)(uR − uL)/2, v∗R = vR and Π∗,θ = Π∗ + (1−
θ)a(uR − uL)/2, and together with (A.6) one obtains e∗,θR = e∗R − (1− θ)2(uR −
uL)2/8. Injecting this relation into (B.4) provides the desired result.

It is now clear that the inequalities

− 1

2a2

(
pHRM(τ∗k , sk, Yk)−Π∗

)2
+

(1− θ)2(uR − uL)2

8
≤ 0, k = L,R (B.6)

can help us providing the modified numerical scheme with a discrete entropy
inequality.

Proposition 2. Let s∗,θk = sHRM(τ∗,θk , e∗,θk , Y ∗,θk ) for k = L,R. If assumption
(B.6) is verified, we have

s∗,θk ≥ sk. (B.7)
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Inequality (B.7) implies that the modified scheme (A.10) for the acoustic step
(which may also be rewritten (7)-(8)) verifies the following discrete entropy in-
equality

sHRM(τn+1−
j , en+1−

j , Y n+1−
j ) ≥ sHRM(τnj , e

n
j , Y

n
j ). (B.8)

Proof. Let k = L,R, under hypothesis (B.6), we have e∗,θk ≥ eHRM(τ∗k , sk, Yk).
Besides, we have Y ∗,θk = Yk, τ

∗,θ
k = τ∗k so that eHRM(τ∗k , sk, Yk) = eHRM(τ∗,θk , sk, Y

∗,θ
k ).

Assumptions (B.1) on the equation of state imply that ε 7→ sHRM(τ∗,θk , ε, Y ∗,θk )

is increasing, thus

sHRM(τ∗,θk , e∗,θk , Y ∗,θk ) ≥ sHRM(τ∗,θk , eHRM(τ∗,θk , sk, Y
∗,θ
k ), Y ∗,θk ) = sk

and inequality (B.7) is verified.
Under CFL stability condition (9), the numerical scheme (A.10) for the acoustic
step is a convex combination. Furthermore, functions u 7→ −u

2

2 and v 7→ −v
2

2

are concave, so that
en+1−
i ≥ ẽn+1−

i ,

where en,∗,θij = En,∗,θij − (un,∗,θij )2/2− (vn,∗,θij )2/2 and

ẽn+1−
i =

1− τni ∆t
∑

j∈N(i)

σijaij

 eni + τni ∆t
∑

j∈N(i)

σijaije
n,∗,θ
ij .

As ε 7→ sHRM(τn+1−
j , ε, Y n+1−

j ) is increasing, we obtain

sHRM(τn+1−
j , en+1−

j , Y n+1−
j ) ≥ sHRM(τn+1−

j , ẽn+1−
j , Y n+1−

j ). (B.9)

By definition of ẽn+1−
j and using convex combinations (A.10) for variables τ

and Y , together with the concave property of function (τ, s, Y ) 7→ sHRM yield

sHRM(τn+1−
j , ẽn+1−

j , Y n+1−
j ) ≥

1− τni ∆t
∑

j∈N(i)

σijaij

 sni +τni ∆t
∑

j∈N(i)

σijaijs
n,∗,θ
ij ,

where sn,∗,θij = sHRM(τn,∗,θij , en,∗,θij , Y n,∗,θij ). We inject inequality (B.7) to obtain

sHRM(τn+1−
j , ẽn+1−

j , Y n+1−
j ) ≥ sHRM(τnj , e

n
j , Y

n
j ). (B.10)

Finally, we use (B.9) and (B.10) to obtain the desired discrete entropy inequality
(B.8).
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We can now state the following entropy property for the LPS-EX(θ) scheme.

Proposition 3. If the assumptions (B.6), (9) and (13) are verified, then the
LPS-EX(θ) scheme defined by (7)-(11)-(14) verifies the following discrete en-
tropy inequality

ρn+1
i sHRM(τn+1

i , en+1
i , Y n+1

i ) ≥ ρni sHRM(τni , e
n
i , Y

n
i )−∆t

∑
j∈N(i)

σij(u
∗
ij)

+ρn+1−
i sHRM(τn+1−

i , en+1−
i , Y n+1−

i )

−∆t
∑

j∈N(i)

σij
(
u∗ij
)−
ρn+1−
j sHRM(τn+1−

j , en+1−
j , Y n+1−

j ). (B.11)

Proof. Thanks to proposition 2, we have for the acoustic step (7) the following
inequality

sHRM(τn+1−
j , en+1−

j , Y n+1−
j ) ≥ sHRM(τnj , e

n
j , Y

n
j ). (B.12)

The projection step (11) may be rewritten for ϕ ∈ {ρY, ρ, ρu, ρE} under the
form

ϕi =

1 + ∆t
∑

j∈N(i)

σij(u
∗
ij)
−

ϕn+1−
i −∆t

∑
j∈N(i)

σij
(
u∗ij
)−
ϕn+1−
j ,

which is a convex combination under the CFL stability condition (13). As
function (ρY, ρ, ρu, ρv, ρE) 7→ (ρsHRM)(τ, e, Y ) is concave, we obtain

ρis
HRM(τ i, ei, Y i) ≥

1 + ∆t
∑

j∈N(i)

σij(u
∗
ij)
−

 ρn+1−
i sHRM(τn+1−

i , en+1−
i , Y n+1−

i )

−∆t
∑

j∈N(i)

σij
(
u∗ij
)−
ρn+1−
j sHRM(τn+1−

j , en+1−
j , Y n+1−

j ). (B.13)

For the phase transition step (14), we have the following convex combination

Y n+1
i =

1

1 + λ0∆t
Y i +

λ0∆t

1 + λ0∆t
Y ∗(ρi, ei).

As (τ, e, Y ) 7→ sHRM(τ, e, Y ) is concave, we obtain

sHRM(τn+1
i , en+1

i , Y n+1
i ) ≥ 1

1 + λ0∆t
sHRM(τn+1

i , en+1
i , Y i)+

λ0∆t

1 + λ0∆t
sHRM(τn+1

i , en+1
i , Y ∗(ρi, ei)).

Using τn+1
i = τ i, en+1

i = ei together with the fact that function Y 7→ sHRM(τ, e, Y )
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is minimal at Y = Y ∗(ρ, e) yield

ρn+1
i sHRM(τn+1

i , en+1
i , Y n+1

i ) ≥ ρisHRM(τ i, ei, Y i). (B.14)

We combine (B.12), (B.13), (B.14) and the acoustic scheme for τ (7) to obtain
the discrete entropy inequality (B.11) for the overall numerical scheme LPS-
EX(θ).

We proved in proposition 3 a discrete entropy inequality for LPS-EX(θ)
scheme under the condition (B.6) on modification θ. Studying L2 stability
properties of numerical schemes LPS-EX(θ) and LPS-IMEX(θ) for all value of
θ ≥ 0 is still an open problem.
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