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ABSTRACT

In a previous study of seismic modeling with RBF-FD, we outlined a numerical method
for solving 2-D wave equations in domains with discontinuous interfaces between different
regions. The method was applicable on a mesh-free set of data nodes. It included all information
about interfaces within the weights of a stencil (allowing the use of traditional time integrators),
and was shown to solve problems of the 2-D elastic wave equation to 3™-order accuracy. In the
present paper, we discuss a refinement of that method that makes it simpler to implement. It can
also improve accuracy for the case of smoothly-variable model parameter values near interfaces.
We give several test cases that demonstrate the method solving 2-D elastic wave equation
problems to 4M-order accuracy, even in the presence of smoothly-curved interfaces with jump

discontinuities in the model parameters.

INTRODUCTION

Numerical methods for solving wave equation problems are typically only 1%-order accurate
in the presence of interfaces unless special correction techniques are incorporated ([1],[2]). In [3],
we introduced a new radial basis function-derived finite difference (RBF-FD) method that
achieved global 3"-order accuracy in the presence of material interfaces. While the method shared
some fundamental principles with other techniques developed for use in domains with interfaces,

it also features a unique combination of advantages:



e as an RBF-FD method, it is applicable on a mesh-free set of data nodes that can be placed

in an advantageous arrangement around interfaces, as explored in [4];

e we need not modify any material parameters near the interface (as done in [5] and [6]);

e stencils that cross an interface contain all relevant information about that interface within
the stencil weights themselves, and any explicit integrator with an appropriate stability
domain may be used to evolve a solution in time (e.g. RK4, AB3) without any further

consideration of the interfaces during the time stepping (as was necessary in [7], [8]);

o these explicit stencils can be directly applied to data on both sides of an interface, requiring
no formation of fictitious data extensions as in [9] and avoiding the necessary meshing

inherent in the FEM approaches of [10] and [11];

e for each stencil that crosses the interface, all polynomial basis functions that support RBFs
in determining the stencil’s collocation weights are determined via a relatively simple

matrix problem; and

e the method is designed, at least in theory, to support an arbitrary degree of spatial accuracy

(though 1t may be practically limited by stability considerations).

In this paper, we will introduce a simplification of the method in [3]. Our current approach
avoids having to form the null spaces of rectangular matrices in creating the piecewise smooth
polynomial basis functions that support stencils that cross an interface. Instead, the refinement of

our method requires only the inversion of small, square matrices. The present paper explains a



simple way to explicitly determine the structure of every single data field in the 2-D elastic wave
equation as that data crosses an arbitrarily-oriented interface, to any order of accuracy. This
alteration of the method allows for the use of centered, symmetric stencils throughout the
computational domain. We will also share a simple method for accommodating smoothly-variable
model parameters on either side of an interface. We conclude with numerical examples which
show that the method solves the 2-D EWE to 4™-order accuracy in domains with both smoothly-

curved interfaces and smoothly-variable model parameters present.

RBF-FD METHODOLOGY

In this section, we will introduce our method for solving a 2-D elastic wave equation. We have
reproduced Figure 1 from [3] to review the different cases our method must handle. In Figure 1,
the unit square is divided into two regions by a mildly curved interface. Across this interface, the
model parameters p (density), # and A (Lamé parameters) may be discontinuous. Figure 1
shows a data node structure that conforms to the interface but then transitions to a Cartesian lattice
to enable standard FD application a short distance away from it. This type of hybrid node layout
can be generated very quickly, as special structure is only imparted to the node set in a small zone
near the interface. Also, using standard FD in the majority of the domain allows us to retain much
of the economy of memory bandwidth and footprint that are characteristic of Cartesian-grid

methods, especially on highly-parallel computing hardware (GPUs).



Y] DUDSDEDRERY 1§ I D

LI D I B e . .I. .@. .I. . . LI I . . .

0.8 -. . . ..:....'.......- . . . . . . . . . . . . . . . . . . .
I PSS i S R AR B E GG N B EE

0,7...5._.‘..®..;..................-

’(7)\ 06 F....;"';-:--.--.".".-'.:' .. .'.o.o. ...o.....:‘;.\.'. .0 o o ..‘

7] ° ¢ e ., * ® 8 e @ .I-—_‘ . = o« o o o o
o * Br .

E=R V] S S N L I A~ PR LIS
EA LQ] AT

= 04Fr . . .. ) . ._ .. ) e e e e '\._;—.-.—:{. e o o o *

0.3".'.0 ) o.o.o ...... e o o * o o o

P Y I 1 I

. - . . . . . . . . . . . .I. .S. .I. . . . . .

0.1 e . . . . . . . - . . . . . . . . . . . . . . . .-

04 0.6
x (unitless)

Figure 1. Layout of data nodes near a curved interface. The enclosed regions show Type 1, Type
2, and Type 3 stencils. The stencils approximate spatial derivatives at the circled nodes.

The three types of stencils we need to handle are:

[ ]

grid nodes
[ ]

not in a regular lattice
[ ]

Type 1: Stencils are far enough away from the interface that they only contain Cartesian

Type 2: Stencils that do not cross the interface, but do include at least some nodes that are

Type 3: Stencils that cross the interface



In Type 1 stencils, we can use traditional FD methods for spatial differentiation and standard
integration techniques to update data at each discrete time step. In Type 2 stencils, we obtain
stencil weights through RBF-FD, allowing us to accommodate the transitional structure of stencils
that reside between the interface and regions of perfect Cartesian regularity. In Type 3 stencils,
we use continuity of velocity and traction to create a special set of RBF-FD weights that preserve

high-order accuracy when used on data interacting with the interface.

Type 2: RBF-FD stencils in regions with smoothly variable medium properties, but without
completely Cartesian node structure

When 2-D nodes are not located on a regular grid, the weights for approximating an
operator L (suchas L=0/6x or L=08 /x> + 06/ dy*) can no longer be obtained by means of 1-
D polynomial procedures. Generalizing the 1-D approach for obtaining FD weights to instead use
2-D polynomials gives rise to linear systems that become prone to instabilities and singularities.
However, these difficulties can be overcome by supplementing bivariate polynomials with radial
basis functions @(|| X — X, |l,) , with one such centered at each stencil point X, = (X, Yy ), and then
introducing matching constraints. The weights for scattered node RBF-FD stencils can then be
obtained by solving a linear system of the form indicated in (1) in the case of using up through

linear polynomials in X and y:
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The entries in the matrix A are & ; = ¢(|| X; —X; [[). All the terms in the RHS should be

evaluated at the stencil’s ‘center point’ X.. Non-singularity will generally hold when the radial

function ¢(r) is any one of a number of commonly used choices, such as multiquadrics (MQ):

o(r) = \fl +(er)?, Gaussians (GA): a(r)= e_(”)2 , or polyharmonic splines (PHS)

rm ,m odd

m In the solution vector, W,,...,W, provides the weights to be used at
r''logr ,m even

¢(r)={

nodes X,k =1,2,...,n, while the remaining W-entries should be ignored. For an overview of the

above observations, see [12] and, for a derivation of (1), its Section 5.1.4.

In the present work, we use for stencils of Type 2 (as shown in Figure 1) the approach above,
with {... describe here the stencils used, such as RBF type, etc.}. The main theme of the present
study is how to improve on the handling of material interfaces, i.e. to create stencils of Type 3, by

means of altering the form of the supporting polynomials in (1).



Type 3: RBF-FD stencils across interfaces

Although RBF-FD allows us to optimally place nodes around interfaces, we still need to
combine this with a strategy that allows accurate differentiation across the interface. In [3], we
used our knowledge of interface continuity conditions along with the governing PDE to create a
customized set of piecewise polynomial functions that accurately represents data that passes
through an interface. We then added these functions to the set of RBF basis functions that allow
determination of weights within RBF-FD stencils that cross an interface. It was observed in [13]
that, under node refinement, such polynomial functions “take over” from the RBF part of Type 2
stencils. Hence, in determining weights for Type 3 stencils, we focus on the polynomial rather
than RBF part of their basis when incorporating interface continuity conditions.

Our present approach avoids analysis of matrix null spaces, and instead relies solely on the
inversion of small matrices to explicitly determine how the polynomial expansion coefficients of
all data (even possibly discontinuous data) change across an interface. We also describe a simple
way to account for smoothly variable model parameters present on either side of an interface.

In 2-D, we will be using the first-order formulation of the isotropic elastic wave equation:

put = fX + gy
PVy = Oy +hy
fo=(A+2u)u, +Av, (2)

0= ,LI(UX +Vy)
hy=(A+2u)v, +Au,

Above, U, v are local medium velocities in the X and y directions, respectively, f, g, h are the

elements of the 2-D stress tensor, p represents density, and the Lamé parameters A, u describe



the material properties with regard to pressure and shear. At the interface, one or more of p, 4,
uwill be discontinuous or non-smooth. Still, velocity and traction (components of stress
perpendicular to the interface) must remain continuous. Away from interfaces, density and the
Lamé parameters may be smoothly variable functions of X and y.

Before showing how these equations and continuity conditions lead to our present, 2-D RBF-
FD approach, we will as an introduction describe an analogous approach to a 1-D simplification

of the problem.

Determining Type 3 polynomial basis functions: 1-D simplification

There are three main reasons why we will present the method as applied to a 1-D case before
moving on to 2-D:
e we can more easily visualize the explicit way in which Taylor coefficients of data change

across an interface;

e the structure of matrix operators and representations used in specific examples are much

smaller and easy to display; and

e the 1-D case requires no use of RBF-FD methodology. For a 1-D problem, we can find
standard finite difference weights that maintain high-order accuracy, even in stencils that

cross an interface.

In the 1-D case, (2) reduces to a first-order form of the 2-way wave equation:
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f } f f
t 0 0
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In (3), ¢, is the local speed of waves within the medium. Higher-order time derivatives and

their equivalences in terms of spatial derivatives can be obtained by applying the differential

operator D multiple times:

Ukt O Tl Tu u
k] | pe2 o
In (4), the subscript k on the left hand side of the equation denotes the k™ time derivative of
that data field. If data is continuous at a point on an interface, all of its time derivatives must also
be continuous at that point (otherwise, a discontinuity would appear in the data at that point as
time progresses).

In 1-D, continuity of velocity and traction mandate that both u and f must be continuous across

an interface. Therefore, Uy, f) are also continuous there for all values of k. If we refer to the

left and right sides of the interface as sides L and R, respectively, then for k=0,1,2,..., the

following must hold as we approach the interface location from the two sides:

k| UL | ~k|UR
o[-

We now describe how we form 1-D stencils that uphold these conditions.
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Suppose an interface is located at x = 0. For our examples, we will form 4M-order stencils for
differentiation across the interface, and thus we consider up to 4™-degree Taylor expansion terms

of both data fields about the interface location:

_ 2 3 4
. “L—UL,11+UL,XX+UL,X2X FU XU X if x<0 ©
Ug =Ug  1+Ug X +U oX° +Uy o +Uy x* if x>0

2 3 4 .
= <
‘e f, fL’11+ fl_’xx+ ngxzx + fL,X3x + fL’X4x if x<0 0
- 2 3 4 .
= >
fr fR,11+ fR,Xx+ fR,sz + fR,X3x + fR’X4x if x>0

In (6) and (7), the boldface notation indicates that we are now interested in vectors of

polynomial coefficients for each data field in P, (R).

—h
—h

u Ug s L.l R.I

uL,x uR,x fL,x fR,x

u u f f

u = L,x2 UR = R,x2 fL = L,x2 > fR = R,x2 (8)

u u

Lx? R fls fo 3

u u

4 4 f f

| L,x7" | | R,X" | | L,x4_ | R,x4_

We now define the discretized PDE differential operators D. and Dr by their action on these

monomial basis functions:

o Lol
uL,(k)t _ oL OX u _D K| L )
fL o 2 O fi LR
' pLCp,L& 0
o Lol
fr .k 2 O fr "
’ pRCp,R& 0



In this context, we define the discrete differential block operator 0/0x by its action on the

standard monomial basis set in P4 (R):

L't o1 0 0 0] !
aX 0020 0| X
ZIx* =0 0 0 3 0] x (11)
OX

31 100 0 0 43

x| L0000 0fy

Suppose that the wave speed C, is smoothly variable on each side of the interface at x = 0,

with Taylor expansion (through 4" degree):

_ 2 3 4 H
cL_CL,11+CL,XX+CL’X2X FCL X HC aX if x<0

cp ~ (12)
_ 2 3 4
CR =Cr 1+ CryX+Cy 2X"+Co 3X"+C oX" if X220

We can use this information to replace the wave speed parameter in (9) and (10) with a matrix
representation of how multiplication by the (variable) wave speed affects data expansions (up

through 4™-degree terms) on both sides of the interface:

M1 CL 0 0 0 0 1
X CL,X CL,] 0 0 0 X
X*| |G Ce Cx G 0 fx
x4 c c c c c 4
L™ Lx* L,x3 L,x2 L,x L1 _X _
17 [y O 0 0 0 1]
Con x2|=|C%, Crx Cri O 0 | 2 (14)
)(3 CR 3 CR,x2 CRr,x CR,l 0 X3
x4 c c c c c 4
LA R,x* R, x> R,x? Rx MR |LX




In the case of constant wave speeds on one side (or both sides) of the interface, the
representations in (13) and/or (14) reduce to diagonal (scalar) matrices that are equivalent to
multiplication by the (constant) wave speed on that side of the interface.

We next need to use our discrete formulations in (9) and (10) to make sure that (5) holds, up
through the desired degree of accuracy (4™ degree, in the example we’re currently constructing).

We’ll illustrate how we do this with a particular example.

Determining Type 3 polynomial basis functions for a specific 1-D problem

Suppose we’re interested in solving a wave equation problem on the closed 1-D interval

[—1,1], with the wave speed profile shown in Figure 2.

1.6 - . ;

1.5( /_\/ |

1.4r .

p

—
w

wave speed ¢
N

1.17 *
1t |
0.9¢ 1
08 I 1 1 I 1
-1 -0.5 0 0.5 1
X

Figure 2. Wave speed profile for our specific 1-D, non-dimensionalized example.
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In our example, wave speed and density throughout the domain are defined as follows:

1,

{1.5 +0.05sin(27X),

p:

1,
L.5,

X €[~1,0)
X €[0,1.0]

x e[-1,0)
x €[0,1.0]

(15)

(16)

We will walk through the steps of enforcing (5) and determining weights for stencils that cross the

interface at x = (0. We have the following matrix representations for multiplication of polynomials

by wave speed, using the Taylor expansion of (15) about x = 0:

Cp,R

p,L

1.5

0.314
0
-2.07
0

I
S O O O

S O O = O

0
1.5
0.314
0
-2.07

S O = O O
S = O O O

0
0
1.5
0.314
0

o1l 1
0 X
0| x*
01 x3
1|y
o o] 1]
0 0|l X
0 o0|x
15 0%
0314 1.5]| 44

(17)

(18)

First, we’ll consider characterization of data field u at the interface. If we set k =0 and evaluate

(5) with our discrete forms of the left- and right side differential operators, we find that the

following must be true, from the upper 5 rows and leftmost 5 columns of either side of the block-

diagonal matrix equation:

14



U o],y =

S O O O

S O O —= O

o O = O O

S = O O O

RO
(X)ul_,x
(X o

x3)u
( )L’X3

- o O O O

xHu
_( )L’X4

I 00
010
=0 0 1
0 0O
0 0 0

x=0
(19)

S = O O O

—_ o O O O

(g, |
(X)UR,X

X2)u
( )ijz

x3)u
( )R,X3

(xHu,
L R.x HIx=0

=UR, 0|,

With the interface conveniently located at x = 0, (19) simply indicates that the constant

expansion terms of u across the interface are equal:

[1 000

UL
uL,x

0

[1 0 0 0 0]

(20)

We next set k = 1 and reevaluate (5). This time, we will enforce continuity of the 1 time

derivative of f across the interface, which equates to spatial derivatives of u through the PDE.

From the lower 5 rows and leftmost 5 columns of the result, we have the following:

fL,(1)t e

S O O O O

21

S O O O =

S O O O

S O W O O

S B O O O

- (l)uL’l .
(X)UI_’)(
2
(U
3
(I 3

xHu
_( )L,X4

HIx=0

0 3.4
0 14
0 0.4
0 9.3
0 2.0

0
6.8
2.8
0.3
-19

0.4

o 7 Oue,
0 ();)UR’X
0 (X )uR,x2
3
14 (X )uR,x3
5.7 4
__(x )uR,X4

= fR,(l)t =0

HIx=0

Since f must always be continuous as we approach x = 0, the time derivative of its constant

coefficient must be equal across the interface. Therefore, we need to enforce the first row of linear

15



relationships between Taylor coefficients of u. We can add this first row of (21) to the condition

we already have established in (20):

UL, Ur,1

uL,x uR,x
1 00 0 0]y 1 0 0 0 0]y

L,x2 = R,x2 (22)
0100 0], 0 34 0 0 0],

L,x3 R,x3

_uL,x4_ uR,x4

To find more relationships between the Taylor coefficients of u on either side of the interface,
we continue evaluating (5) for higher and higher values of k, each time collecting rows of
coefficients that correspond to time derivatives of the constant expansion terms of u or f: these
must be equal to uphold continuity at x = 0. After proceeding through 4™-degree time derivatives,

we have accumulated the following relationships between the expansion coefficients of u:

1000 OfUus] [t 0o 0o 0 07 U]
0100 0fY%x| [0 34 0 0 0 |UYx
0020 ol%el=l0 09 45 0 o0 ||%e (23)
0006 0|Y%e] [0 07 13 46 0 ||[U
0 0 0 0 24||Y 4| [0 -84 62 51 1224 4

For the duration of this paper, we will refer to these square, well-conditioned matrices that
relate data expansion coefficients on one side of an interface to those on the other as “continuity
matrices”, indicated as an upper-case C. In this notation, we can express (23) more succinctly:

Cru_ =Crug (24)

We can use this relationship to explicitly determine Taylor coefficients of u on the left side of

the interface if we know those coefficients on the right side, or vice versa. For example:

16



P
u =C Cgrug

(25)

If we assume the standard basis set of polynomial coefficients for ug , we can express an entire

polynomial expansion for u, on both sides of the interface, as a concatenated matrix U of expansion

terms on the left side of the interface (U} ; top 5 rows) and right side of the interface (Ug; bottom

5 rows), as shown in (26).

S o o O

0 0
3.4 0
047 23
0.11 2.1

=35 026 2.1 5.1

0

S o O

0

0

0

0
7.6

o o O

0
0
0
0

[ R L = ]

<~ U 4
<~ U4
<~ uL,x2

< uL,x3

<—Uu 4

L,x
(26)

& UR,I

<« UR,x

<— UR,XQ

< UR,X3

<«— UR’X4

Each column of the matrix represents a single expansion function defined on both sides of the

interface. As stated above, we have assumed the standard basis set in P4 (R) for ug , making Up

equal to the 5-by-5 identity matrix Us. This designation is arbitrary — we could have similarly

assumed the standard basis set for u , and obtained a companion set of basis functions for ug

through similar use of the continuity matrices. We need only specify a basis for u on either side

of the interface to explicitly determine its structure on the other side. As constructed in (26), all 5

expansion functions for u are plotted in Figure 3.
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Figure 3. Standard basis functions for u in P,(R) (on the right side of the interface at x = 0) and
how they must change (on the left side) to uphold interface continuity conditions.

This completes our characterization of expansion terms for data field u near the interface. We
must also go through an equivalent process for data field f, as its expansion terms may change in
different ways as they cross the interface. To do so, we can follow the same procedure as we did
for u. We can work our way up through powers k of the differential operator D in (5), collecting
linear relationships between the expansion coefficients of f at each step by enforcing that constant

expansion terms of both u and f must be equal in all their time derivatives. However, with
18



expansion terms of u already determined near the interface, there is another very simple method
to determine expansion terms for f. An analog of this method will be very important when we
return to 2-D.

From (9) and (10), recall that how the expansion coefficients of f change in time is directly

related to expansion coefficients of u currently present in the data on either side of the interface:

01 0 0 0]
00200
f,_’t=p,_cé’,_§u|_= 000 3 0fu (27)
0000 4
0 0 00 0

34 0 0 0
14 68 0 0
04 28 10 0 |ug (28)
93 03 42 14
2.0 -19 04 57|

0
fo.=p i g —ug =
Rt REpR 5 UR

S O O o O

If we have stored our expansion functions for u as square matrices U; and Uy as in (26), we
can determine all possibilities of how coefficients of f can change in time by examining the

column space of the following (rectangular) matrix:

19



01 0 0 0] 1T7o 34 0 0 0]
00200 0 094 45 0 0

000 3 0/U, 0 033 64 23 0

0000 4 0 -14 1.0 85 20

F_{FLJ} 0 0 0 0 0] o0 0o 0o o0
IRl ([0 34 0 o o] ||o 34 0 o0 o0
0 14 68 0 0 0 14 68 0 0

0 04 28 10 0 [Ug| |0 014 28 10 0

0 -93 03 42 14 0 -93 030 42 14

0 2.0 -19 04 57 0 -19 -19 044 57|

(29)

Here, possibilities for expansion terms of f; are also expressed as a concatenated matrix Fy of
column vectors holding expansion coefficients of f; on the left side of the interface (top 5 rows)
and on the right side of the interface (bottom 5 rows).

Since the linearly independent column vectors of F; form a basis for the space of all possible
(coupled) time derivatives of expansion coefficients for f on both sides of the interface, these
column vectors also form a basis for all possible data expansion coefficients for f on both sides
of the interface. Starting from data (at least locally) at value zero, any allowable combination of
nonzero data expansion coefficients must arise over time from an allowable combination of time
derivatives of those very same coefficients.

The only drawback in characterizing expansion coefficients of data field f in this manner is
that one degree of accuracy is lost. For example, figuring out a basis for f through the PDE’s
action on a 4™-order basis for u will result in a 3™-order accurate basis for f (some of the 4™-

degree terms may not satisfy all continuity conditions). For instance, our example exercise has

20



given us a 3"-order accurate basis for the expansion of f near the interface, which we can find by

truncating the expansion after 3"-degree terms and omitting the column vector of zeros from (29)

(34 0 0 0]« f,
094 45 0 0 |< f,
033 64 23 0|« f
-14 1.0 85 20|« f s
i 34 0 0 0]« fay G0
14 68 0 0|« fry

0.14 28 10 0 [« fo

|93 030 42 14]< fo

If we need a 4"-order basis for the expansion coefficients of f and we want to gain that basis
through this method, all we need to do is compute a 5"-order basis for u first, and carry out the
process of (27) through (29) on this 5"-order basis. We then obtain a 4"-order basis for f by
culling the resultant 5M-order terms and the column vector of zeros that results from differentiating
constant expansion terms of u.

Finally, we need to find finite difference weights that accurately approximate u, and f, to our
desired order of accuracy. In our 4™-order example, that means we must enforce that u, weights
for (centered) stencils that cross the interface must accurately reproduce derivatives of all 5
functions plotted in Figure 3, and f, weights do the same for an appropriate set of 5 4"-order basis

functions in f near the interface (obtained through the methods described above). Figure 4 shows
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a plot of several stencil weights for u,, in our example problem, where the spacing h between data

nodes is 0.01, and those nodes are offset from the interface by a distance h/2.

.~ et
“O?U
- i
— 1.
N I
NN S
-0.05 0 0.05

X

Figure 4. Plot of weights for u, stencils near the interface in our test problem, with h = 0.01.
Relative vertical scale is the same for all stencils, and height of dots above or below each stencil
indicates magnitude of a stencil weight above or below zero, respectively. The top and bottom
stencil are standard 4™-order finite difference stencils (with weights of 1/12h, -2/3h, 0, 2/3h, and
-1/12h, respectively), since they do not overlap the interface. The perturbation of the weights of
stencils that cross the interface is a result of their containing all important information about the
interface: not only the exact jump in parameter values right at the interface, but also how the
parameters may smoothly vary on either side.

Determining Type 3 polynomial basis functions: 2-D example

In 1-D, we were able to find a complete basis for piecewise Taylor expansion functions that

upheld continuity of traction and motion through an arbitrary order of accuracy, and we were able
22



to find traditional finite difference weights that accurately differentiated these non-smooth
functions. In 2-D, attempting to create traditional FD stencils from an explicit list of individual
Taylor basis functions gives rise to very ill-conditioned and singular systems of equations to solve.
On the other hand, the RBF-FD methodology allows inclusion of such functions (along with RBFs)
in a basis used to compute stencil weights, and we can extend our method to 2-D (and higher-D,
if we wish).

For illustration, assume that we wish to add polynomial support up to and including second
degree terms to an RBF-FD stencil that crosses an interface. We pick a point on the interface that
lies near the data node where the stencil approximates a linear operator. As in the 1-D example,
we designate the nearby point on the interface as the origin for purposes of evaluating support
polynomials, and we initially assume that all expansion coefficients of all data fields may vary
from one side of the interface to another.

We have the following data expansions for which we want to determine coefficients:

up =Up LU XU Y+ ul_,xzx2 FUL XY +U o y> if y<c(x)
s ug :uR,11+uR7Xx+uR,yy+uR’X2x2 +uR7nyy+uR’y2y2 otherwise
VL =V TV XYY +v|_’X2x2 VL XYV 2 y> ify<c(x)
T Vi = Ve 1+ VR X+ Vg Y + VR,x2X2 VR XY +Vp 1o y? otherwise @31
) h, :th11+h,_yxx+hL7yy+h|_’X2x2+h|_,xyxy+h|_7y2y2 if y<c(x)
) hg =hg,1+hg X +hg Y+ hijzx2 +hggXy +hy 2 y? otherwise

Although left (L) and right (R) don’t have absolute meaning in 2-D, we’ve kept the notation
from our 1-D illustration for consistency: L and R subscripts indicate data values or expansion
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coefficients as we approach an interface from one side or the other. The differential operator D is

a bit more complicated in 2-D:

1Yo (1)o 1«
SRy
-~ _ plox \p)oy
Yo 0 0 0 (_ji (LJE u]  [u]
Vo pIOAPIN | Ty v
foor =1 (A +20) < 4% 0 0 0 fl=D f| 32)
X
o ‘ ‘ 0 0 0 ﬂ ﬁ
_h(k)t_ ﬂay uax - - - -
22 G2 o 0 0
OX
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Figure 5. RBF nodes surround curved interfaces, shown by dashed lines. (Zoomed-in view) A
very small stencil is shown here for evaluating the spatial derivatives at the RBF node indicated
by the empty circle. Weights are applied to data at all RBF node (circle) locations. The stencil is
created using RBF-FD for a horizontal interface in the x',y' coordinate system.

Consider an RBF-FD stencil near a curved interface, as shown in Figure 5. At this location,

the following must be true for continuity of traction and motion to hold:

ULl yrg) = U'Rly o)

V'|_|(yv:0) = V'R|(y':0) (33)

g'L|(yv:0) = g'R|(yv:0)
h'L | = h'R |

(y'=0) (y'=0)

In (33), the primed data values are the same physical quantities we have been discussing

already (horizontal particle velocity, vertical particle velocity, etc.), but expressed in the rotated
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coordinate system shown in Figure 5. Note that there is no continuity relationship for f’ (stress
parallel to the interface).

In Figure 5, also note how two rows of nodes orthogonally straddle the interface. We began
using this strategy by observing the results of [4], thinking we might see an accuracy advantage
when arranging nodes this way. This indeed appears to be the case. More importantly, though,
this type of node layout (as compared to nodes scattered without regard to the interface, or placed
upon the interface itself) has been key in maintaining stability of the current method in many trial
problems solved thus far, especially when the contrast between model parameters across an
interface is significant.

The rest of the nodes in the domain are placed via a simulated static repulsion routine, resulting
in a hex-like, quasi-uniform arrangement as seen in Figure 5. Based on the analysis in [14] and
tests in [15], we argue that such a structure is at least as inherently resistant to dispersion error as
a Cartesian grid of nodes with the same spatial resolution.

We can express each of the 5 data fields in the rotated coordinate system:

B

cos’(0) 2 sin(@) cos(6) sin® (0) f f f
—sin(0) cos(0) cos*(0)—sin®(0) sin(8) cos(0) | g |= Rign| 9 (=] 9 (35)
sin®(0) —2 sin(@) cos(6) cos” () h h h'

We can also express time derivatives in the rotated coordinate system:
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_ u '(k)t T _ U W
VV
'(k)t R, O k Vv
f k) | = D*| f|]. (36)
| 0 Ry
9" Y
RO Lh ]

As in 1-D, we can uphold continuity of motion and traction by enforcing a form of (37) that

acts on 2-D expansion terms of data such as those found in (31).

u'y u's
V' v'
| o =Dl (37)
gL 0'r
h'L yv:() h'R yv:()

In 1-D, we determined each support monomial for an FD stencil that crosses an interface by
examining every row of (37) associated with time derivatives of constant expansion terms after k
applications of the differential operator D. For (both) continuous data fields, all time derivatives
of their constant expansion terms had to be equal across the interface for continuity of traction and
motion to hold as time passes.

In 2-D, we similarly uphold continuity of motion and traction by gathering linear relationships
between their expansion coefficients. We obtain these by observing time derivatives of the first
(p-k) monomial terms in the coordinate X' (thatis, 1, X', (X')z, etc.) of the continuous fields u’,
V', g’, and h’ after k applications of the discrete form of (37). Here, p is the maximum degree of
polynomial support we wish to add across the interface. We can use the rotational transformation
in (36) to observe how these continuity conditions translate to linear relationships between u and

v expansion terms in the original (traditional x and y) coordinate system; we will use these to form
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our RBF-FD stencil weights. This ensures that continuity of motion and traction are upheld to

O(hP) accuracy at y'=0 for a mildly-curved interface that is well-represented locally by a linear

approximation. Just as in 1-D, we place these gathered linear relationships into rows in continuity

matrices that relate expansion coefficients of u and v on one side of the interface to those on the

o v el

Again, given an expansion for u and v on one side of the interface, we can determine the shape

other:

of data in u and v to our desired order of accuracy on the other side of the interface by inverting
either of the matrices in (38). Or, for example, if we have a matrix of column vectors Uy that form
a basis for all possible Taylor expansion coefficients of u and v together on the “R” side of the
interface, we can form a basis for data on both sides of the interface with a similar construction

that we made in (26) for our 1-D example:

o
Ug Ug

Here, an easy choice for Ur might be the (12,12) identity matrix if we’re staying consistent
with our 2-D expansions up through degree 2 (recall that in 2-D, there are 6 polynomial expansion
coefficients for both u and v on both sides of the interface, making U a (24,12) matrix). We
complete our treatment of u and v by determining RBF-FD stencil weights to evaluate the three

operators on u and v data that are relevant to the elastic wave equation:

28



(A+2u)u, +av, (forf)

/u(ux +Vy) ( for gt) (40)
(A+2u)vy +Au, (forh)

Determining stencils that act on stress tensor data (f, g, and h) is slightly problematic if we
try to approach the task in the same way we did for the particle velocity fields. Since normal stress
perpendicular to the interface may be discontinuous, we end up with too few relationships between
the expansion coefficients of stress tensor data to exactly and explicitly determine its shape on one
side of the interface based on Taylor coefficients present on the other side.

What we can do, though, is follow a procedure similar to the second method presented for
characterizing data field f on both sides of the interface in 1-D ((27) through (30)). A simple and
consistent way to begin is to find a matrix of basis function coefficients for u and v as in (39), with
Ugr equal to the appropriate identity matrix. All that remains, then, is to observe what Taylor
coefficients in data fields f, g, and h emerge when columns of the basis coefficient matrix U are
acted on by the PDE. In other words, time derivatives of the expansion coefficients of stress tensor
components depend solely on expansion coefficients of particle velocity fields that are currently
present in the data. Since we’ve already found a basis for the Taylor coefficients of particle
velocity fields on both sides of the interface, all we need to do is observe what Taylor coefficients
in f, g, and h emerge over time when our basis functions for u and v are acted on by the discrete
form of the PDE (for the appropriate side of the interface). These combinations of f, g, and h
Taylor coefficients (coupled together and across the interface) contain a basis for all possible
combinations for f, g, and h Taylor coefficients on both sides of the interface, because they
(together) are all the possibilities for f, g, and h coefficients that arise over time from the basis of
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valid combinations of u and v coefficients determined already. As in the 1-D case, in the matrix
of time derivatives of concatenated f, g, and h expansion coefficients that arise from this process,
we have to eliminate column vectors of coefficients that may create linear dependence
relationships among the collection before we have a basis for the subspace of possible f, g, and h
coefficient combinations.

Luckily, if we started by assuming the standard basis for coupled coefficients of u and v on
one side of the interface, we can use this information to easily decide what column vectors of f,
g, and h expansion coefficients we can eliminate from the collection. As in 1-D, we first eliminate
the columns resulting from the PDE’s effect on an isolated constant term present in either u or v
on the side of the interface where the standard basis was assumed. A trivial result (all zeros) occurs
in either case, and it is easy to see that we do not need the zero function in our basis. There is one
more column vector of f, g, and h expansion coefficients that must be eliminated before a basis
is obtained, and we have a choice: either the column vector of coefficients associated with the
PDE’s action on an isolated, linear “y” term in data field u or a linear “x” term in data field v need
to be removed. As in the case of constant terms, we refer here to the PDE’s action on these isolated
expansion coefficients where they are present on the side of the interface where the standard basis
was assumed. Once these three column vectors of f, g, and h expansion coefficients are removed,
and those vectors of coefficients all culled to one degree less than the relationships between particle
velocity fields are correct, one has a basis for all possible combinations of f, g, and h expansion
coefficients on both sides of the interface. This basis of coupled piecewise polynomial functions
can then be used to form RBF-FD stencils for the two spatial operators in the PDE that depend on

spatial derivatives of the stress tensor fields:
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{(fﬁgy)/p (foruy) @)

(9x+hy)/p (forv)

As performed above, the method for determining RBF-FD stencil weights works well if the
interface is locally well-represented by a linear approximation. In practice, cases featuring very
gradually curving, smooth interfaces and a relatively low resolution tend to perform quite well
under this assumption. If desired, though, one can also account more rigorously for curvature of
a smooth interface. The trigonometric functions involved in (34) and (35) may be replaced by local
expansions of those functions in terms of the local horizontal coordinate x'. After application of
a given power K of the differential operator in (37), a local expansion for the interface shape itself
(again, in terms of X') can be inserted into entries for y'. Then, we can add together all rows of
coefficients that express equivalences in continuous data field time derivatives in like powers of
x'. Finally, enforcing that expansion coefficients associated with the first (p-k) monomial terms
of X' sum to zero then upholds continuity of motion and traction to O(h P) accuracy not only for
a locally flat interface, but also for any smooth interface. Note that this is technically identical to
the method we use under the assumption of a flat interface. The only difference is that the method

requires far less arithmetic when we assume that y' is equal to zero. We will examine the tradeoff

between simplicity and accuracy of the local linear interface approximation in our first test case.
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RBF-FD TEST CASES

In all test problems in this paper, we use dimensionless units of X andy (L), particle velocities
u and v (UT™), Lamé parameters A and x# (M'L'T?), stress tensor components f , g, and

h (M'L'T™), and density p (ML™). Here, the upper-case letters L, T, and M denote a
characteristic length, time, and mass scale of some system. Although our simulations are all
carried out in 2-D, we retain 3-D units and assume we are simulating a 2-D slice of a 3-D system
that does not vary in its third dimension.

All RBF-FD stencils in both test cases used Gaussian RBFs with a shape parameter (¢ )

calculated as follows:
e=— (42)

Here, d is the distance from the evaluation node of a stencil to its nearest neighbor. We have
found that normalizing the shape parameter this way maintains a good compromise between stencil
accuracy and conditioning of the linear systems solved to obtain stencil weights. One could
attempt to gain additional accuracy by decreasing the constant in the numerator of (42), as long
as the resulting weights produce an acceptably large and stable discrete time step.

All RBF-FD stencils that do not cross an interface contain the evaluation node and its 29

nearest neighbors for a total of 30 nodes. These stencils are supported by all polynomials up
through 4™ degree (x*,x%y, ..., y*). RBF-FD stencils that cross an interface contain 19 nodes and

are supported by all polynomials up through 3™ degree.
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A small amount of A® -type “hyperviscosity” is added to each data field to assure that RBF-
FD operator eigenvalues fall in the left half of the complex plane, as described in detail in [16].
Stencil properties for RBF-FD hyperviscosity operators are exactly the same as those described
above for the RBF-FD differential operators. To maintain a high degree of accuracy, it is important
that hyperviscosity stencils that cross interfaces are supported by the same space of piecewise
polynomials (determined by interface continuity conditions) that support stencils of the differential
operators.

Fourth-order Runge-Kutta (RK4) time integration was used for all test cases presented in this
paper. All RBF-FD stencils that cross an interface incorporate curvature information into

calculation of stencil weights, with the sole exception of one illustrative example.

Test Case 1. Simple p-wave problem: two curved interfaces
Our first test problem involves two mildly curved interfaces within a doubly periodic unit

square (Figure 6). Between the two interfaces, p=2 and both A and w are defined by the

following equation:
A, pu=4+sin(2zX)sin(2ry) (43)

Elsewhere in the domain, all three model parameters ( o, 4, & ) are equal to 1.
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Figure 6. Greyscale map of Lamé parameters A and u for test case 1. These parameters are equal
to each other everywhere in our test domain. Density has a value of 2.0 in the middle band and
1.0 elsewhere.
In this domain, A horizontal p-wave front begins at y = 0.75 and travels in the negative Y-
direction for 0.3 time units, encountering the mild sinusoidal interfaces near y = 0.5 and y = 0.25.

Figure 7(a) shows a color map of data field v at t = 0.0, and Figure 7(b) shows the same data at t

=0.3.
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Figure 7a. Data field v from the first test case, at t = 0.0.
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Figure 7b. Data field v from the first test case, at t = 0.3.
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Figure 8 shows errors in data field v at t = 0.3 for different solution methods to test case 1
carried out at different resolutions. The methods differ in their spatial differentiation strategy.
Represented here are fourth-order finite difference (FD4), pseudospectral (PS), RBF-FD, and
hybrid RBF-FD/FD6 methods. Hybrid solutions used a node layout similar to that in Figure 1,
where irregular node structure and RBF-FD methodology are only used in a small region near and
across interfaces. Errors are calculated using a 640,000-node RBF-FD/FD6 hybrid solution as a

reference.
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Figure 8. Convergence plot for different methods used to solve test case 1.
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Figure 9 shows error vs. elapsed time expended in solving test case 1 at different resolutions
with the various methods described above. The elapsed time displayed here is for time integration
only, and does not include any time expended in preprocessing steps.

In Figure 10, convergence data are displayed for two different hybrid RBF-FD/FD6
approaches to test case 1. The first data series is simply the hybrid data reproduced from Figure
8. The second data series is from a sequence of solutions that are identical to the first in every way
except one: weights for stencils that cross interfaces are calculated using a local, linear

approximation to interface shape.
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Figure 9. Performance plot for the 4 methods: error vs. wall clock time expended during RK4
time integration from ¢ = 0.0 to ¢ = 0.3 (on a 2.7 GHz 4-core i7 processor). Computation was
performed in MATLAB with sparse and highly vectorized data structures, where possible.
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In Figure 10, it can be seen that the locally linear approximation to interface shape begins to
penalize solution quality (relative to a solution that incorporates curvature information into stencil
weights) as we increase the number of nodes in the domain above about 40,000. Also shown in
Figure 10 are plots of perfect, synthetic 2™-order and 4™-order convergence data. Comparing
these with the slopes of our actual data, we see that the linear approximation to interface shape
results in apparent 4"-order convergence on relatively coarse node sets. This convergence falters
to around 2"%-order once the node set becomes more refined. On the other hand, inclusion of
curvature information in stencil weights appears to result in 4"-order convergence throughout all

RBF-FD solutions of test case 1 evaluated for this paper.
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Figure 10. Convergence plot for hybrid method, curvature incl. vs. flat int. assumption
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Example 2. Point source in a “mini-Marmousi” domain

Figure 11 shows the “mini-Marmousi” relative velocity model used in our second test case,
Yy

and Figure 12 displays data from a point source simulation in the region at t = 0.3.
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Figure 12. Absolute particle velocity (u? + v?)% in test case 2 at t = 0.3.
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Figure 13b. Error in v at t = 0.3 of 153,600-node RBF-FD/AC solution (old method, from [3])
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Figure 13 shows errors of three different 153,600-node RBF-FD solutions for the variable v
att=0.3. The first of these solutions was obtained via pseudospectral spatial differentiation. The
second and third solutions in Figure 13 were obtained using the 3™-order method we presented in
[3] and the 4"-order method we have discussed in the present paper, respectively. All three
solutions use a 614,400-node RBF-FD solution as a reference, and all three solutions employ split-
field perfectly-matched layer (PML) absorbing boundary conditions as described in [17]. Here,
the PML region is 0.1 units thick on each side of the domain. The PML boundary condition
appears to be stable and compatible with the RBF-FD approach, even when interfaces extend into
the PML region.

RBF-FD stencils that cross more than one interface are given no special treatment, and their
weights are computed in the same manner as Type 2 stencils. Even without upholding interface
continuity conditions in the small zones around corners, cusps, and faults, we see that our current
approach improves error significantly over the method presented in [3]. Both RBF-FD-based
solution show much less error than the extremely high-order (pseudospectral) finite difference

solution.

CONCLUSIONS

We presented and tested a simplified method for RBF-FD-based seismic modeling that can
achieve fourth-order convergence even in the presence of curved interfaces. Especially when
RBF-FD is hybridized with a traditional finite difference method, we have shown that our

MATLAB prototypes function in a very cost-competitive manner compared to a finite difference
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approach applied everywhere in a heterogeneous domain. This localization of the interface
treatment could be even more important in 3-D wave transport simulations, where storage and
access of specialized weights for every single data node in a domain would create a very large
computational burden both in terms of memory footprint and memory bandwidth demand.

In our second test case, RBF-FD stencils that crossed interface cusps, corners, or fault zones
were determined without the special treatment given to stencils that crossed a single, smoothly-
curved interface. Although RBF-FD solutions of the second test problem showed significant
improvement over a very high-order finite difference approach, we will in the future pursue a more
rigorous analysis of how the naive treatment of small zones surrounding cusps, corners, and faults

affects the accuracy of our approach.
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