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Abstract

The purpose of the present paper is to provide an overview of Asymptotic-

Preserving methods for multiscale plasma simulations by addressing three

singular perturbation problems. First, the quasi-neutral limit of fluid and

kinetic models is investigated in the framework of non magnetized as well

as magnetized plasmas. Second, the drift limit for fluid descriptions of

thermal plasmas under large magnetic fields is addressed. Finally effi-

cient numerical resolutions of anisotropic elliptic or diffusion equations

arising in magnetized plasma simulation are reviewed.
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1 Introduction

Plasma physics is by essence a multiscale problem [7, 72, 90] mixing microscopic
to macroscopic scales. The microscopic space scales describe the motion of
particles, their collisions on the mean free path scale, and the interaction with
the electromagnetic fields over the plasma skin depth or the Debye length and
the Larmor radius. The macroscopic scales are characteristic of the field and
the plasma macroscopic evolution. The diversity in the time scales is also very
wide. They range from high frequency phenomena defined by the propagation
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of electromagnetic waves at the speed of light as well as the cyclotron and the
plasma frequencies; to the evolution of the coupled system composed of the
plasma and the fields on the time scales of the plasma mean flow evolution. The
simulation of these systems on large scales have been the source of an intense
and fruitful research, with the derivation, analysis and implementation of models
relating different description levels, from the microscopic scales to mesoscopic
and macroscopic descriptions [16, 26, 27, 29, 99, 123].

Alongside, numerical methods have also been intensively developed with the
same aim to produce simulations on large scales. Implicit methods [109, 34, 86,
94, 103, 137, 31] allow, to some extent, the de-correlation of the discretization
parameters from the smallest scales described by the equations. The objective is
thus to derive numerical methods with stability properties less restrictive than
explicit methods. This gains the advantage of larger simulation parameters,
chosen according to the scales of interest, rather than the small parameters
described by the system.

However implicit discretizations are ineffective when the stiffness of the prob-
lem leads to a degeneracy of the model. Fluid limits of kinetic equations are a
good example of such frameworks. In the limit of a vanishing mean free path,
the kinetic equation degenerates, constraining the distribution function to be-
long to the kernel of the collision operator. Unfortunately this only information
does not permit to determine uniquely the distribution function. Therefore, the
kinetic model becomes singular, while, in the limit of infinite collision rates, a
fluid description is sufficient. This difficulty is usually overcome thanks to do-
main decomposition strategies, consisting in using the asymptotic (macroscopic)
description everywhere the multiscale (microscopic) model is not compulsory.
However, this coupling strategy is still an open question, at least in specific
contexts (see for instance [96, 118] and the references therein for examples of
domain decomposition). The main difficulty raised by this strategy is twofold.
First, it is not necessarily straightforward to match the unknowns advanced
by the multiscale model with those of the limit one [96]. Second, the inter-
face delimiting the sub-domains may be evolving with the system, its location
computation being a problem by its own. On top of that, this interface should
be immersed in a part of the domain where both the multiscale and the limit
models are valid. The existence of such a region supposes that the approxima-
tion error of the numerical method dominates the modelling error produced by
the use of the limit model for non vanishing asymptotic parameter values. For
refined numerical parameters this requirement may not be met (an example of
such a situation is discussed in [37]), or at the price of important computational
efforts.

An alternative approach has been introduced in the frame of Asymptotic-
Preserving methods originally designed to cope with fluid and diffusive limits of
kinetic equations [95]. The purpose is to derive numerical methods bridging the
microscopic description and the asymptotic model when this latter is derived
as a singular limit of the former model. Fluid and diffusive limits of kinetic
equations remain the most active field of developments for AP schemes outlined
by numerous publications [57, 117, 8, 105, 43, 118, 36, 65, 113, 65, 18, 25, 93,
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92, 41, 100]. Other singular limits are however addressed, among which the low
Mach regime for fluid systems [59, 61, 80, 35, 133, 115] with applications to
semiconductors [66, 12], nano-structures and quantum systems [58, 9, 44, 89]
this list being non exhaustive. We also refer to [96, 46] for reviews on AP
methods.

AP-methods are in general implicit schemes. However, they differ from clas-
sical implicit discretizations in their derivation. Indeed, AP-methods are con-
structed to bridge several sets of equations describing the system in different
regimes, rather than alleviating the stability constraints of the numerical meth-
ods. The aim here is to shape a single set of reformulated equations unifying
these regimes. Asymptotic-Preserving schemes offer a consistent discretization
of the multiscale model when the discretization parameters resolve the small
scales. Conversely, the AP-methods are consistent with the limit model when
the numerical parameters are large compared to the microscopic scales. In this
reformulated system the limit is regular, which means that the macroscopic
problem is recovered for vanishing asymptotic parameters. Three main steps
can be identified in the derivation of these methods. The first one consists in
elaborating the limit problem. This system is defined as the set of well posed
equations providing the limit of the solution in the asymptotic regime. In the
framework of singular perturbation problems, the limit problem is not readily
obtained by setting the asymptotic parameter to zero in the multiscale problem.
The second step consists in deriving the reformulated set of equations mentioned
above. In this aim a good understanding of the derivation of the limit problem
is mandatory. Finally the time discretization is designed to meet consistency
requirements with all regimes. This necessitates a sufficient implicitation level
in order to guaranty the consistency with the different regimes, providing thus
a means of computing all the unknowns whatever the values of the asymptotic
parameter.

The purpose of the present paper is to illustrate these concepts thanks to
three singular perturbation problems.

The first one is related to the quasi-neutral limit of fluid and kinetic plasma
models coupled to the Maxwell system. In many applications the charge sep-
arations can be disregarded at the scales of interest, the plasma being thus
considered as quasi-neutral. This property is harnessed to derive reduced mod-
els, filtering the scales describing the charge separations out from the equations.
However, an accurate description of the whole system on large scales generally
requires the resolution of the complex physics occurring in limited regions, for
instance near the plasma boundary or, to describe the interaction of the plasma
with a wall (see [102, 119, 130]) where electrostatic sheathes may appear. In
these regions the assumptions used to derive quasi-neutral models are not valid.
More complex models are needed to account for the physics prevailing in these
regions, calling for numerical methods able to treat efficiently quasi-neutral
models with local break down. The difficulty of this asymptotic is explained by
the degeneracy of the equation providing the electric field. In non quasi-neutral
models, the electric field is computed from the Maxwell system [13, 88, 131]. In
the quasi-neutral regime, these equations being degenerate, the electric field is
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computed from the equations describing the evolution of the electrons and the
ions. These regimes translate thus two different physical phenomena, accounting
for the singular nature of this limit addressed in Sec. 2.

The second context is specific to hot plasmas evolving in the presence of
strong magnetic field. These investigations are limited to fluid descriptions
with an external magnetic field. The purpose here, is to address the so called
gyro-fluid regime [81] which bears some analogies with drift approximations
[14, 99, 128, 123, 77, 132, 120, 104] largely used for the modelling of tokamak
plasmas on large time scales. The drift regime is characterized by a vanishing
inertia, which is responsible of the momentum equation degeneracy. Along the
magnetic field lines, this equation imposes a zero force regime with the pressure
gradient balancing the electric force. No explicit occurrence of the parallel
momentum survives in the drift asymptotic which explains the singularity of
this limit. A regimes transition is observed near the wall, with a significant
decrease of the plasma temperature and more importantly an acceleration of
the particles by the electrostatic field existing in the sheath ([32, 130]). In this
area the particle inertia becomes again significant breaking the drift assumption.
The derivation of asymptotic preserving methods in this framework is detailed
in Sec. 3.

Finally, we propose a review of AP-methods for anisotropic elliptic or dif-
fusion equations arising in the simulation of tokamak [42] and ionospheric [11]
plasmas. In a plasma under large magnetic fields, the diffusion along the mag-
netic field lines is almost infinite in the time scale of the dynamic in the trans-
verse directions [79, 127, 62, 71]. The difficulty raised by this anisotropy in the
context of tokamaks is due to the periodicity of the torus. Indeed, in the limit of
an infinite diffusion in the aligned direction, the parallel diffusion is dominant,
this operator being supplemented with periodic boundary conditions at each
ends of the magnetic field lines. Therefore, its kernel is not reduced to zero,
leading to a difficulty comparable to the one referred above concerning the limit
of infinite collisions for kinetic descriptions. This issue is illustrated thanks to
a simplified problem in the beginning of Sec. 4 and investigated by means of
AP-methods in the sequel of the section.

2 Quasi-neutral limit of kinetic and fluid plasma

descriptions

2.1 Introduction

The quasi-neutral limit can be related to the so-called plasma approximation as
defined in [29] which consists, for dense plasmas, in assuming equal ionic and
electronic densities ni = ne together with an electric field that is not divergence
free ∇ · E 6= 0. This might appear as a paradox since it breaks the Maxwell-
Gauss equation ∇ ·E = q(ni − ne)/ε0 (ε0 being the vacuum permittivity and q
the elementary charge).

This ambiguity is clarified in Sec. 2.2 thanks to the analysis of the different
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orderings revealed by a scaling of the Maxwell system. The inter-relations of
the dimensionless parameters occurring in this set of re-scaled equations de-
fine different asymptotic regimes. The first one relates the propagation of an
electromagnetic wave at the speed of light and is referred to as the Maxwell
regime. In this ordering, the Maxwell sources vanish and do not contribute to
the changes in the electromagnetic field, the electric field being computed by
means of the displacement current in Ampère’s law. On the contrary, the evo-
lution in the quasi-neutral regime is dominated by the sources with a negligible
displacement current. Therefore, the transitions between the Maxwell and the
quasi-neutral regimes rely on the relative influence of the displacement current
and the current of particles. The vanishing of the displacement current in the
Ampère equation is at the origin of the singular nature of the quasi-neutral
limit. Finally the electrostatic limit of the Maxwell system is discussed, the aim
being to characterize the quasi-neutral limit in this asymptotic. It is defined as
a low frequency regime with a slow system evolution compared to the speed of
light. In particular, the singular nature of the quasi-neutral limit is illustrated
also in this framework, with the degeneracy of Maxwell-Gauss equation.

In the quasi-neutral asymptotic, the degeneracy of the Ampère and the
Gauss equations call for new means of computing the electric field. This is
classically achieved thanks to a generalized Ohm law, either through the quasi-
neutral constraint enforcing a divergence free current of particles or, the elec-
tronic momentum equation, in which the inertia is neglected. We refer to [102]
for some seminal works on quasi-neutral models, to [85] for a short review,
[141, 98, 142, 38, 40, 136, 135] and the references therein for implementations
of quasi-neutral plasma models.

However quasi-neutral descriptions have a limited range of validity. In par-
ticular these models are not valid in vacuum or low plasma density regions where
high frequency phenomena may occur [134]. The purpose of the Asymptotic-
Preserving methods reviewed in this paper, is to bring the two regimes into a
single set of equations, making possible the transition between the evolution of
the electric field in the Maxwell regime, by means of the displacement current
and, that of the quasi-neutral regime, with an electric field computed thanks
to a generalized Ohm law. In this respect, AP methods implement the guide
line stated in [29] “do not use Maxwell’s equations to compute the electric field
unless it is unavoidable !”.

The derivation of the AP methods is addressed in Sec. 2.3. One key point is
to identify the equations describing the system in the quasi-neutral regime. The
Ohm’s law heavily relying on the equations describing the particles evolution,
the plasma models, either fluid or kinetic, are therefore an important aspect to
consider in designing AP methods. Pioneering works have been first devoted to
the Euler-Poisson system [39], then extended to kinetic electrostatic descriptions
by means of the Vlasov-Poisson system [51, 52, 6]. Electromagnetic fields have
been considered in the frame of the bi-fluid isothermal Euler-Maxwell system in
[55] (extended to the M1-Maxwell model in [78]) and finally with the Vlasov-
Maxwell system [47]. In Sec. 2.3 a unified presentation of the different regimes
is proposed by means of the “augmented” Vlasov-Maxwell system. This choice
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offers different advantages. First, the augmented system contains the difficulty
of both the electromagnetic and the electrostatic regimes. Second, the Ohm law
being derived from equations driving the evolution of macroscopic quantities,
the construction of AP methods can be readily transposed from the kinetic to
the fluid framework. Finally an overview of the numerical implementations of
AP-methods is proposed in Sec. 2.4.

2.2 Outlines of the quasi-neutral and electrostatic limits

of the Maxwell system

The objective of this section are twofold. On the one hand, the quasi-neutral
limit is investigated thanks to a scaling of the equations in order to explain
the paradox raised in the introduction. On the other hand, some consistency
properties, relating the Maxwell-Ampère and the Maxwell-Gauss equations are
outlined. The electrostatic limit of the Maxwell system is also discussed. In this
aim, the Maxwell system is complemented with the continuity equation driving
the evolution of the charge density, defining the system of interest

1

c2
∂E

∂t
−∇×B = −µ0J , (1a)

∂B

∂t
+∇× E = 0 , (1b)

∇ · E =
ρ

ε0
, (1c)

∇ · B = 0 , (1d)

∂ρ

∂t
+∇ · J = 0 , (2)

consisting of the Maxwell-Ampère (1a), the Maxwell-Faraday (1b), Maxwell-
Gauss (1c) and the Maxwell-Thomson (1d) equations supplemented with the
continuity equation (2). In these equations (E,B) is the electromagnetic field,
the charge and current densities are defined by the electronic and ionic densities
and mean velocities as ρ = q(ni − ne) and J = q(niui − neue), q denoting the
elementary charge. Finally c is the speed of light, µ0 and ε0 being the vacuum
permeability and permittivity, verifying ε0µ0c

2 = 1.
The physical variables are scaled by their typical value: x̄ and t̄ being the

space and time scales, the following identity holds x = x̄ x′ and t = t̄ t′, x′

and t′ denoting the dimensionless variables. These scales define ϑ̄ = x̄/t̄ the
velocity driving the changes in the electromagnetic field, the typical magnitude
of the electric and magnetic fields being Ē and B̄. The plasma characteristics
are denoted T̄ , ū and n̄ for the typical temperature, mean velocity and density,
allowing the definition of λD = (ε0kB T̄ /(q

2n̄))1/2 the Debye length, with kB the
Boltzmann constant and the electronic thermal velocity vth,e = (kBT̄ /me)

1/2,
with me the electronic mass. The Maxwell sources are scaled with ρ̄ = qn̄ and
J̄ = qn̄ū for the charge and current densities. The introduction of the re-scaled

6



variables into the equations reveals some dimensionless parameters:






α =
ϑ̄

c
, the typical velocity to the speed of light ;

ζ =
ū

ϑ̄
, the plasma mean velocity relative to the speed of interest ;

M =
ū

vth,e
the electronic Mach number, v2th,e =

kBT̄

me
;

η =
qĒx̄

meū2
, the ratio of the electric and plasma kinetic energies ;

β =
ϑ̄B̄

Ē
, the induced electric field to the total electric field ;

λ =
λD
x̄
, the dimensionless Debye length, λ2D =

ε0kB T̄

q2n̄
.

(3)

With these dimensionless parameters, the scaled system is recast into

λ2
∂E

∂t
− β

λ2

α2
∇×B = − ζ

ηM2
J , (M-A)

β
∂B

∂t
+∇× E = 0 , (M-F)

λ2ηM2∇ ·E = ρ , (M-G)

∇ · B = 0 , (M-T)

∂ρ

∂t
+ ζ∇ · J = 0 , (C)

where, for sake of readability, the primes are omitted for the scaled variables.
Two regimes can be identified accordingly to the frequency range charac-

terizing the system evolution. In the high frequency limit, referred to as the
Maxwell regime in the sequel, the velocity of interest is assumed comparable to
the speed of light and large compared to both the mean velocity of the plasma
and the particles thermal velocity. The Debye length is assumed to be large or
comparable to the typical space scale. This translates into the following scaling
relations

λ2 = α2 = β = η =M2 = 1 , ζ ≪ 1 . (4)

In the Maxwell regime the plasma evolution can be disregarded. In the low
density approximation λ≫ 1, the system reduces to the homogeneous Maxwell
equations with the propagation of the electromagnetic wave at the speed of
light. The electric field is computed by means of the displacement current in
(M-A).

The quasi-neutral limit is defined by a speed of interest comparable to the
plasma mean velocity and the particles thermal velocity, these velocities being
assumed small compared to the speed of light. The regime is therefore a low
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frequency asymptotic. The scaled Debye length is also assumed to define a small
scale in this regime which finally yields to the scaling relations

ζ = β = η =M2 = 1 , λ2 = α2 ≪ 1 . (5)

The assumption β = 1 is common to all MHD models and referred to as the
frozen field assumption. It translates that, in a dense plasma, the magnetic field
is convected with the plasma flow. In particular, the propagation of electromag-
netic waves at the speed of light is not possible in a dense plasma [99, 29, 16, 72]
and therefore not described by quasi-neutral models. The other dimensionless
parameters are assumed equal to one in order to simplify the writing. The
Maxwell-Gauss equation (M-G) provides the quasi-neutrality ρ = 0, the electric
field contribution vanishing in this equation. Therefore, this allows for the com-
putation of non divergence free electric field and explains the paradox raised by
a crude review of the dimensional equations. The Ampère equation also degen-
erates in the asymptotic λ2 → 0 along with α2/λ2 = O(1), with a vanishing
displacement current, the equation (M-A) yielding

∇×B = J .

In this equation too, the occurrence of the electric field vanishes in the quasi-
neutral regime which leads to the conclusion that the (homogeneous) Maxwell
equations cannot be used to compute the electric field in this limit. More pre-
cisely, the electric field must be found from the particles equation of motion [29]
by means of a generalized Ohm’s law, explaining how the current of particles
J and the electric field relate to each other. This is routinely implemented in
quasi-neutral descriptions of plasmas, the most widely used being the Magneto-
Hydro-Dynamic (MHD) models [14, 45, 74, 128].

Different frameworks have been investigated in this direction. The first one is
devoted to electrostatic descriptions that can be derived from the dimensionless
system above by letting α → 0. Indeed, by the equation (M-A) the magnetic
field is curl free (∇ × B = 0), which together with ∇ · B = 0 and assuming
adequate boundary conditions, provides a constant magnetic field. The equation
(M-F) provides thus a curl free electric field ∇×E = 0 assumed to derive from
a potential E = −∇φ. In this regime, the Maxwell-Ampère equation can be
decomposed into a curl free and a divergence free identity

λ2
∂

∂t
∆φ =

ζ

ηM2
JL ,

β
λ2

α2
∇×B =

ζ

ηM2
JT ,

(6)

where J = JL + JT , ∇ · JT = 0 and ∇ × JL = 0. While ∇ × B vanishes in
the electrostatic regime α → 0, the quantity ∇×B/α2 remains finite as long as
the current transverse part JT does not vanish. However it does not contribute
to the definition of the electrostatic field, as outlined by the decomposition (6).
This feature can also be recovered by computing formally the divergence of
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Ampère’s law (M-A), providing

λ2
∂

∂t
∆φ =

ζ

ηM2
∇ · J .

This equation together with the continuity equation (C) provides

−λ2ηM2 ∂

∂t
∆φ =

∂ρ

∂t
.

This outlines that the Gauss law is a consequence of the Ampère (M-A) and
the continuity (C) equations. The consistency of the initial condition with the
Maxwell-Gauss equation (M-G) is preserved with time. Consequently, in the
electrostatic regime, the only Maxwell-Gauss equation is sufficient to compute
the entire electric field, this equation being usually substituted to the whole
Maxwell system in this regime. Note that, the quasi-neutral limit is thus defined
by λ2 → 0 together with λ2/α2 → 0, in contrast to λ2 → 0 and λ2/α2 = O(1)
for the electromagnetic framework.

2.3 Asymptotic-Preserving formulation of the Vlasov-Maxwell

system

2.3.1 The scaled Vlasov-Maxwell system

The model investigated here consists of the Maxwell system (1) coupled to a
Vlasov equation for the electrons, the ions being assumed at rest with a uniform
density to simplify the notations. The distribution function, denoted f , depends
on x ∈ Ωx ⊂ R3, the microscopic velocity v ∈ Ωv ⊂ R3 and on time t ∈ R+.
The function is the solution to

∂f

∂t
+ v · ∇f − q

me
(E + v ×B) · ∇vf = 0 (7)

In order to address straightforwardly the asymptotic regime, the scaling defined
by Eq.(3) is again harnessed, but ti simplify, with ū = ϑ̄, where ϑ̄ = x̄/t̄ and ū is
the mean plasma velocity, which amounts to setting ζ = 1. The particles velocity
v being scaled with the electronic thermal velocity vth,e = (kB T̄ /me)

1/2. In the
sequel similar scaling relations as the ones defining the quasi-neutral regime (5)
will be considered. To simplify further the writing, the two small scales α2 and
λ2 will be denoted by a single parameter (λ2), so that the quasi-neutral regime is
easily identified by the limit λ2 → 0. The dimensionless Vlasov-Maxwell system
is

(VM)λ






∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

λ2
∂E

∂t
−∇×B = −J,

∂B

∂t
+∇× E = 0,

λ2∇ ·E = 1− n,

∇ ·B = 0 ,

(8a)

(8b)

(8c)

(8d)

(8e)
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with

n =

∫

Ωv

f(x, v, t) dv , J = −
∫

Ωv

f(x, v, t)v dv . (8f)

The sources of the Maxwell system verify a continuity equation derived from
the moments of the Vlasov equation (8a) giving rise to

∂n

∂t
−∇ · J = 0 , (9a)

∂J

∂t
−∇ · S = (nE − J ×B) , S =

∫

Ωv

f(x, v, t)v ⊗ v dv . (9b)

As outlined in section 2.2, the Gauss equation is a consequence of the Am-
père law (8b) and the continuity equation (9a). However, the consistency with
this latter is not always satisfied by numerical methods. This is for instance a
common flaw of Particle-In-Cell methods largely documented (see for instance
[13, 4]). The most widely adopted solution is the correction of the electric field
predicted by the Ampère equation. This correction is computed by an elec-
trostatic potential p verifying the Maxwell-Gauss equation (8d). This is the
so-called Boris correction [17] decomposed in two steps. First the predicted
electric field Ẽ is computed by means of Ampère’s law. Second the correction
is applied to this field, defining the corrected field E = Ẽ −∇p in order for the
Maxwell-Gauss equation to be satisfied:

λ2∇ ·E = 1− n , E = Ẽ −∇p , (10a)

This gives rise to the dimensionless Vlasov-Maxwell system augmented with the
corrector p

(aVM)λ






∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

λ2
∂Ẽ

∂t
−∇×B = −J,

∂B

∂t
+∇× Ẽ = 0,

λ2∆p = λ2∇ · Ẽ − (1− n) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

The right hand side of Eq. (11d) can be interpreted as the consistency default
in Gauss’s law. The corrector p vanishes, subject to the boundary conditions,
as soon as the electric field advanced thanks to the Ampère equation verifies
the Maxwell-Gauss law.

The difficulty in handling the quasi-neutral limit is thus twofold. In addi-
tion to the degeneracy of the Ampère equation (11b), a means of computing
the corrector needs to be worked out for the limit regime, the Maxwell-Gauss
equation (11d) also degenerating in the quasi-neutral limit. This last difficulty
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is similar to the one posed by the computation of the electric potential in the
electrostatic framework. The investigation of the augmented Vlasov-Maxwell
system is thus a good means of offering a unified presentation of both regimes.

2.3.2 Reformulation of the augmented Vlasov-Maxwell system

The objective here is to restore a means of computing the electric field in the
quasi-neutral regime. As mentioned above, in the Maxwell regime, the electric
field is computed thanks to the displacement current. This term vanishing from
the equation in the limit λ2 → 0, Ohm’s law needs to be considered in order
to express how the electric field relates to the current of particles. This finally
restores means of computing the electric field in Ampère’s law. Letting λ2 → 0
in (11b) and taking the formal time derivative of this equation together with
the curl of Faraday’s law (11c) yields

∇×∇× E =
∂J

∂t
. (12)

In this equation a link between the electric field and the electric sources is
restored. However, it does not allow for the computation of the entire electric
field. Indeed, the solution of this equation can be augmented by any gradient
without changing the equality: the electrostatic component of the field cannot
be uniquely determined from (12). This is corrected thanks to the expression
of the current of particles which translates the response of the particles to the
electric field, with

∂J

∂t
= ∇ · S+ nẼ − J ×B .

Inserting this definition into (12), the quasi-neutral equation providing the entire
electric field in the quasi-neutral regime can be precised, with

∇×∇× Ẽ + nẼ = J ×B −∇ · S .

A similar reformulation can be performed for the correction potential p.
Indeed, Eq. (11d) degenerates into the quasi-neutrality relation 1−n = 0. This
constraint is operated together with the moments of the Vlasov equation in
order to derive the equation verified by the corrector. Following the spirit of
the Boris procedure, a correction of the electric field is introduced in order for
the continuity equation to be verified. Taking the double time derivative of
this equation together with the moments of the Vlasov equation, in which the
electric field is corrected, the following equation is derived

∂2n

∂t2
= ∇ · ∂J

∂t
= ∇2 : S+∇ ·

(
n(Ẽ −∇p)

)
−∇ · (J ×B) , (13)

where ∇2 : S := ∇ · (∇ · S). This finally provides the equation verified by the
corrector in the limit λ2 → 0, so that it is possible to state the quasi-neutral
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Vlasov-Maxwell system

(aVM)0






∂f

∂t
+ v · ∇xf − (E + v ×B) · ∇vf = 0

∇×∇× Ẽ + nẼ = J ×B −∇ · S ,
∂J

∂t
+∇× Ẽ = 0,

−∇ · (n∇p) = ∂2n

∂t2
−∇2 : S−∇ · (nẼ) +∇ · (J ×B) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

In the quasi-neutral limit, the electric field can be interpreted as the Lagrange
multiplier of the equilibrium ∇×B = J , the corrector potential as the Lagrange
multiplier of the constraint ∇ · J = 0, or, more precisely to the time derivative
of these identities. The equation (14a) outlines the singular nature of the quasi-
neutral limit: the electric field verifies an hyperbolic equation in the Maxwell
regime defined in section 2.1 while it is computed thanks to an elliptic equation
in the quasi-neutral limit. On top of that, these two equations relate different
physical phenomena, the propagation of an electromagnetic wave at the speed
of light on the one hand, the response of the charged particles to the electric
field on the other hand. The quasi-neutral regime investigated with this limit
model is close to a kinetic description of the so-called Electron MHD [76] and
the quasi-neutral model identified in [135]. In this system the scale of interest is
that of the electron, rather than the ion dynamics in the classical MHD models,
with a finite electron inertia. Moreover the model defined by (14) remains a
fully kinetic description for the plasma.

The aim of the reformulation, leading to an asymptotic preserving method, is
to bring these two regimes into a single set of equations with a smooth transition
from one to the other one according to the values of λ. With this aim, a
derivation similar to that of the limit problem (14) is performed but keeping
λ > 0. This yields the reformulated Vlasov-Maxwell system

(RaVM)λ






∂J

∂t
+ v · ∇xf − (E + v ×B) · ∇vf = 0

λ2
∂2Ẽ

∂t2
+∇×∇× Ẽ + nẼ = J ×B −∇ · S ,

∂J

∂t
+∇× Ẽ = 0,

− λ2
∂2

∂t2
∆p−∇ · (n∇p) =

∂2n

∂t2
−∇2 : S−∇ · (nẼ) +∇ · (J ×B) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)
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Remark 2.1. a) The reformulated Ampère equation (15b) is well posed (pro-
vided adequate boundary conditions) for all values of λ2. Indeed in the limit
λ→ 0 the plasma density is large and the operator ∇×∇×E+nE is elliptic.
Conversely, when n → 0 the scaled Debye length is large and the equation
remains well posed. These remarks also apply to the reformulated Gauss law
(15d) providing the corrector.

b) The quasi-neutral Vlasov-Maxwell system (14) is recovered from the reformu-
lated system when λ → 0. The quasi-neutral limit is a regular perturbation
of the reformulated system (15).

c) The right hand side of the equation (15d) can be interpreted as the default
of consistency with the continuity equation a common feature with the Boris
correction [17]. In this respect, this equation can be regarded as a generaliza-
tion of the Boris correction.

2.4 Overview of the numerical methods

The purpose here is to use the concepts introduced in the precedent section
for the continuous system and to transpose them to the discrete equations.
Generally, the time discretization is a key point in the derivation of an AP
numerical method. Due to the singular nature of the quasi-neutral limit several
quantities must be computed thanks to an implicit time discretization in order
to secure the consistency with both the Maxwell and the quasi-neutral regimes
and to provide a means of computing the electric field in every regime.

The level of implicitness is controlled by three parameters (a, b, c), the value
of each one being equal to either 1 or 0 [55].

1

∆t
(nm+1 − nm)−∇ · Jm+a = 0, (16a)

1

∆t
(Jm+1 − Jm)−∇ · Sm = nm+1−aEm+1 − Jm ×Bm, (16b)

1

∆t
(Bm+1 −Bm) +∇× Em+b = 0, (16c)

λ2
1

∆t
(Ẽm+1 − Em)−∇× Bm+c = −Jm+a, (16d)

λ2∇ ·Em+1 = (1− nm+1) , (16e)

Em+1 = Ẽm+1 −∇p . (16f)

supplemented with ∇ · Bm+1 = 0.
At this stage, different remarks can be stated:

a) The quasi-neutral regime is recovered for vanishing λ which stands for both
the scaled Debye length and the ratio of the typical velocity to the speed
of light. The stability with respect to λ requires therefore an implicit dis-
cretization of the (homogeneous) Maxwell equations, yielding to b = c = 1.
This is related to the assumption that the typical velocity is small compared
to the speed of light (α → 0)
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b) The consistency property with respect to the quasi-neutral regime requires
an implicit particle current J in Ampère’s law (16a) with and implicit electric
field in the definition of J . Accordingly, an implicit electric field must be used
in the Lorentz force defining the source of the momentum equation Eq. (16b).
These requirements are met for a = 1. Note that the scaling assumptions
imply that the dimensionless Debye length also represents the scaled plasma
period. Therefore, the uniform stability property with respect to λ brings
the stability of the method for time steps lager than the plasma period.

c) The density occurring in the Lorentz force is made explicit when the mass
flux is implicit in order to uncouple the resolution of the Eqs. (16a) and
(16b).

d) The consistency with the Maxwell-Gauss equation at the discrete level, re-
quires the same level of implicitness for the mass flux in Eq. (16a) and the
current J in Ampère’s law (16d). This point will be detailed further in the
sequel.

The linear stability proposed in [55] demonstrates that the AP property can-
not be achieved with an implicitness level weaker than (a, b, c) = (1, 1, 1). This
choice defines a consistent discretization of the reformulated system (15). In-
deed, Eqs. (16c), (16d) and (16b) in which the correction is omitted yield

λ2

∆t2

(
Ẽm+1 − Em

)
=

1

∆t

(
∇×Bm − Jm

)

−∇×∇× Ẽm+1 − nmẼm+1 −∇ · Sm + Jm ×Bm . (17)

Owing that Ampère’s law is initially verified: ∇×Bm−Jm ≈ λ2

∆t

(
Em − Em−1

)
,

the following identity holds

λ2

∆t2

(
Ẽm+1 − 2Em + Em−1

)
+∇×∇× Ẽm+1+

nmẼm+1 +∇ · Sm − Jm ×Bm ≈ 0 ,

which defines a time semi discretization of the reformulated Ampère equation
(15b). A similar result can be obtained for the Gauss law, with Eqs. (16a),
(16b), (16e), (16f) and (17) providing

−∇ ·
(( λ2

∆t2
+ nm

)
∇p
)
=

1

∆t2

(
1− ñm+1 − λ2∇ ·Em

)
+

1

∆t
∇ · Jm

+∇2 : Sm −∇ · (Jm ×Bm) +∇ · (nmẼm+1) ,

where ñm+1 = nm+1 + ∆t2∇ · (nm∇p). Assuming that Gauss law and the
continuity equation are satisfied at the previous time step λ2∇ · Em ≈ 1 − nm

and ∆t∇ · Jm ≈ nm − nm−1 the following identity holds

−∇ ·
(( λ2

∆t2
+ nm

)
∇p
)
≈ 1

∆t2

(
− ñm+1 + 2nm − nm−1

)

+∇2 : Sm −∇ · (Jm ×Bm) +∇ · (nmẼm+1) .
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This defines a time discretization of the reformulated Gauss law (15b) provided
that the correction at time level m and m− 1 vanishes.

Remark 2.2. The time discretization is operated in a way to avoid the time
differentiation of the equations and thus provide the consistency with Ampère’s
equation and the time derivative of Gauss’s law rather than with their time
derivatives as suggested by the continuous reformulated system (15). This re-
mark is clearly illustrated by comparing the reformulated Ampere equation (15b)
with its discrete counter part (17). The former incorporates a double time
derivative of the electric field, the latter, exploiting the time discretization,
avoids the time differentiation of Ampère’s law. This explains the difference be-
tween the PIC-AP1 and PIC-AP2 methods proposed in [51, 52] for the Vlasov-
Poisson system. The first one is derived as a discretization of the reformu-
lated continuous system and is thus consistent with the double time derivative
of Gauss’s law. This is in line with Eq. (15d). The second one is derived thanks
to the discrete set of equations and, working the time discretization, implements
a parabolic equation rather than a wave like equation. This gains an advantage
since only one initial condition is necessary.

Different space discretization have been considered. For kinetic descrip-
tion, either Particle-In-Cell [51, 52, 47] or semi-Lagrangian [6] discretizations
have been implemented, while, for fluid descriptions finite volume (on Cartesian
meshes) are used [39, 55]. In this last series of works dedicated to the Euler-
Maxwell system, an exact consistency with the Maxwell-Gauss equation can be
obtained. To this end, the numerical flux associated to the mass flux must be
used to construct the current of particles used in the Ampère equation. This
property is sketched in the next lines in a simplified one-dimensional framework,
with Bx = 0. Denoting Fm+1

k+1/2 the numerical flux associated to the mass flux

evaluated at the center of the cell k, nm
k and Em

x |k+1/2 being the density and
the electric field at time tm = m∆t, with ∆t and ∆x the time and space mesh
intervals, a discretization of the system (16a) and (16d) is written

nm+1
k = nm

k +
∆t

∆x

(
Fm+1

k+1/2 −Fm+1
k−1/2

)
, (18)

λ2
1

∆t
(Em+1

x |k+1/2 − Em
x |k+1/2) = Fm+1

k+1/2 . (19)

Eq. (19) evaluated at the cell interfaces xk+1/2 and xk−1/2 together with (18)
yields to

λ2
1

∆x
(Ex|m+1

k+1/2 − Ex|m+1
k−1/2) + n|m+1

k = λ2
1

∆x
(Ex|mk+1/2 − Ex|mk−1/2) + n|mk .

This expression defines a discretization of the equation ∂
∂t

(
λ2∂Ex/∂x

)
= −∂n

∂t .

A similar property cannot be obtained with standard PIC methods, the
macroscopic quantities projected on the grid are indeed inconsistent with the

15



Gauss law. Therefore the correction is mandatory. The time discretization
of the equation providing this quantity is straightforwardly obtained from the
system (16).

The scaling relations defining the quasi-neutral regime mean that beside the
dimensionless Debye length and the ratio of the typical velocity to the speed
of light, the asymptotic parameter λ carries the scaled plasma period τp as
well. Indeed, the following identity λ2 = λ2D/x̄

2 = M2/(t̄ωp)
2, ωp = 1/τp

being the plasma frequency, together with the assumption M = 1 proves the
above assertion. The plasma period usually defines one of the smallest time
scales involved in plasma modelling. To perform simulations on large scales,
implicit methods have received a lot of attention, specifically in the framework
of PIC discretizations for kinetic plasma models with the direct implicit methods
[101, 34, 33, 86] or the moment implicit methods [109, 19, 138, 110, 121]. The
uniform stability with respect to λ ensures that AP-methods remain stable for
discretization that do not resolve the plasma period. Therefore, AP methods
share some analogies with implicit or semi implicit methods. We refer to [47,
section 4] for a more thorough discussion.

3 Drift limit for fluid descriptions of hot plasmas

under large magnetic fields

3.1 Introduction

This section is devoted to the design of fluid models and numerical methods for
thermal plasmas evolving under a strong magnetic field. The targeted applica-
tions are tokamak plasmas and magnetically confined fusion [30, 112, 129, 73].
Its principle consists in heating a plasma to hundreds of thousands of degrees in
order for the thermal agitation to overcome the Coulomb repulsion. Indeed, for
the nuclear reaction to occur, the distance between the nuclei has to be lower
than 10−15 m. Simultaneously, the plasma expansion is prevented by confining
the particles thanks to an intense magnetic field.

This section presents asymptotic preserving methods developed for simulat-
ing these hot plasmas evolving in the presence of strong magnetic fields. The
magnetization of the plasma induces a severe anisotropy, with different parallel
and perpendicular (with respect to the magnetic field) dynamics. The dynamic
of interest is the transverse one, which is, compared to the parallel dynamic, a
low frequency regime driven by the drift waves. Along the magnetic field lines,
the acoustic waves are very fast, balancing almost instantly the electric field
in order to enforce a zero force regime. The first purpose of the AP methods
described in this section is to follow the slow perpendicular dynamic while ac-
counting for the parallel force balance as well. The second aim is to explore the
effectiveness of numerical methods that do not use coordinate systems adapted
to the magnetic field geometry by contrast to standard approaches (see for in-
stance [5, 67, 69, 81, 116, 120, 124, 125, 3, 83]). Indeed standard approaches
have some difficulties in specific areas such as the so-called “O point” or “X
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point” [82, 70, 126] where the coordinate system is singular. Moreover, the goal
pursued here is to easily account for changes in the magnetic field topology, with
for instance the creation of magnetic islands [15, 7, 83, 87, 63, 139, 122, 140]. To
this end, the numerical methods developed within this section are free from any
assumption relating the magnetic field to the mesh or the coordinate system.

The collisions within tokamaks are weak, therefore the reliability of fluid
descriptions is questioned [77] especially in the case of devices such as ITER
and DEMO (see the main characteristics in table 1), with investigations [68]
demonstrating that fluid models underestimate instability thresholds and overes-
timate turbulent fluxes. However, numerous fluid descriptions are implemented
for tokamak plasmas [107, 91], in particular for the study of the plasma edge
physics (see for instance [69, 132, 24]). Additionally, kinetic corrections may
be formulated for fluid models in order to correct some of their flaws [77]. The
main argument, however, seems to be the huge cost needed for the numerical
resolution of kinetic models which is challenging in term of computational time
as well as memory usage. This is the “curse of dimensionality”: even in the
gyro-kinetic approximation [104, 75, 24] kinetic models consider a distribution
function in a five dimensional phase-space. Though their accuracy may be im-
proved, fluid models provide access to a rich physics which helps understanding
the various regimes that prevail within tokamaks and allows for the study of
instability mechanisms [111, 129, 14].

Table 1: Characteristics of the ITER and DEMO tokamaks [108, 73].
ITER DEMO

External radius (m) 6.2 6.1-9.55
Inner radius (m) 2

Magnetic field intensity (T) 5.3 7

Plasma density (m−3) 1020 1.5 1020

Plasma Temperature (eV) 104

Discharge duration (s) 400 1000

The purpose of this section is thus to detail the Asymptotic-Preserving
methodology in this framework. The plasma is described by two sets of fluid
equations, the aim being to investigate the drift limit also referred to as gyro-
fluid regime [56]. The drift asymptotic shares some analogies with the low-Mach
regime and the difficulty investigated here consists in the transition between this
low Mach flow which prevails in the plasma core, to regimes with an increased
mean velocity and a lower temperature. This dynamical transition is observed
in the Scrape-Off Layer (SOL), precisely in the magnetic pre-sheath and the
sheath where the plasma temperature drops and the ions are accelerated by the
electrostatic field [119, 130], the flow being potentially supersonic [32].

Two difficulties need to be overcome in order to efficiently address the drift
regime in the context of tokamaks. The first one relates to the vanishing of the
inertia which defines a zero force regime. Along the magnetic field lines, the
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parallel momentum equation is degenerate which prevents from computing the
parallel momentum explicitly. A first approach is proposed in order to overcome
this difficulty. The aligned momentum component is considered as the Lagrange
multiplier of the parallel force balance. An alternative is constructed on ideas
borrowed from the low Mach regime [61, 80] with a computation of the pressure
securing the zero force regime along the magnetic field lines. The singularity
of the problem is thus overcome by the resolution of an anisotropic diffusion
problem along the aligned direction. The second difficulty addressed here is
related to the periodicity of the torus containing the plasma. The anisotropic
diffusion equations derived to transform the drift limit into a regular limit are
supplemented with periodic boundary conditions at each end of the magnetic
field lines. This defines an ill posed problem in the limit regime. This is a
characteristic problem of tokamaks, with highly magnetized plasmas evolving
in a periodic geometry. For this class of anisotropic problems, Asymptotic-
Preserving techniques have been developed. Their presentation is postponed to
Section 4.

This section is organized as follows. The drift regime for the Euler-Lorentz
system is stated, with the definition of the scaling relations. The magnetic field
is assumed to be a given data that does not depend on time. Two Asymptotic-
Preserving reformulations are thus proposed with, finally, the detailed compu-
tation of the self-consistent electric field.

3.2 The Euler-Lorentz model in the drift regime

The plasma is described by a bi-fluid model, consisting of a system of compress-
ible Euler equations for the ions and the electrons. The density, momentum and
energy associated to electrons and the ions are denoted (nα, qα,Wα) (α = e for
the electrons and i for the ions), the charge of the particle being denoted qα.
These quantities verify the Euler-Lorentz system

∂nα

∂t
+∇ · qα = 0 , (20a)

mα

(
∂qα
∂t

+∇ ·
(
qα ⊗ qα

nα

))
+∇pα = qα (nαE + qα ×B) , (20b)

∂Wα

∂t
+∇ ·

(
(Wα + pα)

qα
nα

)
= qαE · qα , (20c)

where kB is Boltzmann constant, mα the particle mass, Tα and pα the temper-
ature and the pressure of the gas, with the following expression of the energy

Wα =
1

2
mα

|qα|2
nα

+
3

2
pα , pα = nαkBTα . (20d)

The given magnetic field is assumed static, i.e. satisfying

∂B

∂t
= 0 , ∇ · B = 0 .
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The electronic and ionic conservation equations are coupled to the electro-
static field defined as

−∆φ =
q

ε0
(ni − ne) , with E = −∇φ , (21)

with ε0 the vacuum permeability and q the elementary charge.
In order to identify the drift regime, the system is rewritten using dimen-

sionless variables. Denoting n̄ the typical value for the plasma density, the
identity n = n̄n′ holds for the physical (n) and dimensionless (n′) quantities.
The space and time scales of the observed phenomenon are x̄ and t̄, defining
ū = x̄/t̄ the typical velocity. Different dimensionless parameters will be used,
with ε the electronic to the ionic mass ratio, λ the Debye length scaled by x̄,
t̄ωc the number of cyclotron period during the typical time, M the ionic Mach
number, cs denoting the ionic speed of sound, and ū the typical mean plasma
velocity,

ε =
me

mi
,

λ =
λD
x̄
, λ2D =

ε0kB T̄

q2n̄
=

ε0p̄

q2n̄2
,

t̄ωc = t̄
qB

mi
,

M2 =
ū2

c2s
, c2s =

p̄

min̄
, ū =

q̄

n̄
.

The number of free parameters is reduced thanks to scaling relations defining
the regime in which the system is observed. The space and time scales intro-
duced define a typical velocity which is assumed to be comparable to the mean
flow velocity, the electric and magnetic field verify a scaling relation character-
izing a quasi-neutral regime, similar to the frozen field assumption described in
section 2.1. Finally, the Mach number and the dimensionless cyclotron period
are assumed to define to small scales unified in a single parameter denoted τ .

These assumptions can be summarized as follows

ū =
x̄

t̄
, Ē = ūB̄ ,

1

M2
= t̄ωc =

1

τ
, (22)

The Euler-Lorentz-Poisson system (20–21) can thus be written using three
dimensionless parameters ε, λ and τ , with, for the ions,

∂n

∂t
+∇ · q = 0 , (23a)

∂q

∂t
+∇ ·

(
q ⊗ q

n

)
+

1

τ
∇p = 1

τ
(nE + q ×B) , (23b)

∂W

∂t
+∇ ·

(
(W + p)

q

n

))
= E · q , (23c)

W = τ
1

2

q2

n
+

3p

2
, p = nT . (23d)
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A similar system is written for the electrons

∂ne

∂t
+∇ · qe = 0 , (24a)

ε

(
∂qe
∂t

+∇ ·
(
qe ⊗

qe
ne

))
+

1

τ
∇pe = − 1

τ
(neE + qe ×B) , (24b)

∂We

∂t
+∇ ·

(
(We + pe)

qe
ne

))
= −E · qe , (24c)

We = ετ
1

2

q2e
ne

+
3pe
2
, pe = neTe . (24d)

The electric field is provided by

− λ2∆φ = n− ne , E = −∇φ . (25)

Using the scales reported in the table 1 the dimensionless Debye length is
evaluated to be as small as 10−5 which, by the equation (25), brings the quasi-
neutrality assumption. This is consistent with the scaling considered for the
electro-magnetic field as discussed above. Another consequence of the quasi-
neutral regime is the degeneracy of the Poisson equation (25) that cannot be
used to compute the electric potential in this regime. Two alternatives have been
proposed, and detailed in the sequel (see section 3.5). Finally, the Mach number
and the scaled cyclotron period are estimated equal to 10−8 and 10−6 respec-
tively. These quantities define thus a small scale characterizing the evolution of
hot plasmas under intense magnetic fields at the origin of severe difficulties for
efficient numerical simulations. To highlight these difficulties, some notations
need to be introduced.

Notations B denoting the magnetic field, b the unit vector pointing in the
direction of B, with b := B/|B|, for all scalar p and vector q, we define

q‖ := (q · b) , q⊥ := q − bq‖ = (Id − b⊗ b)q = b× q × b ,

∇‖p := b · ∇p , ∇⊥p := (Id − b⊗ b)∇p = ∇p− (∇p · b)b , (26)

∇‖ · q‖ := ∇ · (q‖ b) , ∇⊥ · q⊥ := ∇ · (q⊥) .

Inserting formally τ = 0 into (23) yields to

∂n

∂t
+∇ · q = 0 , (27a)

∇p = nE + q ×B , (27b)

∂W

∂t
+∇ ·

(
(W + p)

q

n

))
= E · q , W = 3/2 p . (27c)
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Eq. (27b) translates a “zero force regime”, that does not allow for the com-
putation of the aligned momentum. Indeed, projecting onto the parallel and
perpendicular direction, the following balances occur

q⊥ =
b

|B| × (nE +∇p) , (28a)

∇‖p = nE‖ , (28b)

In the drift regime, the transverse momentum component q⊥ instantly adjusts
to cancel the perpendicular forces. This defines the two classical drift velocities,
namely the “E × B” drift (E × B)/|B|2 and the diamagnetic drift −(∇p ×
B)/(n|B|2).

Along the magnetic field lines, the electric field balances the pressure gradient
and the system becomes singular for the computation of the parallel momentum.
To understand more precisely the parallel dynamic, it is informative to establish
the acoustic wave equation.

Using Eq. (23c) together with (23b), provides an equation for the ionic pres-
sure

3

2

∂2p

∂t2
+∇·

(
H
∂q‖

∂t

)
= −∇⊥ ·

(
H
∂q⊥
∂t

)
−∇·

(
∂H

∂t
q

)
+
∂

∂t
(E · q)− ∂2

∂t2

(τ(q)2
2n

)
,

where H = W + p/n is the system enthalpy. Projecting Eq. (23b) onto the
magnetic field lines gives

∂

∂t
q‖ +∇ ·

(
q ⊗ q

n

)

‖
=

1

τ

(
−∇‖p+ nE‖

)
,

which leads to

3

2

∂2p

∂t2
− 1

τ
∇ ·
(
H(b⊗ b)(∇p− nE)

)
= −∇ ·

(
(b ⊗ b)

(
q ⊗ q

n

))

−∇ ·
(
H
∂q⊥
∂t

)
−∇ ·

(
∂H

∂t
q

)
+
∂

∂t
(E · q)− ∂2

∂t2

(τ(q)2
2n

)
. (29)

This equations reveals a speed of sound along the magnetic field lines scaling
as 1/

√
τ , which demonstrate that in the limit τ → 0 the pressure waves travel

at infinite speed to adjust instantly to the electric force, securing thus the force
balance.

Regarding the numerical methods, the difficulty posed by this regime is
due to the degeneracy of the equation providing the parallel momentum. The
Asymptotic-Preserving methods developed in this framework operate a refor-
mulation of the system in order to regularize this singularity.

3.3 Momentum based reformulation

This approach proposed in [46] has been developed for isothermal descriptions
with one species of particles (the ions being thus assumed at rest) in [54, 21].
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It has been brought to a more elaborated context in [64], for a complete set
of equations for the ions, incorporating an energy equation and, an adiabatic
response for the electron, the so-called Boltzmann relation (see section 3.5.2).

This approach makes use of the parallel momentum as a Lagrange multiplier
associated to the parallel force balance (28b). The method is sketched for the
ions, the equation (23b) providing

∂2

∂t2
q‖ −

1

τ

(
− ∂∇‖p

∂t
+
∂(nE‖)

∂t

)
= − ∂

∂t

(
∇ · S‖

)
, S = q ⊗ q

n
,

with, thanks to the energy conservation (23c),

∂∇‖p

∂t
= −∇‖∇ ·

(2
3
Hq‖

)
+∇‖G ,

G :=
2

3

(
−∇ · (Hq⊥) + E · q − ∂

∂t

(τ(q)2
2n

))
,

(30)

which finally gives a wave like equation for the aligned momentum:

τ
∂2

∂t2
q‖ −

(
∇‖∇ ·

(2H
3
q‖

))
= −∇‖G +

∂(nE‖)

∂t
− τ

∂

∂t

(
∇ · S‖

)
. (31)

Note that, in the drift limit, Eq. (31) guaranties the zero force regime along
the magnetic field lines. Indeed, inserting τ = 0 into (31), we get

−
(
∇‖∇ ·

(2H
3
q‖

))
= −∇‖G +

∂(nE‖)

∂t
,

which, owing to (30) gives

∂

∂t

(
∇‖p− nE‖

)
= 0. (32)

Remark 3.1. The second order operator involved in the equation (3.3) is non
standard. It is constructed as the gradient of a divergence. However, being ap-
plied to a scalar field, it translates the double derivative in the aligned direction.
This equation is therefore well posed provided it is supplemented with adequate
boundary conditions.

The first implementation of this reformulation is proposed in [54] for an
isothermal description of the plasma with an external constant electric field.
In this context, the combination of the density equation and the momentum
equations provides the reformulated equation for the parallel momentum. This
equation is supplemented with Dirichlet boundary conditions and discretized in
a two dimensional computation domain with a magnetic field aligned with one
coordinate.

In [21], this first achievement is generalized to magnetic field geometries un-
correlated to either the coordinate system or the mesh. The Dirichlet boundary
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conditions are substituted with Neumann ones, reproducing the difficulty to
account for the periodicity of the torus. In this work, the computation of the
aligned momentum equation requires the resolution of a diffusion problem with
a severe anisotropy, which is ill-posed in the limit τ → 0. This system is solved
thanks to the “differential characterization” method described in section 4.3.

Finally this approach is used in [64] for the bi-fluid plasma description, the
electron being assumed in the Boltzmann approximation (section 3.5.2). An en-
ergy equation is added to the system describing the ions with gyro-viscous terms
from the Braginskii closure [20]. The magnetic field is constant and aligned with
one coordinate, periodic boundary conditions being prescribed at each end of
the field lines. The anisotropic diffusion equation stemming from the reformu-
lation is solved thanks to the duality based AP method (see section 4.2) for the
three dimensional simulation of the slab ion temperature gradient instability
(ITG [77, 97, 87, 84]) as depicted by the figure 1.

(a) Density at t=1. (b) Density at t=2. (c) Inst. growth rate.

Figure 1: Drift-AP scheme simulations: three dimensional slab ITG simulation
thanks to AP-scheme implementing the parallel momentum reformulation on
a 40 × 200 × 20 mesh: density perturbation at times t=1 (a) and t=2(b) and
comparison of the ITG growth rate (c) as estimated from the simulation (black
square) and the analytic values (solid line). The instability trigger threshold
is accurately reproduced, the growth rate being underestimated due to the nu-
merical diffusion of the implementation (see the discussion in [64]).

3.4 Pressure based reformulation

Another approach proposed in [46] and implemented in [22] solves the acoustic
equation in order to impose that the force imbalance along the magnetic field
lines is bounded by τ , with

−∇‖p+ nE‖ = O(τ) . (33)
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This equilibrium is computed in order to prevent the degeneracy of the parallel
momentum equation, with, in the drift limit, the set of equations

∂n

∂t
+∇ · q = 0 , (34a)

q⊥ =
b

|B| × (nE +∇p) , (34b)

∂

∂t
q‖ +∇ ·

(
q ⊗ q

n

)

‖
= lim

τ→0

(1
τ

(
− T∇‖n+ nE‖

))
, (34c)

providing all the quantities, including q‖ if the condition (33) is met.
This procedure has only been developed is the context of an isothermal

plasma description. The set of equations considered does not incorporate the
energy equation and the pressure gradient reduces to ∇p = T∇n. The refor-
mulation is derived from the momentum equation projected along the magnetic
field lines

∇‖ ·
∂q‖

∂t
=

1

τ
∇‖ ·

(
−T∇‖n+nE‖

)
−∇2

‖ : S , ∇2
‖ : S := ∇‖ ·

(
∇ ·
(
q ⊗ q

n

)

‖

)
.

together with the density equation, rather than the energy equation (see sec-
tion 3.2) yielding to the equation of the acoustic waves for isothermal descrip-
tions

τ
∂2n

∂t2
−∇‖ · (T∇‖n) = ∇‖ · (nE‖)− τ

(
∇ · q⊥ −∇2

‖ : S
)
.

This last equation provides a way to compute the plasma density which secures
Condition (33). This reformulation is implemented and validated in [22]. It
borrows some of the concepts of low-Mach regime numerical methods (see for
instance [61]) that could be transposed to this framework.

3.5 Self-consistent electric field computation

3.5.1 Quasi-neutrality equation

The quasi-neutral regime prevails when the Debye length is small compared
to the space scale characterizing the plasma evolution (see section 3.2), which
amounts to taking the limit λ → 0. In this asymptotic limit, the Poisson
equation (25) degenerating into ρ = 0 cannot provides a means of computing
the electric potential. As mentioned in section 2.3.2, in this asymptotic, the
electric field can be regarded as the Lagrange multiplier of the quasi-neutrality
constraint ∇ · J = 0, J being the current of particles.

To derive the equation verified by φ the conservation of the electronic (24a)
and ionic (23a) densities are combined to provide

∂ρ

∂t
+∇ · J = 0 , (35)
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with ρ = n − ne and J = q − qe. The quasi-neutrality constraint is time
differentiated, yielding

∇ ·
(
∂q

∂t
− ∂qe

∂t

)
= 0 , (36)

so that the momentum equations can be used to introduce a contribution of the
electric field into this relation by means of the electric force definition. This is
similar to the reformulation derived in the section 2.3.2.

This path has been explored in [22] with the following time semi discretiza-
tion

1

∆t

(
nm+1 − nm

)
+∇‖ · qm+1

‖ +∇ · qm⊥ = 0 , (37a)

1

∆t

(
qm+1 − qm

)
+∇ · S+

1

τ
T∇nm+1 =

1

τ

(
nm+1∇φm+1 + qm+1 ×B

)
,

(37b)

1

∆t

(
qm+1
e − qme

)
+∇ · Se +

1

ετ
T∇nm+1 =

− 1

ετ

(
nm+1∇φm+1 + qm+1

e ×B
)
.

(37c)

On the discrete level, the quasi-neutrality constraint can be discretized as

∇ · (qm+1 − qm+1
e ) = 0 ,

giving rise to an equation for φm+1

−∇‖ ·
(
nm+1(1 + ε−1)∇‖φ

m+1
)
= τS . (38)

We refer to [22] for the detailed algebra and the expression of S.
The equation (38) is ill posed, when supplemented by either Neumann or

periodic boundary conditions (at the field line extremities) whatever the values
of the asymptotic parameter τ . To overcome this difficulty, the problem is
regularized in [22] adding an extra contribution of the electric potential in the
density conservation, with

∂n

∂t
+ C

∂φ

∂t
+∇ · q = 0 ,

C being a small perturbation parameter. The perturbed system allows the
construction of a diffusion equation for φ:

−∇‖ ·
(
nm+1∇‖φ

m+1
)
+ τκφm+1 = τS ′ ,

κ being a function of the problem data and the numerical parameters. This
equation falls within the class of strongly diffusion problem, similar to the one
verified by n. It is solved by the differential characterization method presented
in section 4.3.
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Remark 3.2. The reformulation consists in making explicit an additional con-
tribution of the parallel velocity in the momentum conservation equation. Ma-
nipulating the continuous equations, this algebra requires the time differentiation
of the parallel momentum equation in order to insert the expression of the pres-
sure as a function of the momentum. This time derivative is not compulsory in
the discrete system. Working the time discretization, it is possible to elaborate a
parabolic equation for this quantity securing the parallel equilibrium (28b) rather
than its time derivative as suggested by the equation (32). This is achieved by
an implicit time discretization of the parallel momentum in Eq. (37a) and pres-
sure gradient in Eqs. (37b) and (37c). This remark echoes that of section 2.4
(remark 2.2).

Remark 3.3. Another way to render the well posedness of the problem verified
by φ is to compute the perpendicular momentum in (37a) implicitly in order to
bring the transverse derivatives back into Eq. (38). The equation thus obtained
is an anisotropic elliptic equation, whose prototype is investigated in section 4.1.

3.5.2 The Boltzmann relation for the electrons

This approximation consists in neglecting the particle inertia in the electronic
momentum equation (24), which amounts to letting ε → 0, assuming a tem-
perature with vanishing aligned gradients. This last assumption is justified by
the heat flux responsible for a rapid balancing of the temperature along the
magnetic field lines [20, 90]. With these assumptions, the electronic momentum
equation gives rise to the following equilibrium

Te∇‖ne = ne∇‖φ ,

Assuming the quasi-neutrality of the plasma n = ne, the Maxwell-Boltzmann
relation [102] can be stated

n = n0 exp

(
φ

T

)
, (39)

with n0 an equilibrium density verifying ∇‖n0 = 0. This system closure is
implemented in [64] for the self-consistent computation of the electric field.

4 Numerical methods for strongly anisotropic el-

liptic and diffusion equations

4.1 Introduction

This section is devoted to an overview of methods designed for the numerical
resolution of elliptic (or diffusion) equations with large anisotropies. This is a
class of problems representative of the difficulty stemming from the simulation
of plasmas under a large magnetic field. Tokamak plasmas are a good example
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of this kind of problems. In this framework the difficulty lies in the periodic
boundary conditions applied at the field line extremities in order to account
for the periodicity of the torus. Other fields of application can be named, with
for instance ionospheric plasma simulation with to so-called Dynamo-3D model
[11] presenting the same difficulty, however with Neumann boundary conditions
prescribed at each end of the magnetic lines.

The difficulty just mentioned is outlined on a simplified toy model, con-
sisting of an anisotropic elliptic equation posed in a cuboid domain Ωx × Ωz,
the boundaries being Γx = ∂Ωx and Γz = ∂Ωz. The anisotropy strength is
denoted ε,

(P ε)






− ∂

∂x

(
A⊥

∂φε

∂x

)
− 1

ε

∂

∂z

(
A‖

∂φε

∂z

)
= f ε , in Ωx × Ωz ,

∂φε

∂z
= 0 , on Γz ,

φε = 0 , on Γx ,

(40)

A⊥ and A‖ being two positive functions. In the Dynamo-3D model mentioned
above, the electrostatic potential computed by means of the quasi-neutrality
equation, verifies an analogous anisotropic elliptic equation, when the magnetic
field is assumed aligned with the z coordinate. A similar equation would be
obtained following the remark 3.3 of the section 3.5.1. The problem associated to
the dominant operator in the limit of infinite anisotropy strength is ill-posed, its
kernel being populated by the functions that do not depend on the z coordinate.
Indeed, multiplying (40) by ε and considering formally the limit ε→ 0 yields

(D)





∂

∂z

(
A‖

∂φ0

∂z

)
= 0 , in Ωx × Ωz ,

∂φ0

∂z
= 0 , on Γz .

(41)

This degenerate system admits an infinite amount of solutions namely all func-
tions ψ̄ only depending on x. However, φ0 defined as the limit of φε, the solution
of the problem (40), verifies a well posed problem [53, 49]. This system is ob-
tained by integrating the elliptic equation (40) along the z coordinate. Thanks
to the boundary conditions applied on Γz, one can write, in the limit ε→ 0

(P 0)





− ∂

∂x

(
Ā⊥

∂φ0

∂x

)
= f̄0 , in Ωx ,

φ0 = 0 , on Γx .

(42)

In this equation f̄ is the mean value of f along the z direction:

f̄(x) =
1

mes(Ωz)

∫

Ωz

f(x, z) dz , (43)

and similarly for Ā⊥.
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The system (42) is obtained as the limit problem of the anisotropic equa-
tion. At this point the singular nature of the problem is clearly outlined. The
limit problem (42) is a one dimensional elliptic problem integrated along the
anisotropy direction, while the initial problem (40) is a two dimensional elliptic
equation. For small values of the asymptotic parameter, standard discretiza-
tions of the singular perturbation problem (40) will become consistent with the
degenerate problem (41). The conditioning of the system matrix is thus ex-
pected to blow up with vanishing ε-values as reported on the plots of Fig. 2(a).
Jointly with the conditioning blow up, the precision of the numerical approxi-
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Figure 2: Property of standard dis-
cretizations of the singular perturba-
tion problem (40) (P) and the limit
problem (42) (L) compared to an AP-
method (AP) : condition number of
the linear system obtained thanks to a
Q1 finite element method, relative er-
ror computed between the exact solu-
tion and the numerical approximation
as functions of the anisotropy strength
[53, 10].

mation cannot be preserved for large anisotropy strength. This loss of accuracy
is found for ε values all the larger that the mesh is more refined, as shown by
approximation errors displayed on Figs. 2(b) and 2(c).

The principle of AP-Schemes [53, 49, 10, 60, 106, 114] is to secure the consis-
tency of the discrete system with the limit problem (42) when ε→ 0. In order to
harness the microscopic information lost in the degenerate problem (41), these
methods implement a decomposition of the solution into a part belonging to the
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kernel G of the dominant operator, supplemented by a correction, giving rise to

φ(x, z) = φ̄+ φ′(x, z) , ∀(x, z) ∈ Ωx × Ωz ,

where φ̄ ∈ G is the mean of the function φ as defined by (43) and φ′ is the
fluctuating part verifying

φ̄′ = 0 .

The difficulty lies now in the discretization of the properties verified by these
two components. Different approaches have been developed and detailed in the
next sections.

4.2 Duality based reformulation

The first implementation of the AP concepts have been carried out in [53] with
a system consisting of an equation for the mean part of the solution coupled to
an equation for the fluctuation:





− ∂

∂x

(
Ā⊥

∂φ̄

∂x

)
= f̄ +

∂

∂x

(
A′

⊥

∂φ′

∂x

)
, in Ωx ,

φ̄ = 0 , on Γx ,

(44)





−ε ∂
∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖

∂φ′

∂z

)
+ ε

∂

∂x

(
A′

⊥

∂φ′

∂x

)
=

εf ′ + ε
∂

∂x

(
A′

⊥

∂φ̄

∂x

)
, in Ωx × Ωz ,

∂zφ
′ = 0 on Ωx × Γz , φ′ = 0 on Γx × Ωz , φ′ = 0 in Ωx .

(45)

In the limit ε → 0 the degenerate problem (41) is recovered from the equa-
tion (45), however this equation is verified by the only fluctuating part rather
than the entire solution. The zero mean property verified by the fluctuation
restores the well posedness of the system for ε = 0 with φ′ = 0 as unique solu-
tion. Inserting this identity into (44), the limit problem (42) is recovered. This
demonstrates that, the limit ε → 0 is regular in the reformulated system and
consequently, that the formulation (44-45) is Asymptotic-Preserving.

When the anisotropy direction is aligned with one coordinate, the discretiza-
tion of the functional space containing the mean function is straightforward. A
weak formulation of the problem can be stated as

Find φ̄ ∈ G :=
{
ψ̄ ∈ H1(Ωx) | ψ̄ = 0 on Γx

}

(A⊥∂xφ̄, ∂xψ̄) = (f̄ , ψ̄) + (A′
⊥∂xφ

′, ∂xψ̄) , ∀ψ̄ ∈ G .
(46)

with (φ, ψ) :=
∫
Ω
φψ dxdz. The task is more intricate for the discretization of

the functional space A populated by the fluctuations. Introducing

V :=
{
ψ′ ∈ H1(Ωx × Ωz) |ψ′ = 0 on Γx × Ωz

}
,
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a weak formulation of the problem (45) providing φ′ is

Find φ′ ∈ A :=
{
ψ′ ∈ V | ψ̄′ = 0

}
,

(A‖∂zφ
′, ∂zψ

′) + ε(A⊥∂xφ
′, ∂xψ

′)− ε(A⊥∂xφ′, ∂xψ
′) =

ε(f, ψ′)− ε(A′
⊥∂xφ̄, ∂xψ

′) , ∀ψ′ ∈ A .

The discretization of V is avoided by the introduction of a Lagrangian aimed
at penalizing the zero mean constraint verified by the fluctuations. The weak
formulation of the problem can thus be recast into

Find φ′ ∈ V and P̄ ∈ G such that





(A‖∂zφ
′, ∂zψ) + ε(A⊥∂xφ

′, ∂xψ)− ε(A⊥∂xφ′, ∂xψ) + (P̄ , ψ) =

ε(f, ψ)− ε(A′
⊥∂xφ̄, ∂xψ) , ∀ψ ∈ V ,

(χ̄, φ′) = 0 , ∀χ̄ ∈ G

(47)

The equivalence of the reformulated system (47-46) with the singular perturba-
tion problem (40) is demonstrated in [53]. A finite element discretization gives
rise to an augmented linear system with the matrix denoted by MO,

MO

(
Φh

P̄h

)
=

(
Fh

0

)
, MO =

(
Ā B
BT 0

)
,

This matrix sparsity pattern is represented on Fig. 3. If Nx × Nz denotes
the number of cells of the mesh, the block-matrix Ā denotes the finite ele-
ment discretization of the integro-differential operator applied to φ′ on the left
hand side of the equation (47), Ā ∈ RNx(Nz+2)×Nx(Nz+2), B ∈ RNx×Nx(Nz+2)

being the discretization of the Lagrangian contribution in the system matrix,
(Φh, Fh) ∈ RNx(Nz+2) × RNx(Nz+2) and Ph ∈ RNx denoting the vectors associ-
ated to φ′, the right hand side of the system and to the Lagrangian P̄ .

The integral discretization in the fluctuation equation induces a fill-in of the
system matrix, with a negative impact on the numerical method efficiency with
respect to the memory requirements and the computational time. To improve
the efficiency of the method a second reformulation is proposed in [10] in which
the equation (45) is substituted by






−ε ∂
∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖

∂φ′

∂z

)
= εf + ε

∂

∂x

(
A⊥

∂φ̄

∂x

)
,

∂zφ
′ = 0 on Ωx × Γz ,

φ′ = 0 on Γx × Ωz , φ′ = 0 in Ωx .

(48)

The matrix obtained after a FEM discretization of the system (44 - 48) gives
rise to the linear system




A εC B
εCT εA2 0
BT 0 0








Φh

Φ̄h

P̄h



 =




F1

F2

0



 ,
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A ∈ RNx(Nz+2)×Nx(Nz+2) being the matrix discretizing the singular perturbation
problem (40), A2 ∈ RNx×Nx the one obtained after the discretization of the
mean part equation (43), C ∈ RNx×Nx(Nz+2) being the coupling term with
the fluctuation. Finally Φ̄h ∈ RNx is the vector associated with the mean part,
(F1, F2) ∈ RNx(Nz+2)×RNx define the right hand side of the system. The plots of
the figure 3 show the benefits of this modified formulation, in which the equation
for the fluctuation φ′ does not involve any integral operator. On a 500×500mesh
the number of non zeros elements stored in the matrix discretizing the equation
(45) is 168 times larger than that of Problem (40), this ratio increasing further
with mesh sizes [10]. In contrast, for Problem (44-48) the non zeros elements
remain 2.3 times larger that of Problem (40) whatever the mesh size.

(a) M1 = A (b) M2 (c) M3 (d) MO

Mat. M1 = A M2 =
(

A B

BT 0

)

# rows Nx(Nz + 2) Nx(Nz + 3)

Nnz (3Nz + 4)(3Nx − 2) (5Nz + 8)(3Nx − 2)

Mat. M3 =

(

A εC B

εCT εA2 0

BT 0 0

)

MO =
(

Ā B

BT 0

)

# rows Nx(Nz + 4) Nx(Nz + 3)

Nnz (7Nz + 13)(3Nx − 2) (N2

z + 6Nz + 8)(3Nx − 2)

Figure 3: Matrices obtained thanks to a Q1-FEM discretization of (a) the sin-
gular perturbation problem (40), (b) the fluctuation equation (48), (c) the AP
formulation (44-48), (d) the original fluctuation equation (45): plots of the
structure pattern for a grid (Nx, Nz) = (5, 5) cells, matrix number of rows (#
rows) and number of non zeros elements (Nnz).

The efficiency is further improved by implementing a hybrid method cou-
pling the AP reformulation (44-48) and the limit problem in the region where
the asymptotic parameter is small [50, 37]. Indeed this last model furnishes a
solution that does not depend on the z coordinate, the discretization of this
model gives rise to a smaller system matrix. The hybrid method is thus all the
more efficient than the sub-domain on which the limit model is used, can be
enlarged. However, as shown by the results gathered in Figs. 2(b) and 2(c), the
limit problem furnishes an accurate approximation only for small values of ε.
The modelling error should be comparable to the discretization error in order for
the Hybrid-method to provide an approximation as accurate as the AP-method
but with a reduced computational cost. Table 2 provides some elements relating
the gain brought by this coupling strategy. As mentioned above, the overhead
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Table 2: Efficiency of the hybrid (HYB.) and the Asymptotic-Preserving (AP)
methods compared to a FEM discretization of the problem (40) (P): Number
of cells of the grid (N = Nx = Nz), resolution time (with the sparse direct
solver MUMPS [1]) relative to that of the singular perturbation problem (40)
(T), number of non zero elements stored in the factorized matrix (Nnz fact.),
number of rows (# rows), number of non zero elements stored in the system
matrix (Nnz Mat.) and precision of the numerical approximation (L2-error norm
of the relative error), for Ωz = Ω1

z∪Ω2
z, where mes(Ω2

z) = 7/10 mes(Ωz), Ω
2
z being

the sub-domain of the limit problem [37].

Met. N T Nnz (fact.) #rows Nnz (Mat.) error (L2)

(HYB.) 500 53% 9 861 960 77 000 1 592 374 1.4× 10−5

(AP) 500 203% 40 655 248 252 000 5 262 474 1.4× 10−5

(P) 500 100% 26 940 422 251 000 2 252 992 3.4× 10−3

(HYB.) 2000 26% 206 531 976 1 208 000 25 269 574 1.2× 10−6

(AP) 2000 137% 804 867 106 4 008 000 84 049 974 8.8× 10−7

(P) 2000 100% 557 859 738 4 004 000 36 011 992 1.5× 10−2

of the AP method compared to the numerical resolution of the singular per-
turbation problem, with respect to the memory requirements is roughly 2.3 for
the most refined meshes. The fill-in of the factorized matrix does not scale as
badly, with an increase of the number of non zero elements stored from 50% to
80%. When the limit problem is discretized on a large enough sub-domain, the
fill-in of the hybrid method is lower than that of the singular problem (40) with
a computational time necessary for the linear system resolution being divided
by 3.

4.3 A differential characterization

Another approach is proposed in [23] implementing the following characteriza-
tion of the fluctuation space

ψ′ ∈ A ⇐⇒ ∃χ ∈ W |ψ′ = ∂zχ with

W :=
{
η ∈ L2(Ω) | ∂2zzη ∈ L2(Ω), ∂2xzη ∈ L2(Ω) , η = 0 on Γ

}
,

(49)

the equation (48) can thus be recast into

Find χ ∈ W such that

(A‖∂
2
zzχ, ∂

2
zzη) + ε(A⊥∂

2
xzχ, ∂

2
xzη) = ε(f, ∂zη)− ε(A⊥∂xφ̄, ∂

2
xzη) , ∀η ∈ W ,
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For homogeneous coefficients A⊥, a strong formulation of the problem can be
stated as





− ∂2

∂z2

(
A‖

∂2χ

∂z2

)
− εA⊥

∂2

∂x2

(
∂2χ

∂z2

)
= ε

∂f̃

∂z
, in Ω ,

χ = 0 , on Γ ,

(50)

with f̃ = f + ∂
∂x

(
A⊥

∂φ̄
∂x

)
. This system is transformed into two nested elliptic

problems for φ′ = ∂ξ/∂z

− ∂2

∂z2
(
A‖ζ

)
− εA⊥

∂2ζ

∂x2
= ε

∂f̃

∂z
, in Ω , ζ = 0 , on Γ (51a)

−∂
2ξ

∂z2
= −ζ , in Ω , ξ = 0 , on Γz . (51b)

The system (51b) is well posed and does not depend on ε. Moreover, in the
problem (51a), the dominant operator in the limit ε → 0 is supplemented with
Dirichlet boundary conditions. Its kernel is thus reduced to zero. These two
properties define a well posed problem for all ε. The implementation realized in
[23] for anisotropic diffusion equations (with A⊥ = 0) show that the numerical
method is AP (see figure 4) providing computations with a precision independent
of ε.
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Figure 4: Relative error (L2 and L∞ norms) between the exact solution and the
numerical approximation carried out thanks to differential characterization of
the fluctuation space, as a function of the mesh size and, for different anisotropy
strengths [23].

The advantage of this approach is to allow the resolution of the anisotropic
problem by means of three standard elliptic problems, two nested elliptic prob-
lems for the fluctuation and one for the mean part, for which very efficient

33



and proven methods exist. The recast of the fourth order problem (50) into
two nested elliptic problems is straightforward for Neumann boundary condi-
tions. However, the generalization to other kinds of boundary conditions and
non homogeneous perpendicular coefficients remains to be done.

4.4 Generalization to non adapted coordinates

The generalization of the methods introduced in the preceding sections to anisotropy
directions non aligned with one coordinate is documented in this section. The
singular perturbation problem (40) is recast into





−∇⊥ · (A⊥∇φε)−
1

ε
∇‖ ·

(
A‖∇‖φ

ε
)
= f ε , in Ω ,

1

ε
n‖ · ∇‖φ

ε + n⊥ · ∇⊥φ
ε = 0 , on ΓN ,

φε = 0 , on ΓD .

(52)

with for v ∈ R3, v‖ := (b ·v)b, v⊥ := (Id− b⊗ b)v, and ∇‖ ·v := ∇·v‖ ,∇⊥ ·v :=
∇ · v⊥ , where b is the unit vector pointing in the direction of the magnetic field
b = B/|B| (see equation (26)). The domain boundary Γ is decomposed into
Γ = ΓN ∪ ΓD with ΓD = {x ∈ Γ, b(x) · n(x) = 0}, n(x) being the outward
normal.

The method implementing the differential characterization is straightfor-
wardly extended to this framework. This approach has been genuinely devel-
oped for non adapted coordinates [22, 21]. More details are available in [23].
The plots of Fig. 5 report the precision of the numerical method as a function
of the parameter α defined as the angle of the vector b with the horizontal axis.
From these computations, the precision of the method is observed to be almost
independent of the anisotropy orientation, with a variation in the error norm
lower than 10%.

The extension of the duality based formulation is more intricate. Indeed,
when one of the coordinates is not aligned with the anisotropy direction, the
functional space for the mean value along the anisotropy direction is not easily
discretized. The first generalization proposed in [49] implements a computation
of the mean by duality. Introducing V :=

{
φ ∈ H1(Ω) |φ = 0 on ΓD

}
and the

space of the mean functions G :=
{
ψ ∈ V |∇‖ψ = 0

}
, the space A of the

fluctuations is defined by duality

A :=
{
ϕ ∈ V | (ϕ, ψ) = 0 , ∀ψ ∈ G

}
,

using the orthogonal decomposition V = G ⊗⊥ A, the L2-scalar product being
(f, g) :=

∫
Ω
fg dx .

Therefore, the weak formulation of the singular perturbation problem (52)

Find (pε, qε) ∈ G ×A , such that
{

(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) = (f, η) , ∀η ∈ G ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) = (f, ξ) , ∀ξ ∈ A
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Figure 5: Numerical implementation of the differential characterization with
anisotropies non aligned with one coordinate: Relative error between the exact
solution pε and the numerical approximation pε,app as a function of the α the
angle measured between the magnetic field direction and the x-axis for different
anisotropy strength ε = 10−3 (left) and ε = 10−8 (right).

can be substituted by

Find (pε, qε, lε) ∈ G × V × G , such that




(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) = (f, η) , ∀η ∈ G ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) + (lε, ξ) = (f, ξ) , ∀ξ ∈ V ,

(qε, χ) = 0 , ∀χ ∈ G .

The fluctuations are functions of the non constrained space V , easily discretized
by standard numerical methods. This feature comes at the price of an additional
unknown, namely lε ∈ G penalizing the property qε ∈ A.

The last difficulty is related to the discretization of the functional space G
for the mean. To this end, the space L of Lagrange multipliers is introduced:

L :=
{
λ ∈ L2(Ω) | ∇‖λ ∈ L2(Ω), λ = 0 on Γin

}
, with Γin :=

{
x ∈ Γ | b(x) · n(x) < 0

}

such that the weak formulation of the problem can be stated as

Find (pε, qε, lε, λε, µε) ∈ V × V × V × L × L , such that





(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) + (A‖∇‖η,∇‖λ
ε)

= (f, η) , ∀η ∈ V ,
(A‖∇‖p

ε, κ) = 0 , ∀κ ∈ L ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) + (lε, ξ)

= (f, ξ) , ∀ξ ∈ V ,
(qε, χ) + (A‖∇‖χ,∇‖µ

ε) = 0 , ∀χ ∈ V ,
(A‖∇‖l

ε,∇‖τ) = 0 , ∀τ ∈ L .

(53)
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In this weak formulation of the singular perturbation problem, the discretization
of the functional spaces A and G is not necessary. This is obtained thanks to
the introduction of three auxiliary variables, namely lε penalizing the constraint
qε ∈ A, as well as λε and µε for the constraints η ∈ G and χ ∈ G.

Another route is proposed in [60] operating a “Micro-Macro” decomposition
of the solution. It consists in splitting φε into two non orthogonal components:
φε = pε + εqε, with q

ε ∈ L. The fluctuation space A is replaced by a space
populated with functions vanishing on one part of the boundary. This space is
readily discretized by standard numerical methods. On top of that, the prob-
lem is formulated for the unknowns (φε, qε), so that the discretization of the
functional spaces is straightforward. The weak formulation of the problem is
thus

Find (φε, qε) ∈ V × L , such that
{

(A⊥∇⊥φ
ε,∇⊥v) + (A‖∇‖q

ε,∇‖v) = (f, v) , ∀v ∈ V ,
(A‖∇‖φ

ε,∇‖w) = ε(A‖∇‖q
ε,∇‖w) , ∀w ∈ L .

This system is Asymptotic-Preserving. Indeed, letting ε→ 0, the limit problem
is recovered with

Find (φ0, q0) ∈ V × L , such that
{

(A⊥∇⊥φ
0,∇⊥v) + (A‖∇‖q

0,∇‖v) = (f, v) , ∀v ∈ V ,
(A‖∇‖φ

0,∇‖w) = 0 , ∀w ∈ L .

In this formulation q
0 is the Lagrangian associated to the constraint ∇‖φ

0 = 0.

Table 3: Comparison of the Micro-Macro (M.-M.) and Duality Based (D. B.)
methods with a FEM discretization of the singular perturbation problem (P) for
coordinates non aligned to the anisotropy direction: number of rows, number of
non zeros elements in the system matrix and computational time for the linear
system resolution (thanks to the sparse direct solver MUMPS [1, 2]) relative to
that of the singular perturbation problem. The computations are carried out
on a 100× 100 mesh with a Q2 finite element method.

Meth. # rows # Nnz Time

(M.-M.) 20× 103 623× 103 231%

(D. B.) 50× 103 1563× 103 1478%

(P) 10× 103 156× 103 100%

Both methods provide the same Asymptotic-Preserving properties with co-
ordinates and meshes not related to the anisotropy. The efficiency of the Micro-
Macro and the Duality based formulations is compared, in the table 3, to a
standard FEM discretization of the singular perturbation problem for two di-
mensional computations. The introduction of the three Lagrangians increases
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significantly both the system matrix size and the number of non zero elements.
The Micro-Macro scheme is much more efficient with a matrix size only twice as
big as that of the standard method and a computational time increasing roughly
to the same extent.

The Micro-Macro as well as the duality based methods have been developed
to heterogeneous anisotropy ratios in [48, 60]. The Micro-Macro approach has
been extended to closed magnetic field lines thanks to a regularization of the
problem introduced in [114] and also implemented in [63]. Note that, an asymp-
totic preserving method based on a lagrangian integration along the anisotropy
direction is proposed in [28].

5 Conclusions

In this document, Asymptotic-Preserving methods are reviewed in the frame
of three singular perturbation problems. First the concept of Asymptotic-
Preserving methods are outlined for the quasi-neutral limit of plasma descrip-
tions. The scale of interest here is the Debye length measuring the typical size
of the space charge creations. In this context, the derived AP-schemes offer the
possibility to choose the model harnessed accordingly to the needs of the physics.
Indeed, when the discretization parameters are large compared to the Debye
length, AP-schemes define a consistent discretization of a quasi-neutral model,
with properties similar to Magneto-Hydro-Dynamic descriptions (however with
a finite electron inertia and eventually a kinetic description). Conversely, local
upscaling are possible, by adjusting the mesh size to the local Debye length,
the numerical methods becoming consistent with the non quasi-neutral model
(either the Vlasov-Maxwell or the Euler-Maxwell system depending on the de-
scription used for the plasma, electrostatic models being also proposed).

The systematic methodolgy implemented to derive AP scheme is decomposed
in different steps. First the limit regime needs to be clearly identified. It consists
of a set of equations providing the limit of the solution in the asymptotic regime.
In the framework of singular perturbation problem, this set of equations is not
readily obtained from the initial multiscale problem. The asymptotic analysis
is a crucial tool to clarify the inter relations of the multiscale and the limit
problems. More importantly, the derivation of the limit (quasi-neutral) problem
from the multiscale (non quasi-neutral) set of equations is a key point in the
construction of Asymptotic-Preserving methods. This preliminary work is thus
capitalized on to manufacture a set of reformulated equations in which the
quasi-neutral limit is regular: the limit problem is recovered by setting formally
the asymptotic parameter to zero in the reformulated system. In this specific
context, the asymptotic parameter is defined as the ratio of the Debye length
and the typical length of interest, or equivalently the mesh size. Until this stage
all the analysis are free from any numerical method. Finally, the question of the
discretization is addressed. Performing the same analysis but with discretized
equations, allows to derive an asymptotic preserving numerical method.
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Two other frameworks are also addressed in the present document. The drift
regime for fluid description of tokamak plasmas, also referred to as the gyro-
fluid limit. The asymptotic regime investigated is the limit of infinite acoustic
wave speeds (low Mach regime) with local transitions to flows characterized by
Mach numbers close to one. In the low Mach regime, the parallel momentum
equation degenerates into an equilibrium relation, with a pressure gradient bal-
ancing the electric force. No contribution of the parallel momentum appears
explicitly in this equation anymore, which is at the origin of the singular na-
ture of the drift limit. The applications envisioned here are more specifically
related to the tokamak plasma edge physics, with a different dynamic in the
plasma core compared to that of the sheath created in the vicinity of the wall.
The derivation of asymptotic preserving schemes, in both the frameworks of the
quasi-neutral and the drift regimes, involves the resolution of anisotropic ellip-
tic or diffusion problems. This class of equations define a singular perturbation
problem when the boundary conditions supplementing the diffusion operator in
the aligned direction (with respect to the magnetic field) translate, for instance,
the periodicity of the torus. The last section of this document is thus dedicated
to a review of asymptotic preserving methods developed to address efficiently
these problems.

The systematic derivation of AP-methods can be extended to more singular
limits. Some examples can be named, with an extension of the quasi-neutral
limit investigations aiming to bridge the Vlasov-Maxwell system and a Magneto-
Hydrodynamic model or the Vlasov-Poisson system and the Boltzmann relation
for the electrons. The adiabatic response as well as MHD models are successfully
operated for the simulation, because they filter out from the equations most of
the high frequencies and give access to the macroscopic evolution in an efficient
way. In both cases the limit is much more singular, since in addition to the quasi-
neutral asymptotic, a fluid and a mass-less (for the electron) limits are necessary
to define the reduced models. Another extension can be considered in the gyro-
fluid framework, with the investigation of the quasi-neutrality break down, in
order to address extensively the regimes transition between the plasma core and
the sheath. A more distant issue can also be envisioned, with the extension of
AP-methods to other scientific fields where multiscale problems are common,
namely biology and complex systems for instance, where this class of methods,
if already investigated, lack significant developments.
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