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Abstract

We consider Adaptively Restrained Langevin dynamics, in which the ki-
netic energy function vanishes for small velocities. Properly parameterized,
this dynamics makes it possible to reduce the computational complexity of
updating inter-particle forces, and to accelerate the computation of ergodic
averages of molecular simulations. In this paper, we analyze the influence
of the method parameters on the total achievable speed-up. In particular,
we estimate both the algorithmic speed-up, resulting from incremental force
updates, and the influence of the change of the dynamics on the asymptotic
variance. This allows us to propose a practical strategy for the parametriza-
tion of the method. We validate these theoretical results by representative
numerical experiments.
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1. Introduction

One fundamental aim of molecular simulations is the computation of
macroscopic quantities, typically through averages of functions of the vari-
ables of the system with respect to a given probability measure µ, mostly
distributed according to the Boltzmann-Gibbs density. This corresponds to
a model of a conservative system in contact with a heat bath at a fixed
temperature. Numerically, the high-dimensional averages with respect to µ
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are often approximated as ergodic1 averages over realizations of appropriate
stochastic differential equations (SDEs) (see Balian (2006)).

In many applications, the dynamics is metastable, i.e. the system re-
mains trapped for a very long time in some region of the configuration space.
An acceleration of the sampling can be achieved by improving the explo-
ration of the phase space (with variance reduction techniques such as impor-
tance sampling, see for instance Lelièvre et al. (2010); Lelièvre and Stoltz
(2016)), increasing the time step by stabilizing the dynamics ( see for in-
stance Leimkuhler et al. (2016); Fathi and Stoltz (2015)), by changing the
model as for example dissipative particle dynamics (see for instance Espanol
and Warren (1995)), or the implementation (parallelization, reduction of the
computational complexity (see for instance Bosson et al. (2012))). Many
methods are based on a modification of the dynamics. Since, very often, the
interest lies in computing of average properties, sampling can be unbiased to
retrieve averages with respect to the canonical distribution. In order to in-
crease the time step size used in the simulation, some methods consider mod-
ifying the kinetic energy based on changing the mass matrix (Bennett (1975);
Plechac and Rousset (2010)). Another example is the Shadow-Hamiltonian
Metropolis-Hastings method introduced by Izaguirre and Hampton (2004),
which consists in integrating the Hamiltonian dynamics according to the
Shadow-Hamiltonian, which is preserved by the numerical scheme.

In order to propose a fair comparison of sampling methods, three factors
should be taken into account: the asymptotic variance of time averages, the
maximal admissible time step size in the discretization and the computational
effort.

In this work, we analyze the efficiency of a method based on a modified
version of Langevin dynamics called “Adaptively Restrained Particles Simu-
lations” (ARPS), first proposed in Artemova and Redon (2012). The main
idea is to modify the kinetic energy function in order to freeze a number of
particles at each time step and reduce the computational cost of updating
inter-particles forces. In Artemova and Redon (2012), the kinetic energy is
set to 0 when momenta are smaller than the restraining parameter vmin, and
is set to the standard, quadratic kinetic energy for momenta larger that the
full-dynamics parameter vmax, with vmax > vmin ≥ 0. Thanks to this formu-

1In this article we use the term ergodic for the convergence in infinite time, i.e. the
mathematical convergence (see Lelièvre and Stoltz (2016)).
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lation, the computational complexity of the force update is reduced, because
some particles do not move and hence, forces need not be updated. The
associated gain can be quantified by an algorithmic speed-up factor Sa ≥ 1.
On the other hand, since the dynamics is modified, the asymptotic variance
of time averages σ2

AR given by the Central Limit Theorem, differs from the
asymptotic variance σ2

std of the standard Langevin dynamics. Intuitively,
iterates are a priori more correlated, which may translate into an increase
of the statistical error. The actual speed-up of the method in terms of wall-
clock time is therefore an interplay between the algorithmic speed-up and the
variances. A rigorous mathematical analysis of the ergodicity properties of
this method was provided in Redon et al. (2016). Moreover, a perturbative
regime study of the asymptotic variance suggests a linear behavior of the
variance with respect to the parameters of the dynamics in some limiting
regime.

Since the method is parameterized by two constants, it is not obvious
how to choose these parameters in order to achieve an optimal speed-up.
Of course, the algorithmic speed-up depends on the percentage of restrained
particles. The percentage of restrained particles is a non-linear function of
the parameters, hence it is not trivial how to best choose their values. Our
aim in this paper is to propose a strategy for choosing the parameters of the
AR method.

The article is organized as follows: in Section 2.1 we make a brief overview
of sampling using Langevin dynamics and we recall common strategies for
its discretization. In Section 2.2 we recall the definition of AR-Langevin
dynamics proposed in Artemova and Redon (2012) and the alternative def-
inition of the AR-kinetic energy with better stability properties from Stoltz
and Trstanova (2016). In Section 3 we give a definition of speed-up and we
introduce a formula for the total speed-up with the AR approach. In the
next two sections we analyze how this formula depends on the parametriza-
tion: in Section 4 we analyze the computational complexity of the method
and we express the corresponding algorithmic speed-up. This part is followed
by Section 5, in which we give a relation between the restraining parame-
ters and the percentage of restrained particles, as well as an approach for
obtaining the linear approximation of the variance with respect to the re-
straining parameters. By combining all the necessary parts, we propose a
practical strategy for the parametrization of the method and we illustrate
the theoretical results by numerical simulations in Section 6.
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2. Modified Langevin dynamics

In this section we recall the Langevin dynamics and the modified Langevin
dynamics.

2.1. Sampling from the canonical distribution using Langevin dynamics

We consider a system of N particles in a simulation box of the space
dimension D with periodic boundary conditions. The total dimension of the
system is d = N ×D. We denote by p = (p1, . . . , pN) ∈ Rd momenta of the
particles and by q = (q1, . . . , qN) ∈ D their positions in the box D = (LT)d,
where T = R/Z is the one-dimensional unit torus. We denote E := Rd ×D.
The Hamiltonian of the system, which is the sum of the kinetic (K) and the
potential energy (V ), reads

H(q, p) = K(p) + V (q) .

Let us emphasize that we restrain ourselves to separable Hamiltonians.
The Langevin equations read:

dqt = ∇K(pt) dt,

dpt = −∇V (qt) dt− γ∇K(pt) dt+

√
2γ

β
dWt ,

(1)

where dWt is a standard d-dimensional Wiener process, γ > 0 is the fric-
tion constant and β = (kBT )−1 > 0 is proportional to the inverse temper-
ature. We refer the reader to Lelièvre and Stoltz (2016) for an overview of
mathematical properties of this dynamics. The invariant distribution (the
Boltzmann distribution) is simply obtained as

µ(q, p) = Z−1e−βH(q,p), Z =

∫
E

e−βH(q,p)dqdp ,

where Z is the normalization constant or the partition function. We use the
notation µstd for the case of the standard kinetic energy function, and µK
for a general kinetic energy function. Langevin dynamics generate samples
(pt, qt) from the Boltzmann distribution µ which are used in computation of
macroscopic properties. These correspond to expected values with respect to
µ and can be approximated by ergodic averages of the trajectories (pt, qt):

limt→∞ϕ̂t = Eµ(ϕ) =

∫
E
ϕdµ, ϕ̂t =

1

t

∫ t

0

ϕ(qs, ps)ds . (2)
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Note that for any well-defined2 K, due to the separability of the Hamilto-
nian, the marginal distributions in the position variable remain unchanged,
since only the momenta marginals of the distribution are influenced by the
modification of the kinetic energy, i.e.

Eµstd
[ϕ(q)] = EµK [ϕ(q)] .

Since the dynamics (1) cannot be integrated exactly its solutions are ap-
proximated by numerical integration (Milstein and Tretyakov (2013)). Basi-
cally, there are two kinds of errors occurring in the estimation of Eµ [ϕ] by
ϕ̂t from the numerical integration of equations (1): a statistical error, due to
the finiteness of the time interval during which the sampling is performed;
and a systematical error (bias) on the measure.

The statistical error for ergodic averages (2) is quantified by the Central
Limit Theorem. The asymptotic variance associated with the estimator ϕ̂t
reads

σ2 = lim
t→∞

tEµ
[
(Πϕt)

2] = 2

∫ ∞
0

E [Πϕ(qs, ps)Πϕ(q0, p0)] ds, Πϕ := ϕ−
∫
E
ϕdµ .

Similarly, for the discretized dynamics, with time step size ∆t = T/Niter, we
denote the estimator

ϕ̂Niter,∆t
=

1

Niter

Niter−1∑
i=0

ϕ(qn, pn).

If the discretized dynamics is geometrically ergodic with an invariant measure
µ∆t, a Central Limit Theorem holds true and the variance of the discretized
process is given by (see Meyn and Tweedie (1993); Lelièvre and Stoltz (2016))

σ2
∆t = lim

Niter→∞
NiterVarµ∆t

(
ϕ̂Niter,∆t

)
= Eµ∆t

(
[Π∆tϕ]2

)
+ 2

∞∑
n=1

Eµ∆t

[
Π∆tϕ(qn, pn)Π∆tϕ(q0, p0)

]
=

∫
E

Π∆tϕ
[(

2 (Id− P∆t)
−1 − Id

)
Π∆tϕ

]
dµ∆t

(3)

2We assume that V belongs to C∞(D,R), and K ∈ C∞(Rd,R) grows sufficiently fast
at infinity in order to ensure that e−βK ∈ L1(Rd).
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where

Π∆tϕ := ϕ−
∫
E
ϕdµ∆t.

In other words, for Niter simulation steps, the statistical error is of order
ε := σ∆t√

Niter
. The variance of the discretized process converges to the variance

of the continuous process σ2 as ∆t tends to 0, i.e. ∆tσ2
∆t → σ2 as ∆t → 0

(see Lelièvre and Stoltz (2016)).
There are many possible ways to discretize (1), see for instance Leimkuh-

ler et al. (2016); Mattingly et al. (2002); Kopec (2014) for a precise analysis
of the properties of discretization schemes of the Langevin dynamics based
on a splitting. A standard choice for the discretization of (1) is a numerical
scheme of second order on the averages with respect to the time step size.
It is possible to design higher order schemes, however they include at least
double evaluation of the forces, which is not favorable due to the system size.
Usually, the numerical schemes are constructed through a splitting of the
generator of the Langevin dynamics L = A+B +O with

A := ∇K(p) · ∇q, B := −∇V (q) · ∇p, O := −γ∇K(p) · ∇p +
γ

β
∆p .

For instance, the first order splitting (Lie-Trotter) gives the following scheme:
p̃ = pn −∇V (qn)∆t,

qn+1 = qn +∇K(p̃)∆t,

pn+1 = p̃− γ∇K(p̃)∆t+

√
2γ∆t

β
Gn ,

(4)

where Gn are independent and identically distributed (i.i.d.) standard d-
dimensional Gaussian random variables. This is the so-called BAO scheme.
The name is motivated by the fact that the transition kernel reads PBAO

∆t ϕ =
PB

∆tP
A
∆tP

O
∆tϕ where PA

∆t (respectively PB
∆t, P

O
∆t) is the transition operator as-

sociated with the splitting step. We refer to Stoltz and Trstanova (2016) for
a construction of second order discretization schemes in the case of a general
kinetic energy.

Remark 2.1. The Lie-Trotter and the Strang splitting each give six possible
numerical schemes according to the order of the operators A,B,O (Leimkuhler
et al. (2016)). Due to the high dimensionality of the system, the bottleneck of
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the computational complexity is the computation of the interactions between
the particles, which must be done after each update of the positions (after
action A). In addition, a non-negligible computational effort involves gen-
eration of random numbers in O. Therefore, schemes which include as few
actions of A and O as possible should be preferred for a lower computational
complexity.

2.2. AR-Langevin dynamics

In the usual setting, the kinetic energy function of system of N particles
is a sum of kinetic energies of each particle, which are quadratic functions of
momenta:

Kstd(p) =
N∑
i=1

k(pi) , k(pi) =
p2
i

2mi

,

where pi ∈ RD is the momentum vector of the particle i with mass mi.
AR-Langevin dynamics, proposed in Artemova and Redon (2012), is

based on a modified kinetic energy function K that is defined as the sum
of the kinetic energies of the individual particles, which are parametrized by
two constants vmax > vmin ≥ 0. In Artemova and Redon (2012), the
AR-kinetic energy was designed such that it vanishes for values smaller than
the restraining parameter vmin, and are equal to the standard kinetic energy
for values bigger than the full dynamics parameter vmax. The main idea is
that the derivative ∂pik of such function vanishes in this case too, and the
position of the particle does not change between the two integration steps,
i.e. qn+1

i = qni , i ∈ IR, with IR being the set of indices of the restrained
particles (see also Equation (4) for the computation of qn+1). The transition
between the restraining and the full-dynamics region is performed with an
interpolation spline, which ensures the regularity of the kinetic energy3. Still,
the derivatives of k have large values in the transition region, which might
cause numerical instabilities. However, the necessary condition for the par-
ticle to remain at the same position between two time steps is that the first
derivative of the kinetic energy function vanishes for some values of momenta
in every space direction. In Stoltz and Trstanova (2016) an alternative defi-
nition of the AR-kinetic energy function with this property was introduced,
based on the vanishing velocities. The AR-kinetic energy is defined starting

3The choice was k ∈ C2(RD) in Artemova and Redon (2012).
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from an interpolation of its first derivative, such that it vanishes around zero
and takes values of pi/mi outside the restraining region (see Figure 2 for an
illustration). The order of the interpolation spline can be chosen as high as
necessary. However in this article we use only linear interpolation. The mod-
ified kinetic energy is then obtained by piecewise integration (see Figure 1
for an illustration):

K(p) =
d∑
i=1

k(pi) where k(pi) =



Svmin,vmax for
|pi|
mi

≤ vmin,

s (pi) for
|pi|
mi

∈ [vmin, vmax] ,

p2
i

2mi

for
|pi|
mi

≥ vmax ,

(5)
for i = 1, . . . d = N × D, and where s is the integrated interpolation spline
and Svmin,vmax is an integration constant, which corresponds to the minimal
kinetic energy value of the particle4. Note that the total kinetic energy is the
sum of individual kinetic energies of each particle in every space direction.

AR dynamics accelerate sampling by exploiting information about the
kinetic energy of particles. More precisely, a particle is called restrained if it
has the absolute value of each component of its momentum smaller than the
restraining threshold vmin. All other particles are defined as active particles.
Note that, during the simulation, particles are switching between these states.
Also, the average occupation of the active or restrained state only depends
on the restraining parameters vmin and vmax.

Since the momenta of individual particles are independent from each other
under the canonical measure, the parameters vmin and vmax could in fact be
different for each particle, to either focus calculations on a specific part of
the particle system or to adjust the scaling of parameters according to the
mass of the particle.

3. Estimating the speed-up

In this section we introduce a framework for the complexity analysis of
the AR dynamics in the case of pair-wise interactions, which are the most

4We would like to emphasize that this constant does not appear in the Langevin equa-
tions, only in the momenta marginal of the invariant measure.
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Figure 1: Comparison of the AR-kinetic energy functions for one particle (p = p0, N =
1) (Stoltz and Trstanova (2016)): korg is the original definition from Artemova and Redon
(2012), knew corresponds to Equation (5) and kstd is the standard one.

common interactions in numerous applications. Note that the discussion
below can be easily generalized to interactions present in classical force-fields.
The force acting on each particle i is a sum of interactions with all other
particles.

The information about the state of the particle allows us to lower the
computational cost of the computation of pair-wise interactions between the
particles. We consider the potential

V (q) =
N∑
j=1
i 6=j

v(rij)

and the force acting on the particle i which is given by

fi(q) := −∂qiV (q) = −
N∑
j=1
i 6=j

v′(rij)
qi − qj
rij

, rij = |qi − qj| . (6)

9



Figure 2: Gradient interpolation of the kinetic energy (knew) versus function interpolation
(korg), see also Figure 1. Both gradients are vanishing around zero, which allows to freeze
the positions of the particles. However, the gradient interpolation has been proven to be
more numerically stable.

The change of the force between two time steps only depends on active par-
ticles that have moved since the last time step with respect to this particle.
This allows us to avoid the computation of pair-wise interactions between
restrained particles, hence lower the computational complexity. In order to
quantify the computational cost of the force update, we define the force func-
tion ψ : R→ R such that ψ := v′. Then the computational cost of the force
update is defined as the number of times the force function ψ is called. The
speed-up of AR dynamics, due to the decreasing of the computational com-
plexity in the force update, with respect to the non-adaptive method which
updates all interactions, defines the algorithmic speed-up. Since the compu-
tational complexity depends on the ratio of restrained particles, which is a
quantity that varies at each time step, we consider averages over the whole
simulation. More precisely, we denote by CAR,n the computational cost of the
force update in the AR-method at time step n and by Cstd,n the computa-
tional cost of a standard, non-adaptive method. We denote by Niter = T/∆t
the number of time steps in the simulation. Then the algorithmic speed-up
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Sa is the ratio of the average computational cost Ĉstd := Eµstd
[Cstd] in the

standard method and the average computational cost ĈAR := EµAR
[CAR] in

the AR method:

Sa :=

limNiter→∞
1

Niter

Niter∑
n=0

Cstd,n

limNiter→∞
1

Niter

Niter∑
n=0

CAR,n

=
Ĉstd

ĈAR

. (7)

Note that the computational complexities in both cases are bounded func-
tions of the number of particles and, due to the ergodicity of the dynamics,
which was proved by Redon et al. (2016), the averages in (7) almost surely
converge.

However, the important point is the reduction of the error for a given
wall-clock duration. We focus here on the statistical error, which is often
the dominant source of errors. In order to express the total speed-up with
respect to the standard method, we need to consider not only the algorithmic
speed-up, but also the modification of the asymptotic variance which depends
on the concrete choice of the kinetic energy (see expression (3)). We define
the total speed-up Stotal as a ratio of the wall-clock time, which is needed
by using the AR-method in order to achieve some statistical precision, and
the wall-clock time needed for reaching the same precision by the standard
method:

Stotal :=
Twlck

std

Twlck
AR

. (8)

Recall that, for an observable ϕ, we denoted by σ2
∆t the asymptotic variance

of the sampling from the discretized dynamics and by σ2 the asymptotic
variance of the continuous dynamics. From the Central Limit Theorem, the
statistical error at time T is given by

ϕ̂T = Eµ (ϕ) + εTG,

where εT is of order σ√
T

and G ∼ N (0, 1). Hence the number of time steps

Niter = T/∆t needed in order to have a statistical error of order εT is

Niter =
σ2

∆t

ε2
T

.
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The corresponding wall-clock time is therefore obtained by considering the
average cost Ĉ as

Twlck = NiterĈ .

Taking into account that ∆tσ2
∆t ∼ σ2 (for time steps small enough, recall

Section 2.1), the total speed-up Stotal defined in (8) can be expressed as

Stotal =
Ĉstd

ĈAR

σ2
std,∆t

σ2
AR,∆t

= Sa

σ2
std,∆t

σ2
AR,∆t

≈ Sa
σ2

std

σ2
AR

∆tAR

∆tstd
. (9)

The last two terms in (9) become equal for small values of ∆t and it is
therefore sufficient to study the variance of the continuous process σ2

std and
σ2

AR. As we have already mentioned, the choice of the modified kinetic energy
should not change the stability properties of the standard dynamics. This
would otherwise require us to choose a smaller time step size ∆tAR, which
would lead to a smaller total speed-up Stotal. Unfortunately, this is the case of
the kinetic energy defined in Artemova and Redon (2012). Still, the stability
can be significantly improved by using the kinetic energy given by (5) instead.
In this case, the stability properties become comparable to the ones of the
standard dynamics (Stoltz and Trstanova (2016)). We therefore assume in
this work ∆tstd = ∆tAR.

The computation in (9) shows the trade-off between the algorithmic
speed-up and the change in variance. Both the algorithmic speed-up Sa

and the AR variance σ2
AR depend on the parameters of the AR dynamics.

As already showed in Artemova and Redon (2012), in some applications, the
restraining parameters can be chosen such that the total speed-up satisfies
Stotal > 1. Therefore, there are systems for which this method can be ef-
ficient, even though this might be counter-intuitive since one could suggest
that in order to accelerate the sampling, the system should move “faster”
and not be restrained. Note however that the wall-clock duration of the
force update step depends on the implementation and on the complexity of
the evaluation of ψ. Hence, the same physical model with variance σ2, can
have various algorithmic speed-ups Sa. Finally, an interesting observation
is, that due to the separability of the Hamiltonian, the algorithmic speed-up
does not depend on the potential.

4. Algorithmic speed-up

The goal of this section is to propose a methodology to analyze the al-
gorithmic speed-up Sa (defined in (7)) of AR dynamics as a function of the
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percentage of restrained particles. We first describe the adaptive algorithm
for computing forces, and we estimate the corresponding computational cost.
In the last part, we also consider the effort for updating neighbor lists used
for updating of short-ranged interactions and we obtain an estimation of the
algorithmic speed-up per time step.

4.1. Description of the AR force update algorithm

For simplicity, we consider a system of N particles where only pair-wise
interactions take place. In AR dynamics, this sum can be split into three
kinds of interactions depending on the state of the two interacting particles:
active-active, active-restrained and restrained-restrained. We define the set
of indices of active particles IA and restrained particles IR. Then, sum (6)
can be re-written as

fi =
∑
j∈IA
j 6=i

fij +
∑
j∈IR
j 6=i

fij . (10)

The force acting on particle i in the next time step n + 1 can be formally
obtained using the old position qn:

fnew
i = f old

i +
(
fnew
i − f old

i

)
, f old

i =
∑
j

fij(q
n), fnew

i =
∑
j

fij(q
n+1) .

(11)
Since, for the set of restrained particles, positions have not changed since the
previous time step, one can easily see that

∀i ∈ IR,
∑
j∈IR
j 6=i

fnew
ij − f old

ij = 0 .

The computation in (11) is therefore reduced to subtracting the old and
adding the new active-restrained and active-active interactions. This simple
remark provides in fact a key point for the reduced complexity of the AR
algorithm.

In a standard simulation, when taking into account Newton’s third law
fij = −fji, the computational cost of pair-wise interactions is N(N−1)

2
. The

resulting quadratic complexity in the number of particles is not favorable
due to the system size, and therefore neighbor lists are usually introduced
(see Allen and Tildesley (1989); Frenkel and Smit (2002)). For a compari-
son of various approaches for neighbor list methods we refer the reader to
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Artemova et al. (2011). Neighbor lists can be used in systems where forces
vanish after a certain cut-off distance, so that each particle only interacts
with a relatively limited number of neighbors. For simplicity, we consider a
homogenous system where we assume that the number of neighbors C of a
particle is the same for each particle. Taking into account that, for each pair
(i, j), we may only compute the force fij and deduce fji thanks to Newton’s
third law, the number of interactions reduces to NC

2
.

The BAO discretization scheme (4) can be formalized in the following
way:

Input: Initial conditions p0, q0

Output: pn, qn

for each time step and each particle do
B: Update momenta ;
A: Update positions ;

Update neighbor-lists ;
Update forces ;

O: Update momenta in fluctuation-dissipation part (FD) ;

end
Algorithm 1: Algorithm for (4) in the case of the standard dynamics.

In AR dynamics, the information about which particles are going to move
after the position update is already available after updating the momenta B,
since the kinetic energy will not change anymore. The algorithm above may
thus be modified in the following way:

14



Input: Initial conditions p0, q0

Output: pn, qn

For each particle i, initialize force fi;
for each time step and each particle do

B: Update momenta;
Create lists of active and restrained particles;
Subtract active-active and active-restrained interactions;

A: Update positions;
Update neighbor-lists;
Add active-active and active-restrained interactions;

O: Update momenta in FD;
end

Algorithm 2: Algorithm for (4) in AR dynamics using adaptive forces
updates.

Updating neighbor lists normally consists in re-assigning each particle to a
specific grid cell (in our implementation we used a combination of Verlet lists
and linked-cell lists (Frenkel and Smit (2002))). In AR dynamics, restrained
particles do not have to be re-assigned, and neighbor lists may be updated
more efficiently. More precisely, the complexity of updating the neighbor lists
goes from O(N) the number of particles, to O(K), where K is the number
of active particles.

Note that the force function ψ is called in both AR force updates (subtract
and add steps), since we need to evaluate forces for positions at the previous
time step. It would be possible to avoid updating forces twice by saving all
pairwise forces, but this may result in a quadratic space complexity. We will
not analyze this case, although it would result in a larger algorithmic speed-
up and lead to less restrictive conditions on the efficiency of AR dynamics.

Note that there is a slight overhead due to computing the AR kinetic
energy functions ∇K, which is more complicated than in the standard case.
Still, this involves O(N) additional operations, and can be neglected com-
pared to the cost of the force update in practical applications. Furthermore,
the overhead mostly comes from the transition regime since ∇K vanishes for
restrained particles and becomes M−1p for the full-dynamics state.

Note that a similar strategy for incremental force update may be applied
to other splitting schemes of the modified Langevin equations. However, the
status of a particle (active, in transition or restrained) depends on the state
of the momenta before the position update, and hence this status should not
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be destroyed by updating momenta between two position updates. Using the
same notation as in Section 2.1 and Leimkuhler et al. (2016), this implies
that the second order splittings BAOAB and OABAO are not directly suited
for a modification by the AR dynamics algorithm, since between the two
position updates A, the momentum changes by either O or B step. On the
other hand, ABOBA, BOAOB, OBABO and AOBOA can be used, since the
lists of active particles can be created before the position update A and hence
active-active and active-restrained interactions can be subtracted and added
after position update A.

4.2. Complexity analysis

At each time step, the computational cost of the force update depends
on the percentage of restrained particles. Let us denote the number of active
particles by K = αN , where α ∈ [0, 1] is the average ratio of active particles.
The number of restrained particles is then N −K. We are going to formalize
the computational complexity of the force update as a function of the ratio
of restrained particles, denoted by ρ := 1− α.

We recall that we have considered the average computational cost over
the whole trajectory in equation (7), since the instantaneous computational
cost may vary at each time step. Because, in the algorithm analyzed in this
paper, we add and subtract pairwise forces, the computational complexity of
the force update in an AR simulation is lower than a regular force update
if and only if a sufficient number of particles is restrained. We are thus
going to analyze which conditions on the number of restrained particles are
sufficient to obtain a speed-up larger than one, when a standard simulation
has a linear or quadratic complexity5. This analysis can be extended to other
force update algorithms.

4.2.1. Quadratic complexity

Let us first consider a standard (non-adaptive) simulation with a quadratic-
complexity force update algorithm, i.e. when no neighbor-lists are used.
In this case, the number of interactions computed at every time step is
Cstd := N(N−1)

2
. In AR dynamics, we do not need to recompute interactions

between restrained particles, hence we only update interactions involving ac-
tive particles, either with other active particles, or with restrained particles.

5The quadratic complexity corresponds to bonded interactions and the linear complex-
ity to non-bonded, in which case the neighbor lists can be applied.
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As a result, the computational cost for the AR force update is6:

CAR := 2

(
K(K − 1)

2
+K(N −K)

)
= (2N − αN − 1)Nα .

and Cstd > CAR is satisfied for

α < 0.29 (12)

and N > 1−2α
2α2−4α+1

. The inferior bound on the number of particles is not a
restrictive condition for molecular dynamics, where the number of particles
is usually much bigger. (For example, for α = 0.28, the number of particles
N must be larger than 12.) More importantly, this implies that at least 71%
of particles must be restrained in order for this force update algorithm to be
beneficial, in which case the algorithmic speed-up is:

Sa,1 =
Cstd

CAR

=
N − 1

2(Nρ+N − 1)(1− ρ)
.

When the number of particles tends to infinity, this becomes

S∞a,1 = lim
N→∞

Sa(N) =
1

2(ρ+ 1)(1− ρ)
. (13)

Note that if the double computation of forces can be avoided (for example
by storing previous pairwise forces), the complexity becomes

CAR,2 :=
CAR

2
,

so that CAR,2 > Cstd is achieved for any α < 1 and N > 1
1−α , resulting in the

following speed-up:

Sa,2 =
N − 1

(Nρ+N − 1) (1− ρ)
, S∞a,2 =

1

(ρ+ 1)(1− ρ)
.

6The factor of 2 comes from the need to subtract old forces (with previous positions)
and add new forces (with current positions).
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4.2.2. Linear complexity

Let us now consider the (much more frequent) case where the complex-
ity of the force update is linear, e.g. when forces become sufficiently small
after a given cutoff distance rcut, and neighbor lists may be used to effi-
ciently determine which particles are interacting. The reference complexity
is therefore Cstd,NL = NC

2
, where C is the (average) number of neighbors. The

algorithm for the adaptive force update is as follows: for all active particles
compute interactions with their neighbors, and between the active neighbors
use fij = −fji. The total number of interactions to be updated in the AR
dynamics algorithm is then:

CAR,NL := 2

 K∑
i=1

∑
j∈LA(i)

1 +
K∑
i=1

∑
j∈LR(i)

1

 = 2

(
KCA

2
+KCR

)
=
(

1− α

2

)
αCN ,

(14)
where the set LA(i) ⊂ IA contains the indices of the active neighbors of
the particle i, LR(i) ⊂ IR contains the indices of the restrained neighbors,
CA = αC and CR = ρC. The necessary condition for Cstd,NL > CAR,NL is
then

α < 0.293 . (15)

Note that this condition does not depend on N , nor on C. The AR dynamics
algorithm is more efficient in number of operations for forces update if and
only if the percentage of restrained particles is bigger than 70, 7%. The
algorithmic speed-up is hence

SNL :=
Cstd

CAR,NL

=
1

2α(2− α)
=

1

2(1− ρ2)
. (16)

Again, avoiding the double re-computation of force components from the
old positions for the active particles, removes a factor of 2 from CAR,NL and
the computational cost becomes CAR,NL =

(
1
2
− α

)
αCN , which implies an

unconditional algorithmic speed-up Sa = (1− ρ2)
−1

.
An important conclusion is that an incremental force update is compu-

tationally beneficial if the percentage of restrained particles is larger than a
threshold R. We may thus modify Algorithm 2 as follows:
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Input: Initial conditions p0, q0. Output: pn, qn

For each particle i, initialize the force fi;
for each time step and each particle do

B: Update momenta;
Create lists of active and restrained particles;

if ρ > R then
Subtract active-active and active-restrained interactions;

A: Update positions;
Add active-active and active-restrained interactions;

else
A: Update positions;

Update forces with the standard approach;
end

Update neighbor-lists;
O: Update momenta in FD;

end
Algorithm 3: Improvement of Algorithm 2 by using the condition on
the ratio of restrained particles ρ given by the constant R ≥ 0.

Finally, we consider the case where the neighbor lists are updated at
each time step7. This is not usually done in practical applications, where
neighbor lists are updated only after a certain time period which can be
computed from the maximal velocity of the particles. The cost per time step
then extends in re-assigning N particles into the grid, which gives order of
NC/2 + N operations. In the AR simulation, only active particles need to
be re-assigned into the grid. Therefore, the cost per time step computed in
(14) becomes

CAR,NL :=
(

1− α

2

)
αCN + αN .

Assuming that there are C neighbors in average, the resulting speed-up is:

Sa =
C + 2

2(1− ρ)(Cρ+ C + 1)
. (17)

7Note that this can be easily modified in order to express the update of neighbor-lists
every time period T .
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5. Total speed-up

As explained above, the total speed-up (7) reachable by AR dynamics
when estimating observables depends on both the computational complexity
of the force update, and the variance of the AR dynamics.

In this section, we first analyze how the percentage of restrained particles
depends on the restraining parameters vmin and vmax. Then, we approximate
the variance of the AR dynamics by a linear function. Combining both, we
finally express the total speed-up as a function of vmin and vmax.

5.1. Percentage of restrained particles

The percentage of restrained particles can be computed from the average
occupation of the restrained state of each particle. In other words, it is
the probability that the momenta of one particle belong to the restrained
region of phase space. For the AR kinetic energy function (5), the average
occupation of the restrained state R(vmin, vmax) of particle i with parameters
vmin and vmax is the expected value of the indicator function of the absolute
values of all momenta components of one particle being smaller than the
restraining parameter vmin.

We denote by µvmin,vmax the invariant measure which corresponds to the
AR kinetic energy function with parameters vmin and vmax and we compute

R(vmin, vmax) =

∫
Rd

1{
|pi|
mi
≤vmin

}µvmin,vmax =
(2vminmi)

D exp (−βDSvmin,vmax)

Zp(vmin, vmax)
,

(18)
where the momenta normalization constant of the particle i is simply Zp =
zD, with

z(vmin, vmax) =

∫
{
|pi|
mi
≤vmin

} e−βSvmin,vmax dp+

∫
{
|pi|
mi
≥vmax

} e
−β p2

i
2mi dp

+

∫
{
|pi|
mi
∈[vmin,vmax]

} e−βs(pi)dp

= (2vminmi) e−βSvmin,vmax +
√

2πmiβ−1 − 2

∫ mivmax

0

e
−β p2

2mi dp

+

∫ mivmax

mivmin

e−βs(pi)dp+

∫ −mivmin

−mivmax

e−βs(pi)dp .

(19)
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Note that in the standard dynamics Zp = (2πmi/β)3/2.
Finally, considering a system consisting of particles with various restrain-

ing parameters vimin and vimax, the total average percentage of restrained par-
ticles can be computed as an average over the individual values R(vimin, v

i
max)

of each particle. Denoting by Nvmin,vmax the number of particles with param-
eters vmin and vmax and by N the set of all chosen pairs (vmin, vmax), the total
average percentage of restrained particles8 Rtotal ∈ [0, 1] is given by

Rtotal =
1

N

∑
(vmin,vmax)∈N

Nvmin,vmaxR(vmin, vmax) . (20)

For example, the percentage of restrained particles for a system consisting
of a dimer that follows standard dynamics and that is surrounded by solvent
particles following AR dynamics with non-zero parameters vmin and vmax is:

RDS
total =

NSolv

Ntotal

RSolv(vmin, vmax) ,

since, in standard dynamics, the average occupation of the restrained state
is zero and RDimer = 0.

In conclusion, the algorithmic speed-up Sa can be estimated using the
computational complexity of the algorithm (see Section 4) with the speed-up
being a function of ρ = Rtotal.

Figure 3 shows, for K defined in (5), the average occupation of the re-
strained state R(vmin, vmax) as a function of vmax for various δ ∈ [0.5, 0.98]
such that vmax = δvmin in dimension three. We depicted also the value 70% of
restrained particles which corresponds to the necessary condition for Sa > 1
(given by (12) or (15)). We observe on this figure that the bigger δ, the
bigger average occupation of the restrained state. Figure 4 shows the depen-
dence of R(vmin, vmax) on the temperature. This suggests that the restraining
parameters should be scaled with respect to the temperature kBT .

Finally, Figure 5 shows Rtotal(vmin, vmax) as a function of both parameters.
Note that the highest value of percentage of restrained particles is located
close to the diagonal, i.e. when the gap between the parameters vmin and
vmax is small.

8Note that this corresponds to the notation ρ = Rtotal in Section 4.
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Figure 3: Average occupation of the restrained state with respect to the parameter ratio.
We computed Rtotal = R(vmin, vmax) for one particle in 3D according to (18) for various
vmax and various values of the parameter ratio δ ∈ [0.7, 0.98] (black to orange or bottom
to top lines) such that vmin = δvmax. The blue line is the value 70% of restrained particles
which corresponds to the necessary condition for Sa > 1.

5.2. Linear approximation of the variance

In Redon et al. (2016), it was proved that there exists a regime in which
the variance from the AR dynamics simulations can be approximated by a
linear function of the restraining parameters (see (Redon et al., 2016, Propo-
sition 4.3)): there exists v∗max small enough such that for vmax < v∗max there
exist constants c1, c2 ∈ R such that for vmin ∈ [0, vmax]

σ2
AR(vmin + ζ, vmax + η) = σ2

AR(vmin, vmax) + c1ζ + c2η + O
(
ζ2 + η2

)
. (21)

The total speed-up of the wall-clock time needed to reach a certain sta-
tistical precision (9) can hence be expressed in terms of the restraining pa-
rameters using (21) as

Stotal ≈ Sa(vmin, vmax)
σ2(0, 0)

σ2(0, 0) + c1vmin + c2vmax

= Sa(vmin, vmax)
1

1 + c1
σ2(0,0)

vmin + c2
σ2(0,0)

vmax

.
(22)
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Figure 4: Average occupation of the restrained state with respect to the temperature. We
computed Rtotal = R(vmin, vmax) of a particle in 3D according to (18) for vmax and vmin =
0.95vmax and for various temperatures kBT = [1, 100] (black to orange or top to bottom
lines).

The gap between the restraining parameters vmin and vmax should be big
enough to ensure a smooth transition between the full and the restrained
dynamics and prevent numerical instabilities. Note, however, that in the
numerical experiments performed in (Redon et al., 2016, Section 5.1), where
the variance was computed for a simple 1D system, it was shown that the
relative increase of the variance with respect to the full-dynamics parame-
ter vmax is more significant than with respect to the restraining parameter
vmin. This result is not surprising, since the gap between the parameters
smooths out the dynamics, which translates into an increase of correlations.
This implies that the optimal strategy is to choose the gap between the pa-
rameters as small as possible while still maintaining the numerical stability
and keeping the systematical error sufficiently low (i.e. the error on the
computed averages, arising from the fact that µ 6= µ∆t (Leimkuhler et al.
(2016))). At the same time, the restraining parameters should give the de-
sired percentage of restrained particles Rtotal. For example, in the case when
δ = vmin/vmax = 0.98, the relative derivative of the restrained energy of one
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Figure 5: Percentage of restrained particles over vmin and vmax. We considered the system
of a dimer surrounded by a solvent (64 particles) in 3D with the solvent dynamics being
governed by the AR kinetic energy function. We computed the percentage of restrained
particles for various values 0 ≤ vmin ≤ 0.95vmax.

particle R(vmin, vmax) with respect to vmax, almost vanishes after the value
vmax = 5. Hence this is a critical value after which the growth of function
R(vmin, vmax) slows down (see again Figure 3). Having in mind that the vari-
ance locally increases with respect to vmax, this implies that, in this region,
the efficiency of the algorithmic speed-up does not grow fast enough with in-
creasing vmax, while the variance might be still growing. In this case, either
the gap δ should be chosen smaller, or one must ensure that the variance
does not grow too fast, in order to compensate the variance growth with the
algorithmic speed-up.

It is easy to estimate the algorithmic speed-up Sa. The problematic part
is to estimate the sensitivity of the variance of a given observable with respect
to the modification by the restrained dynamics, i.e. the estimation of c1 and
c2 in (22). This can be done by a linear interpolation in the pre-processing
part, which should involve at least three AR dynamics simulations in order
to estimate the constants c1 and c2. Finally, (22) allows to have a complete
expression for the total speed-up as a function of the parameters vmin and
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vmax. Choosing δ = vmin/vmax as small as possible, one can find the optimal
vmax which produces the highest total speed-up (see Section 6 for a numerical
example).

We thus propose the following guidelines to estimate the total speed-up
Stotal with respect to the parameters vmin and vmax:

1. Choose the order (scale) of the restraining parameters vmin and
vmax for each particle according to its mass, its role in the system
and the temperature kBT .

2. Choose the minimal gap δ between vmin and vmax with respect to
the numerical stability.

3. Compute the percentage of restrained particles Rtotal according to
(18), (19) and (20).

4. Compute the algorithmic speed-up Sa according to the implemen-
tation algorithm according to Section 4.

5. Estimate the linear approximation of the variance σ2
AR(δvmax, vmax)

for the observable A.

6. Find the optimal value of vmax (with vmin = δvmax) by maximizing
Stotal(vmin, vmax).

6. Numerical illustration

In order to illustrate the theoretical results from the previous section, we
consider a system ofN = 64 particles consisting of a dimer (q1, q2) surrounded
by 62 solvent particles (q3, . . . , qN) in space dimension D = 3 (see Figure 6
for an illustration of this system). This model is representative of many
applications in biology, chemistry or physics, where the macroscopic property
only depends on a small part of the simulated system. For example, in
simulation of a protein in solvent the interest lies in computation macroscopic
properties of the protein (see for instance Artemova and Redon (2012)). The
validation of this method for real-world problems is still needed and this work
has already started by the ARPS method being implemented into LAMMPS
(see Singh and Redon (2016)).

We use periodic boundary conditions with box-length such that the den-
sity is 0.4. We consider reduced units such that particles have identical
masses mi = 1 and the temperature is chosen so that β = 1. The friction
constant in the Langevin equations is γ = 1. Solvent particles interact with
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Figure 6: A snapshot from the AR-dynamics simulation of a dimer (orange) surrounded by
62 solvent particles (light blue and grey) with parameters vmin = 6.4 and vmax = 8 (only
for the solvent particles, the dimer has the standard kinetic energy kstd(p1)) + kstd(p2))).
The solvent particles are in two states: restrained (grey) or active (light blue).

each other and with the dimer particles by a truncated Lennard-Jones po-
tential with parameter εLJ = 1 with a cut-off distance rLJ = 21/6. Dimer
particles interact with each-other with a double-well potential (with width
w = 1 and height h = 1). This potential corresponds to a metastable system,
with the two metastable states: compact and stretched. For a more precise
formulation, see Section 5.2 in Redon et al. (2016) or Lelièvre et al. (2010).
We discretize the modified Langevin equations (1) by a second-order scheme
(OBABO) with time step size ∆t = 0.001 and perform Niter ≈ 109 time
steps.

We use neighbor-lists based on the cut-off distance of the Lennard-Jones
potential rLJ, according to Algorithm 3. The average number of neighbors
is estimated as C = 0.25. We run one reference simulation in the standard
dynamics.

In the AR simulations, we consider non-zero restraining parameters on
the solvent only, and we let dimer particles follow the standard dynamics.
In order to demonstrate the dependence of the total speed-up Stotal on the
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restraining parameters vmin and vmax, we consider the following observables:
the dimer distance AD(q1, q2) = |q1 − q2|, the dimer potential AV (q1, q2) =
VDW (|q1 − q2|) and the kinetic temperature T (p) = p · ∇K(p). The first two
observables only depend on the positions of the dimer particles, hence we
expect that the variance will not be much modified even for large restraining
parameters. The function T (p) depends on the momenta of all particles
p and satisfies 〈T 〉µvmin,vmax

= kBT . The knowledge of the exact average

allows us to verify that the time step size ∆t is chosen sufficiently small in
order to make the systematic error on the averages smaller than 1% even
for vmax = 10. The asymptotic variance σ2 of a time average for a given
observable ϕ is estimated by approximating the integrated auto-correlation
function by a trapezoidal rule (see Section 5.2 in Redon et al. (2016)).

First, we confirm theoretical predictions for the algorithmic speed-up Sa.
In our simulations, we measure the time per force update, as well as the time
per time step. We compare the measured speed-up, which is a ratio of the
measured time in the standard dynamics and the AR dynamics, with the es-
timated speed-up in the force update (16) and for the overall time step (17).
Figure 7 shows a comparison of the predicted algorithmic speed-up and the
measured algorithmic speed-up in our simulation, which demonstrates that it
is possible to roughly estimate the computational behavior of a specific imple-
mentation. Even for our simple implementation, however, the mismatch in
the curves may have multiple causes: the update of positions and momenta,
the creating of lists of active particles, the updating of the neighbor-lists etc.,
and the fact that with growing vmax and a fixed δ, the particle spends more
time in the transition region which is computationally more expensive due
to the spline. As we suggest later in the paper, realistic implementations
such as those found in popular MD packages (e.g. LAMMPS, GROMACS,
etc., see Singh and Redon 2016) are very complex, and the best strategy to
determine AR parameters may be to actually measure algorithmic speed-ups
on short simulations.

Figure 8 plots the estimated relative variation of the variance of three
observables as a function of the parameters vmax for vmin = δvmax with δ =
0.5. Recall that only the solvent particles are restrained and therefore the
variance of an observable as T , which depends directly on these degrees
of freedom, is more perturbed from the variance in the standard case than
the variance of an observable depending on particles following the standard
dynamics (the dimer). We confirm the results showed in Redon et al. (2016):
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the variance of T is modified more drastically than the variance of observables
measured on the dimer with growing vmax.

Finally, combining the algorithmic speed-up Sa(vmin, vmax) with the vari-
ance σ2(vmin, vmax), we estimate the total speed-up according to (9). This
is depicted on Figure 9. We again consider δk ∈ {0.5, 0.8, 0.9} in order to
demonstrate the impact of the gap between the parameters δ = vmin/vmax

on the total speed-up Stotal: the smaller the gap, the larger Stotal becomes.
Also, it holds that Stotal > 1 for the dimer observables only (up to 4), and
not for the global observable T , for which the relative deviation of the vari-
ance dominates the algorithmic speed-up. This supports the idea that we
can speed-up the computation of macroscopic properties that depend on un-
restrained degrees of freedom, i.e. those of the dimer in this example.

Figure 7: Comparison of the analytically estimated algorithmic speed-up with the measured
one. We considered a system described in Section 6. We measured the algorithmic speed-
up Sa of the forces update function and the total time step, with respect to the parameters
vmax and vmin = 0.8vmax. We observe the same behavior of the computed speed up in
forces update (the one predicted by (16)) and the measured one, as well as the algorithmic
speed-up per time step (17). Note that the measured Sa of the forces update is equal to
one for small values of vmax, which is due to the implementation of the condition on the
adaptive forces update as proposed in Algorithm 3 which assures Sa ≥ 1.
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Figure 8: Relative deviation of the asymptotic variance from the variance in the standard
dynamics. We considered a system of described in Section 6. We measured the variance of
the dimer distance AD (green), the dimer potential ADW (black) and the temperature T
(blue) in various parametrization of the AR dynamics. We plotted the relative deviation of
the variance from the variance in the standard dynamics for parameters vmax with δ = 0.8.
Note that the variance is more perturbed with respect to the standard simulation for T
than for the other two observables, which depend only on the dimer particles that are not
restrained.

It is easy to compute the algorithmic speed-up Sa. The problematic part
is the determination of the sensitivity of the observable on the restraining
parameters (see again Figure 8). Since the variance can be approximated by a
linear function of the restraining parameters at least locally, we can compute
the slopes cvmax such that9 σ2(vmin, vmax) ≈ σ2(vmin, vmax) + cvmaxvmax from
three AR simulations with parameters (v1

min, v
1
max), (v1

min, v
2
max), (v2

min, v
1
max).

More precisely, this allows us to approximate the total speed-up as

Stotal(vmin, vmax) ≈ Sa(vmin, vmax)
1

1 + cvmax

σ2(0,0)
vmax

. (23)

9Note that, in this linear approximation, we consider a fixed ratio δ such that vmin =
δvmax.
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Figure 9: Numerical estimation of the total speed-up depending on the parameters ratio.
We estimated the total speed-up Stotal given by (9) for system described in Section 6. The
algorithmic speed-up as well as the variance (see Figure 8) were obtained directly from
the measurements in the simulation, i.e. not from the analytical formula. On the plot the
results are showed for three observables (various color and line styles). The various markers
correspond to different value of δ: the marker ”open circles” corresponds to δ = 0.5, the
marker ”star” corresponds to δ = 0.8 and the marker ”plus sign” corresponds to δ = 0.9,
such that δ = vmin/vmax. The bigger is vmin = δvmax, the more particles are restrained
which implies a bigger algorithmic speed-up. The bigger is δ, the less perturbed is the
variance and hence the better is Stotal.

We choose (vmin, vmax) ∈ {(3, 6), (3, 7), (2, 6)} and we estimate the slope cvmax .
Table 1 shows the comparison with the slope directly obtained from simu-
lations with fixed δ = 0.9 and δ = 0.8 for vmax ∈ [1, 10] (see Figure 8).
This confirms that it is possible to capture the quantitative behavior of the
relative slope cvmax/σ

2
ϕ(0, 0) from only three AR simulations. Note that the

same approach could be used to determine the behavior of the variance as a
function of different temperatures by measuring the variance only at a few
points.

We have obtained an estimation of the variance σ2(vmin, vmax). This allows
us to express the total speed-up Stotal as a function of vmin and vmax, which
is depicted on Figure 10 for AD.
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Remark 6.1. It would be possible to push the parameters in Figure 10 in
order to achieve a higher speed-up, up to the moment when the variance in-
crease would start countering the algorithmic speed-up. Since the total speed-
up depends on the simulated system and a concrete observable function, it
does not make much sense to try and find the limit for our toy model. More-
over, for large parameters values, it is difficult to converge the quadratures in
(19) and computationally too expensive to obtain the estimates numerically
in the sense of Figure 10. Nevertheless, we believe Figure 10 provides a good
understanding of the qualitative behavior of the total speed-up.

Figure 10: Analytical estimation of the total speed-up. We estimated the expected total
speed-up Stotal for the observable dimer distance AD with respect to parameters vmin

and vmax (vmax ≤ 0.95vmax). The variance was estimated from three points as a linear
function of vmin and vmax and we used the analytical estimation of Sa according to (17).
Only Stotal > 1 is plotted.

7. Conclusions and future work

We have analyzed the speed-up achievable by AR Langevin dynamics in
the estimation of thermodynamics properties by time averages, in particular
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as a function of the restraining parameters vmin and vmax. The final for-
mula consists of two parts: the algorithmic speed-up and the modification
of variance. The approach proposed in this work allows us to choose the pa-
rameters of the method. The theoretical results are confirmed by numerical
experiments. We expect that even higher total speed-ups can be achieved
when the complexity of the incremental force update algorithm is improved,
for instance by avoiding the double calculation of inter-particle forces (in the
add and subtract steps).

The stability of the AR dynamics can be rigorously analyzed and im-
proved by introducing a Metropolis-Hasting step, which is the purpose of
future work (see Stoltz and Trstanova (2016)). Furthermore, the AR dynam-
ics can be extended to simulations under different temperatures, and hence
combined with other methods, such as parallel replica exchange (Sugita and
Okamoto (1999)). Another natural extension is to explore the dynamical
properties of the modified dynamics, which is not obvious at first sight.
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cvmax/σ
2
Ai

(0, 0) δ = 0.9: 3 points δ = 0.9: vmax ∈ [0, 10]
ADW 0.017863 0.016452
AD 0.043855 0.042729

δ = 0.8: 3 points δ = 0.8: vmax ∈ [0, 10]

ADW 0.016426 0.015028
AD 0.039587 0.039787

Table 1: Comparison of the relative deviation of the variance, obtained from linear inter-
polation of three points and the interpolation of values obtained from many simulations.
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