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Denis V. Voskov
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Department of Geoscience & Engineering

Stevinweg 1, 2628 CN Delft, NL
d.v.dvoskov@tudelft.nl

Introduction

Reservoir simulation of complex physical processes requires on the solution

of the nonlinear model equations. These include partial differential equations

describing the conservation of mass, momentum, and energy as well as different

types of local constraints that define phase behavior and/or chemical reactions

in the system. A general purpose process of robustly solving these equations

typically includes highly implicit (fully or adaptively) approximation in time

to avoid numerical limitations (such as a CFL limit for a multi-component

transport) and complex flux approximations to preserve the accuracy in spatial

discretization. Both of these approximations introduce nonlinearity into the

system of equations.

In reservoir simulation, different formulations are used for solving the system

of governing equations. These formulations usually differ in types of nonlinear

unknowns used for the solution, see [1] for an extensive overview. For the

purpose of classification, all nonlinear formulations can be separated into two

classes: mass-based and phase-based formulations. The mass-based formulation

[2, 3] uses mass-related variables (overall composition or molar mass) for solving

a nonlinear system of equations. In the phase-based (also called natural) for-

mulation [4], variables related to a phase (saturation and phase fractions) serve

as nonlinear unknowns.
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Recently, several advanced nonlinear formulations were developed for com-

positional simulations [5, 6]. All of these approaches propose a better way of

dealing with phase changes. However, these formulations were never tested for

complex realistic problems. The idea described in [5] was adapted for a general

purpose simulation and tested against state of the art approaches [7]. For the

problems of practical interest, this formulation demonstrated only insignificant

improvements with respect to conventional methods.

After that equations are discretized in space and time, they require a lin-

earization step. Usually, a Newton-based method is used for the linerization

implying an assembly of a Jacobian and a residual for the combined system

of equations. In general purpose reservoir simulation this is a challenging task.

Both value and derivatives of different properties involved in the governing equa-

tions need to be computed and stored. This requires fixing nonlinear unknowns

and the formulation for the implementation of a simulator code [8, 9]. It is

still possible to derive a Jacobian for another formulation on a linear level using

a transformation matrix (see [8] for example), but this approach often lacks

robustness.

The development of an Automatic Differentiation (AD) technique helps to

improve the situation. In several research areas, the utilization of AD makes

the solution of the system of nonlinear equations much more flexible. In reser-

voir simulation, the first attempt to design an AD-based general-purpose sim-

ulator was accomplished based on the Automatic Differentiation Expression

Template Library (ADETL) developed by Younis [10]. An Automatic Differen-

tiation General Purpose Research Simulator (ADGPRS) was developed using

AD-capabilities and the special data-structures of ADETL [11]. This simulator

utilizes the idea of having different nonlinear formulations in a single framework

providing a consistent platform for the comparison of formulations [7, 12]. ADG-

PRS creates opportunities for different research directions, including advanced

discretization [13], extended physics [14, 15] and inverse capabilities [16].

Using the ADGPRS framework, the new nonlinear strategy called Compo-

sitional Space Parametrization (CSP) was developed for compositional simula-
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tion [12, 17]. This approach is based on an analysis of compositional displace-

ment in the hyperbolic limit, which indicates that the solution is localized only

around the displacement path in tie-line space [18]. In this approach, tie-lines

are adaptively parameterized along the displacement solution and the composi-

tional problem is solved using tie-line parameters as nonlinear unknowns. The

new tie-line-based approach improves the nonlinear convergence of composi-

tional simulations and the general performance due to a significant reduction in

phase equilibrium computations. Recently, the parametrization approach based

on sparse grids was suggested for improving the performance of phase behav-

ior [19]. The authors reports significant improvements in CPU time, but their

conventional flash algorithm demonstrates a unrealistically high reference time.

While enough attention has been paid to the linearization technique and the

solution of the phase behavior problem, the application of the nonlinear solver

has also been the object of considerable interest. In the course of the simulation,

nonlinear unknowns are updated based on the solution of a linear system. It

is a common practice in reservoir simulation to modify the update. Different

versions of global or local chopping procedures exist for the nonlinear update.

One of the most commonly used in practice is the Appleyard chop [9], where

the saturation updates are corrected locally according to the end-points of a

relative-permeability function. Another approach is to control unknowns from

crossing an inflection point of the fractional flow function [20], which becomes

more complex when compositional effects [21], gravity [22], or capillarity with

upstream changes [23] are present. All of these methods are trying to resolve the

most severe nonlinearities, which are introduced by a combination of properties

in the governing equations after the conventional linearization is applied.

In reservoir simulation, we always deal with approximations of discretiza-

tions in space and time while resolving all the features of the physical descrip-

tion very accurately. In a lot of cases, this forces the nonlinear solver to struggle

and requires advanced methods. In this paper, we present a completely different

approach to the linearization of the governing equations that follows the ideas

developed by Zaydullin et al. [12]. The discretized version of the conserva-
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tion equations is written in an operator form where each term is presented as

a product of two operators. The first type of operators depends on the phys-

ical properties of the rock and the fluid while the second type depends on the

properties altered in space. The first type of operators is parametrized in the

physical space of a simulation problem in pre-processing stage. In the course

of the simulation, multilinear interpolation is applied for physics-based opera-

tors while the second type of operators is evolved conventionally. It is shown

that using a limited number of points in the proposed physical representation,

the main nonlinearity of a simulation model can be captured quite precisely.

The numerical results of an approximation in the linearized space demonstrate

better nonlinear convergence with the error in the approximation controlled by

the accuracy of the interpolation. In addition, any expensive property eval-

uations required by the physical model are limited to a few parametrization

points, which significantly improves the performance of the simulation. Several

additional advantages of the proposed Operator-Based Linearization (OBL) ap-

proach are discussed in the last section.

Modeling approach

In this section, we describe the governing equations and nonlinear formula-

tion for a reservoir simulation problem.

Conservation equations

The transport equations for an isothermal system containing nc components

and np phases can be written as:

∂

∂t

φ np∑
j=1

xcjρjsj

 + div

np∑
j=1

xcjρjvj (1)

+

np∑
j=1

xcjρj q̃j = 0, c = 1, . . . , nc.

Here, we typically define the coefficients of the equations as functions of spatial

coordinate ξ and physical state ω:
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• φ(ξ,ω) – porosity,

• xcj(ω) – the mole fraction of component c in phase j,

• sj(ω) – phase saturations,

• ρj(ω) – phase molar density,

• vj(ξ,ω) – phase velocity,

• q̃j(ξ,ω) – phase rate per unit volume.

To describe the flow of each phase, we use Darcy’s law:

vj = −
(
K
krj
µj

(∇pj − γj∇d)
)
, j = 1, . . . , np, (2)

where

• K(ξ) – permeability tensor,

• krj(ω) – relative permeability,

• µj(ω) – phase viscosity,

• pj(ω) – vector of pressures in phase j,

• γj(ω) – gravity term,

• d(ξ) – vector of depths (positive downwards).

By applying a finite-volume discretization on a general unstructured mesh

and backward Euler approximation in time, we can transform the conservation

equations into

V

(φ
∑
j

xcjρjsj)
n+1 − (φ

∑
j

xcjρjsj)
n

 (3)

−∆t
∑
l∈L

∑
j

xlcjρ
l
jT

l
j∆ψ

l

+ ∆t
∑
j

ρpxcjqj = 0.

where V is the volume of a control volume and qj = q̃jV the source of a phase.

Here we neglected capillarity, gravity and used a Two-Point Flux Approximation
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(TPFA) with upstream weighting introducing the summation over all interfaces

L connecting the control volume with another grid blocks. Based on these

simplifications, ∆ψl becomes a simple difference in pressures between blocks a

and b, where T lj is a phase transmissibility. These assumptions are not required

by the method, but help to simplify the further description.

Nonlinear unknowns

The system of equations (3) is the discretized form of flow and transport

equations for general multi-component fluid. Here, we used a Fully Implicit

Method (FIM) time approximation. It requires the (xlcjρ
l
jT

l
j∆ψ

l) flux term to

be defined based on nonlinear unknowns at a new timestep (n+1) and introduces

nonlinearity to the system of governing equations. Another source of nonlinear-

ities comes from the additional assumption on instantaneous thermodynamic

equilibrium, which is required to close the system.

Several different strategies exists for the nonlinear solution of the resulting

system, see [1], and [11] for an extensive description and examples. Here, we used

the overall molar formulation suggested by Collins et al. [3]. In this formulation,

thermodynamic equilibrium is assumed at every nonlinear iteration of solution

of Eq. 3. For the control volume at multiphase conditions with np-phases, the

following system of equations needs to be solved:

Fc = zc −
np∑
j=1

νjxcj = 0, (4)

Fc+nc
= fc1(p, T,x1)− fcj(p, T,xj) = 0, (5)

Fj+nc×np
=

nc∑
c=1

(xc1 − xcj) = 0, (6)

Fnp+nc×np
=

np∑
j=1

νj − 1 = 0. (7)

Here zc =
∑
j xcjρjsj/

∑
j ρjsj is overall composition and fcj(p, T, xcj) is the

fugacity of component c in phase j. This procedure is called a multiphase flash

[24]. For a given overall composition zc, the solution of (4)-(7) provides molar

fractions for each component xcj and phase fractions νj .
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In the overall molar formulation, the unknowns are p and zc. They fully

define the physical state ω for a given control volume. Once multiphase flash is

solved, it can provide derivatives of all properties in (3) with respect to nonlinear

unknowns using the inverse theorem, see [11] for details.

General form of governing equations

We can re-write Eq. 3 as the component of a residual vector in an algebraic

form

rc(ξ,ω,u) = a(ξ) (αc(ω)− αc(ωn)) (8)

−
∑
l

βlc(ω)bl(ξ,ω) + θc(ξ,ω,u) = 0.

Here, we defined

αc(ω) = (1 + cr(p− pref ))
∑
j

xcjρjsj , (9)

a(ξ) = V (ξ)φ0(ξ), (10)

βc(ω) =
∑
p

xcj
krj
µj
ρj , (11)

b(ξ,ω) = ∆tT ab(ξ)(pb − pa), (12)

θc(ξ,ω,u) = ∆t
∑
j

ρjxcjqj(ξ,ω,u). (13)

In addition, cr is the rock compressibility, T ab is the geometric part of transmis-

sibility (which involves permeability and the geometry of the control volume),

ω and ωn are nonlinear unknowns at the current and the previous timestep

respectively, and u is a vector of well control variables.

The operator αc is dependent on the properties of rock and fluid, and in-

dependent of spatially distributed properties (initial porosity) as in the case of

the operator a. Similarly, the divergence operator is present as a fluid-related

operator βc independent of spatial distributed properties (permeability) and the

discretization-related operator b. The same approach can be applied for the well

source/sink operator θc, but for simplicity we did not apply it here.
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Linearization methods

In this section, we describe different types of linearization using the general

algebraic form of governing equations (8).

The standard linearization approach

To solve nonlinear system (8), we need to linearize it. The conventional

approach in reservoir simulation is based on the application of the Newton-

Raphson method. In each iteration of this method, we need to solve a linear

system of equations of the following form

J(ωk)(ωk+1 − ωk) = −r(ωk), (14)

where J is the Jacobian defined at nonlinear iteration step k.

The typical approach requires a sequential assembly of the residual and the

Jacobian based on numerical approximations of the analytic relations in (9)-(13).

This may demand an interpolation in tables (for standard PVT correlations or

relative permeabilities), or a solution of the highly nonlinear equations (for

EoS-based properties). Each property evaluation requires a storage space for

both values of the property and its derivatives with respect to the nonlinear

unknowns.

Most reservoir simulation software performs numerical- [25]or hand-differentiation

[9] of each property with respect to nonlinear unknowns. In this work, we uti-

lized the ADGPRS framework [11] for the implementation of conventional and

newly proposed linearization procedures.

Operator-based linearization

Here, we propose a new strategy for the linearization of the reservoir simu-

lation problem described by Eq. 8. As can be seen from the structure of each

operator in (9)-(12), this system is based on a complex combination of different

nonlinear properties and relations. Since we fixed our space and time approx-

imation, the discretization error can be controlled only by the variation of the
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timestep size ∆t and the characteristic size of the mesh embedded in the T ab

term. Both of these errors are controlled by the operators ψ and θc.

The operators αc and βc represent the physics-based terms. The accuracy of

the nonlinear physics representation is controlled by these two operators (and a

part of θc). In conventional simulation, we introduce all the nonlinear properties

into the conservation equation as is. Next, the nonlinear solver tries to resolve all

the details of the nonlinear description, struggling sometimes with unimportant

features due to the numerical nature of the property representations.

The Operator-Based Linearization (OBL) strategy, proposed in this work,

is based on the simplified representation of the nonlinear operators αc and βc

in the parameter-space of a simulation problem. For simplicity, let us assume

in the following derivations and implementation that the system of equations

(8) describes flow and transport in a binary system. In this case, we only have

two independent variables in the overall molar formulation - pressure p and

one independent overall composition z (the second is dependent based on the

constraint z1 + z2 = 1). For an isothermal reservoir simulation, the range in

the parameter space for pressure is fully defined by the injection/production

conditions on wells. The range of z is obviously restrained by [0, 1].

In the further numerical examples, we uniformly discretize the parameter

space with a fixed number of points N . The interpolation intervals are defined as

[P1, P2, . . . , PN ] and [Z1, Z2, . . . , ZN ]. Next for p ∈ [Pi, Pi+1] and z ∈ [Zj , Zj+1]

we define

pi =
p− Pi

Pi+1 − Pi
, zj =

z − Zj
Zj+1 − Zj

, (15)

and the auxiliary relation fi,j = f(Pi, Zj). Based on pi, zj and fi,j , the inter-

polant of function Ff can be defined as

Ff (p, z) = (1− zj)[(1− pi)fi,j + pifi+1,j ] + zj [(1− pi)fi,j+1 + pifi+1,j+1], (16)
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with corresponding gradients

∂Ff
∂p

=
(1− zj)(fi+1,j − fi,j) + zj(fi+1,j+1 − fi,j+1)

Pi+1 − Pi
, (17)

∂Ff
∂z

=
(1− pi)(fi,j+1 − fi,j) + pi(fi+1,j+1 − fi+1,j)

Zj+1 − Zj
. (18)

Similarly to [17], the error between an interpolant and function can be evaluated

based on the following relation

|f − Ff | ≤
V 2
ω

4
sup
ω

∣∣∣∣ ∂2f∂ω2

∣∣∣∣ , (19)

where Vω = ||∆ωm||.

To evaluate α̂c(p, z) and β̂c(p, z) in the course of the simulation, we apply

an interpolation

α̂c(p, z) = Fαc
(p, z), β̂c(p, z) = Fβc

(p, z). (20)

This representation helps to provide a continuous description of the physics-

based operators in the proposed approach. In the examples below, the dis-

cretization of the entire parameter space of the problem is applied at the pre-

processing stage. In Fig. 1, an example of all operators parameterized at N = 64

is shown for a binary compositional system described below. For a general pur-

pose simulation, it is possible to apply this approach adaptively, following the

idea of a compositional space parametrization [18, 12]. The example of adaptive

interpolation applied to the Operator-Based Linearization is described by Khait

and Voskov [26].

In the proposed approach, the number of points in the interpolation con-

trols the accuracy of the approximation of the nonlinear physics, similar to the

accuracy of the approximation in space and time being controlled by the grid

size. The error described by (19) is similar to the truncation error in the dis-

cretization of equation (8). The nonlinear solver deals here with a simplified

representation directly expressed as a piece-wise linear combination of nonlinear

unknowns. Also, the relation (17)-(18) provides direct derivatives with respect

to nonlinear unknowns, which significantly simplifies the evaluation and assem-
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Figure 1: All operators for a binary compositional system parameterized at N = 64.

bly of Jacobians. In the next section, we provide several numerical examples to

illustrate the proposed approach.

Solution method

Once each operator in (8) is linearized, the residual vector r and the Jacobian

J can be assembled. The overall-molar formulation does not require a secondary

set of equations [3, 11] and we can apply the linear solver directly to system (14).

In this work, we employed GMRES with the two-stage Constrained Pressure

Residual (CPR) preconditioner [27] as a linear solver. For details on the linear

solution of general-purpose simulation problems, see [8]. Once the linear solution

is found, we need to update the nonlinear unknowns. Here we applied a standard

Newton-Raphson update with the maximum allowed local change in the overall

composition ∆z = 0.1.

An important part of the nonlinear solver is a timestep control. This control

may include different types of heuristics to connect timestep size changes in
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different variables from the previous timestep [28]. Here, we employ a simple

strategy:

• We start with a pre-defined minimal timestep ∆tmin;

• if the nonlinear solver converges in a given number of iterations Ni, for

the current timestep, we multiply the next timestep by a fixed ratio γ;

• if the nonlinear solver fails to converge, we divide the next timestep by

the same constant γ;

• if the maximum step ∆tmax is reached, we keep it for further simulation;

• finally, if the timestep is cut to the minimal acceptable value (10−8 days),

the simulation is stopped.

In the examples below, we use a fixed set of parameters, where ∆tmin = 10−3

days, Ni = 30, γ = 2 and ∆tmax = 10 days. The convergence of the nonlinear

solver is based on the following criterion: maxi|Ri/(αai)| < 10−5, where i is a

grid block number.

Numerical results

In this section, we compare the numerical results obtained by employing

OBL approach against the conventional linearization, used as a reference solu-

tion. The comparison covers different physical processes, modeled in 1D and

3D reservoirs.

One-dimensional homogeneous reservoir

Here we introduce two types of physical descriptions corresponding to dif-

ferent oil recovery processes: waterflooding (immiscible displacement) and gas

injection (miscible displacement). Physical properties for these simulations are

described in Appendix A.

A homogeneous 1D reservoir of 1000 m length with one injection and one

production well in the first and last grid blocks was modeled first. Constant

porosity φ0 = 0.2 and permeability k = 100 mD are used in this model. We
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apply a finite-volume discretization on a standard Cartesian grid with block size

∆x = 1, ∆y = 10 and ∆z = 10 m. For the well discretization, the Peaceman

formula [29] is used. The injection well is controlled by a water rate qw = 20

m3/day, and the production well is controlled by a bottom hole pressure pw =

100 bars.

We run a set of simulations and compare the reference solution, based on

a conventional linearization method, with results performed at different resolu-

tions of interpolation tables in the OBL approach. For simplicity, we use the

equal number of points for each unknown (p and z) with uniformly distributed

values in the range between pmin and pmax for pressure, and between 0 and 1

for the composition.

In the immiscible displacement problem, pmin = 50 and pmax = 650 were

used to cover the parameter space completely. The corresponding average maxi-

mum CFL number for this problem is equal to 13.0, which can be interpreted as

the ratio between the timestep size of the performed (Fully Implicit) simulation

and the timestep restricted by an explicit transport approximation (e.g., in the

Implicit Pressure Explicit Saturation (IMPES) method). The total number of

timesteps in this simulation is Nt = 63.

The results of the first simulation are displayed in Table 1. The number of

points used by each unknown for representation of operators αc and βc is in the

first column. The second column indicates the number of nonlinear iterations

used in the solution. The third and fourth columns correspond to errors in

pressure and composition solution, compared to the reference simulation, that

are introduced by the method. The last column shows the CPU time for each

simulation.

In Fig. 2, we present a spatial distribution of the water overall molar fraction

and pressure by the end of the simulation at time t = 500 days. In this figure

you can see the difference between the solution with conventional linearization of

nonlinear physics vs. the parametrized solutions with four different resolutions

of parameter space. The finest resolution shown in the figure contained only

16 points for each unknown. However, it manages to reproduce standard sim-
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Table 1: Results of 1D immiscible displacements simulation

Resolution Iters. Ep, % Ez, % CPU, sec

Standard 528 - - 2.0

64× 64 521 0.02 0.01 2.0

32× 32 468 0.06 0.04 1.8

16× 16 422 0.27 0.19 1.6

8× 8 365 1.04 0.75 1.4

4× 4 316 6.40 3.66 1.3

2× 2 146 51.23 22.68 0.8

ulation results quite accurately with a smaller number of nonlinear iterations.

The simulation time is not significantly different for this simulation since it is

relatively short. However, you can see the reduction in simulation time almost

proportional to the reduction in the number of nonlinear iterations.

Next, we describe the simulation results for the miscible displacement prob-

lem. Unlike in the first case, where all the fluid properties were computed based

on a simplified correlation (see Appendix A), in the compositional case, fluid-

based properties were computed based on a solution of a highly-nonlinear cubic

Equation of State (EoS). Notice that between the injection gas phase and the

initial liquid phase conditions, the solution passes through the two-phase region.

Here, the derivatives of the phase fractions xcj with respect to nonlinear un-

knowns are obtained from (4)-(7), which makes the combination of properties

even more nonlinear.

The results of the miscible displacement simulation are displayed in Table 2.

Similar to the immiscible displacement case, we used the same resolutions for

intervals in pressure and composition. However, in the case of gas injection,

the interval of pressure changes is lower and pmin = 50 and pmax = 150 bars.

Well controls were set to a gas rate q = 2000 m3/day in the injection well and a

pressure pw = 70 bars in the production well. For this case, the corresponding

average CFLmax = 11.5 and Nt = 60 timesteps performed in the simulation.

Table 2 displays the same tendency as in the immiscible displacement case.
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Figure 2: Comparison between overall molar fraction (upper) and pressure (lower) solutions
for different resolutions of parametrization in the immiscible displacement test case

With the increasing resolution, the error between the parametrized and the con-

ventional solutions decreases while the number of nonlinear iterations increases.

Notice that in this case, the conventional simulation requires significantly larger

time than any simulation based on OBL. It can be explained by a more expen-

sive linearization step in the conventional approach which requires multiphase

flash and solution of EoS to the evaluate properties and their derivatives in each

control volume at every nonlinear iteration. In contrast, the OBL approach re-

quires these calculations only in a limited number of interpolation points at

the pre-processing stage. This explains a significant difference in performance

between conventional and OBL approaches.

Displacement profiles for both overall molar fraction of the first component

(C1) and pressure are shown in Fig. 3 at time t = 500 days. Again, the finest

resolution shown in the figure with only 16 points is capable of reproducing the

conventional simulation results with the reduced number of nonlinear iterations.

In Fig. 4, the most nonlinear operator for this system β2 is shown for different
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Table 2: Results of 1D miscible displacement simulation

Resolution Iters. Ep, % Ez, % CPU, sec

Standard 448 - - 10.8

64× 64 386 0.03 0.01 2.7

32× 32 364 0.12 0.04 1.9

16× 16 343 0.65 0.16 1.6

8× 8 337 2.36 0.82 1.4

4× 4 335 3.74 3.34 1.2

2× 2 145 62.24 16.39 0.8

resolutions of the parameterized space N for two limiting pressures p = 60 and

p = 160. A full shape of the operator β2 can be seen in Fig. 1. It is clear that

at a low resolution of parameterized space (N = 2 and N = 4), the nonlinearity

of the operator is not resolved, which explains a large errors Ez in Table 2.

However, starting at N = 8, the nonlinearity of the operator reproduced quite

accurately, which drops the error Ez < 1%.

Three-dimensional heterogeneous reservoir

Here we present the simulation results for a three-dimensional test based on

the upper 5 layers of the SPE10 reservoir [30]. Buoyancy is neglected, and the

vertical displacement is driven by convective forces only. The injector well was

placed in the middle with four production wells in each corner of the model. All

wells were perforated into all layers and operated at the same controls as in the

previous model. Both porosity and permeability are highly heterogeneous in

this case (15 orders of magnitude difference) which explains the very scattered

results in Fig 5. The number of timesteps in this simulation Nt = 113. Again,

we compare the conventional solution with a solution based on an interpolation

of operators. It can be seen that the error introduced by all resolutions is

mostly located at the displacement interfaces and still provide a reasonable

approximation of the reference solution. With a finer resolutions, the difference

in the results is almost indistinguishable as can be seen in both the error map

of the solution with 8× 8 resolution and cross-section distributions.
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Figure 3: Comparison between overall molar fraction (upper) and pressure (lower) solutions
for different resolutions of parametrization in the miscible displacement test case

The performance of the full resolution study is shown in Table 3. The

improvement in the number of nonlinear iterations in a highly heterogeneous 3D

reservoir model looks similar to 1D homogeneous case. Notice that this type of

displacement is characterized by a larger average CFLmax = 223.1, which often

makes the nonlinear convergence complicated when the physical parameters are

fully refined. The improvement in CPU time is also similar and proportional to

the number of nonlinear iterations.

Similar observations can be carried out for a 3D miscible displacement case.

In this simulation, the average CFLmax = 167.6 and the number of timesteps

Nt = 214. The comparison between the reference solution and the solution,

based on interpolated operators, is shown in Fig. 6. Again, the solution based

on the coarse interpolation tables still provides a reasonable approximation for

the reference solution with an error distributed along the displacement fronts.

The full convergence study for this case is shown in Table 4. The improvement in
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Figure 4: Operator β2 for miscible displacement case at end-point pressures and different
resolutions in composition

Table 3: Results of 3D immiscible displacement simulation

Resolution Iters. Ep, % Ez, % CPU, sec

Standard 583 - - 651.6

64× 64 577 0.03 0.01 629.5

32× 32 562 0.10 0.02 604.2

16× 16 554 0.41 0.10 593.4

8× 8 529 2.54 0.47 563.4

4× 4 473 6.49 2.05 528.0

2× 2 320 101.35 13.13 362.6

simulation time for the OBL approach is still quite significant in comparison to

the conventional approach due to the reduction in expensive EoS computations

and more efficient assembly of the Jacobian.

The approach proposed here translates all the nonlinear relations into lin-

earized versions. This approximation is directly based on nonlinear unknowns,

which significantly improves the behavior of the nonlinear solver. One can bal-

ance between the more accurate representation of physics and the performance

of the nonlinear solver in the simulation. A significant improvement in simula-

tion time can be achieved due to the reduction in expensive property evaluations

in the course of simulation.
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Figure 5: Overall molar fractions: the reference solution based on conventional approach,
the error between reference solution and OBL solution with 8x8 interpolation table and cross-
section solution at several OBL resolutions for immiscible displacement simulations in reservoir
contains 5 upper layers of the SPE10 problem

Consistency of numerical solution

In this section, we demonstrate the consistency of the proposed linearization

method assuming that the original problem described by (1) has a numerical

solution. To simplify analysis, we assume that the model is limited by a 1D

reservoir with Cauchy boundary conditions on left and right side. This simplifies

the spacial discretization, which yields to the following equation in vector form

for the block i:

ri(ω) = (αi(ω)−αi(ωn)) (21)

− γ (βi(ω)(pi+1 − pi)− βi−1(ω)(pi − pi−1)) = 0,
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Figure 6: Overall molar fractions: the reference solution based on conventional approach, the
error between reference solution and OBL solution with 8x8 interpolation table and cross-
section solution at several OBL resolutions for miscible displacement simulations in reservoir
contains 5 upper layers of the SPE10 problem

where γ = ∆tT/(φ0V ).

The internal Jacobian row of the equation can be written as:

J =


γBi−1(pi − pi−1)− γβi−1 × ep

Ai − γBi(pi+1 − pi) + γ(βi + βi−1)× ep

−γβi × ep


T

(22)

where

A =

[
∂αi
∂ωj

]
, B =

[
∂βi
∂ωj

]
, i, j = 1, . . . , nc (23)

and ep = [1 0 . . . 0]T is a nc-vector. We can present the Jacobian as a sum of
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Table 4: Results of the 3D miscible displacement simulation

Resolution Iters. Ep, % Ez, % CPU, sec

Standard 1025 - - 2074.4

64× 64 951 0.06 0.01 1101.7

32× 32 922 0.30 0.03 1079.2

16× 16 869 1.40 0.11 1015.1

8× 8 807 4.28 0.47 950.1

4× 4 783 22.81 3.15 966.3

2× 2 488 70.49 6.77 612.7

two matrix

J = Jp + Jz =


−γβi−1 × ep

γ(βi + βi−1)× ep

−γβi × ep


T

+


γBi−1(pi − pi−1)

Ai − γBi(pi+1 − pi)
0


T

(24)

where Jp corresponds to the mostly elliptic part of the problem and Jz corre-

sponds to the mostly hyperbolic part. For the consistent solution of the original

problem, the matrix Jp expressed in the conventional form of βi should be

diagonally dominated. It is clear that the diagonal dominance of Jp will not

be affected by the errors in interpolation of βi since these errors will cancel

each other in diagonal and off-diagonal part. This conclusion is also valid in a

multi-dimensional case.

It is more complicated to perform the analysis of matrix Jz in general case.

In the incompressible limit, the error bound defined by (19) will guarantee that

the approximation schema is contractive for interpolation operators when the

original scheme is contractive which is sufficient for the stability. The eigenval-

ues of sub-matrices Âi and B̂i related to derivatives of composition will define

the hyperbolicity of solution. Notice, that transport in binary systems is always

hyperbolic since the only eigenvalue is always real. For systems with a larger

number of components, the simulation for a coarse resolution of parameter space

with uniform parametrization may fail to converge, as was observed by Khait

and Voskov in [26]. This can be explained by the potential loss of hyperbol-
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icity in systems with a large number of components. As the solution for this

problem, the parametriation can be adjusted to follow tie-lines which describe

the phase equilibrium in a system. As demonstrated in [12], the convexity in

tie-line parametrization provides a consistent numerical solution for a gas in-

jection problems with multiple components (up to nc = 8) even in the case of

an extremely coarse parametrization and a significant compressibility. We leave

these aspects for future investigation.

Conclusion and Discussion

We presented a new approach for the assembly of the residual and the Ja-

cobian in reservoir simulation. In this approach, the governing equations are

transformed into an operator form where each term is presented as a product of

two operators. The first type of operators is fully defined by the physical state

of the problem and usually corresponds to the most significant nonlinearities.

The second operator depends on both spatial and state variables. Next, we pa-

rameterize the first type of operators using a uniformly distributed mesh in the

parameter space while treating the second type of operators in a conventional

manner. By example of two different binary systems, we demonstrated that a

simple linear interpolation in the space of state variables (p and z) can repro-

duce the results of the reference system quite accurately even in the case of a

coarse interpolation table. The resolution study in physical space for simplified

1D homogeneous and realistic 3D highly heterogeneous models demonstrated a

good convergence for the two types of nonlinear physics related to immiscible

and miscible displacement processes. The performance of the nonlinear solver

demonstrated an improvement due to operation in a linearized physical space.

The proposed approach has several benefits. The first of them is the sim-

plicity of the application. The fully implicit approximation is a very attrac-

tive method due to its unconditional stability. However, the complexity of the

evaluation and the storage of all the nonlinear properties and their derivatives

makes development and further extension of fully implicit code quite challeng-

ing. The proposed approach simplifies the residual and the Jacobian assembly
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significantly and provides a unique opportunity for the extension of the phys-

ical model. The performance of the Jacobian and the residual assembly can

be improved and adjusted to the modern computational architectures by using

vectorization of the interpolation operator.

Another benefit of the proposed method is related to nonlinear solvers. Most

of them in reservoir simulation are based on a version of Newton’s method. The

interpolation of residual operators as an explicit function of nonlinear unknowns

provides an opportunity for better nonlinear strategies. Advanced nonlinear

solvers for the proposed formulation can be designed based on a trust-region

method in interpolation tables, similar to the approach proposed in [21] for

conventional molar formulation. Following this nonlinear strategy, the potential

problems introduced by rapid changes of gradients in the coarse tables can be

resolved as well. The fact that the physical kernel of a problem has a multi-linear

representation based on nonlinear unknowns may also help to achieve a better

preconditioning on a linear level similar to Algebraic Multi-Scale methods [31].

The general-purpose application of the introduced method requires dealing

with multi-linear interpolation in a highly dimensional space, especially for com-

positional problems. The adaptive parametrization approach, developed in [12]

for representation of compositional properties, can help in the extension of the

method for problems with a large number of components. The accuracy of the

approach can be controlled by the error estimator and adaptive resolution in pa-

rameter space. An example of a simple error estimator applied for a limited case

of property interpolation can be found in [17]. The extension to systems with

more than two-phases can be performed based on a tie-simplex parametrization

approach [32, 33].

In general, reservoir simulation is always based on the approximation of spa-

tial and temporal discretization. In a lot of cases, this approximation has only a

first order of accuracy. At the same time, the description of complex nonlinear

physics, embedded into a model, is always very precise. The current realization

of the approach, described in this paper, can be seen as a compromise between

the accuracy of the nonlinear representation of physics and the performance
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of the nonlinear solver. Finding the balance among the different coarsening

strategies is the target for the future research.
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Appendix A. Fluid and rock properties

The parameters defined in Table A1 are common for all the models. In this

table index p means water in the immiscible displacement model and gas in

the miscible displacement model. The Corey-type relative permeabilities are

Table A1: Rock-fluid parameters

Parameter Value Description

cr 10−5 1/bar rock compressibility
Spr 0 phase residual saturation
Sor 0 oil residual saturation
np 2 phase exponents
no 3 oil exponents

defined as

Spe = (Sp − Spr)/(1− Spr − Sor), (A1)

krp = (Spe)
np , kro = (1− Spe)no . (A2)

The parameters of correlations used for properties in the immiscible dis-

placement example are defined in Table A2. Here we use standard correlations

Table A2: Immiscible displacement parameters

Param. Oil Water Description

ρ0p 850 kg/m3 1000 kg/m3 surface density
cp 10−4 1/bar 10−5 1/bar compressibility
µ0p 0.8 cP 1 cP viscosity
βp 3.2 10−3 1/bar 0 viscosibility

for density and viscosity of dead-oil:

Rρ = cp(p− pref ), ρp = ρ0p(1 +Rρ +R2
ρ/2), (A3)

Rµ = β(p− pref ), µp = µ0
p(1 +Rµ +R2

µ/2). (A4)

The component mole fractions for this model are defined as xoo = xww = 1 and

xow = xow = 0. Initial saturation Sini = 0 and pressure pini = 200 bars were
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applied for the initialization of the models.

The next table defines the main parameters for the compositional model de-

scribing the gas injection case. In this model, Peng and Robinson [34] Equation

Table A3: Miscible displacement parameters

C. TcK Pc bar ω Mw g/mol ki,C1

C1 190.6 46.04 0.013 16.04 -
C8 575.0 28.79 0.312 107.0 0.037

of State was used to compute density ρp. For phase viscosity, the LBC correla-

tion [35] was applied. Phase fractions were defined based on a flash calculation

[24]. For the initialization of the compositional model, the initial composition

zini = {0.1, 0.9} and pressure pini = 100 bars was used.
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