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Abstract

When designing a numerical scheme for the resolution of conservation
laws, the selection of a particular source term discretization (STD) may seem
irrelevant whenever it ensures convergence with mesh refinement, but it has
a decisive impact on the solution. In the framework of the Shallow Water
Equations (SWE), well-balanced STD based on quiescent equilibrium are
unable to converge to physically based solutions, which can be constructed
considering energy arguments. Energy based discretizations can be designed
assuming dissipation or conservation, but in any case, the STD procedure
required should not be merely based on ad hoc approximations. The STD
proposed in this work is derived from the Generalized Hugoniot Locus ob-
tained from the Generalized Rankine Hugoniot conditions and the Integral
Curve across the contact wave associated to the bed step. In any case, the
STD must allow energy-dissipative solutions: steady and unsteady hydraulic
jumps, for which some numerical anomalies have been documented in the lit-
erature. These anomalies are the incorrect positioning of steady jumps and
the presence of a spurious spike of discharge inside the cell containing the
jump. The former issue can be addressed by proposing a modification of the
energy-conservative STD that ensures a correct dissipation rate across the
hydraulic jump, whereas the latter is of greater complexity and cannot be
fixed by simply choosing a suitable STD, as there are more variables involved.
The problem concerning the spike of discharge is a well-known problem in
the scientific community, also known as slowly-moving shock anomaly, it is
produced by a non-linearity of the Hugoniot locus connecting the states at
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both sides of the jump. However, it seems that this issue is more a feature
than a problem when considering steady solutions of the SWE containing hy-
draulic jumps. The presence of the spurious spike in the discharge has been
taken for granted and has become a feature of the solution. Even though it
does not disturb the rest of the solution in steady cases, when considering
transient cases it produces a very undesirable shedding of spurious oscilla-
tions downstream that should be circumvented. Based on spike-reducing
techniques (originally designed for homogeneous Euler equations) that pro-
pose the construction of interpolated fluxes in the untrustworthy regions, we
design a novel Roe-type scheme for the SWE with discontinuous topography
that reduces the presence of the aforementioned spurious spike. The result-
ing spike-reducing method in combination with the proposed STD ensures
an accurate positioning of steady jumps, provides convergence with mesh
refinement, which was not possible for previous methods that cannot avoid
the spike.

Keywords: Roe solver, Energy balanced, Shallow water, Source terms,
Hydraulic jump, Postshock oscillations

1. Introduction1

There is a wide variety of physical problems modelled by non-homogeneous2

hyperbolic systems of conservation laws that are dominated by source terms.3

For such problems, the treatment of the source terms when designing a nu-4

merical scheme is of utmost importance in order to provide realistic and5

physically feasible solutions. Depending on the nature of the source term,6

different numerical techniques may be required. In this work, we focus on a7

certain type of source term, called geometric source term, present in many8

physical one–dimensional (1D) problems. This kind of source makes the con-9

served quantities account for the variation in space of a geometric variable,10

which is provided in the problem. Examples of mathematical models includ-11

ing geometric source terms are, for instance, the SWE with discontinuous12

topography, which is the object of study in the present work, the 1D Euler13

equations in a duct of variable cross section [1] and 1D flow in collapsible14

vessels [2].15

Most popular methods for the resolution of homogeneous hyperbolic prob-16

lems are within the framework of finite volume Godunov’s numerical schemes17

[3], which aim to provide a numerical solution to the problem by means of18
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a prior discretization of the domain into volume cells and integration of the19

information and governing equations inside these cells. After integration,20

simple algebraic evolution equations for the conserved variables, that de-21

pend upon the same variables at a previous time step and the fluxes at cell22

interfaces, arise. The keystone in Godunov’s schemes is the computation of23

the numerical fluxes at cell interfaces, which is carried out by means of the24

resolution of the so-called Riemann Problems (RPs). RPs are initial value25

problems defined at cell interfaces, whose initial data is piecewise constant26

data given by the cell-averaged variables at each side of the discontinuity.27

They may be regarded as first order approach to the more general Cauchy28

problem [4].29

When dealing with geometric source terms, it is necessary to account30

for the jump of the geometric quantity across cell interfaces when defining31

numerical fluxes at cell interfaces. To this end, augmented solvers were intro-32

duced [5, 6, 7]. When using augmented solvers, the source term is accounted33

for in the solution of the RP as an extra stationary wave at the interface. Due34

to the presence of the new wave, two solutions appear now at each side of the35

initial discontinuity instead of having a single homogeneous solution. Aug-36

mented versions of the traditional Roe [8] (ARoe) and HLLC [9, 10] solvers37

were presented by Murillo in [11] and [12] respectively. An extense review of38

the ARoe method can be found in [13].39

If examining the system of equations in the so-called non-conservative40

form, the contribution of the source term is modelled as an additional sta-41

tionary wave at the interface, which allows to include the effect of the source42

term in the eigenstructure of the system. This way, it can be noticed that the43

presence of a jump in the geometric variable gives rise to a contact wave and44

furthermore, that Riemann invariants are not necessarily conserved across45

such a wave, as pointed out by Rosatti et al. [14]. This issue will be recalled46

when designing the numerical scheme.47

In the early stages of the design of numerical schemes for hyperbolic prob-48

lems with source terms, the main effort was put on how to modify the original49

schemes, initially designed for homogeneous equations, so that they maintain50

the discrete equilibrium between fluxes and source term under steady state.51

When considering realistic applications, such goal was translated into the52

preservation of physical steady situations of quiescent equilibrium. For in-53

stance, in the framework of the SWE, the preservation of the steadiness of54

the solution for still water at rest. Numerical schemes satisfying this property55

were called well-balanced schemes [15, 16, 17, 18, 19].56
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When considering steady states with moving water over a irregular bed57

profile, the preservation of the C-property (exact conservation property) [16]58

is also of utmost importance in order to provide an exact equilibrium between59

fluxes and source terms. Numerical methods preserving the C-property are60

able to ensure a uniform discharge under steady conditions and can be con-61

structed using flux-type definitions of the source terms [20, 6].62

We can still take the well-balanced and C-property a step further by con-63

sidering the conservation of the discrete specific mechanical energy in the64

scheme, enhancing in this way the performance of the numerical method.65

When friction is not considered in the SWE, mechanical energy is con-66

served under steady conditions in absence of hydraulic jumps. Such idea67

of energy conservation can be integrated in the numerical scheme, allowing68

the extension of well-balanced methods to exactly well-balanced methods69

[21, 22, 23, 24, 25, 26], hereafter referred to as E-schemes. Numerical meth-70

ods defined as E-schemes will always satisfy the energy conservation property71

in the discrete level, hereafter referred to as E-property. Arbitrary order aug-72

mented Roe and HLL schemes preserving the E-property, called AR-ADER73

and HLLS-ADER E-schemes respectively, were presented by the authors of74

this work in [27, 28] and applied to the SWE. As a result of preserving the75

E-property, the aforementioned schemes were able to provide the exact solu-76

tion in transient cases with independence of the grid and also to converge to77

the exact solution in transient problems at a high rate as the grid is refined.78

For transient problems in the framework of the SWE, different approaches79

can be found in the literature regarding the treatment of the source term80

contact discontinuity. Two main tendencies are observed in the literature:81

one is based on energy and mass conservation and the other one based on82

mass and momentum conservation. For instance, some authors [29, 30] claim83

that energy must always be conserved since the bed step discontinuity is a84

contact wave and Riemann invariants, namely mass and energy for the bed85

step discontinuity, are conserved across contact waves. Alcrudo et al. [31] also86

state that the use of the mass-energy approach is necessary, specially when87

the slope of the bed profile becomes infinite (e.g. in the bed step), however,88

they allow for the possibility of some dissipation across the bed step, due to89

recirculation. On the other hand, Bernetti et al. [32] hold that the relation90

among variables across a bed discontinuity must be calculated by means of91

the Generalized Rankine-Hugoniot (GRH) conditions for the full system of92

equations. As an effort to unify all the previous approaches, Rosatti et al. [14]93

proposed a novel technique, based on the GRH conditions and using energy94
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as a constraint to rule out solutions that are not physically admissible. They95

show that in nonconservative systems, such as the SWE, unlike in standard96

conservative systems, Riemann invariants are generally not constant across97

a contact discontinuity whose relevant eigenvalue is independent from the98

problem variables, and use this statement to design a numerical scheme that99

allows for the presence of dissipation due to recirculation at the bed step.100

In the present work, the authors are faithful to the original SW system101

and do not include any dissipation mechanism (e.g. recirculation at bed102

step), as the original equations do not consider friction terms. Dissipation103

will only take place in certain conditions, such as a sudden change of flow104

regime (hydraulic jump), according to the physical behavior described by the105

equations. A theoretical study on the relations among states across the bed106

step contact wave is included in the text, leading to the particular conditions107

that ensure conservation of energy across the step: the Generalized Hugoniot108

Locus (GHL) derived from the GRH must coincide with the Integral Curve109

(IC). In other words, not only the GRH conditions must be fulfilled but also110

Riemann invariants should be conserved, as the specific mechanical energy is111

one of the relevant invariants for the characteristic field of the contact wave.112

The AR-ADER and HLLS-ADER methods in [28], proposed by the au-113

thors of this work, are based on a particular energy conservative STD which114

is computed as a linear combination of a differential and integral approxi-115

mation of the integral of the source term at cell interfaces. The method was116

presented in [25] for the first time and allowed to enhance the capabilities of117

augmented solvers in the framework of the SWE. Very high order methods118

are truly desirable as they have the ability of reducing dramatically numeri-119

cal diffusion, allowing to provide predictions that would not be affordable by120

first order numerical schemes [33]. This can be done at the cost of replacing121

time derivatives by spatial derivatives. As a result, the strengths and also122

the weaknesses of the approximate solver used are enhanced.123

E-schemes in [28] have desirable properties: they provide the exact solu-124

tion for steady cases and are convergent to the exact solution with arbitrary125

order for transient cases including non-resonant and resonant cases. But126

there is still room for improvement. A recent study on the convergence of127

several schemes, including first order ARoe E-scheme, to steady shocks (hy-128

draulic jumps) [34] proved that this scheme leads to a displacement of the129

hydraulic jump. When moving to very high order, integration of the source130

term must be done using a quadrature rule that matches with the order of131

convergence of the numerical scheme. This could be seen as an opportu-132
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nity to improve numerical results regarding the positioning of the hydraulic133

jump, but contrary to intuition, the same issue observed in the first order134

scheme is repeated when using the high order methods in [28]. This issue is135

deeply studied and addressed here, proposing a STD that makes the scheme136

unequivocally identify the position of the hydraulic jump and dissipate the137

exact amount of energy across it. This technique will be referred to as selec-138

tive energy balanced formulation (SEBF) of the integral of the source term139

and is applied to the ARoe and HLLS solvers, and their high order versions.140

High order also preserves the effect of undesirable numerical shockwave141

anomalies. The utilization of high order numerical schemes in presence142

of spurious oscillations prevents numerical diffusion from dissipating those143

oscillations as fast as they would be dissipated if a first order scheme was144

used. It has been widely reported in the literature that significant numerical145

anomalies arise in presence of shock waves. An example of such problems are146

the Carbuncle [35, 36], the slowly-moving shock [37, 40] and the wall-heating147

phenomenon [41], all of them leading to spurious numerical solutions. An-148

other major point addressed in this work is the study of such anomalies in149

the framework of SWE with and without bed variations and the extension of150

a spike-reducing scheme for non-homogeneous systems that avoids the pres-151

ence of spurious oscillations due to numerical shocks. Shockwaves are typical152

solutions for nonlinear hyperbolic systems of conservation laws and their nu-153

merical treatment is of utmost importance to provide accurate solutions. As154

mentioned by Zaide and Roe [42], physical shockwaves have a finite width155

which is determined by the physical dissipation processes, however, when156

considering numerical shockwaves, a numerical width, usually much greater157

than the physical width, is enforced. This leads to the appearance of inter-158

mediate states which cannot be given a direct physical interpretation. Such159

states cannot be removed even when refining the grid, therefore we find in160

the literature that a special emphasis is put on this issue when designing a161

numerical scheme. Up to the present time, most studies have been carried162

out in the framework of Euler equations. In this work we will focus on the163

SWE.164

Some of the problems related to numerical shockwave anomalies were first165

identified by Cameron and Emery [43, 44], who proposed some improvements166

based on the addition of artificial viscosity and modification of the grid.167

Here, we focus on the slowly-moving shock problem, which is associated to168

hydraulic jumps in the SWE. The slowly-moving shock problem was first169

investigated by Roberts in [37], who defined it as numerical noise generated170
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in the discrete shock transition layer which is transported downstream. Such171

noise will be hereafter referred to as post-shock oscillations. In [37], the172

schemes of Godunov, Roe, and Osher were examined and the source of this173

error as also provided by using the Hugoniot locus. It was also observed174

that the slowly-moving shock problem only appears for systems of equations175

and not for scalar equations, where such schemes perform correctly. It is176

worth pointing out that even for non-linear systems, the slowly-moving shock177

problem does not appear if the Hugoniot curves are linear [38], as happens in178

the system in [39]. Later on, Arora and Roe [40] carried out a thorough study179

on this problem and evidenced that it can be ruinous when, for instance,180

making calculations of shock-sound interaction.181

The spike-reducing techniques presented in this work are of first order of182

accuracy and one could think that by increasing the order of the scheme the183

slowly-moving shock problem could be circumvented. However, as mentioned184

by other authors [38, 45, 46], the slowly-moving shock problem will only be185

accentuated when increasing the accuracy of the scheme. Such an increase186

of accuracy will be translated into a longer preservation of post-shock os-187

cillations as they provide a better resolution of the spurious physics. When188

using a high order scheme, the order is reduced to first order in the vicinity of189

the shock and the numerical solution within this region will behave accord-190

ing to what is expected from a first order scheme [47, 48]. Away from the191

shock, the order of accuracy is higher and therefore the spurious oscillations192

will be better resolved, preventing them from vanishing as one would desire.193

It must be borne in mind that even when using high order interpolations194

with limiting techniques, such as Total Variation Diminishing (TVD) inter-195

polations and Essentially Non-oscillatory (ENO) schemes, the slowly-moving196

shock problem is accentuated [46].197

The slowly-moving shock problem has been deeply studied for homoge-198

neous systems of equations (e.g. the Euler equations) but scarcely studied199

for systems dominated by source terms. In [46], numerical results for the200

computation of a 1D compressible flow through a divergent nozzle by means201

of different first and high order schemes were presented, showing the inabil-202

ity of all schemes to converge to the exact solution in presence of shocks.203

The authors outline that this is due to the appearance of a spike in the204

momentum and the shedding of spurious oscillations downstream. This is205

the slowly-moving shock problem in the limit when shock speed is nil. The206

SWE are analogous to the 1D compressible flow with varying area, hence the207

slowly-moving shock problem is also likely to appear.208
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Here we focus on the slowly-moving shock problem in the SWE. To this209

end, we identify the conditions for the aforementioned problem to appear by210

studying the Hugoniot locus of the SWE and by seeking slowly-moving shock-211

type waves. We notice that they are only produced when dealing with a kind212

of transcritical shocks called hydraulic jumps, characterized by a change of213

sign of the relevant eigenvalue across them. A complete description of such214

kind of waves is provided and a thorough study on the shock structure,215

comparing exact and Godunov type solutions, is carried out in phase space.216

The slowly-moving shock problem in the SWE is a well-known problem in217

the scientific community, characterized by a spike in the discharge at the cell218

where the hydraulic jump is contained. In fact, it seems that this problem219

is more a feature than a problem when considering steady solutions of the220

SWE containing hydraulic jumps. The presence of the spurious spike in221

the discharge has been taken for granted as it does not perturb the rest222

of the solution. However, when considering transient cases, it produces a223

very undesirable shedding of spurious oscillations downstream that should224

be avoided.225

When designing numerical schemes for the computation of slowly-moving226

shocks, the addition of extra artificial viscosity seems to be the most pre-227

ferred technique in the scientific community [43, 44, 37, 40, 45, 49, 50]. If we228

want to avoid extra diffusion, another suitable possibility is the use of inter-229

polation of fluxes, which avoids using the evaluation of the physical fluxes in230

the untrustworthy intermediate cells corresponding to the shock discontinu-231

ity. This idea of flux interpolation was first presented by Zaide and Roe [42],232

who proposed to find the fluxes in the intermediate cells by extrapolation233

from trustworthy neighbors. The authors claim that, by enforcing a linear234

shock structure and unambiguous sub-cell shock position, numerical shock-235

wave anomalies are dramatically reduced. It could be said that their method236

is also based on the addition of artificial viscosity, as their flux functions can237

be regarded as the traditional Roe flux plus a viscosity term. However, the238

flux interpolation functions use dissipation to control shock structure rather239

than to approach the true viscous solution and therefore they do not expand240

the shock profile [38].241

In this work, we use the approach in [42] to propose a novel spike-reducing242

flux function for the SWE with varying bed. Prior to the presentation of243

the proposed technique, the flux functions in [42] are applied to the SWE244

with flat bed, showing their spike-reducing nature. The proposed technique245

is assessed in a variety of situations, including steady and transient cases,246
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with continuous and discontinuous bed profiles, proving the expected spike-247

reducing behavior. The analogous SWE problem of the 1D nozzle problem248

in [46], which is the steady flow over a hump, is reproduced in this work,249

showing that the proposed scheme leads to a convergent solution, even when250

measured with L∞ error norm.251

The outline of the paper is next presented. In section 2, an introduction to252

nonlinear systems of conservation laws with source terms is provided and the253

definition of geometric source terms and derivation of the GRH conditions for254

such systems are recalled. In this section, the description of non-conservative255

systems and the treatment of contact waves in this kind of systems is also256

recalled following [14]. In Section 3, we briefly describe Godunov type finite257

volume schemes. Section 4 is devoted to the description of the SWE, both in258

conservative and non-conservative form, including a thorough study on the259

bed step contact wave. In this section, the numerical treatment of the source260

term in the SWE is also described and the novel SEBF discretization method261

is presented. At the end of this section, numerical results for the computation262

of steady flows are displayed. Section 5 is entirely devoted to the study263

of numerical shockwave anomalies in the SWE. A thorough description of264

the slowly-moving shock problem arising from the hydraulic jump, using265

the phase-space representation, is presented. In Section 6, numerical fixes266

addressing the aforementioned problem are studied. First, numerical results267

for the computation of several homogeneous test cases using the flux functions268

A and B in [42] are shown. Then, the novel spike-reducing technique for the269

SWE with source term is presented and a set of tests are carried out to270

evidence the capabilities of the proposed method. Finally, in Section 7 we271

present a summary of the work and the concluding remarks.272

2. Nonlinear systems of equations with source term273

The basic ideas underlying this work can be illustrated by examining274

hyperbolic nonlinear systems of equations with source terms in 1D, that can275

be expressed in integral form as276

∂

∂t

∫ x2

x1

Udx+ F|x2
− F|x1 −

∫ x2

x1

Sdx = 0 , (1)

where x1, x2 are the limits of a generic control volume and with Nλ equations.277

Such systems arise naturally from the conservation laws for certain physical278

quantities in nature. The differential formulation is obtained when assuming279
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a smooth variation of the variables and an infinitesimal width of the control280

volume, yielding281

∂U

∂t
+
∂F

∂x
= S , (2)

where U = U(x, t) ∈ C ⊂ R
Nλ is the vector of conserved quantities that282

takes values on C, the set of admissible states of U, F = F(U) is the flux283

function that represents a nonlinear mapping of the conserved quantities from284

C to R
Nλ and S is the source term, that will be considered a function of the285

conserved quantities and spatial coordinate as S = S(U, x). In this work,286

we put a special emphasis on the so-called geometric source terms, that are287

expressed as288

S(U, x) = Ss(U)
d

dx
Sg(x) , (3)

with Ss(U) a function of the conserved quantities and Sg(x) the geometric289

function that depends upon the position x and can be discontinuous [28].290

From (2), the Jacobian matrix of the convective part is defined as291

J =
dF(U)

dU
. (4)

Assuming that the convective part in (2) is strictly hyperbolic, with Nλ292

real eigenvalues λ1, ..., λNλ and eigenvectors e1, ..., eNλ , it is possible to de-293

fine the matrices P = (e1, ..., eNλ) and P−1 with the property that they294

diagonalize the Jacobian as295

J = PΛP−1 . (5)

2.1. Conservative vs non-conservative form296

For the sake of simplicity, dependency of variables upon the conserved297

quantities is hereafter omitted. A generic homogeneous conservative system298

is written as299

∂U

∂t
+
∂F

∂x
= 0 , (6)

whereU is the vector of conserved quantities and F the vector of conservative300

fluxes. It can be expressed in its quasilinear form as301
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∂U

∂t
+ J

∂U

∂x
= 0 , (7)

where the Jacobian matrix J = dF/dU can be diagonalized with Nλ eigenval-302

ues by means of Nλ linearly independent eigenvectors. The following relation303

is worth being shown304

J · em − λmem = 0 , (8)

where λm and em are the eigenvalues and right eigenvectors of matrix J.305

Non-homogeneous hyperbolic conservation laws (2) cannot be expressed306

in the strict conservative form of (6) due to the presence of the source term.307

When having geometric source terms of the type of (3), they can be expressed308

in non-conservative form as309

∂Û

∂t
+
∂F̂(Û)

∂x
+H

∂Û

∂x
= 0 , (9)

where Û ∈ C ⊂ R
Nλ+NS is the new vector of variables composed of the Nλ310

conserved variables in (2) plus additional NS variables related to the source311

term, F̂(Û) : C −→ R
Nλ+NS is the vector of conservative fluxes and H the312

matrix of non-conservative fluxes.313

In this work, we will focus on physical problems (e.g. the shallow water314

model with bed topography) with a geometric source term like (3) that only315

involves a single geometric quantity, sg(x), as follows316

Sg(x) = (0, ... , sg(x), ... , 0)
T . (10)

In this case, the new vector of variables will be constructed as Û =317

(U , sg)
T , hence NS = 1, with λs = 0, the speed of the wave associated to the318

source equal to zero as the geometric quantity does not evolve in time. This319

is depicted in Figure 1, for an arbitrary system with Nλ = 3 and a single320

geometric variable, that is NS = 1.321

Also notice that the evolution equation corresponding to the geometric322

quantity, sg, reads323

∂sg
∂t

= 0 , (11)

which stands for the conservation of this quantity in time, as it only depends324

upon the spatial position x.325
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The non-conservative system in (9) can be more compactly expressed as326

∂Û

∂t
+A

∂Û

∂x
= 0 , (12)

where A = J+H and with J = dF̂/dÛ. Relation in (8) is now written as327

J · êm − λ̂mêm = −H · êm , (13)

where λ̂m and êm are the eigenvalues and right eigenvectors of matrix A.328

Figure 1: Difference in eigenstructure between the quasi-conservative system (2) and the
non-conservative system (9).

For the sake of clarity, it is worth recalling that the system in (6) will329

be hereafter referred to as conservative system, the system in (2) as quasi-330

conservative system and the system in (12) as non-conservative system. This331

work focuses on the study of hyperbolic equations with source term, therefore332

(6) will be useless in what follows.333

2.2. Integral relations in discontinuous solutions334

It is of utmost importance to mention that there exists a certain re-335

lation between the wave speed and the jump of conserved quantities and336

fluxes across the discontinuities carried by the waves. This relation is called337

Rankine-Hugoniot (RH) condition or jump condition. When dealing with338

non-homogeneous systems of equations, such condition must be extended to339

account for the contribution of the source term, leading to the Generalized340

Rankine-Hugoniot (GRH) condition.341

Initial system in (2) is composed of Nλ waves, nevertheless, none of these342

waves are related to the source term and only conventional RH conditions343
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t

x

0

U
UL

UR

xS(t) = St

−X X

S

xS(t
∗)

t∗

Figure 2: Discontinuity propagation in a non-linear system. The integration domain for
the derivation of the Rankine-Hugoniot condition is depicted.

could be defined across them. In order to study the more general case,344

where GRH can be defined, it is necessary to express the system in (2) in its345

non-conservative form according to Equation (9). In this way, the system is346

not only characterized by the Nλ eigenvalues associated to the conservative347

fluxes but also by other NS eigenvalues, related to extra variables modelling348

the source term, as the dynamics of the source term is included, in some way,349

in the set of characteristic fields. For the sake of simplicity, NS is hereafter350

set to 1.351

The derivation of the GRH condition for the system in (2) with a geo-352

metric source term, or (9) equivalently, can be derived in two different ways.353

The first one would be using equation (2) and considering the source term as354

a Dirac delta that moves with the wave [51]. The second option, the one we355

use here, is to derive the GRH condition from the non-conservative system356

of equations in (9). It is done by integrating (9) over an arbitrary domain357

[−X,X] with X sufficiently large, as depicted in Figure 2. Notice that the358

displacement of the discontinuity represented in Figure 2 is done from t = t0359

to t = t∗ = t0 + δt, with δt of differential size. For each λm wave defining a360

characteristic field, the left and right states of the solution at each side of the361

discontinuity carried by wave λm are denoted by UL and UR, and the speed362

of the discontinuity is denoted by Sm. The integral of (9) over [−X,X] reads363
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∫ X

−X

∂Û

∂t
dx+

∫ X

−X

∂F̂

∂x
dx+

∫ X

−X

H
∂Û

∂x
dx = 0 . (14)

Considering that the integration domain does not change in time, Equation364

(14) is rewritten as365

d

dt

∫ X

−X

Ûdx+
[
F̂
]X
−X

+

∫ X

−X

H
∂Û

∂x
dx = 0 . (15)

If separating the first term on the left hand side of Equation (15) as366

d

dt

(∫ xS(t)

−X

Ûdx+

∫ X

xS(t)

Ûdx

)
=

d

dt

(
ÛL(X + Smt) + ÛR(X − Smt)

)

(16)
and taking the time derivative of the previous result, Equation (16) is rewrit-367

ten as368

d

dt

∫ X

−X

Ûdx = Sm
(
ÛL − ÛR

)
. (17)

When combining the results obtained in (15) and (17), the following condition369

for the jump is obtained370

F̂R − F̂L − D̂ = Sm
(
ÛR − ÛL

)
, (18)

where371

D̂ = −
∫ X

−X

H
∂Û

∂x
dx (19)

is a suitable approximation of the integral of the source term. Notice that372

the case D = 0 corresponds to the traditional RH condition.373

When using this formulation, it must be borne in mind that the geometric374

variable is known and is considered to only change at fixed positions, that is to375

say, discontinuities on the geometric variable remain at a fixed location. This376

helps to understand the conditions for the application of the GRH condition.377

Let us consider a discontinuity traveling at speed Sm 6= 0. Application of378

the GRH condition in (18) for the geometric variable yields379
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Sm
(
[sg]R − [sg]L

)
= 0 , (20)

according to (11). It is observed that [sg]R = [sg]L for any Sm 6= 0, which380

agrees with the aforementioned consideration saying that variations on the381

geometric variable only take place at fixed positions. This implies that382

D̂ = 0 , (21)

recovering the traditional RH condition383

FR − FL = Sm (UR −UL) (22)

for all Sm 6= 0. Notice that the vectors of fluxes and variables in (22) do not384

include the source term as its contribution is nil at this point.385

On the other hand, if Sm = 0, application of the GRH condition in (18)386

for the geometric variable yields387

0 ·
(
[sg]R − [sg]L

)
= 0 , (23)

which holds for any combination of [sg]R and [sg]L. Therefore, for Sm = 0,388

the GRH condition always applies and is written as389

F̂R − F̂L = D̂ . (24)

Here, the last component of the equation, corresponding to the source390

variable, is useless again, therefore we can rewrite (24) as391

FR − FL = D , (25)

with D̂ = (D, 0)T and due to the nature of the source in (3), the integral of392

this source can be expressed as393

D =

∫ [Sg ]R

[Sg ]L

SsdSg , (26)

with δ [Sg]
R
L the jump in the geometric variable across the wave.394

It is worth recalling that the set of right (left) states that can be connected395

to a given left (right) state by means of a discontinuous solution describe a396

curve in the phase space called Hugoniot Locus (HL), or Generalized Hugo-397

niot Locus (GHL).398
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2.3. Integral curves and Riemann invariants399

Let us consider a hyperbolic system expressed in non-conservative form as400

(9)401

∂Û

∂t
+A

∂Û

∂x
= 0 , (27)

where matrix A can be diagonalized with Nλ + NS eigenvalues by means402

of Nλ + NS linearly independent eigenvectors. For the sake of clarity, hat403

symbol in vectors standing for the extended vectors that include the equa-404

tion of the source term is hereafter ommited. Each eigenvalue λm(U), or405

eigenvector em(U) equivalently, defines a characteristic field associated to406

it, for m = 1, ..., Nλ + NS. The properties of the characteristic fields will407

provide useful information about the solution. Prior to the analysis of the408

characteristic fields, it is worth introducing the concepts of Integral Curves409

and state space. The state space, or phase plane, is the representation of a410

component of the state vector with respect to the other components. For in-411

stance, if considering a system of Nλ +NS = 2 equations, with U = (u1, u2),412

the state space representation will be given by the representation of u1-u2 in413

a Cartesian coordinate system.414

Definition 1. (Integral Curve). Let U(ξ) be a smooth curve through state415

space parametrized by the scalar ξ. This curve is said to be an Integral416

Curve (IC) of the vector field em if at each point, the tangent vector to the417

curve, dU(ξ)/dξ is an eigenvector of J(U(ξ)) corresponding to the eigenvalue418

λm(U(ξ)). When considering a particular set of eigenvectors, the integral419

curve for em field is given by420

dU(ξ)

dξ
= ν(ξ) · em(U(ξ)) , (28)

with ν(ξ) a constant parameter that depends on the normalization of the421

eigenvectors [51].422

When analyzing the solution of hyperbolic systems of conservation laws,423

it is observed that the wave pattern present in the solution is related to the424

variation of the characteristic speed, λm(U), along the integral curve of the425

vector field em. This variation can be expressed as the directional derivative426

of λm(U) in the direction of the eigenvector [51]427
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d

dξ
λm(U(ξ)) = ∇uλ

m(U(ξ)) · em(U(ξ)) . (29)

When λm(U) is constant along the integral curve, that is (29) is equal428

to zero, the characteristic field is said to be linearly degenerate. On the429

other hand, if λm(U) varies along the integral curve, which means that the430

characteristic curves are compressing or expanding, the characteristic field is431

said to be genuinely nonlinear.432

Along each integral curve, there are certain quantities that remain con-433

stant. Such quantities are called Riemann invariants.434

Definition 2. (Riemann invariant). The scalar wm is said to be a m-435

Riemann invariant when436

∇uw
m(U) · em(U) 6= 0 , ∀U ∈ C , (30)

with C ⊆ R
Nλ and where ∇u stands for the gradient with respect to the437

components of vector U.438

2.4. The solution of non-linear hyperbolic systems439

Non-linear hyperbolic systems of the type of (2) admit complex solutions440

including shocks, rarefaction waves or contact waves. For the sake of brevity,441

the latter are only described here, as they have important implications in442

the design of numerical schemes in presence of geometric source terms. A443

more detailed study on shocks and rarefactions can be found in [52]. Contact444

waves in conservative and non-conservative systems are described below:445

• Contact wave in conservative (homogeneous) systems: If λm446

defines a linearly degenerate field and the following conditions apply:447

– RH condition:448

F(UL)− F(UR) = Sm (UL −UR) (31)

– Parallel characteristic condition:449

λm(UL) = Sm = λm(UR) (32)

– Conservation of the Riemann Invariants across the discontinuity.450
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then left and right states UL and UR will be connected by a single451

jump discontinuity wave of speed Sm called contact wave.452

• Contact wave in non-conservative systems (with geometric source453

term) where the relevant eigenvalue does not depend upon U [14]:454

The presence of contact discontinuities in RPs given by non-homogeneous455

systems of conservation laws has to be taken into account when con-456

structing augmented solvers. In this work, we consider contact waves457

whose relevant eigenvalue does not depend upon U. This would be the458

case of a system like (9) where HUx includes the contribution of the459

geometric source term (3). For such case, given a initial left state, UL,460

the right state, hereafter denoted by U(ξ), does not necessarily lie on461

the integral curve, while it will always be related to the left state by462

means of the GRH condition [4, 14], as all discontinuous solutions do463

satisfy this relation. Recall that UL = U(ξ = 0).464

Let us consider the non-conservative system in (9) and assume that the465

m-th characteristic field, associated to eigenvalue λm and eigenvector466

em, is linearly degenerate. Then, the associated contact wave is given467

by468

U(x, t) =

{
UL x < Smt
U(ξ) x > Smt

(33)

with constant speed Sm = λm(U(ξ)) = λm(UL). All possible U(ξ)469

states can be found by means of the GHL. From (18) we have470

F(U(ξ))− F(UL)− Sm(U(ξ)−UL) = D . (34)

In this way, U(ξ) will satisfy the GRH condition, however, we have471

not imposed yet any condition for the conservation of the relevant m-472

Riemann invariants across the contact discontinuity, hence IC and GHL473

may not coincide. To find the condition so that such sets of states474

coincide, following [14], let us consider the differential form of (34)475

d

dξ
[F(U(ξ))− SmU(ξ)] =

d

dξ
D (35)

that can be rewritten as476
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dF

dU

dU(ξ)

dξ
− SmdU(ξ)

dξ
=

d

dξ
D . (36)

To enforce the solution to lie on both the IC and the GHL, we set477

U = Um(ξ) to be the set of states lying on the IC according to (28),478

yielding479

J
dUm(ξ)

dξ
− SmdU

m(ξ)

dξ
=

d

dξ
D , (37)

where dUm(ξ)/dξ can be substituted by em as the solution follows the480

IC, and Sm by λm, leading to481

J · em − λm · em =
d

dξ
D , (38)

that can be rewritten by means of (13) as482

−H · em =
d

dξ
D . (39)

Only when relation in (39) is satisfied, the IC and GHL coincide and483

the Riemann invariants are conserved across the contact wave. This484

property will be used later to design an E-scheme for the SWE.485

3. Finite volume discretization486

In the present framework, problems of interest are defined as initial value487

boundary problems (IVBP) that can be expressed as488





PDEs:
∂U

∂t
+
∂F(U)

∂x
= S

IC: U(x, 0) =
◦

U(x)

BC: U(a, t) = Ua(t) U(b, t) = Ub(t)

(40)

defined inside the domain [a, b]× [0, T ], with
◦

U(x) the initial condition and489

Ua(t) and Ub(t) the left and right boundary conditions. When using a first490
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order finite volume approach, the domain is discretized in computational491

cells and the conserved variables and governing equations are integrated in-492

side those cells, leading to algebraic equations that depend upon piecewise493

constant data. In this work, the following computational grid composed of494

N cells is used495

a = x 1

2

< x 3

2

< ... < xN−
1

2

< xN+ 1

2

= b , (41)

as shown in Figure 3, with cells and cell sizes defined as496

Ωi =
[
xi− 1

2

, xi+ 1

2

]
, ∆xi = xi+ 1

2

− xi− 1

2

, i = 1, ..., N (42)

x 1

2

x 3

2

x 5

2

xi− 1

2

xi+ 1

2

xN−
3

2

xN−
1

2

xN+ 1

2

. . . . . .Ω1 Ω2 Ωi ΩN−1 ΩNa b

Figure 3: Mesh discretization

Inside each cell, conserved quantities at time tn are defined as cell averages497

as498

Un
i =

1

∆xi

∫ x
i+1

2

x
i− 1

2

U(x, tn)dx , i = 1, ..., N . (43)

Following the approach proposed by Godunov, the finite volume dis-499

cretization of the system in (2) inside [xi−1/2, xi+1/2] × [tn, tn+1] is straight-500

forward derived from integration of (2) in this volume, leading to501

Un+1
i = Un

i −
∆t

∆x
[F−

i+1/2 − F+
i−1/2] , (44)

where F−

i+1/2 and F+
i−1/2 are the numerical fluxes, which are computed solv-502

ing the Riemann Problems (RPs) at the interfaces by means of a suitable503

Riemann solver.504

Analogously, equation (44) can be rewritten in terms of fluctuations, gen-505

erally denoted by δM, leading to506

Un+1
i = Un

i −
∆t

∆x
[δM−

i+1/2 + δM+
i−1/2] , (45)
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where507

δM−

i+1/2 = F−

i+1/2 − Fi ,

δM+
i−1/2 = Fi − F+

i−1/2 ,
(46)

represent the contribution of the incoming waves to the right and left edges,508

respectively. The Riemann solver selected here is called the augmented Roe509

Riemann solver (ARoe) and is detailed in Appendix A.510

4. Application to the Shallow Water Equations (SWE)511

The SWE can be expressed in matrix form as512

∂U

∂t
+
∂F(U)

∂x
= S . (47)

where513

U =

(
h
hu

)
, F =

(
hu

hu2 + 1
2
gh2

)
, S =

(
0
Sz

)
, (48)

where h is the water depth, u is the depth averaged velocity, hu the discharge514

and g is the acceleration of gravity. The source term Sz involves the variations515

in bed geometry Sz516

Sz = −ghdz
dx

, (49)

where z stands for the bed elevation.517

In order to design a suitable numerical scheme that mimics the physical518

behavior of (47), these equations must be thoroughly analyzed. In physics,519

invariance of certain quantities is usually present in systems. In the SWE,520

the mechanical energy is an example. From the analysis of (47) under steady521

regime and considering a smooth solution, we obtain that522

∂

∂x

(
u2

2g
+ h+ z

)
= 0 , (50)

where E = u2

2g
+ h + z is the specific mechanical energy. By looking at this523

quantity when designing the numerical scheme, the well-balanced property524

can be extended to the so-called energy-balanced property, which allows the525
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numerical scheme to provide the exact solution in steady cases with moving526

water.527

It is worth pointing out that, unlike in previous publications [14], the528

authors in this work are faithful to the original system in (47) and do not529

include any dissipation mechanism (for instance, across shocks), as the orig-530

inal equations do not consider extra friction terms. When neglecting shear531

stress, dissipation will only take place in certain conditions, such as a sudden532

change of flow regime, according to the physical behavior described by the533

original equations.534

For system in (47), the discretization of the source term is not a triv-535

ial task and additional information must be taken into account in order to536

construct a trustworthy numerical solution and eventually obtain an energy-537

balanced scheme. The analysis of the system of equations in non-conservative538

form is useful to this end as it provides information on the physical nature539

of the additional wave associated to the source term.540

4.1. Characteristic analysis of the SWE system in its non-conservative form541

According to Equation (9), system in (47) can be expressed in non-542

conservative form543

∂U

∂t
+
∂F(U)

∂x
+H(U)

∂U

∂x
= 0 , (51)

where544

U =




h
hu
z


 , F =




hu
hu2 + 1

2
gh2

0


 , H =




0 0 0
0 0 gh
0 0 0


 . (52)

The Jacobian matrix of the flux reads545

J =




0 1 0
c2 − u2 2u 0

0 0 0


 , (53)

and it can be used to construct the following matrix546

A = J+H =




0 1 0
c2 − u2 2u gh

0 0 0


 , (54)
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allowing to express the system in quasilinear form. The eigenvalues and547

eigenvectors that diagonalize A are given by548

λ1 = u− c, λS = 0 , λ2 = u+ c (55)

and549

e1 =




1
λ1

0


 , eS =




1
0

u2/gh− 1


 , e2 =




1
λ2

0


 . (56)

For the sake of clarity and consistency throughout the text, the charac-550

teristic field corresponding to the source variable, z, is denoted by S while551

the two other fields are denoted by 1 (for the left moving wave) and 2 (for the552

right moving wave). The nature of each characteristic field can be studied553

as pointed out in Section 2.3. Following definition in (29), for this particular554

case we have555

∇uλ
1(U) · e1(U) = −

√
g

2
√
h
,

∇uλ
S(U) · eS(U) = 0 ,

∇uλ
2(U) · e2(U) =

√
g

2
√
h
,

(57)

noticing that the S-characteristic field associated to the bed step is linearly556

degenerate as the eigenvalue λS is zero ∀U (the step is regarded as a sta-557

tionary discontinuity) while the 1 and 2-characteristic fields are genuinely558

nonlinear.559

The integral curve for each of the characteristic fields can be derived560

from equation (28). The integral curve associated to the 1-characteristic561

field, parametrized by ξ and starting at (h, hu, z) = (h∗, (hu)∗, z∗), reads562

U1(ξ) =




h(ξ)
hu(ξ)
z(ξ)


 =




h∗ + ξ

(h∗ + ξ)
[
u∗ − 2(

√
g(h∗ + ξ)−

√
gh∗)

]

z∗


 . (58)

Similarly, the integral curve for the 2-characteristic field can be calculated,563

obtaining the conjugated of (58). It is more interesting to analyze the result564

for the S-characteristic field, that reads565
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US(ξ) =




h(ξ)
hu(ξ)
z(ξ)


 =




h∗ + ξ
(hu)∗

u∗2

2g
+ z∗ − (hu)∗2

2g(h∗+ξ)2
− ξ


 , (59)

as it can be given a physical meaning. One can realize that the third equation566

in vector (59), in combination with the first and second equations, stands for567

the conservation of the specific mechanical energy across the contact wave.568

Such an idea can be more generally conveyed by saying that the Riemann569

invariants of the S-characteristic field are the discharge and the mechanical570

energy. In Table 1, the Riemann invariants for all waves are presented.571

Characteristic field 1-Riemann invariant 2-Riemann invariant
1 u+ 2

√
gh z

S hu u2

2g
+ h+ z

2 u− 2
√
gh z

Table 1: Summary of Riemann invariants for the non-homogeneous SWE.

4.2. Conservation of energy across the bed-step contact wave572

As outlined in the previous section, the S-characteristic field in the non-573

conservative SWE in (52) is a linearly degenerate field. This kind of field574

arises from the presence of the bed step and is characterized by a contact575

wave of zero celerity, λS = 0, since the bed elevation does not vary in time.576

Discontinuous solutions describing a contact wave are generally expressed577

by (33). For this particular case, the right state will be denoted by UR, hence578

(33) is rewritten as579

U(x, t) =

{
UL x < 0
UR x > 0

(60)

where UL = (hL, (hu)L, zL)
T and UR = (hR, (hu)R, zR)

T are the left and580

right states respectively. Notice that we may write (hu)L = hLuL for the581

sake of clarity and recall that this quantity represents the first Riemann582

invariant of the S-characteristic field, hence hLuL = hRuR. The second583

Riemann invariant is the specific mechanical energy, hence u2L/2+g(h+z)L =584

u2R/2 + g(h+ z)R.585

Across the contact wave in (60), the Generalized Rankine-Hugoniot (GRH)586

condition in (24) must hold for all variables. For this particular case, it reads587
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hRuR − hLuL = 0 ,
(
g
h2R
2

+ hRu
2
R

)
−
(
g
h2L
2

+ hLu
2
L

)
= D ,

(61)

with D a suitable approximation of the integral of the source term across the588

bed step589

D = −
∫ zR

zL

ghdz , (62)

that can be rewritten as590

D = −
∫ xR

xL

gh
dz

dx
dx . (63)

As outlined before, GRH condition in (61) must be ensured so that591

(60) is a weak solution of the problem, hence the right state (hR, hRuR, zR)592

must lie on the Generalized Hugoniot Locus (GHL) for a given left state593

(hL, hLuL, zL). However, this condition does not ensure the conservation of594

Riemann invariants across the contact wave. Only when condition in (39)595

holds, Riemann invariants are conserved and the IC coincide with the GHL.596

In other words, we can state that the Integral Curve (IC) coincide with the597

GHL if (61) holds and the Riemann invariants of the S-field in Table 1 are598

conserved.599

It seems clear that the election of a suitable discretization of the integral of600

the source term in (63) is crucial. In [14], a particular STD based on physical601

considerations that accounts for the dissipation of energy across the step was602

chosen. Under this assumption, they showed that equation (39) is not always603

satisfied and proved that the Riemann invariant associated to the specific604

mechanical energy was not anymore conserved across the step. In this way,605

they provided a coherent mathematical framework for the physically-based606

dissipative discretization of the bed step and they constructed a Riemann607

solver based on such ideas.608

Unlike [14], in the present work the authors do not include any additional609

energy dissipation mechanism. Here, an energy-conservative STD is sought,610

hence both the GRH condition and Equation (39) must hold, as Riemann611

invariants have to be conserved across the contact wave. Following [14],612

equation (39) is rewritten as613
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−
∫ ξ̂

0

H · eSdξ = D , (64)

where ξ̂ = hR − hL is the value of ξ on the right state. We define614

h(ξ̂) = hR u(ξ̂) = uR z(ξ̂) = zR . (65)

Our goal here is to find the expression forD satisfying (64) and to this end,615

we have to manipulate (64) using extra relations among left and right states.616

It is worth recalling that for the derivation of condition (64) (originally (39)),617

U(ξ) was imposed to lie on the IC, given by Equation (59). Here we will618

work under the same assumption, hence U(ξ̂) = UR = (hR, hRuR, zR) lies on619

the IC for a given left state. Water depth along the IC can be expressed as620

h(ξ̂) = hL + ξ̂ = hR (66)

and in the same way, the velocity along the IC is621

u(ξ̂) =
hLuL

hL + ξ̂
=
hRuR
hR

= uR , (67)

with a constant discharge622

q =hu(ξ̂) = hLuL = hRuR , (68)

also denoted by q, and a variable bed elevation along the IC623

z(ξ̂) ≡ zR = zL + hL − hR +
u2L
2g

− u2R
2g

. (69)

In the following derivation, condition (64) will be combined with the rela-624

tions between left and right states in (66)-(69), allowing to find the expression625

of D satisfying the RI and the GRH conditions. The product H · eS reads626

H · eS =




0
u2(ξ)− gh(ξ)

0


 (70)

and using (67) in (70), the latter yields627
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−
∫ ξ̂

0




0(
hLuL
hL + ξ

)2

− g(hL + ξ)

0


 dξ =




0
D
0


 . (71)

From (71), only the second component will be considered628

−
∫ ξ̂

0

(
hLuL
hL + ξ

)2

dξ +

∫ ξ̂

0

g(hL + ξ)dξ = D . (72)

Integrating (72) and using the relation hLuL = hRuR in (68) when required,629

it yields630

(
g
h2R
2

+ hRu
2
R

)
−
(
g
h2L
2

+ hLu
2
L

)
= D , (73)

with the right state laying on the IC in (59). It can be noticed that equation631

(73) coincides with the GRH condition for the conservation of momentum.632

Now, combination of equation (73) with (69) allows to derive the particu-633

lar STD, D, that under the assumed hypotheses will ensure the conservation634

of the Riemann invariants and lead to an energy-conservative scheme. For635

the sake of clarity, equation (73) is rewritten as636

δ

(
g
h2

2
+ hu2

)

L,R

= D (74)

and so is (69), the equation for the conservation of energy637

δ

(
u2

2
+ g(h+ z)

)

L,R

= 0 (75)

where δ(·)L,R = (·)R − (·)L is a difference operator. From (74), it is straight-638

forward to obtain639

(
gh̄δh+ ūδ(hu) + huδu

)
L,R

= D , (76)

where640

(̄·)L,R =
(·)L + (·)R

2
(77)
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is an average operator. For the sake of simplicity, subscript (·)L,R is dropped641

in Equations (78)-(82) as they always refer to the left and right states of the642

contact wave in this derivation. Noticing that δ(hu)L,R = hRuR − hLuL = 0,643

Equation (76) yields644

gh̄δh+ huδu = D . (78)

The equation for the conservation of energy in (75) is multiplied by h̄ and645

rewritten as646

h̄ūδu+ gh̄δh+ gh̄δz = 0 , (79)

from where the term gh̄δh can be expressed as647

gh̄δh = −h̄uδu− gh̄δz (80)

and can be inserted in (78), leading to648

D = −gh̄δz + (hu− h̄ū)δu . (81)

It is straightforward to show that (81) can be rewritten as649

D = −gh̄δz + δ(hu2)− ūδ(hu)− h̄δ

(
1

2
u2
)
, (82)

with δ(hu) = 0 according to the GRH conditions, hence650

D = −gh̄δz + δ(hu2)− h̄δ

(
1

2
u2
)
. (83)

As outlined before, weak solutions for the bed step contact wave are651

always required to satisfy the GRH condition. That is to say, for a given652

left state, the right state is calculated using (61). When the discretization653

of the source term in (63), D, is undefined, there are infinite solutions for654

the right state and only when choosing a particular discretization, the right655

state can be determined. Unlike the approach proposed in [14] where the656

authors impose a particular STD based on energy dissipation hypothesis, here657

the expression for the discretization of the source term is derived imposing658

the equivalence between GHL and IC. To this end, apart from the GRH659

condition, we require an extra condition given by (39) in order to ensure660

the constancy of Riemann invariants across the wave. Notice that such a661

condition consists of the equation for the conservation of energy provided by662

the IC.663
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4.3. Numerical discretization of the source term at cell interfaces for aug-664

mented solvers665

When using augmented solvers, such as the HLLS and ARoe solvers, nu-666

merical approximations over the integral of the source term at cell interfaces667

are required. The approximation of the spatial integral of the source term at668

cell interface i+ 1/2, that is inside [xi, xi+1], will be referred to as669

∫ xi+1

xi

−g h dz
dx
dx ≈ S̄i+1/2 . (84)

We can find in the literature different numerical approaches for Equa-670

tion (84), however, this choice is not trivial since most of such approaches671

are not able to ensure a numerical solution that converges to a physically672

based solution with mesh refinement, even when using high order schemes.673

This problem is put into evidence when looking, for instance, at the discrete674

energy level or at the shock positioning given by the numerical scheme. In675

this section, four different source term discretizations are described. Two of676

them, the differential formulation (DF) and the integral formulation (IF),677

are traditional approaches, which are easy to program and exhibit an over-678

all acceptable performance but they are not able to ensure conservation of679

energy. Moreover, the IF does not allow the numerical scheme to converge680

to the exact shock position, for steady shocks, with mesh refinement. The681

other two STDs described here, in contrast, are energy balanced discretiza-682

tions, that is to say, they allow the numerical scheme to preserve the discrete683

level of energy (when required) and to dissipate the exact amount of energy684

in presence of hydraulic jumps. Such techniques are called weighted energy685

balanced formulation (WEBF) and the selective energy balanced method686

(SEBF) and whereas the former is still not able to make the scheme con-687

verge to the exact position of the hydraulic jump under steady regime, the688

latter does, as it will be shown in the following section. Therefore, among689

the four techniques described here, only the SEBF which is presented here690

for the first time, is well suited for both energy conservation and accurate691

shock capturing.692

One possibility is to compute it considering a smooth variation of the693

variables across the interface, as694

S̄DF
i+1/2 = −gh̄δz , (85)

which will be referred to as differential formulation (DF) and where695
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h̄ =
1

2
(hi+1 + hi) , δz = zi+1 − zi . (86)

The second possibility is the so-called integral formulation (IF), derived from696

the integration of the pressure along the bottom step for a piecewise constant697

data reconstruction of the bed elevation, z. If assuming that the pressure698

distribution is hydrostatic over the step and depends only on the free-surface699

level on the side of the discontinuity where the bottom elevation is lower, the700

source term is evaluated explicitly at t = 0 as [11]701

S̄IF
i+1/2 = −g

(
hj −

|δz′|
2

)

i+ 1

2

δz′
i+ 1

2

, (87)

where z is the bed level surface, and j and δz′ are given by702

j =

{
i if δzi+ 1

2

≥ 0

i+ 1 if δzi+ 1

2

< 0
δz′ =





hi if δzi+ 1

2

≥ 0 and di < zi+1

−hi+1 if δzi+ 1

2

< 0 and di+1 < zi
δz otherwise

(88)
and d = h+ z is the water level surface.703

In cases of still water with a continuous water level surface, both (85)704

and (87) do ensure quiescent equilibrium. In this particular case hydrostatic705

forces are exactly balanced.706

In order to extend the well-balanced property for static equilibrium to707

the energy-balanced property, that ensures the exact conservation of energy708

in steady cases with moving water, it is necessary to impose extra conditions709

in the discretization of the source term. Generally, under the assumption710

of conservation of energy across the bed step contact wave, the best choice711

for the discretization of the bed source term seems to be Equation (81).712

However, such a discretization does not allow to construct an explicit scheme713

as it depends upon the intermediate states at both sides of the bed step, U−

i714

and U+
i+1.715

Under steady conditions and considering no change in flow regime across716

the RP, it is straightforward to prove that Ui = U−

i and Ui+1 = U+
i+1, hence717

(81) can be rewritten in terms of the initial data as718
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D = −g
(
hi+1 + hi

2

)
(zi+1 − zi)+

[(
(hu)i+1 + (hu)i

2

)
−
(
hi+1 + hi

2

)(
ui+1 + ui

2

)]
(ui+1 − ui) .

(89)
For the sake of clarity, notation for Equation (89) is simplified, considering719

variations and averages across the interface i+1/2, that is, the left and right720

states of the RP. By doing this, (89) is rewritten as721

D =
{
−gh̄δz + (hu− h̄ū)δu

}
i+1/2

. (90)

In shallow flows, there are physically feasible situations where energy is722

dissipated, such as hydraulic jumps. Ideally, such a shock would be consid-723

ered as a pure discontinuity where energy is suddenly dissipated, however,724

when using a finite volume formulation, the shock width is of the size of a725

cell, since the discretization considers constant values in each cell and the726

discontinuity cannot be kept anymore as a discontinuity inside a cell. As727

a consequence, energy dissipation must be imposed at the interfaces of the728

cell containing the shock, as it is not possible to explicitly carry out the729

dissipation of energy inside the cell.730

Murillo [25] proposed a novel approach for the discretization of the source731

term that allows to construct an exactly energy balanced scheme. This ap-732

proximation is based on the principle of conservation of mechanical energy733

and is only applied to the leading term, since higher order terms become nil734

in steady state when energy is conserved, as mentioned above.735

Considering the IF and DF approaches for the discretization of the source736

term, it is possible to evaluate S̄i+1/2 as a combination of them as737

S̄i+1/2 = (1−A)SDF
i+1/2 +ASIF

i+1/2 , (91)

where 0 ≤ A ≤ 1. This formulation will be referred to as weighted energy738

balanced formulation (WEBF). In order to satisfy both energy and momen-739

tum conservation under steady conditions, a value AE is defined as740

AE =
δ(hu2)− h̄δ

(
u2

2

)

SIF
i+1/2 − SDF

i+1/2

, (92)
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according to [25]. Coefficient AE can be used in (91) to ensure the conser-741

vation of energy for smooth solutions. On the other hand, when considering742

transcritical jumps, energy must be dissipated, hence the value of weight743

coefficient A in (91) is set to 1. Considering these situations, the complete744

algorithm for the calculation of A reads [25]745

A =





1 if ui+1ui > 0 and ui > 0 and |Fri+1| < 1 and |Fri| > 1
1 if ui+1ui > 0 and ui < 0 and |Fri+1| > 1 and |Fri| < 1
AE otherwise

(93)

where Fri and Fri+1 are the Froude numbers on the left and right sides of the746

interface. It is worth pointing out that AE can be straightforward obtained747

from Equation (90).748

On the other hand, instead of imposing the exact amount of dissipation749

of energy across the shock by means of a tailored STD at that point, in750

this work we propose to add an additional degree of freedom to the equa-751

tions by means of using a traditional discretization of the source term at the752

interfaces surrounding the hydraulic jump while maintaining the energy con-753

servative formulation in (90) for the rest. The differential discretization of754

the source term is chosen at those interfaces. This technique allows the nu-755

merical scheme to converge to the exact position of the shock while recovering756

the exact solution in both the subcritical and supercritical regions connected757

by the transcritical shock, with independence of the grid refinement.758

The proposed approach is next explained. We propose to use Roe celeri-759

ties, λ̃m to identify the cell containing the hydraulic jump, since it is known760

that both celerities at the left interface are positive (supercritical flow enter-761

ing the cell) while the celerities at the right interface correspond to subcriti-762

cal conditions (one negative and the other one positive). Let us consider the763

cells, Ωi, as single cells contained in the computational domain Ω such that764

Ω = {Ωi | i ∈ [1, ..., N ]}. Considering the possibility of multiple hydraulic765

jumps within the domain, we denote the set of cells containing a positive-766

flow hydraulic jump as767

D+ =
{
Ωi | Ωi ∈ Ω ∧ λ̃1i−1/2 · λ̃1i+1/2 < 0 ∧ hi−1 < hi+1

}
(94)

and the set of cells containing a negative-flow hydraulic jump as768

D− =
{
Ωi | Ωi ∈ Ω ∧ λ̃2i−1/2 · λ̃2i+1/2 < 0 ∧ hi−1 > hi+1

}
(95)
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and the set of Riemann Problems at the left and right interfaces of cells769

Ωi ∈ D+ ∪ D−
770

R1 =
{
RPi+1/2 | i ∈ N ∧ Ωi ∈ D+ ∪ D−

}
(96)

771

R2 =
{
RPi−1/2 | i ∈ N ∧ Ωi ∈ D+ ∪ D−

}
(97)

respectively, where RPi−1/2 stands for the Riemann Problem at left interface772

and RPi+1/2 at right interface. The whole set of RPs is given by773

R = R1 ∪R2 . (98)

By using the previous definitions, the approximation of the integral of the774

source term at any interface is defined as follows775

S̄i+1/2 =

{
−gh̄δz + (hu− h̄ū)δu if RPi+1/2 /∈ R

−gh̄δz if RPi+1/2 ∈ R (99)

and the method will be hereafter referred to as selective energy balanced776

formulation (SEBF).777

4.4. The ARoe scheme for the SWE778

When applied to the ShallowWater Equations, the Augmented Roe solver779

provides a linearized solution that can be straightforward expanded from the780

homogeneous case. The approximate Jacobian J̃ of the homogeneous part is781

given by [8]782

J̃i+1/2 =

(
0 1

c̃2 − ũ2 2ũ

)

i+1/2

, δFi+1/2 = J̃i+1/2δUi+1/2 , (100)

where783

λ̃1 = ũ− c̃ , λ̃2 = ũ+ c̃

ẽ1 =

(
1

ũ− c̃

)
, ẽ2 =

(
1

ũ+ c̃

) (101)

with784

c̃ =

√
g
hi + hi+1

2
, ũ =

ui+1

√
hi+1 + ui

√
hi√

hi+1 +
√
hi

. (102)
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4.5. Test case 1: steady shock capturing for the SWE with bed topography785

In this test case, steady solutions for the flow over the following bed786

elevation profile787

z(x) =





0 if x < 8
0.05(x− 8) if 8 ≤ x ≤ 12

0.2− 0.05 (x− 12)2 if 12 ≤ x ≤ 14
0 if x > 12

(103)

are computed using the ARoe solver in combination with the different dis-788

cretization techniques for the source term outlined before. The computa-789

tional domain is [0, 20] and the solution is computed for t = 600 s. CFL790

number is set to 0.45 for all cases. The discharge is imposed to 0.6 m2/s791

upstream to obtain the critical point at the cell with maximum bed eleva-792

tion, that is zmax = 0.2. Downstream, the water depth is also imposed to793

h = 0.621 m in order to generate a hydraulic jump downstream. Different794

computational grids, composed of 100, 200, 400, 800 and 1600 cells respec-795

tively, are used to compute the numerical solution.796

Numerical solutions provided by the ARoe solver when using the different797

approximations of the source term presented before, namely the differential798

formulation (DF), the integral formulation (IF), the weighted energy bal-799

anced formulation (WEBF) and the novel selective energy balanced method800

(SEBF), are presented and compared with the exact solution in Figures 4, 5.801

In Figure 4, the numerical solutions for h+ z and q computed by the ARoe802

solver in combination with all the previous techniques on two grids of 100803

and 400 cells are plotted together and compared with the exact solution. To804

study the effect of mesh refinement in the accuracy of the numerical solution805

and convergence to the exact position of the shock, a detailed plot of the so-806

lution provided by each one of the methods is presented in Figure 5 for three807

different grids composed of 200, 400 and 800 cells respectively. Numerical808

results evidence that those approximations based on the integral discretiza-809

tion of the source term, such as the energy balanced approach from [25] and810

the integral discretization itself, do not accurately capture the position of811

the shock, with independence of the grid. In any case, the former strategy812

provides much better results than the latter, as it is energy-conservative. On813

the other hand, it is evidenced that both the differential formulation and814

the selective energy balanced formulation do accurately capture the shock815

position for any grid.816
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It is also noticed that a spurious spike in the numerical discharge appears817

for all methods and what is of utmost relevance, that the amplitude of this818

spike is not reduced with mesh refinement, as observed in Figure 4.819
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Figure 4: Test case 1. Exact (−) and numerical solution for h + z (top) and q (bottom)
computed by the ARoe solver in combination with the DF (− △ −), IF (− ◦ −), SEBF
(−�−) and WEBF (− ⋄ −), using 100 (left) and 400 cells (right).

The numerical solution for the specific mechanical energy, computed using820

the aforementioned techniques in the grids of 100 and 400 cells, is presented821

in Figure 6 left and right respectively. It is observed that only when using an822

energy-balanced STD (E-scheme), such as the ARoe solver in combination823

with the SEBF or WEBF formulations, energy is conserved. On the other824

hand, when using the DF and IF formulations of the source term, energy825

is not conserved though it converges with mesh refinement. Among the826

assessed methods, the SEBF is the one providing the best performance, as827

it ensures the conservation of energy when required and accurately captures828

the position of the hydraulic jump. This method provides the exact solutions829

in all cells but the one containing the shock, with independence of the grid.830
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Figure 5: Test case 1. Exact (−) and numerical solution for h+ z computed by the ARoe
solver in combination with the DF (top left), IF (top right), SEBF (bottom left) and
WEBF (bottom right) using 200 (−�−), 400 (− ◦ −) and 800 (− △ −) cells.

5. Numerical shockwave anomalies in the SWE: computation of831

the hydraulic jump832

It has been widely reported in the literature that significant numerical833

anomalies arise in presence of shock waves. An example of such problems are834

the Carbuncle, the slowly-moving shock and the wall-heating phenomenon,835

all of them leading to spurious numerical solutions. The aforementioned836

problems have been deeply studied in the framework of Euler equations and837

some authors have proposed different numerical techniques to address them.838

Here, we will focus on the numerical anomalies present when computing839

steady and moving hydraulic jumps, which are a particular type of shock840

waves in the framework of the Shallow Water Equations (SWE). Specifically,841

our interest lies in the reduction of the spike in the discharge, reported in842

the previous section.843

The hydraulic jump occurs when a supercritical flow suddenly changes to844
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Figure 6: Test case 1. Numerical solution for the specific mechanical energy computed
by the ARoe solver in combination with the DF (− △ −), IF (− ◦ −), SEBF (−�−) and
WEBF (− ⋄ −) (top) and detail of the solution (bottom), using 100 (left) and 400 (right)
cells.

subcritical conditions, generating a steep free surface elevation where intense845

mixing takes place and a large amount of mechanical energy is dissipated.846

Mathematically, hydraulic jumps are modelled by a discontinuity correspond-847

ing to a shock wave and the relation between the states at each side of the848

discontinuity is provided by the RH conditions.849

5.1. Hugoniot locus of the hydraulic jump850

To understand the mathematical treatment of the hydraulic jump and851

the numerical anomalies arising from such a wave, it is worth studying first852

the analytical solution of this type of wave under the simplest conditions,853

that is over flat bed. From Rankine-Hugoniot (RH) conditions, all possible854

values connecting the left and right states can be determined and represented855

in phase space as (h(ξ), hu(ξ)) by means of the so-called Hugoniot locus856
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U(ξ) =

(
h(ξ)
hu(ξ)

)
=




hL + ξ

(hu)L + ξ

(
uL ±

√
ghL + 1

2
gξ
(
3 + ξ

hL

))

 ,

(104)
where ξ = h−hL, with h the independent variable used for the parametriza-857

tion. From (104), we notice that two families of curves are possible, denoted858

by Ψ1 and Ψ2, which are associated to the 1-wave and 2-wave respectively.859

Such curves are defined by860

Ψ1(ξ) =

(
ψ1
1(ξ)

ψ1
2(ξ)

)
=




hL + ξ

(hu)L + ξ

(
uL −

√
ghL + 1

2
gξ
(
3 + ξ

hL

))

 ,

(105)

Ψ2(ξ) =

(
ψ2
1(ξ)

ψ2
2(ξ)

)
=




hL + ξ

(hu)L + ξ

(
uL +

√
ghL + 1

2
gξ
(
3 + ξ

hL

))

 .

(106)
Figure 7 depicts different curves obtained for different left-reference states861

using (105) in red and (106) in blue, for Ψ1,Ψ2 ∈ R
+ × R

+. Also the curve862

hu(h) =
√
gh3 that represents the transition between supercritical (white863

background) and subcritical region (green background) is depicted in the864

figure. For any given set of two points laying on a curve, a weak solution of865

the PDEs in the form of a shock wave is mathematically possible. It is worth866

pointing out that further representations of the aforementioned curves will867

be carried out by the parametrization of ψm
2 , which is the discharge hu, in868

terms of ψm
1 , which is h, so that their representation in the phase space h, hu869

is straightforward.870

It must be borne in mind that not every choice of subcritical state that871

is connected to a given supercritical state represents a hydraulic jump. For872

instance, let us consider a left supercritical state given by hL = 0.85 and873

huL = 3.411764705882353 and let us find two possible right states connected874

to it, each of them laying on each branch of the Hugoniot locus. This is875

depicted in Figure 8, where the original left state is denoted by F, the right876

state lying on the 1-curve, Ψ1, is denoted by G and the right state lying on877
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Figure 7: Phase space (h, hu) ∈ R
+ × R

+ with the subcritical region depicted in green
background and the supercritical region in white background, showing the Hugoniot locus
Ψ1 in red and Ψ2 in blue, obtained for different left-reference states using (105) and (106)
respectively.
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Figure 8: Phase space (h, hu) ∈ R
+ × R

+ with the subcritical region depicted in green
background and the supercritical region in white background, showing the Hugoniot locus
Ψ1 in red and Ψ2 in blue.

the 2-curve, Ψ2, is denoted by J. The entropically inadmissible region of the878

curves has been represented by dashed line. It is observed that both G and J879
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lie on the subcritical region of the phase plane and they are both entropically880

admissible, however, only the combination of states F–G leads to a hydraulic881

jump, because G, unlike J, has a higher water depth than F and, what is882

decisive in this case, wave celerities of F and G have opposite sign. More883

generally, we can define an hydraulic jump as:884

Definition 3. (Hydraulic jump). Let the following discontinuous solution885

U(x, t) =

{
(h, hu)L x < 0
(h, hu)R x > 0

(107)

be a weak solution of the SWE system, where (h, hu)L and (h, hu)R are two886

different states laying on Ψm and satisfying the entropy condition λm(UL) >887

Sm > λm(UR), with Sm the speed of the jump, that undergoes a flow transi-888

tion as FrL < 1 < FrR or FrR < 1 < FrL. Solution in (107) is termed as889

hydraulic jump if and only if λm(UL) > 0 > λm(UR).890

Notice that, according to the previous definition, hydraulic jumps admit891

that Sm be nil, hence they are the only shock-type solution for the SWE that892

can be stationary at a fixed position.893
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Figure 9: Phase space (h, hu) ∈ R
+ × R

+ with the subcritical region, Csb, depicted in
green and the supercritical, Csp, region in white, showing the Hugoniot locus Ψ1 in red
and Ψ2 in blue and the corresponding intersection.
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From the analysis of the Hugoniot locus considering h, hu > 0 and departing894

from a left reference point located in the supercritical region, we notice the895

following points:896

• Curve
√
gh3 is monotonically increasing and divides the space R+×R

+
897

in two sets, Csp and Csb, as follows898

Csp =
{
(h, hu) ∈ R

2 |hu >
√
gh3 ∧ h > 0

}
, (108)

Csb =
{
(h, hu) ∈ R

2 |hu <
√
gh3 ∧ h > 0

}
, (109)

such that Csp ∪ Csb ∪ Ccr = R
+ × R

+, where899

Ccr =
{
(h, hu) ∈ R

2 |hu =
√
gh3 ∧ h > 0

}
. (110)

• Curve
√
gh3 is monotonically increasing.900

• Curve ψ1
2 has a global maximum at hmax such that (hmax, humax) ∈901

R
+ × R

+.902

• Curve ψ2
2 is monotonically increasing in R

+ × R
+.903

• Curves
√
gh3 and ψ1

2 intersect at a single point denoted by (h∗, hu∗) ∈904

R
+ × R

+, with hu∗ < humax.905

• Curves
√
gh3 and ψ2

2 intersect at a single point denoted by (h∗∗, hu∗∗) ∈906

R
+ × R

+.907

• We can define two sets of h states, Hsp,1 = (0, h∗) and Hsb,1 = (h∗, h+),908

with h+ the value of h for which Ψ1 = (h+, 0), such that Ψ1 ∈ Csp ∀h ∈909

Hsp,1 and Ψ1 ∈ Csb ∀h ∈ Hsb,1.910

• We can define two set of h states, Hsp,2 = (h−, h
∗∗) and Hsb,2 =911

(h∗∗,∞), with h− the value of h for which Ψ2 = (h−, 0), such that912

Ψ2 ∈ Csb ∀h ∈ Hsp,2 and Ψ2 ∈ Csp ∀h ∈ Hsb,2.913

Definitions introduced in the previous statements are depicted in the top-left914

plot in Figure 10. From the previous points, the following observations are915

worth being mentioned:916
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Figure 10: Hugoniot locus Ψ1 in red and Ψ2 in blue for the left state (h, hu) = (0.5, 3),
showing three possible solutions in the form of a hydraulic jump: a steady jump (top-right),
a right-moving jump (bottom-left) and a left-moving jump (bottom-right).

• According to the two last points stated before, hydraulic jumps with917

hu > 0 only take place when Ψm ∈ Csp ∀h ∈ Hsp,m and Ψm ∈918

Csb ∀h ∈ Hsb,m, which is only possible for Ψ1. Hence, any solution919

for RP(UL,UR), with UL = Ψ1(0) and UR = Ψ1(h − hL) ∀h ∈920

Hsb,1, ∀hL ∈ Hsp,1, evolves as a hydraulic jump.921

• There exist two points hL ∈ Hsp,1 and hR ∈ Hsb,1 such that ψ1
2(0) =922

ψ1
2(hR − hL) ≡ (hu)steady and ψ1

2(0), ψ
1
2(hR − hL) ∈ (0, hu∗) ⊂ R

+.923

Such points correspond to the left and right states of the hydraulic924

jump under steady conditions with a constant discharge of (hu)steady.925

This case is depicted in Figure 10 (top-right plot)926
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• There exist two other points hL ∈ Hsp,1 and hR ∈ Hsb,1 such that927

ψ1
2(0) ∈ (0, humax) ⊂ R

+ and ψ1
2(hR − hL) ∈ (0, hu∗) ⊂ R

+. If ψ1
2(0) <928

ψ1
2(hR − hL) a right-moving transient shock will appear as depicted929

in Figure 10 (bottom-left plot). If ψ1
2(0) > ψ1

2(hR − hL), a left-moving930

transient shock will appear as depicted in Figure 10 (bottom-right plot).931

• Shock speed is equal to the slope of the magenta straight line in Figure932

10, that is S = tan θ.933

• The previous statements apply to ψ2
2 in the region R

+ × R
− when934

considering hu < 0.935

5.2. Analytical study and comparison of the exact solution for 2 and 3-states936

hydraulic jumps.937

Prior to analyzing the numerical solutions of Godunov’s scheme to the938

hydraulic jump, it is worth studying the analytical solutions to this problem,939

which will help to understand the nature and characteristics of the numerical940

(discrete) solution to it. It is well known that an intermediate state appears in941

the numerical solution provided by Godunov’s scheme, with independence of942

the solver [42]. The presence of this intermediate state, hereafter denoted by943

UM , is not of any physical relevance as it provides an unrealistic estimation944

of the average discharge in the intermediate cell (spike) which does not match945

the constant value of discharge. However, when using conservative schemes946

the intermediate value may be useful to compute a rough estimate of the947

shock position. The position of the shock inside the cell can be computed948

imposing conservation of mass as949

xS =
hM − hR
hL − hR

, (111)

where xS ∈ [0, 1] represents the normalized position of the shock (where950

0≡left interface, 0.5≡middle position and 1≡right interface) [42].951

As a first approach and before getting into the numerical issues concern-952

ing hydraulic jumps, let us compare analytically the solution for the ideal953

steady hydraulic jump (pure discontinuity) with another solution for the954

steady hydraulic jump that includes an intermediate state, which resembles955

the discrete solution provided by Godunov’s scheme. Both solutions are weak956

solutions of the equations and they are both valid. Whereas the former is957

characterized by two states, namely UL and UR, the latter is given by UL,958
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UM and UR. Moreover, the latter does not experience a sudden transition of959

flow regime, hence it cannot be considered a pure, or ideal, hydraulic jump.960

Figure 11: Hugoniot Locus and sketch of the analytical solutions for a 2-state and 3-state
hydraulic jumps.

Let us consider first the ideal hydraulic jump composed of two states. This961

solution consists of a supercritical right-moving steady flow that suddenly962

decelerates through a pure discontinuity to subcritical conditions, as depicted963

schematically in Figure 11 (top-right). The Hugoniot locus that connects the964

left and right states of the jump, Ψ1, is depicted in Figure 11 (left), showing965

that such states are located at the intersection of the Hugoniot Locus with966

the curve of constant discharge (hu)L = (hu)R, ensuring the steady regime.967

On the other hand, when seeking a weak solution of the equations that968

includes an intermediate state, UM , as depicted in Figure 11 (bottom-right),969

we need to look for this additional state on the Hugoniot curve. According to970

Figure 11 (left), the intermediate state (hM , (hu)M) (yellow point) will lie on971

Hugoniot Locus and is connected to the left and right states (green points)972

through this curve. From the previous observations, we realize that only a973

linear Hugoniot Locus would ensure a constant discharge in the intermediate974

state [42].975

If a curve of the family of976

Ψ̆(ξ) =

(
h(ξ)

(hu)steady

)
(112)

was considered in state space, with (hu)steady ∈ R
+ for a right-moving flow,977

a constant discharge for the intermediate state would be possible. Only if978
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Ψ1 was of the type of Ψ̆, constant discharge would be ensured across the979

intermediate cell. This means that we would have a linear Hugoniot [42].980

This concept can be extended to moving hydraulic jumps by examination981

of Figure 10 (bottom left). Let us redefine the states denoted in the plot982

by (h′, hu′) and (h′′, hu′′) as left state (hL, huL) and right state (hR, huR),983

respectively. The linear Hugoniot must lie on the line depicted in magenta,984

with slope θ = (hR − hL)/(huR − huR) and can be parametrized in terms of985

xS in (111). Hence, it can be expressed as986

Ψ̆(xS) =

(
h(xS)
hu(xS)

)
, (113)

where h(xS) = xS(hR − hL) + hL,987

hu(xS) = huL + θh(xS) (114)

and xS ∈ [0, 1]. Note that parametrization Ψ̆(ξ) is straighfoward as ξ =988

(hR − hL)xS.989

Considering again the steady case described above and depicted in Figure990

11, we can observe that the exact Hugoniot is neither linear nor monotone991

and ψ1
2 has a global maxima humax at hmax ∈ [hL, hR] ⊂ R

+ therefore,992

for any hM ∈ [hL, hR] ⊂ R
+, we have that (hu)M ≥ (hu)L = (hu)R ≡993

(hu)steady. This can be observed in Figure 11 (bottom-right), where a spike994

in the discharge appears.995

5.3. Properties of the intermediate state in discrete Godunov-type solutions996

Up to this point throughout this section, we have only considered exact997

solutions to the hydraulic jump. Theoretically, when considering the exact998

solution, the presence of an intermediate constant state UM = (hM , (hu)M)999

is not stable, that is, it cannot be kept under steady conditions. The reason1000

for this is that both jumps (left to middle and middle to right) have non-zero1001

wave velocities of opposite sign, hence both jumps would converge to form1002

a unique jump. This behavior, shown in Figure 12, is only present in the1003

exact solution. On the other hand, when considering a discrete solution in1004

a computational grid, both waves could be kept at a stationary position (at1005

the cell interfaces of the intermediate cell) and the intermediate cell could1006

keep the intermediate value in the steady regime. The reason for this is that1007

the numerical fluxes at the interfaces of such a cell would coincide, that is1008
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Figure 12: Initial condition considering an intermediate state (red), transient evolution of
the discontinuities UL-UM and UM -UR (black) and final steady solution (blue).

F−

i+1/2 = F+
i−1/2 , (115)

when considering the numerical resolution of the problem by means of FV1009

Godunov’s scheme in (44).1010

Figure 12 depicts the contrasting behavior of the 3-state hydraulic jump1011

when considering the discrete (top) and exact (bottom) solution. The initial1012

condition is represented by red dotted line, the final solution (when steadi-1013

ness is achieved) is represented by blue dotted line and the solution at an1014

arbitrary time before reaching the steady state is represented by black solid1015

line. It can be observed that the initial condition is maintained in the dis-1016

crete solution, where the intermediate state, UM , has been defined inside the1017
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cell [xi−1/2, xi+1/2].1018

There is another important issue worth being mentioned. Only when the1019

intermediate state coincides with the left or right states, the approximate1020

solver would provide the exact solution. Hence, only when the shock position1021

is located exactly at the interface, the approximate solver provides the exact1022

solution [53, 54]. Moreover, it must be borne in mind that the intermediate1023

state, UM , does depend on the Riemann solver used for the computation of1024

the fluxes, and will only coincide with the value of UM provided by the ana-1025

lytical Hugoniot locus when using an exact solver. A exhaustive comparison1026

of the numerical performance in shock-capturing of different flux functions1027

in the framework of Euler equations can be found in [55].1028

6. Flux fixes for the computation of the hydraulic jump1029

In this section, some spike-reduction numerical techniques based on flux1030

interpolation are recalled and applied to the ShallowWater Equations (SWE).1031

This idea of flux interpolation was first presented by Zaide and Roe [42],1032

who proposed to find the fluxes in the untrustworthy intermediate cells by1033

extrapolation from trustworthy neighbors and presented two new flux func-1034

tions. The first one, named by the authors flux function A, was constructed1035

based on the flux-wave approach, by computing the fluctuations in the inter-1036

polated fluxes across each wave. The second one, called flux function B, is1037

based on the classical Roe solver and relies on conserved variables to deter-1038

mine the jumps across each wave and the contribution of each wave to the1039

numerical flux. The authors claim that, by enforcing a linear shock structure1040

and unambiguous sub-cell shock position, numerical shockwave anomalies1041

are dramatically reduced.1042

Zaide and Roe [42] proposed to compute the fluxes in the intermediate1043

cells by extrapolation from neighboring cells, hence a more general idea of1044

a homogeneous flux function of the type F⋆
i+1/2 = F⋆

i+1/2(Ui−m, ...,Ui−n)1045

was introduced, rather than a Riemann solver that computes the numerical1046

flux as F⋆
i+1/2 = F⋆

i+1/2(Ui,Ui+1), with m and n two integer numbers. The1047

authors in [42] outline that the conserved variables must be trusted since this1048

is the only way to ensure conservation, however, the flux values should not1049

be trusted.1050

Prior to the construction of the novel numerical fluxes F⋆
i+1/2, physical1051

fluxes (which are the cell centered fluxes, Fi) are used to construct a novel1052
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approximation of the fluxes in every cell. Cell-centered fluxes, Fi, are re-1053

computed by means of extrapolation from neighboring cells. At every cell,1054

the new flux is calculated as1055

F̌i =
1

2
(Fi+1 + Fi−1)−

1

2
J̃i−1,i+1(Ui+1 − 2Ui +Ui−1) , (116)

with J̃i−1,i+1 = J̃i−1,i+1(Ui+1,Ui−1) a Jacobian Roe’s matrix,1056

Fi+1 − Fi−1 = J̃i−1,i+1(Ui+1 −Ui−1). (117)

To construct those more general numerical fluxes, two alternatives, named1057

flux function A and flux function B, are proposed in [42]. Such alternatives,1058

as well as the traditional Roe flux, are detailed below:1059

• Traditional Roe homogeneous flux:1060

The traditional Roe homogeneous flux (B.8) in Appendix B is used. It1061

is constructed using Roe’s matrix J̃i+ 1

2

,1062

F⋆,Roe
i+1/2 =

1

2
(Fi + Fi+1)−

1

2
| J̃i+1/2 | δUi+1/2 , (118)

evaluated conventionally as J̃i+ 1

2

= J̃i+ 1

2

(Ui,Ui+1).1063

• Flux function A:1064

The extrapolated fluxes, F̌i, computed by (116), can be directly pro-1065

jected onto the Jacobian’s eigenvectors basis and upwinded according1066

to the propagation velocities of the Jacobian. The resulting numerical1067

flux is constructed using (B.8), yielding [42]1068

F⋆,A
i+1/2 =

1

2

(
F̌i + F̌i+1

)
− 1

2
sgn

(
J̃i+ 1

2

)
δF̌i+1/2 . (119)

• Flux function B:1069

This new flux function is computed by means of a novel Roe’s matrix1070

that spans a wider set of cells, instead of just the two cells at each side1071

of the discontinuity. It reads [42]1072

F⋆,B
i+1/2 =

1

2

(
F̌i + F̌i+1

)
− 1

2
| J̄i+1/2 | δUi+1/2 , (120)
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with J̄i+1/2 = J̄i+1/2(Ui−1,Ui+2) Roe’s matrix computed with cells1073

i− 1 and i+ 2.1074

6.1. Test case 2: assessment of flux functions A and B for the SWE1075

In order to test flux functions A and B in the framework of the SWE1076

and compare their performance with the traditional homogeneous Roe flux,1077

the following numerical experiment is proposed. It consists of a RP with1078

initial data hL = 0.5, (hu)L = 3, hR = 1.6 and (hu)R = 3.28787832816, that1079

generates a moving shock wave with speed S = 0.26171. The computational1080

domain is set to [0, 450], with the discontinuity located at x = 225. Regarding1081

the numerical discretization, the computational domain is divided in 900 cells1082

of size ∆x = 0.5 and the CFL number is set to 0.8. The simulation time is1083

25 s.1084

This test case is computed using the traditional Roe flux in (118) as well1085

as the flux functions A and B in (119) and (120) respectively. The numerical1086

solution for the discharge provided by such methods is plotted in space and1087

time in Figure 13. Complementary results for the study of the spike in the1088

numerical solution are presented in Figure 14, where the evolution in time1089

of cell average values are depicted for the 8 leftmost cells on the right hand1090

side of the RP (e.g. the first cell on the right of the initial discontinuity is1091

depicted in blue, the second one in cyan and so on).1092

From figures 13 and 14, it is clearly evidenced that whereas the tradi-1093

tional Roe solver leads to a high spike in the discharge, which generates a1094

shedding of spurious waves, when using the novel flux functions the spike is1095

dramatically reduced and hence the shedding of such waves. A closer exam-1096

ination of the numerical results evidences that flux function A provides the1097

best performance concerning the reduction of the spike, on the other hand,1098

flux function B does also reduce this anomalous behavior at the cell where1099

the shock is contained but still leaves a small spike behind it. This particu-1100

larity of flux function B is clearly noticed in Figure 14 (bottom) where the1101

spikes appear to be shifted to the left, which means that it occurs on the1102

right side of the wavefront, as observed in Figure 13 (bottom).1103

In Figure 15 (left), the numerical solutions provided by the traditional1104

Roe solver, the solver using flux function A and the solver using flux function1105

B is depicted at t = 25 s in purple, green and magenta, respectively. It is1106

observed that both the Roe flux and the flux A capture the exact position of1107

the shock whereas the flux B underestimates the shock speed, hence providing1108

a slightly shifted, though convergent, shock position.1109
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The analysis of the properties of the novel flux functions from [42] can be1110

completed by plotting the numerical results in the phase space. Figure 151111

(right) shows the exact and approximate Hugoniot locus for the intermediate1112

states between the left and right states of the RP. The exact Hugoniot locus is1113

represented by a red continuous line, the approximate locus for the traditional1114

Roe flux by purple dots, the approximate locus for flux function A by green1115

dots and that for flux function B by magenta dots. As outlined in [42], the1116

optimal locus that prevents the numerical solution from exhibiting any spike1117

and spurious waves is the straight line between the left and right state. It1118

can be observed in Figure 15 (right) that only flux function A achieves this1119

requirement and therefore it is the preferred technique for the reduction of1120

the spike in the SWE.1121

6.2. Extension of the flux function A to the SWE with source term1122

It is evidenced that flux function A is a better choice than B for the1123

resolution of moving hydraulic jumps as it provides a better estimate of the1124

shock speed. Previous numerical experiments do not include the presence of1125

source terms, but most realistic cases are dominated by the action of those1126

sources. In this section, the extension of flux function A to non-homogeneous1127

equations is carried out by means of a suitable correction of the interpola-1128

tion technique that ensures a virtually exact equilibrium between fluxes and1129

source term. In addition to this, the numerical fluxes at the interfaces must1130

be rewritten to account for the source term.1131

First, it is time to find out which is the most suitable correction of the flux1132

extrapolation to reduce the spike of discharge in both transient and steady1133

cases. Following a similar procedure than in [42], the idea is to find an ap-1134

proximation of such fluxes that ensures the exact equilibrium between fluxes1135

and source term across cell interfaces under steady conditions, while keeping1136

the idea of having an interpolated flux in the cell contanining the shock in1137

order to prevent the scheme from using the equilibrium flux, which leads to1138

the spike. To this end, it is first required to find the cell where the shock is1139

contained. We propose to use Roe celerities, λ̃m to unequivocally locate such1140

a cell, since it is known that both celerities at the left interface are positive1141

(supercritical flow entering the cell) while a combination of celerities corre-1142

sponding to subcritical conditions (one negative and the other one positive)1143

is identified at the right interface.1144

Let us consider the cells, Ωi, as single items contained in the domain Ω1145

such that Ω = {Ωi | i ∈ [1, ..., N ]}. Considering the possibility of multiple1146
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Figure 13: Test case 2. Numerical solution provided by the traditional Roe solver (top-
left) as well as the flux functions A (top-right) and B (bottom) proposed in [42] within
the time interval [0, 6] s.
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Figure 14: Test case 2. Evolution in time of cell average values for the 8 leftmost cells
on the right hand side of the RP using the Roe flux (top-left), flux function A (top-right)
and flux function B (bottom).
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Figure 15: Test case 2. Left: numerical solution using the Roe flux (− ⋄ −), flux function
A (−△−) and flux function B (−▽−) at t = 25 s. Right: exact Hugoniot locus and
approximate locus for the Roe flux, flux function A and flux function B.
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hydraulic jumps within the domain, we denote the set of cells containing a1147

positive-flow hydraulic jump as1148

D+ =
{
Ωi | Ωi ∈ Ω ∧ λ̃1i−1/2 · λ̃1i+1/2 < 0 ∧ hi−1 < hi+1

}
(121)

and the set of cells containing a negative-flow hydraulic jump as1149

D− =
{
Ωi | Ωi ∈ Ω ∧ λ̃2i−1/2 · λ̃2i+1/2 < 0 ∧ hi−1 > hi+1

}
. (122)

Once the hydraulic jumps are found, the following cell-centered fluxes are1150

proposed in order to generate an spike fix1151

F̂i =

{
Fi if Ωi /∈ D+ ∪ D−

F̌i − (1− xS,i)S̄i−1,i+1 + S̄i−1/2 if Ωi ∈ D+ ∪ D−
(123)

with F̌i the interpolated flux in (116), S̄i−1,i+1 a centered integral of the1152

source term, that can be computed computed as1153

S̄i−1,i+1 =

(
0

−g hi−1+hi+1

2
(zi+1 − zi−1)

)
, (124)

S̄i−1/2 the integral of the source term across the left interface, that can be1154

computed as1155

S̄i−1/2 =

(
0

−g hi−1+hi

2
(zi − zi−1)

)
. (125)

Parameter xS,i accounts for the normalized position of the shock inside the1156

cell, here approximated by1157

xS,i =
hi − hi+1

hi−1 − hi+1

, (126)

if considering that the intermediate state is a linear combination of the left1158

and right states (linear Hugoniot)1159

Ui = xS,iUi−1 + (1− xS,i)Ui+1 , (127)

where Ui−1, Ui and Ui+1 are any arbitrary left, middle and right states1160

defining a hydraulic jump as depicted in Figure 12.1161

53



It is worth pointing out that the corrected flux in (123) provides an ap-1162

proximation of the cell-centered flux in the shock cell that converges to the1163

exact steady flux, unlike traditional methods, that only converge to an equi-1164

librium flux (different to the exact flux) that allows the steadiness of the1165

solution. The reason why the proposed technique does not always ensure1166

the exact flux with independence of the grid is due to the assumption we1167

make for the definition of (123): the intermediate state (at cell Ωi where the1168

shock is located) lies on a linear Hugoniot between the left and right states,1169

according to (127), which is not completely true under the presence of a bed1170

step source term. The exact linear Hugoniot would be expressed instead as1171

Ui = xS,iU
−

i + (1− xS,i)U
+
i , (128)

where U−

i and U+
i are the left and right intermediate states at the interfaces1172

of cell Ωi. In spite of this, the approximation in (127) provides a trustworthy1173

approximation of the shock position when solving for xS,i and what is of most1174

importance, it converges to the exact position as the grid is refined, when1175

dealing with a smooth bed topography.1176

It is straightforward to show that (123) provides the exact flux under1177

steady conditions by considering the shock located at cell ΩM and applying1178

steady state conditions to the second equation of (123), as follows1179

F̂i =
1

2
(Fi−1+Fi+1)−

1

2
J̃i−1,i+1(Ui+1−2Ui+Ui−1)−(1−xS,i)S̄i−1,i+1+S̄i−1/2 ,

(129)
where substitution of Ui using (127) yields1180

F̂i =
1

2
(Fi−1+Fi+1)+

1

2
(1−2xS,i)J̃i−1,i+1(Ui+1−Ui−1)−(1−xS,i)S̄i−1,i+1+S̄i−1/2 .

(130)
From the definition of Roe’s Jacobian matrix, we know that J̃i−1,i+1(Ui+1 −1181

Ui−1) = Fi+1 − Fi−1 and under steady conditions Fi+1 − Fi−1 = S̄i−1,i+1.1182

Substitution of this term into (130) reads1183

F̂i =
1

2
(Fi−1+Fi+1)+

1

2
(1−2xS,i)S̄i−1,i+1−(1−xS,i)S̄i−1,i+1+ S̄i−1/2 , (131)

Now, making use of Fi+1 − Fi−1 = S̄i−1,i+1 again, it does lead to1184
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F̂i − Fi−1 = S̄i−1/2 , (132)

the GRH condition.1185

Finally, the expression for the numerical fluxes at cell interfaces is pre-1186

sented. Using definitions in Section Appendix A, we can write the non-1187

homogeneous version of the numerical flux in (119) to account for the con-1188

tribution of the source term as1189

F−

i+1/2 = F̂i +
I∑

m=1

[(γ̂ − β)ẽ]mi+ 1

2

,

F+
i+1/2 = F̂i+1 −

Nλ∑

m=I+1

[(γ̂ − β)ẽ]mi+ 1

2

.

(133)

where γ̂ are the components of Γ̂i+1/2 = P̃−1
i+1/2δF̂i+1/2, the projection of the1190

jump in the extrapolated fluxes across cell interfaces, F̂i+1/2 = F̂i+1 − F̂i.1191

6.3. Test case 3: Steady jump over smoothly varying bed profile1192

In this test case, steady solutions for the flow over the following bed1193

elevation profile1194

z(x) =





0 if x < 8
0.05(x− 8) if 8 ≤ x ≤ 12

0.2− 0.05 (x− 12)2 if 12 ≤ x ≤ 14
0 if x > 12

(134)

are computed using the proposed technique. The computational domain is1195

[0, 20] and the solution is computed for t = 400 s. CFL number is set to 0.451196

for all cases and the computational domain is discretized in 100 cells. The1197

discharge is imposed to 0.6 m2/s upstream to obtain the sonic point at the1198

cell with the maximum bed elevation, that is zmax = 0.2. Downstream, the1199

water depth is also imposed in order to generate the hydraulic jump. Dif-1200

ferent values for h downstream, are chosen to generate the jump at different1201

locations and assess the performance of the proposed scheme. The complete1202

configuration of boundary conditions is presented in Table 2.1203

Numerical results provided by the novel scheme are presented for test1204

case 1.A in Figure 16 (top) and compared with the results provided by the1205

traditional Roe solver, depicted in Figure 16 (bottom). No differences can be1206
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noticed when considering the solution for the water surface elevation, but it1207

is clearly evidenced that the spike in the solution for the discharge at the cell1208

where the shock is located is strongly reduced when using the novel numerical1209

technique.1210

Case qBC:left(m
2/s) hBC:right(m) Shock position (m) xS

1.A 0.6 0.6185 13.298 0.01
1.B 0.6 0.6200 13.278 0.11
1.C 0.6 0.6220 13.252 0.24
1.D 0.6 0.6256 13.201 0.495
1.E 0.6 0.6280 13.166 0.67
1.F 0.6 0.6300 13.135 0.825
1.G 0.6 0.6320 13.102 0.99

Table 2: Different boundary condition configurations for Test case 3.

To study the behavior of this spike, the solution for the discharge in the1211

shock cell is depicted for tests cases 1.A-1.G in Figure (17) (left). In this1212

plot, the value of discharge against the normalized shock position has been1213

depicted for the results provided by the traditional Roe solver as well as the1214

modified solver using flux interpolation in [42] and the proposed technique.1215

It can be observed that the method in [42] already helps decreasing the spike1216

of discharge but only when including the correction term, as done in the1217

novel method, the spike is virtually reduced to zero.1218

As outlined before, the proposed scheme does not always provide the1219

exact discharge in the shock cell, however, the numerical estimate of the1220

discharge in this cell converges to the exact value as the grid is refined. This1221

property is of utmost importance, as the novel scheme can be considered L1,1222

L2 and L∞ convergent, while previous schemes were not able to converge1223

when regarding L∞ error norm. Convergence rate results for L∞ error norm1224

are presented in Figure 17 (right) for the traditional Roe solver and for the1225

proposed scheme. The convergence rate test has been carried out for case1226

1.D using four different grids, composed of 100, 200, 400 and 800 cells. It1227

is worth mentioning that the grid is shifted in order to keep a constant1228

distance between the exact position of the jump and the right cell interface.1229

It is clearly evidenced that the proposed technique allows the scheme to1230

converge to the exact solution as the grid is refined, unlike the traditional Roe1231

solver that does not exhibit any convergence with grid refinement because1232

56



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 7  8  9  10  11  12  13  14  15

h+
z(

m
)

x

 0.6

 0.61

 0.62

 0.63

 0.64

 7  8  9  10  11  12  13  14  15

q(
m

2 /s
)

x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 7  8  9  10  11  12  13  14  15

h+
z(

m
)

x

 0.595

 0.6

 0.605

 0.61

 0.615

 0.62

 0.625

 0.63

 0.635

 0.64

 0.645

 7  8  9  10  11  12  13  14  15

q(
m

2 /s
)

x

Figure 16: Test case 3. Numerical results for h + z (left) and q (right) provided by
the proposed spike-reducing method (top) and by the traditional Roe solver (bottom),
compared to the exact solution, using 100 cells and CFL=0.45.

the equilibrium discharge at the shock cell is always different than the exact1233

discharge when the shock is not located at cell interfaces.1234

6.4. Test case 4: Traveling jump over different bed profiles1235

In this test case, traveling shock waves over different bed elevation pro-1236

files z(x) are computed. For all bed profiles, the maximum bed elevation1237

is zmax = 0.2 m and the bed elevation at the boundaries is zero. To con-1238

struct a solution consisting of a single jump traveling across the domain,1239

we first compute a steady transcritical solution over the bed profile by im-1240

posing a constant discharge upstream of q = 0.6 m2/s. When the steady1241

regime is reached, the boundary condition upstream is redefined, imposing1242

now q = 0.556749458405104 m2/s and h = 0.12 m, which generates a super-1243

critical state that is connected with the original subcritical state by means of1244

a traveling hydraulic jump, according to the Hugoniot locus. The computa-1245

tional domain is [0, 560] and the solution is computed at t = 610 s. The CFL1246
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Figure 17: Test case 3. Left: representation of the spike of discharge against the position
of the shock within the cell for the traditional Roe flux (− ◦−), for the method using the
interpolated flux in [42] (−◦−) and for the proposed spike-reducing method (−◦−), using
100 cells and CFL=0.45. Right: convergence rate test for the traditional Roe method
(− ◦ −) and for the proposed method (− ◦ −), using CFL=0.45.

number is set to 0.45 and the domain is discretized in 140 computational1247

cells.1248

The bed profile will be constructed as1249

z(x) =





0.2
276

(x− 4) + g(x) if 4 ≤ x < 280
0.2− 0.2

276
(x− 280) if 280 ≤ x ≤ 556

0 otherwise
(135)

where g(x) is an additional geometric function that allows to make variations1250

in the basic constant slope profile (when g(x) = 0). Three different bed slopes1251

are defined:1252

• Constant slope (Test 4.1): The first test is carried out over a constant1253

slope profile, setting g(x) = 0 in (135).1254

• Sinusoidal variations in a constant slope (Test 4.2): Now, a sinusoidal1255

variation is added to (135) by means of1256

g(x) =

{
0.02 sin(0.04π(x− 12)) if 12 ≤ x < 212
0 otherwise

(136)

• Discontinuities in the constant slope (Test 4.3): Here, some disconti-1257

nuities are added to (135) by means of1258
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g(x) =





0.02 if 12 ≤ x < 32
−0.02 if 32 ≤ x < 52
0.04 if 52 ≤ x < 72
−0.04 if 72 ≤ x < 92
0 otherwise

(137)

Numerical results for tests 4.1, 4.2 and 4.3 are presented in Figures 18,1259

19, 20 and 21. Figure 18 shows the numerical solution at t = 610 s for1260

the water surface elevation and discharge provided by the ARoe scheme and1261

by the proposed spike-reducing method in Section 6.2. For all the test, the1262

SEBF discretization of the source term is chosen. In the figures mentioned1263

above, major differences are observed in the solution of the discharge, which1264

is much more oscillatory when computed by the ARoe method. On the other1265

hand, differences on the water surface elevation are less sensitive to the spike.1266

A space-time representation of the numerical discharge is presented in Fig-1267

ure 19, where the elimination of post-shock oscillations can be observed. In1268

Figure 20, the numerical solution for the water surface elevation and dis-1269

charge inside the cell with maximum bed elevation (cell 71) is plotted in1270

time, showing that the proposed spike-reducing scheme performs adequately1271

with independence of the bed profile, as it prevents the solution from gener-1272

ating oscillations. On the other hand, the numerical solution computed by1273

means of the traditional ARoe scheme shows the oscillations produced by the1274

spike, which travel downwards at a higher speed than the hydraulic jump.1275

In order to carry out an exhaustive analysis on the spike reducing effect of1276

the proposed method, the evolution in time of the numerical solution for the1277

discharge in cells 2 to 11, computed by means of the aforementioned schemes,1278

is plotted in Figure 21. It is evidenced that the numerical solution provided1279

by the proposed scheme completely reduces the spike and only leaves very1280

small peaks that are virtually bounded by the values of the discharge at each1281

side of the shock, hence they are not of any relevance.1282

6.5. Test case 5: Interaction of two jumps over a smooth bed profile1283

In this case, two hydraulic jumps moving in opposite directions are in-1284

troduced in a steady transcritical flow over the bed profile in (134), inside1285

the domain [0, 20]. The initial condition corresponds to the steady solution1286

generated when setting q = 0.6 m2/s upstream in most part of the domain,1287

and also includes the two jumps as1288
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Figure 18: Test case 4. Numerical solution at t = 610 s for the water surface elevation (left)
and discharge (right) provided by the traditional Roe flux (− ◦ −) and by the proposed
spike-reducing method (− ◦ −), using 140 cells and CFL=0.45.

U(x) =





Uin if 0 ≤ x ≤ 1
Us if 1 < x < 17
Uout if 17 ≤ x ≤ 20

(138)

whereUs is the steady energy-conservative solution with q = 0.6 m2/s, Uin =1289
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Figure 19: Test case 4. Space-time representation of the numerical discharge provided by
the traditional Roe flux (left) and by the proposed spike-reducing method (right), using
140 cells and CFL=0.45.
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Figure 20: Test case 4. Evolution in time of the numerical solution for the water surface
elevation (left) and discharge (right) in the cell with initial Fr = 1 (cell 71) provided by
the traditional Roe flux (−) and by the proposed spike-reducing method (−), using 140
cells and CFL=0.45.

(hin, qin) and Uout = (hout, qout), with hin = 0.12 m, qin = 0.5567494584051041290

m2/s, hout = 0.62 m and qout = 0.410276289759429 m2/s1291

In order to maintain the hydraulic jumps, the boundary conditions are set1292

supercritical upstream and subcritical downstream, hence we impose h = hin1293
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Figure 21: Test case 4. Evolution in time of the numerical solution for the discharge
inside cells 2 to 11 provided by the traditional Roe flux (left plot) and by the proposed
spike-reducing method (right plot), using 140 cells and CFL=0.45.

and q = qin upstream and h = hout downstream. For this test case, we set1294

∆x = 0.2 and ∆x = 0.1 m and CFL=0.45. As time goes forward, the left-1295

moving shock on the right decelerates and eventually stops, as the thrust1296

exerted by the bed slope is sufficiently large for it. On the other hand, the1297

right-moving shock on the left does not stop and continuously moves along1298
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the domain. In most part of this simulation, the aforementioned shock moves1299

over a flat bottom.1300

The numerical solution computed by the ARoe scheme and the proposed1301

spike-reducing method are presented in Figures 22 and 23, for grid sizes1302

∆x = 0.2 and ∆x = 0.1 m respectively. The top plots show the solution1303

for the water surface elevation and discharge at t = 70 s and the bottom1304

plots show the evolution in time of such quantities inside the cell where the1305

right jump stops and remains steady. It is observed that the spike-reducing1306

method provides a numerical solution much closer to the reference solution as1307

no shedding of spurious oscillation occurs, unlike the traditional Roe scheme1308

that is unable to avoid those oscillations. It is also observed that oscillations1309

are barely reduced with mesh refinement. This is because the spike is still1310

present, as the approximate Hugoniot locus of the Roe solver does not depend1311

on the discretization (the hydraulic jump is still produced between the same1312

left and right states). This means that only the spike-reducing method can1313

ensure convergence with mesh refinement.1314

7. Conclusions1315

This work focuses on the study and design of efficient and robust numeri-1316

cal schemes for the computation of hyperbolic conservation laws with source1317

terms, with application to the SWE. The goal of the methods proposed here1318

is to overcome some present difficulties that have been well documented in1319

previous literature, such as the exact conservation of the discrete energy1320

(when necessary), the accurate positioning of steady shockwaves and the re-1321

duction of the numerical shockwave anomalies arising from slowly-moving1322

shocks, among others.1323

Regarding the conservation of energy in the numerical solution of the1324

Shallow Water Equations (SWE), we carry out a theoretical study on the1325

relations among variables across the bed step contact wave, showing that1326

the conservation of energy can be ensured by imposing conservation of the1327

Riemann invariants associated to this wave, or in other words, making the1328

Generalized Hugoniot locus (GHL) and the Integral Curve (IC) coincide.1329

We consider then the design of a suitable source term discretization (STD)1330

that ensures the conservation of energy, showing that the WEBF [25] can be1331

derived from these assumptions under the conditions of steady state. The1332

WEBF has proven a good performance in a variety of situations, however,1333
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Figure 22: Test case 5. Top: Numerical solution at t = 70 s for the water surface elevation
(left) and discharge (right) provided by the traditional Roe flux (−◦−) and by the proposed
spike-reducing method (−◦−). Bottom: Numerical solution inside cell containing the right
jump for the water depth (left) and discharge (right), provided by the traditional Roe flux
(−) and by the proposed spike-reducing method (−). Grid size is set to ∆x = 0.2.

when using it for the computation of hydraulic jumps, it is not able to provide1334

an accurate positioning of the discontinuity.1335

To address the aforementioned issues of shock positioning, a novel dis-1336

cretization of the source term that ensures the exact conservation of the1337

discrete energy while capturing the exact position of the hydraulic jump is1338

proposed. This technique allows to unequivocally identify the position of1339

hydraulic jumps and dissipate the exact amount of energy across them. It is1340

referred to as selective energy balanced formulation (SEBF) of the integral1341

of the source term and can be applied to the ARoe and HLLS solvers, and1342

their high order versions.1343

Numerical shockwave anomalies in the framework of the SWE, partic-1344

ularly the so-called slowly-moving shock anomalies, are also considered in1345

this work. Following the approach in [42], we propose a novel spike-reducing1346
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Figure 23: Test case 5. Top: Numerical solution at t = 70 s for the water surface elevation
(left) and discharge (right) provided by the traditional Roe flux (−◦−) and by the proposed
spike-reducing method (−◦−). Bottom: Numerical solution inside cell containing the right
jump for the water depth (left) and discharge (right), provided by the traditional Roe flux
(−) and by the proposed spike-reducing method (−). Grid size is set to ∆x = 0.1.

flux function for the SWE with varying bed. To this end, we first study the1347

problem of slowly-moving shocks in the SWE and notice that they are only1348

produced when dealing with hydraulic jumps. A complete description of such1349

kind of waves is provided and a thorough study on the shock structure, com-1350

paring exact and Godunov type solutions, is carried out by using the phase1351

space representation. Moreover, prior to the presentation of the proposed1352

technique, flux functions A and B in [42] are assessed for the computation of1353

moving hydraulic jumps over flat bed, evidencing a strong reduction of the1354

spike when using such methods.1355

The novel spike-reducing flux proposed in this work is computed in the1356

same way than function A [42], but with two main differences. First, a1357

modified flux interpolation technique is carried out in order to account for1358

the contribution of the source. Second, the novel flux function includes the1359
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source strengths across each wave as done in the ARoe solver in [25]. Here1360

we propose to modify the interpolation in [42] by means of a correction term1361

that leads to the exact balance between sources and fluxes in the steady state.1362

This spike fix is based on the hypothesis that the intermediate state should1363

lie on a linear Hugoniot that connects the left and right states, which is not1364

completely general, specially for large discontinuities in the bed elevation,1365

but still leads to satisfactory numerical results for any practical purpose.1366

The proposed technique is assessed in a variety of situations, including1367

steady and transient cases, over continuous and discontinuous bed. Numeri-1368

cal results evidence that the spike is dramatically reduced to a point where1369

the shedding of spurious waves is virtually not noticeable and also that the1370

proposed scheme leads to a convergent numerical solution because the size1371

of the spike can now be reduced with mesh refinement. For the numerical1372

tests presented in this work, the new scheme does not impose additional sta-1373

bility restrictions and the numerical solution is stable for any CFL number1374

below the traditional bound of 1.0. Numerical results for steady cases with1375

hydraulic jumps are presented, proving that the proposed scheme leads to a1376

convergent solution, even when measured with L∞ error norm.1377

Appendix A. The ARoe solver for systems of Nλ waves1378

Depending on the nature of the source term, a centered integration of1379

this term may prevent the numerical scheme from preserving the exact bal-1380

ance between fluxes and sources under steady state. This is the case of the1381

so-called geometric source terms, described in (3). In this case, the so-called1382

augmented Riemann solvers are of application for the resolution of the RP,1383

providing an approximation of the numerical fluxes that includes the contri-1384

bution of the source term. Numerical fluxes can be generally expressed as1385

F−

i+ 1

2

= F−

i+ 1

2

(Un
i ,U

n
i+1; S̄i+1/2), F

+
i− 1

2

= F+
i− 1

2

(Un
i−1,U

n
i ; S̄i−1/2), where S̄i+1/21386

is a suitable approximation of the integral of the source term across the cell1387

edge.1388

Riemann Problems are defined at each interface, as depicted in Figure1389

A.24, as1390
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RP(Ui,Ui+1) :





∂U

∂t
+
∂F(U)

∂x
= S

U(x, 0) =

{
Ui x < 0
Ui+1 x > 0

(A.1)

It is worth mentioning that, for each RP, spatial and temporal variables1391

are redefined setting the reference for the spatial coordinate at xi+ 1

2

to x = 01392

and for the time tn to t = 0. Superscript n is also dropped. As mentioned1393

before, the contribution of the source term is included in the solution of the1394

Riemann Problems as a pointwise quantity at the interface.1395
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RP(Un
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n
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Figure A.24: Neighbouring region of cell Ωi and representation of piecewise defined data,
showing RP at xi+ 1

2

that will be referred to as RP(Un
i ,U

n
i+1).

RP in (A.1) can be approximated by exactly solving the following con-1396

stant coefficient linear RP [13]1397





∂Û

∂t
+ J̃i+ 1

2

∂Û

∂x
= S

Û(x, 0) =

{
Ui x < 0
Ui+1 x > 0

(A.2)

where Û(x, t) is the approximate solution of (A.1) and J̃i+ 1

2

= J̃i+ 1

2

(Ui,Ui+1)1398

is a constant matrix defined as a function of left and right states that rep-1399

resents an approximation of the Jacobian at xi+ 1

2

. This matrix is chosen so1400

that1401

δFi+ 1

2

= J̃i+ 1

2

δUi+ 1

2

(A.3)
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holds [8]. Matrix J̃i+ 1

2

is considered to be diagonalizable withNλ approximate1402

real eigenvalues1403

λ̃1
i+ 1

2

< . . . < λ̃I
i+ 1

2

< 0 < λ̃I+1
i+ 1

2

< ... < λ̃Nλ

i+ 1

2

(A.4)

and Nλ eigenvectors ẽ1, ..., ẽNλ . With them, two approximate matrices,1404

P̃i+ 1

2

= (ẽ1, ..., ẽNλ)i+ 1

2

and P̃−1
i+ 1

2

are built with the following property1405

J̃i+ 1

2

= (P̃Λ̃P̃−1)i+ 1

2

, Λ̃i+ 1

2

=




λ̃1 0
. . .

0 λ̃Nλ




i+ 1

2

(A.5)

where Λ̃i+ 1

2

is a diagonal matrix with approximate eigenvalues in the main1406

diagonal. System in (A.2) can be transformed using P̃−1 matrix as follows1407

∂Ŵ

∂t
+ Λ̃i+ 1

2

∂Ŵ

∂x
= Bi+ 1

2

(A.6)

expressing (A.2) in terms of the characteristic variables Ŵ = P̃−1
i+ 1

2

Û, with1408

Ŵ = (ŵ1, ..., ŵNλ) and Bi+ 1

2

=
(
P̃−1S

)
i+ 1

2

1409

Approximate fluxes on the left and right side of the t axis, F−

i and F+
i+1,1410

can be derived using the results for the scalar equation. Combination of the1411

solutions for the characteristic variables, ŵm(x, t), allows to construct the1412

numerical fluxes at the interface as [13]1413

F−

i = Fi +
I∑

m=1

[(
λ̃α− β̄

)
ẽ
]m
i+ 1

2

,

F+
i+1 = Fi+1 −

Nλ∑

m=I+1

[(
λ̃α− β̄

)
ẽ
]m
i+ 1

2

,

(A.7)

where the set of wave strengths is defined as1414

Ai+ 1

2

=
(
α1, ..., αNλ

)T
i+ 1

2

=
(
P̃−1δU

)
i+ 1

2

, (A.8)

and the set of source strengths as1415
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Figure A.25: Upper: Approximate solution Û(x, t). The solution consist of Nλ inner
constant states separated by a stationary contact discontinuity, with celerity S = 0 at
x = 0. Lower: The solution for characteristic variables ŵm(x, t) for m = 1, ..., I + 1 is
depicted at t = ∆t.

B̄i+ 1

2

=
(
β̄1, ..., β̄Nλ

)T
i+ 1

2

=
(
P̃−1S̄

)
i+ 1

2

. (A.9)

It is worth recalling that δwm
i+ 1

2

= αm
i+ 1

2

. Analogously, if defining δFi+1/2 =1416
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P̃i+1/2Γi+1/2, it is straightforward to obtain the following relation1417

Γi+1/2 = Λ̃i+1/2Ãi+1/2 (A.10)

1418

with Γi+1/2 = (γ1, ..., γNλ)i+1/2, that allows to rewrite (A.7) as1419

F−

i+1/2 = F̂i +
I∑

m=1

[
(γ − β̄)ẽ

]m
i+ 1

2

,

F+
i+1/2 = F̂i+1 −

Nλ∑

m=I+1

[
(γ − β̄)ẽ

]m
i+ 1

2

.

(A.11)

1420

For the sake of simplicity, the term (γ − β̄)m
i+ 1

2

, or
(
λ̃α− β̄

)m
i+ 1

2

analogously,1421

can be expressed as (λ̃θα)m
i+ 1

2

, where θm
i+ 1

2

= 1 − β̄/λ̃α. Using this compact1422

form, the difference between left and right states across the interface can be1423

expressed as1424

U+
i+1 −U−

i = Ui+1 −Ui −
Nλ∑

m1=1

(θαẽ)m1

i+ 1

2

(A.12)

where wave contributions can be written in their matrix form as1425

Nλ∑

m1=1

(θαẽ)m1

i+ 1

2

=
(
P̃ΘA

)
i+ 1

2

(A.13)

with Θi+ 1

2

= diag(θ1
i+ 1

2

, θ2
i+ 1

2

, ..., θNλ

i+ 1

2

) a diagonal matrix that allows to rewrite1426

P̃ΘA = P̃A − P̃Λ̃−1B̄. Substituting the previous results in (A.12) and1427

noticing that P̃Ai+ 1

2

= Ui+1 −Ui, it becomes1428

U+
i+1 −U−

i =
(
P̃Λ̃−1B̄

)
i+ 1

2

(A.14)

from which it can be observed that the difference between left and right1429

states is only due to the presence of the source term. Expressing B̄i+ 1

2

=1430 (
P̃

−1
S̄
)
i+ 1

2

, the following relation is noticed1431

S̄i+ 1

2

=
(
J̃−1
)
i+ 1

2

(
U+

i+1 −U−

i

)
. (A.15)
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This relation is worth keeping in mind, as it will come along with other1432

derivations within the text.1433

When using the ARoe numerical fluxes, the first order Godunov scheme1434

in (44) reads1435

Un+1
i = Un

i −
∆t

∆x
[F−

i − F+
i ] . (A.16)

Appendix B. The traditional Roe solver1436

When considering a homogeneous RP, that is, the contribution of the1437

source term is nil, RH condition across the interface yields F−

i = F+
i+1, ac-1438

cording to the notation used in this work. Such fluxes are now a unique value1439

and are denoted by F⋆
i+1/2, which can be expressed in terms of the left or1440

right contributions according to (A.7) as follows1441

F⋆
i+1/2 = Fi +

I∑

m1=1

(
λ̃αẽ

)m1

i+ 1

2

F⋆
i+1/2 = Fi+1 −

Nλ∑

m1=I+1

(
λ̃αẽ

)m1

i+ 1

2

.

(B.1)

Combination of the expressions in (B.1) leads to1442

F⋆
i+1/2 =

Fi + Fi+1

2
− 1

2

Nλ∑

m1=1

(∣∣∣λ̃
∣∣∣αẽ

)m1

i+ 1

2

(B.2)

that can be rewritten in matrix form as1443

F⋆
i+1/2 =

Fi + Fi+1

2
− 1

2

(
P̃ | Λ̃ | Ã

)
i+ 1

2

(B.3)

where1444

| Λ̃ |i+ 1

2

=




| λ̃1 | 0
. . .

0 | λ̃Nλ |




i+ 1

2

(B.4)

If defining | J̃ |i+ 1

2

=
(
P̃
∣∣∣Λ̃
∣∣∣ P̃−1

)
i+ 1

2

, the last term in Equation (B.3) can be1445

rewritten as1446
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(
P̃ | Λ̃ | Ã

)
i+ 1

2

=
(
P̃ | Λ̃ | P̃−1δU

)
i+ 1

2

=
(
| J̃ | δU

)
i+ 1

2

(B.5)

leading to the following intercell homogeneous flux1447

F⋆
i+1/2 =

Fi + Fi+1

2
− 1

2

(
| J̃ | δU

)
i+ 1

2

(B.6)

Analogously, if defining δFi+1/2 = P̃i+1/2Γi+1/2, it is straightforward to1448

obtain the following relation1449

Γi+1/2 = Λ̃i+1/2Ãi+1/2 (B.7)

with Γi+1/2 = (γ1, ..., γNλ)i+1/2, that can be introduced in (B.3) to obtain1450

F⋆
i+1/2 =

Fi + Fi+1

2
− 1

2
sgn(J̃i+ 1

2

)δFi+1/2 (B.8)

where sgn(J̃i+ 1

2

) =
(
P̃ | Λ̃ | Λ̃−1P̃−1

)
i+ 1

2

is the upwinding matrix. The pre-1451

vious equation can be rewritten as follows1452

F⋆
i+1/2 =

Fi + Fi+1

2
− 1

2

Nλ∑

m1=1

(
sgn(λ̃)γẽ

)m1

i+ 1

2

(B.9)

or, analogously to equation (B.1)1453

F⋆
i+1/2 = Fi +

I∑

m1=1

(γẽ)m1

i+ 1

2

F⋆
i+1/2 = Fi+1 −

Nλ∑

m1=I+1

(γẽ)m1

i+ 1

2

.

(B.10)

When using the homogeneous Roe fluxes, the first order Godunov scheme1454

in (44) reads1455

Un+1
i = Un

i −
∆t

∆x
[F⋆

i+1/2 − F⋆
i−1/2] (B.11)

and can be used to solve a homogeneous PDE.1456
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