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Abstract

The study of the stability of a dynamical system described by a set of partial
differential equations (PDEs) requires the computation of unstable states
as the control parameter exceeds its critical threshold. Unfortunately, the
discretization of the governing equations, especially for fluid dynamic applic-
ations, often leads to very large discrete systems. As a consequence, mat-
rix based methods, like for example the Newton-Raphson algorithm coupled
with a direct inversion of the Jacobian matrix, lead to computational costs
too large in terms of both memory and execution time.

We present a novel iterative algorithm, inspired by Krylov-subspace meth-
ods, which is able to compute unstable steady states and/or accelerate the
convergence to stable configurations. Our new algorithm is based on the
minimization of the residual norm at each iteration step with a projection
basis updated at each iteration rather than at periodic restarts like in the
classical GMRES method. The algorithm is able to stabilize any dynamical
system without increasing the computational time of the original numerical
procedure used to solve the governing equations. Moreover, it can be easily
inserted into a pre-existing relaxation (integration) procedure with a call to
a single black-box subroutine.

The procedure is discussed for problems of different sizes, ranging from a
small two-dimensional system to a large three-dimensional problem involving
the Navier-Stokes equations. We also show that the proposed algorithm is
able to improve the convergence of existing iterative schemes. In particular,
the procedure is applied to the subcritical flow inside a lid-driven cavity. We
also discuss the application of Boostconv to compute the unstable steady
flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemi-
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spherical roughness element (3D) for supercritical values of the Reynolds
number. We also show that Boostconv can be used effectively with any
spatial discretization, be it a finite-difference, finite-volume, finite-element or
spectral method.

Keywords: steady solution, iterative procedure, stabilization algorithm

1. Introduction

The knowledge of fixed points or periodic solutions of a dynamical system
is important both for stability analysis and the development of flow control
strategies. The first step, within the framework of a classical stability ana-
lysis, is the computation of a reference state around which the governing
equations are linearized [1]: this can be either a steady or a periodic solution
of the nonlinear governing equations. The stability of such states usually
depends on the value of a given parameter. In general, when a critical value
is reached, a bifurcation occurs and the original solution becomes linearly
unstable, with the system tending towards a new state. A classical example
of such behaviour in fluid dynamics is the instability occurring in the wake
of a circular cylinder. At low Reynolds number (precisely for Re < 46.7) the
flow is steady and symmetric, but for larger values of Re a global instability
arises in the flow field [2] leading to the well-known von Kármán vortex street.
In order to perform stability computations beyond the critical threshold, we
need a numerical method which is able to pass through the bifurcation point,
selecting the unstable branch of the solution. Unfortunately, this cannot be
achieved by using a standard time integration of the governing equations.

For low-dimensional systems, e.g., models of chemical reactions, coupled
oscillators or lumped element models for fluid flows [3], several continuation
and bifurcation packages like AUTO [4] or CONTENT [5] are freely available
on the net. These packages are based on Newton’s method coupled to a direct
linear solver applied to an augmented algebraic system of equations. They
have been designed also to deal with higher-codimension bifurcations and
continuation of periodic orbits.

Unfortunately, the numerical treatment of PDEs often involves the solu-
tion of very large systems of algebraic equations which do not allow the use of
such packages. In particular, Newton’s algorithm, involving matrix inversion,
cannot be used to solve large problems because of large memory requirements
and computational costs (CPU time). In these cases an alternative approach
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is to employ a Newton-Krylov algorithm, where a Krylov subspace method
(like a GMRES or a BCGSTAB) is used to solve linear systems at each
Newton substep.

For large-scale systems, computations of unstable states have been per-
formed in a limited number of studies [6], [7]. Van Noorden et al.[9] discussed
the application of a continuation method with subspace iterations to com-
pute periodic orbits of high-dimensional systems. Newton-Krylov techniques
are used by Sanchez et al. [10] to obtain the fixed points of a Poincaré map.
Shroff & Keller [8] proposed the Recursive Projection Method (RPM) which
stabilizes an unstable iterative procedure by splitting the solution space
into the direct sum of a large subspace spanned by the stable modes and
a small subspace containing the unstable ones: the algorithm applies New-
ton’s method only on the small subspace while it retains the original iterative
procedure on its complement. Mittelmann & Weber[12] proposed a continu-
ation strategy coupled with a multigrid algorithm to compute solutions of
nonlinear eigenvalue problems near turning points.

Akervik et al. [13], instead, proposed to apply selective frequency damp-
ing (SFD) to recover the steady states of the Navier-Stokes equations. The
key idea is to apply a temporal low-pass filter to damp the oscillations of
the unsteady part of the solution. It was successfully adopted by Bagheri et
al.[14] and Ilak et al.[15] to investigate the stability of a jet in cross-flow and
by Nichols & Schmid[16] and Qadri et al.[17] to study lifted flames. How-
ever, the SFD algorithm needs an estimate of the global mode frequency and
it cannot be applied to compute unstable states in presence of stationary
bifurcations. Moreover, all the cited techniques involve significant coding
and/or changes in the original numerical algorithm.

The aim of the present work is to propose a new algorithm, inspired
by Krylov-subspace methods, able to efficiently compute unstable steady
states of a high-dimensional dynamical system. This method is based on
the minimization of the residual norm at each integration step and can be
applied as a black-box procedure in any iterative or time marching algorithm
without negatively impacting the computational time of the original code.

2. Iterative solution of a linear system: Krylov methods

The iterative solution of the linear system

Ax = b (1)
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using Krylov subspace methods has been widely studied in the last decades
[18]. In the previous equation A is a RN×N matrix and x and b are the RN

vectors representing the solution and the known term of the linear system
respectively. The approximation of the solution x is sought such that xj

belongs to the shifted Krylov spaces Sj = x0 + Kj(A, r0) with

Kj(A, r0) = span{r0,Ar0, ...,A
j−1r0}, r0 = b−Ax0, (2)

where Kj is the j − th Krylov subspace and r0 ∈ RN is the residual vector
with respect to the initial guess x0. The residual vector rj lies in the Krylov
residual subspace Rj defined as

Rj = r0 + AKj(A, r0). (3)

The main idea of this iterative procedure is that the j− th approximation of
the solution xj ∈ Sj is found by requiring the minimization of a functional.
Thus, different Krylov methods result from different choices of this functional,
from the characteristics of the matrix and from implementation details [18].
A possible choice is to select the approximation xj such to minimize the
2-norm || · ||2 of the residual,

xj = min
xj∈Sj

||b−Ax||2. (4)

Such method is usually referred as the minimal residual approach (MR) and
it is largely adopted: a typical example is offered by the popular GMRES
method by Saad and Schultz [19].

The implementation of GMRES is based on the solution of the least
squares problem (4) obtained through an orthonormal basis of the Krylov
subspace produced by the Arnoldi procedure. It is worthwhile noting that
during the execution of GMRES the basis grows and, as a consequence, the
storage requirements grow accordingly. In case of a large system, the num-
ber of iterations needed to achieve a sufficiently accurate solution can be
excessive and the resulting Arnoldi matrix becomes unacceptably large to be
stored: usually, a restarted procedure is adopted. It consists in restarting
the algorithm when the subspace dimension reaches a maximum value p. In
particular, after p iterations the current new approximation xj and inherent
residual rj are computed and GMRES is stopped. These arrays become the
starting point for a new call to the algorithm. Unfortunately, the restarted
algorithm usually shows a slow convergence rate [18].
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Preconditioning techniques can be adopted to improve the performances
and reliability of Krylov subspace methods: it is recognized, in fact, that
preconditioning is the most critical ingredient in the development of efficient
solvers for challenging problems in scientific computation [18] and represents
the real key ingredient to achieve an acceptable convergence rate.

3. BoostConv algorithm

The main idea which inspired the proposed algorithm is similar to the
one at the basis of GMRES, but in a reverse logic sequence. We start from
an existing iterative algorithm that is modified to Boost the Convergence of
the overall procedure.

A generic linear iteration for the solution of the linear system (1) can be
expressed as

xn+1 = xn + Brn (5)

where rn = b − Axn is the residual and B is a matrix representing the
particular iterative scheme used to solve the problem (see e.g., Ch.4 [20]).
For example, experssion (5) can result from a classical Jacobi or Gauss-Seidel
method or from a pseudo-temporal discretization of a dynamical system. In
general, the matrix B can also contain a preconditioner.

The convergence of procedure (5) is governed by the eigenvalues of the
iteration matrix (I−BA): the algorithm converges if and only if the spectral
radius of the iteration matrix is smaller than 1. In that case, the asymptotic
convergence rate is dictated by the slowly decaying modes. Usually, only a
small part of the spectrum strongly influences the convergence rate. Even
in case of a nonlinear system, the behavior will become linear when the
approximate solution xn is close enough to the solution x of the nonlinear
governing equation. On the other hand, the algorithm could diverge because
of a small set of unstable modes. Thus, the purpose of BoostConv is to
modify only the part of the spectrum characterized by these slowly decaying
or amplified modes, while letting the original algorithm damp the remaining
(decaying) modes.

In order to obtain this stabilization, like in the GMRES algorithm, we use
the information provided by the state xn and by the residual rn. The residual
satisfies the homogeneous equation obtained by applying the operator −A
to (5) and then adding b to both sides. In this way we easily obtain the
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following evolution equation for rn:

b−Axn+1 = b−A [xn + B(b−Axn)] , i.e.

rn+1 = rn −ABrn. (6)

Our key idea is to improve the existing procedure (5) by replacing the re-
sidual vector rn with a modified residual ξn such that the improved algorithm
reads as

xn+1 = xn + Bξn(rn). (7)

In the previous equation ξn is a suitable function of rn and can be inter-
preted as the feedback term of a closed loop control algorithm or a structural
perturbation of the original iteration matrix. In order to guarantee the con-
sistency of the modified algorithm with the original iterative procedure and
recover the solution of the linear system (1), it is sufficient that ξn → 0 as
rn → 0. The introduction of the vector ξn modifies equation (6), leading to
the new residual equation

rn+1 = rn −ABξn, (8)

or equivalently
rn − rn+1 = ABξn. (9)

We now minimize rn+1 by choosing a suitable function ξn = ξn(rn). If we
knew (AB)−1 we could exactly annihilate rn+1 by computing ξn(rn) as

ξn = (AB)−1rn. (10)

However, for large systems, the exact inversion of AB is out of reach or
too expensive to be performed. We therefore approximate the solution of
(10) by using a classical least-squares method.

The action of the operator AB can be represented by storing a set of N
vector pairs (ui,vi), where the second member is produced by the action of
AB on the first. The least-squares method is then adopted to approximate
the solution of the algebraic linear system ABξn = rn, through its projection
on the subspace spanned by ui, as

ξn '
N∑
i=1

ciui. (11)
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In our case the vectors ui and vi are related to each other by

vi = ABui for i = 1, .., N. (12)

while the coefficients ci are chosen to minimize |rn −ABξn|
2. The standard

least-squares procedure leads to a system of equations for the coefficients ci
of the form

Dkl cl = tk (13)

where tk = vk · rn and Dkl = vk · vl is a small N × N matrix. Matrix D
is often ill-conditioned and an orthogonalization procedure (QR decompos-
ition) is usually needed to find the solution. However, when N is small, as
for the cases we are considering, the solution can be found with a classical
LU decomposition, which is computationally faster. If the algorithm only
consisted of looping eq. (11) it would never converge because the subspace
would not change and ξn could converge to zero even when the residual rn is
not identically zero, but simply orthogonal to the leading N (basis-)vectors
ui. We can improve the approximation if we remark that the least-squares
solution produces a new residual ρ = rn −ABξn which can be expressed in
terms of vi as

ρ = rn −ABξn = rn −AB

(
N∑
i=1

ciui

)
= rn −

N∑
i=1

ciABui = rn −
N∑
i=1

civi.

(14)
Remembering that the original iterative algorithm (5) was designed to

somewhat work, if slowly, with ξn equal to the old residual rn, we restore
a convergent procedure by adding the new residual ρ = rn −

∑
i civi to eq.

(11), so that the complete algorithm now reads

ξn =
∑
i

ciui + rn −
∑
i

civi. (15)

The rationale behind this procedure is to invert exactly the part of the prob-
lem represented by the dominant and slower decaying modes while letting
the original iterative algorithm to handle the remaining modes. We now go
back to the issue of selecting a convenient set of vectors ui: in BoostConv
algorithm, both ui and vi are conveniently calculated by observing that,
according to (8), for each n we have
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rn − rn+1 = ABξn. (16)

For a given N, in a cyclic fashion, we add, at the beginning of a new iteration,
a new vector pair by selecting uN = ξn−1 and vN = rn−rn−1. In order to keep
the size of the basis constant, another pair must be discarded which typically
will be the oldest. Such choice is dictated by the fact that by applying the
algorithm to a nonlinear system it is beneficial to use the freshest information
on the system dynamics in order to account for the change of the system
Jacobian (in our case represented by the linear operator A). We also note
that in matrix Dkl of (13) only the row and the column involving a new pair
need to be updated. Such selection procedure works when we already have
N vector pairs. At the beginning of the algorithm (for n < N) we can still
use the same procedure but we continuously increase the basis dimension
from 1 to the chosen value of N . In this first stage, no vector pairs are
discharged. Note that the basis dimension N must satisfy N > M , where M
is the number of unstable modes of the system.

From a programming viewpoint, BoostConv algorithm can be encapsu-
lated in a black-box procedure where the only input is rn and the only output
is ξn. If ξn is returned in the same vector where rn was provided, the only
modification necessary to boost the convergence of the pre-existing iterative
algorithm (5) is a single line of code containing the call to BoostConv. We
can do this in a very compact way because the original algorithm can be
seen as a simple feedback loop as illustrated in figure 1: as a consequence,
we can simply insert BoostConv in the subroutine evaluating the residual as
depicted in figure 2.

4. Implementation details

As mentioned in the previous sections, a key feature of the outlined
method is the possibility to code it into a black-box computer algorithm.
Here, we provide some useful programming guidelines concerning the pro-
posed procedure summarized in Algorithm 1. The only required input at
each step is the residual rn at the current iteration n: using such informa-
tion the procedure calculates the modified residual vector ξn (of the same
dimension). Here, in order to compact the resulting algorithm, we define an
auxiliary vector wh = uh − vh.

Once provided the dimension N of the vector basis, the procedure can
be divided in four parts: i) from line 2 to 6 of Algorithm 1, we discard the
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equations

feedback (time
or pseudo-time

iteration)
old solution

residualnew solution

Figure 1: Original iterative procedure. Unmodified integration of governing equations.

equations

feedback (time
or pseudo-time

iteration)

boostconv

old solution

residual

modified residual

new solution

Figure 2: Modification of an existing iterative scheme: stabilized iterative procedure.
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oldest pair of vectors u and v to store the new pair computed by using the
data provided at the current step n; ii) from line 7 to 13, we build the least-
squares matrix D of eq. 13 and the known term t; iii) in line 14 we solve
the linear problem arising from the least-squares method by using a simple
LU decomposition on the small N ×N system; iv) in line 15 we compute the
new modified residual ξn according to eq. 15.

Algorithm 1 BoostConv
1: Input: rn(current residual); Output: ξn(modified residual);
2: for {h = 1 to N − 1} do
3: vh = vh+1; wh = wh+1; . Discard the oldest vectors
4: . (remember that wh = uh − vh)
5: end for
6: vN = rn−1 − rn; wN = ξn−1 − vn; . Update the vector basis
7: for {m = 1 to N} do
8: DN,m = vN · vm; . Update the least-square matrix (eq.13)
9: end for
10: Dm,N = DN,m; . Least-square matrix is symmetric
11: for {k = 1 to N} do
12: tk = vk · rn; . Build known term of eq.13
13: end for
14: c = D−1 · t; . Solve the least-square problem (eq.13)
15: ξn = rn +

∑
i ciwi; . Compute the modified residual (eq.15)

5. Application to nonlinear systems

Let us consider the nonlinear problem

F(x) = 0, (17)

where F represents a generic nonlinear operator (for example the Navier-
Stokes equations). Linearization around the current solution xn of eq. (17)
provides the linear system

∂F/∂x (xn+1 − xn) = −F(xn). (18)

Equation (18) can be framed as an instance of equation (1) by defining
A = ∂F/∂x. If the matrix A is inverted exactly by a direct or iterat-
ive algorithm, eq. (18) represents the classical Newton method, while if a
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single iteration of an iterative solver is applied, we recover a quasi-Newton
method. Every linear iterative algorithm can thus be converted into a quasi-
Newton method. However, there is a fundamental difference between linear
and nonlinear problems: matrix A, i.e., the Jacobian matrix of the system,
changes during the iterative procedure in the case of nonlinear problems.
Classical Krylov methods are not able to take such changes into account. As
the Krylov basis grows in size at each iteration, the oldest vectors acquired
become inadequate to represent the continuously changing A matrix. In ad-
dition to round off error, this is the main reason that makes a restarting
procedure necessary. However, restarting involves the ad hoc choice of new
numerical parameters such as how often and for what fraction of the basis to
restart. BoostConv, on the other hand, continuously adapts to a changing A
by simply discarding the oldest vector at each iteration.

6. Numerical Results

We now apply the procedure to the Ginzburg-Landau equation and a set
of fluid problems in order to show its performance.

6.1. Ginzburg-Landau: a low-dimensional system
In this section, we will discuss the application of the proposed procedure

to a simple low-dimensional system described by the Ginzburg-Landau equa-
tion. Such equation has been widely studied and used to model vortex shed-
ding phenomena in the wake of bluff bodies (see e.g. Cossu & Chomaz[21],
Chomaz[22]). Following Chomaz et al.[23], Chomaz[22], Bagheri et al.[24],
we write the Ginzburg-Landau equation as

∂A
∂t

+ ν
∂A
∂x
− γ ∂

2A
∂x2
− µ(x)A+ |A|2A = 0. (19)

This equation is of convection-diffusion type and is characterized by a com-
plex convection coefficient ν = U+2icu and a diffusion coefficient γ = 1+icd.
In order to model non-parallel flows, Hunt & Crighton[25] and Bagheri et
al.[24] chose µ as a quadratic function: µ(x) = (µ0 − c2u) + µ2x

2/2. Further
details about this equation can be found in Bagheri et al.[24], where the
meaning of each term is carefully explained.

Here, we focus our attention on the system dynamics for γ = 1 − i,
µ0 = 0.52, µ2 = −0.01 and ν = 2 + 0.2i; the system behavior, in this region
of the parameter space is periodic. A fourth order Runge-Kutta scheme is
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for µ2 = −0.01 is depicted in figure 3.

used here to march the equation in time. Figure 3 shows the application
of BoostConv algorithm to recover the fixed point. In the first part of the
simulation (t < 100) the system naturally evolves towards a limit cycle. Once
a saturated periodic solution is reached, we apply BoostConv (t > 100) to our
time-integration scheme: results shows that the new stabilization procedure
is able to rapidly recover the fixed point of the Ginzburg-Landau equation.
The results presented in this section are obtained by using a constant time
step ∆t = 0.001 and a Krylov basis of dimension N = 15.

Figure 4 shows the evolution of the norm of the residual for different
cases. The parameter µ2 is changed to investigate the effect of the system
non-normality [24] on the stabilization procedure. This parameter has been
varied from −10−1 to −10−3, passing from a moderately to a highly non-
normal system. We found that BoostConv is always able to stabilize the
system but, as expected, the non-normality of the operator influences the
convergence rate of the algorithm.

6.2. Acceleration of a stable procedure: the lid-driven cavity flow
The flow inside a lid-driven cavity has been extensively studied in the last

decades and it is usually taken as a benchmark solution for CFD problems
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Figure 5: Two-dimensional flow inside a lid-driven cavity at Re = 500. In particular, we
show the evolution of the residual norm as a function of the time.

(see e.g. [26],[27]). This configuration presents a singularity at the corners
where the lid moves. Recently, Auteri et al.[28] obtained an accurate solution
of this flow by using a second-order spectral projection method. The critical
Reynolds number (based on the lid velocity Ulid and the height of the square
cavity H) for the first Hopf bifurcation of this flow was calculated to be
Recr ≈ 8018.

The BoostConv algorithm is applied to compute the steady state at
Re = 500. At this Reynolds number the flow is stable and a classical time
integration converges towards a steady state solution. Our aim is to show
the effect of the present algorithm on the convergence rate of the existing it-
erative procedure. We use the Spectral element code Nek5000 to accurately
solve the governing equations. The results presented in this section are ob-
tained by selecting in Nek5000 a first order temporal scheme and a constant
time step ∆t = 0.001, while the dimension of the BoostConv basis is set to
N = 15.

Figure 5 shows the evolution of the residual as a function of time (t = k∆t,
where k is the number of time steps). We observe that the residual norm
obtained from the unmodified time-integration procedure, depicted using a
dashed line, reaches the target value of 10−6 at t ≈ 54. The solid line, on
the other hand, represents the evolution of the residual when BoostConv is
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used. We note that the application of the proposed algorithm accelerates the
convergence of the procedure by a factor of ≈ 2.85. Finally, we recall that
the introduction of BoostConv implies only the solution of a linear system
associated with the least-squares method: consequently, the computational
time of each time step is increased by only 5%.

6.3. Two-dimensional flow past a circular cylinder
The problem of viscous incompressible flow past a circular cylinder has re-

ceived great attention both from a theoretical and a numerical viewpoint [2].
At low Reynolds number, the steady flow is symmetric and is characterized by
a small recirculation bubble behind the cylinder. When the Reynolds number
based on the cylinder diameter D exceeds the critical value of ReIcr = 46.7
the flow becomes unstable and a periodic Von-Kármán vortex street appears
[29]. A linear stability analysis performed on the unstable steady base flow
shows the existence of a second unstable wake mode for Re > ReIIcr = 110.8.

In the present section, we consider the flow at the (supercritical) Reyn-
olds number of Re = 120 > ReIIcr . The natural evolution of the governing
equations produces a saturated limit cycle depicted in figure 6a). We used
BoostConv to compute the base flow in three-different codes: 1) a time-
marching finite-difference immersed boundary code [29] (time integration is
achieved using a semi-implicit CN-RK3 method (explicit third order Runge-
Kutta for the convection term and implicit Crank-Nicolson scheme for the
diffusion term); 2) the spectral element (SEM) code Nek5000 [30] (both
first order and second order time integration scheme have been tested with
success); 3) the finite-element code Freefem++ [31],[32] (the characteristic-
Galerkin method has been used for the time integration). As in the previous
section, for each code, the modification of the existing time integration pro-
cedure consists in a single line of code that contains the call to BoostConv.
All the results presented in this section are obtained by using a time step
equal to ∆t = 0.001 that corresponds for the adopted spatial discretizations
to a Courant-Friedrichs-Lewy (CFL) number of ≈ 0.4 for all the simulations
performed using the three different codes. We chose to adopt a BoostConv
basis of 15 vectors. In general, the choice of the basis dimension and the
time step ∆t depends on particular problem considered. In fact, as men-
tioned before, the convergence rate of the code is dictated by the structure
of the spectrum.

Figure 7 shows the evolution of the norm of the residual (||rn||) computed
using Nek5000 as function of time. The blue line represents the case in
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Table 1: Application of BoostConv to stabilize the flow past a circular cylinder at Re =
120. We report the effect of the basis dimension N and the time step ∆t on convergence of
the code. We report the computational time obtained running Nek5000 on an Intel i7−
6700HQ (4 cores, 3.50 GHz).
Basis Dim. ∆t Computational time
N = 15 0.0001 3702.3 s
N = 15 0.0005 703.9 s
N = 15 0.001 419.7 s
N = 15 0.00125 376.6 s
N = 50 0.001 489.1 s
N = 10 0.001 407.0 s
N = 5 0.001 404.3 s

which the standard time integration procedure is not modified (leading to
the saturated limit cycle). For this case, we show that the algorithm is able
to compute the base flow starting from two different initial conditions: 1) a
uniform flow; 2) the saturated limit cycle. We note that the residual target
value is obtained for both the initial conditions at t ≈ 170. We computed
also the unstable base flow by using the SFD algorithm. Figure 7 clearly
shows that BoostConv is able to obtain the stabilized flow faster than the
SFD algorithm: the resulting base flow is depicted in Figure 6b).

The velocity and pressure distributions of the computed steady flow along
the vertical line x = D are shown in figure 8. An equivalent mesh resolution
is adopted for all codes. We note that each code converges (when BoostConv
is called during the time integration) to the base flow computed by using a
Newton method which serves as a reference solution.

Table 1 shows the effect of the basis dimension N and time step ∆t on
the convergence. We note that a large time step is fundamental to quickly
get the unstable base flow. On the other hand, the basis dimension N weakly
affects the convergence rate of the code. It must be stressed, however, that
the effect of these parameters on the convergence rate strongly depends on
the problem.

6.4. High-dimensional problem: three-dimensional DNS of a boundary layer
flow over a hemispherical roughness element

As discussed in the previous sections, BoostConv is conceived to stabil-
ize the dynamical system without a negative impact on the computational
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Figure 6: Two-dimensional flow past a circular cylinder at Re = 120 > ReIIcr . a) Snapshot
of the saturated limit cycle (unmodified integration of Navier-Stokes equations). b) Base
flow: stabilized simulation using BoostConv. The evolution of the residual norm associated
with these simulations is depicted in Figure 7.
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Figure 7: Stabilization of the cylinder flow by using BoostConv at Re = 120. We star-
ted from two different initial conditions: 1) saturated limit cycle and 2) uniform flow in
the streamwise direction. We carried out the stabilization of this flow also by the SFD
algorithm [13]: 1) χ = ωc = 0.3; 2) χ = ωc = 0.5. The flow simulations are carried out by
using the code Nek5000.

burden of the simulation. In this section we show the application of this
algorithm to a high-dimensional test case that would be infeasible with a
matrix-based method.

In particular, we consider the three-dimensional flow past a hemispherical
roughness element immersed in a laminar Blasius boundary layer. The com-
putational domain is discretized by approximately 24 million points. This
geometrical configuration is the same chosen by Klebanoff et al. [33] in their
experimental investigations. As considered by Tani et al.[34] and Citro et
al.[35], the Navier-Stokes equations are made dimensionless using the total
height k of the roughness element as the characteristic length scale and the
velocity Uk of the incoming uniform stream that would exist in the bound-
ary layer at the height k if the roughness element is absent. The resulting
Reynolds number can be written as Rek = Ukk/ν, with ν being the kinematic
viscosity of the fluid. The other important parameter that influences the flow
dynamics is the ratio between the displacement thickness δ∗k of the incoming
boundary layer and the height k of the hemisphere.

For this test case, we chose k/δ∗k = 2.62 and Rek = 450 that are the same
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Figure 8: Velocity and pressure distributions in the wake of a circular cylinder at x = D
(Re = 50). Here, we compare the solutions obtained using (o) finite-difference immersed-
boundary code, (+) spectral element code (Nek5000 ) and (�) finite element (time-
marching) code. The profiles depicted using solid lines (−) are obtained using the Newton
method.
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Figure 9: Three-dimensional flow past a hemispherical roughness element: contour plot
of the velocity magnitude. Perspective view of a) unsteady supercritical flow (without
the application of BoostConv) and b) stabilized flow obtained by using the BoostConv
algorithm. Parameter settings: Rek = 450 and k/δ∗k = 2.62.
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Figure 10: Flow past a hemispherical roughness element. Solid line (−): convergence
history of BoostConv. Dashed line (−−): time integration of the governing equations.
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conditions in which Klebanoff et al. [33] documented their experimental res-
ults. As also shown by Citro et al.[35], the inherent three-dimensional flow
pattern beyond the Hopf bifurcation is characterized by coherent vortical
structures called hairpin vortices that periodically detach from the hemi-
sphere. A contour plot of a snapshot of the resulting periodic flow is depicted
in Figure 9a) by taking a mid-plane slice. In this side view of the unsteady
supercritical flow, we plotted the iso-contours of the velocity magnitude. As
discussed before for the cylinder and the lid-driven cavity cases, we plot the
evolution of the residual as a function of time for both the original time-
stepper (dashed line) and for the modified procedure involving BoostConv.
The convergence history is reported in figure 10. For this case, we performed
a DNS using the SEM code Nek5000 : the dimension of the basis used is
N = 15 (see section 3) and the time step is ∆t = 0.001. The initial field is a
uniform flow as for the case of the circular cylinder. The run was performed
on an IBM BG/Q Supercomputer at CINECA and we found that the stabil-
ization procedure increased the simulation time by about 9%. The resulting
base flow is shown in figure 9b).

7. Stabilization of periodic orbits

Finally, we present an example in which BoostConv is used to stabilize
periodic unstable orbits. We consider the two-dimensional flow past two
side-by-side circular cylinders. This flow can be considered a prototype to
investigate wake interference phenomena past bluff bodies. The bifurcation
scenario is strongly influenced by the gap between the cylinders [36]. In this
example, we focus on the gap value g = 0.7D. The flow pattern, at Re = 62,
is characterized by two asymmetric unsteady wakes deflecting alternatively
toward one of the cylinders. The analysis performed by Carini et al.[36]
demonstrated that the flip-flopping state, developing at this Reynolds num-
ber, can be considered as an instability of the in-phase synchronized vortex
shedding. As a consequence, the in-phase base flow cannot be simply re-
covered by using a standard time integration of governing equations. Figure
11 shows the results of the application of BoostConv to this case to compute
the unstable periodic orbit. In particular, Figure 11a) shows the stabilization
of the value of Strouhal number as a function of the time-integration periods.
The abatement of the infinity norm of the residual is depicted in Figure 11b).
Snapshots of the stabilized periodic field are reported in Figure 12.
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Figure 11: Stabilization of the flow past two side-by-side circular cylinders. The gap
between the cylinders is g = 0.7D and the Reynolds number is Re = 62 > Recr. We depict
(a) the resulting Strouhal number St = 1/T and (b) the infinity norm of the residual on
the periodicity condition ||r||∞ as a function of the number of iterations (periods involved
in the computation).

8. Conclusions

In this paper we presented a novel, efficient and easy-to-implement al-
gorithm inspired by the Krylov-subspace projection methods, which is able
to compute unstable steady states of any dynamical system. BoostConv is
based on the least-squares minimization of the residual norm at each step of
an existing iterative procedure. The key idea of the proposed method is to
invert only the small part of the problem represented by the dominant and
slower decaying/growing modes exactly, while letting the original iterative
algorithm handle the remaining modes. As a consequence, the proposed al-
gorithm is very efficient because the linear system that has to be inverted at
each time step is small compared with the dimension of the problem. From
a programming viewpoint, BoostConv can be encapsulated in a black-box
routine where the only required input is the residual rn and the only output
is the modified residual ξn. We underline that the only modification neces-
sary to stabilize or boost the convergence of a pre-existing iterative algorithm
is a single line of code containing the call to BoostConv.

We also report numerical results obtained with the new procedure. First
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Figure 12: Vorticity snapshots of the periodic stabilized base flow using BoostConv. We
equally divided the shedding period and reported here the resulting phases: (a) t = T/4;
(b)t = T/2; (c)t = 3T/4; (d)t = T . Parameter settings as in Fig. 11: g = 0.7D and
Re = 62.

of all, we applied BoostConv to the low dimensional system consisting of the
Ginzburg-Landau equation. We showed that the BoostConv is always able
to stabilize the system but the non-normality can play an important role in
the convergence rate. The classical case of the two-dimensional lid-driven
cavity flow has also been considered. At a subcritical Reynolds number, we
showed that BoostConv is able to accelerate the convergence of the existing
time integration procedure. Moreover, we dealt with the two-dimensional
flow past an infinitely long circular cylinder showing, with several different
codes, that BoostConv is able to drive the iterative procedure to the base
flow computed using Newton’s method. We note that the initial condition,
did not affect the stabilization performance. A three-dimensional case has
also been considered to demonstrate the application of BoostConv to a high-
dimensional problem. In the case of the flow past a hemispherical roughness
element immersed in a laminar Blasius boundary layer, we found that the
resulting modification of the time integration does not significantly affect the
computational burden of the simulation. Furthermore, we showed that the
proposed algorithm can be used also to stabilize unstable periodic orbits. In
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fact, recently, thanks to the application of this procedure, Carini et al.[36]
were able to explain the flip-flop mechanism in the flow past two side-by-side
circular cylinders. Finally, we note that BoostConv has been recently applied
to compute unstable states in presence of a stationary bifurcation [37].

Unlike Krylov methods such as GMRES, BoostConv takes into account for
the change of the system Jacobian during the time evolution of the dynamical
system. We underline also that the proposed algorithm can be combined with
any spatial discretization method and can be used to stabilize a dynamical
system even in presence of bifurcations with higher codimension.
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