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elastic-plastic solids
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École Centrale de Nantes, 1 rue de la Noë, F-44321 Nantes, France

Abstract

We present in this work two finite volume methods for the simulation of unidimensional
impact problems, both for bars and plane waves, on elastic-plastic solid media within the
small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive
models with linear and nonlinear hardenings is presented. Second, a high order TVD
method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled
with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows
that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through
dissipation heating and thermal softening, and adiabatic conditions are assumed. This
paper essentially focuses on one-dimensional problems since analytical solutions exist
or can easily be developed. Accordingly, these two numerical methods are compared
to analytical solutions and to the explicit finite element method on test cases involving
discontinuous and continuous solutions. This allows to study in more details their
respective performance during the loading, unloading and reloading stages. Particular
emphasis is also paid to the accuracy of the computed plastic strains, some differences
being found according to the numerical method used. Lax-Wendoff two-dimensional
discretization of a one-dimensional problem is also appended at the end to demonstrate
the extensibility of such numerical scheme to multidimensional problems.

Keywords: Thermo-elastic-plastic solids, Finite volume method, Impacts, Lax-Wendroff,
High order TVD method

I. Introduction

The numerical simulation of hyperbolic initial boundary value problems including
extreme loading conditions such as impacts requires the ability to accurately capture
and track the wave front of shock waves induced in the medium. Indeed, this permits
to correctly follow the path of waves and hence understand the mechanical phenomena
occuring within that medium. For solid-type media, it allows also for an accurate
assessment of the plastic strain field and hence that of residual stresses and distortions
within the structure. High speed forming processes like electromagnetic material forming
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[4, 5, 6] are some application examples of severe loading conditions in which the track
of wave fronts is important both for understanding the development of plastic strain in
the workpiece and optimizing its final shape. Hence, these problems require numerical
schemes able to meet high orders of accuracy and a high resolution of discontinuity
without any spurious oscillations.

The numerical simulation of impacts on dissipative solids has been and is again
mainly performed with the classical finite element method coupled with centered dif-
ferences or Newmark finite difference schemes in time [7, 8], which is implemented in
many industrial codes. Indeed, the finite element method is still popular in the solid
mechanics community for, among others, its easy implementation of nonlinearities of
partial differential equations, that is for solid-type media it enables to account easily for
history-dependent constitutive equations through appropriate integration algorithms [9]
and storage of internal variables at integration points in each element. However, on the
one hand the amount of artificial viscosity added to numerical time integrators required
to reduce the high frequency noise in the vicinity of shocks is hard to assess properly in
order to remove the sole spurious oscillations. On the other hand, finite elements do not
use any feature of the characteristic structure of the set of hyperbolic equations, and is
hence not the best suited method to accurately capture discontinuous solutions.

The finite volume method, initially developed for the simulation of gas dynamics
[1, 10], has gained recently more and more interest for problems involving impacts on solid
media. The characteristic structure of the set of hyperbolic equations can be accounted
for by the solution of a Riemann problem at interfaces between cells, and the same order
of convergence is achieved for both the velocity and stress fields [11]. Since the early
work of Wilkins [12] and Trangenstein et al. [13], several authors have proposed many
ways to simulate impacts on dissipative solid media such as elastic-plastic solids, these
can be merely classified into eulerian approaches, generally based on a fractional-step
method to treat the plasticity [14, 15, 16, 17, 18] and used for extremely high strain and
strain rate problems, and lagrangian approaches [19, 20] that allow to follow the path of
material particles and hence account for refined history-dependent constitutive equations
though limited by mesh entanglement, both being coupled with an approximate Riemann
or WENO solver. It should be noted that the eulerian approaches are often based on the
so-called Maxwell-type relaxation approach [21, 15, 16, 17, 18] that rather refer to elastic-
viscoplastic solids than elastic-plastic ones [9][22] since the constitutive response actually
depends on time and Kuhn-Tucker complementarity conditions are not enforced at each
time step. However, some of these authors [14, 23] actually enforce these conditions in that
framework as both rate-dependent and rate-independent inelastic media can be written
in a conservative form in the eulerian setting with a right-hand-side containing inelastic
terms [24]. For Lagrangian approaches, such a fractional-step method is only possible
for elastic-viscoplastic media since they exhibit inelastic phenomena occurring within
a right-hand-side [25], while elastic-plastic media do not and have been so far treated
within the lagrangian setting [19, 20] using classical integration of constitutive equations
[9] coupled with acoustic Riemann solvers. Such a distinction of solid behaviour can be
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viewed of few importance for high pressure and extremely high strain rate applications
for which shear effects are of less importance than pressure ones, making the importance
of the equation of state preeminent. However for low and moderate pressure levels for
which shear effects are of great importance, these two sets of constitutive equations lead to
different inelastic strains since they have different characteristic structures [25], and only
converge in the limit when the iso-surfaces of the viscoplastic potential in the space of
thermodynamic flux-type variables become superimposed to the indicator function of the
elastic convex. One of these two constitutive models may indeed be more in accordance
with experimental data depending on the considered metallic alloy (see [26]).

This work intend to present two finite volumes schemes for the numerical simulation of
impacts on thermo-elastic-plastic solids following the framework of Generalized Standard
Materials [27], within the small strain framework, both for linear and nonlinear hardenings.
This paper essentially focuses on one-dimensional problems (bars and plane waves) since
analytical solutions exist or can easily be developed. It allows to study in more details the
performance of numerical methods during the loading, unloading and reloading stages,
and to compare the computed plastic strains to analytical ones, which is generally few
carried out. We present first an extension of Lax-Wendroff to elastic-plastic constitutive
models. Second, a high order Total Variation Diminishing (TVD) method based on flux-
difference splitting [1] and flux limiters (in particular Superbee [2]) is coupled with an
approximate elastic-plastic Riemann solver for nonlinear hardenings, or follows that of
Fogarty [3] for linear ones. Since the material is deformed at high strain rate, adiabatic
conditions are assumed to compute the rise of temperature through dissipation heating,
and thermal softening is accounted for. The paper is organized as follows. First, the
elastic-plastic constitutive model and governing conservations laws, both specified for
bar and plane waves, are presented in section II. Next, the two finite volume schemes
are introduced in section III. At last in section IV, these two methods are compared
to analytical solutions and to the explicit P1-finite element method on three test cases
involving either discontinuous or both discontinuous and continuous solutions. Particular
emphasis is paid to the accuracy of the computed plastic strains, of particular importance
for the computation of residual stresses and distortions. Indeed, some differences are
found according the numerical method used. At the end of this section, two-dimensional
results of the Lax-Wendoff elastic-plastic scheme obtained on a one-dimensional problem
are shown to demonstrate the extensibility of such numerical scheme to multidimensional
problems.

II. Initial Boundary Value Problem for a thermo-elastic-plastic solid in one dimension

I. Elastic-plastic constitutive model
Following the local accompanying state approach [28, 22], the thermodynamical state

of the material is described by a set of state variables consisting of the strain ε, the tem-
perature T and a set of internal state variables Z which describe the evolution of internal
microstructure and stored energy due to plastic deformation and other irreversible pro-
cesses. Following the framework of Generalized Standard Materials [27], we assume the
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elastic-plastic material described by a Helmholtz free-energy density potential W(ε, T, Z)
and the von Mises yield function f (σ, Y) ≤ 0, where Y denotes the variables energet-
ically conjugated to Z. Under small strain assumption, the total strain ε is additively
decomposed into an elastic strain (εe) and a plastic strain (εp):

ε = εe + εp (1)

The set of internal state variables Z consists here of the plastic strain εp plus two additional
variables pertaining to the kinematic and isotropic hardenings. The state laws, the plastic
flow rule as well as the evolution equations of internal (hardening) parameters can be
derived in a classical manner [9] [22] from the free-energy and the von Mises yield
function.

In the case of a bar, a unidimensional stress and strain state is considered, the set of
constitutive equations read:

ε̇ = ε̇e + ε̇p (2)

σ̇ = Eε̇e (3)

ε̇p = ṗ sign(σ− X) (4)

f = |σ− X| −
[

σ0

(
1− A

(T − T0)

T0

)
+ R

]
≤ 0 (5)

ṗ ≥ 0; f ≤ 0; f ṗ = 0 (6)

where the equations (2), (3), (4), (5) and (6) refer to the additive partition of the total strain
rate (ε̇) into elastic (ε̇e) and plastic (ε̇p) parts, the elastic law, the plastic flow rule, the (von
Mises) criterion and the Kuhn-Tucker complementarity conditions. In these equations,
the dot (˙) stands for a time rate, but rather denotes here increments since elastic-plastic
equations are rate-independent. In (3), E is the Young’s modulus, and σ the Cauchy
axial stress component. In (4) and (6), ṗ denotes the rate of cumulated plastic strain
defined for a bar as ṗ = |ε̇p|. The tensile yield stress consists of two parts, the first one
associated to the initial tensile yield stress σ0, submitted to thermal softening assumed
here to decrease it linearly with temperature by means of a decrease coefficient A, T0

being here a reference temperature; and the second is the isotropic hardening variable
R, assumed temperature-independent here. Moreover, the criterion (5) involves the back
stress X within the von Mises norm, associated to kinematic hardening to model the
Bauschinger effect. The above set of equations should be supplemented with evolution
laws for hardening parameters. Linear kinematic and isotropic hardening evolution laws
may be considered in the sequel:

X = Dεp (7)

R = Qp (8)

where D and Q are hardening moduli leading to the constant tangent modulus

dσ

dε
=

E(D + Q)

E + D + Q
, (9)
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or a nonlinear isotropic hardening following a power law:

R = Bpm (10)

where B is a hardening parameter and m < 1 a sensitivity exponent, so that the material
tangent modulus decreases with the increase of strain (d2σ/dε2 ≤ 0).

For plane waves, the strain state remains unidimensional while the stress state is three-
dimensional, denoting by x, r, θ the axial, radial and hoop coordinates respectively, these
are expressed as:

ε = εex ⊗ ex (11)

σ = σxex ⊗ ex + σr(er ⊗ er + eθ ⊗ eθ) (12)

According to the plastic strain incompressibility, the plastic strain and the back stress
tensors read:

εp = εp
(

ex ⊗ ex −
1
2
(er ⊗ er + eθ ⊗ eθ)

)
(13)

X = X
(

ex ⊗ ex −
1
2
(er ⊗ er + eθ ⊗ eθ)

)
; X = Dεp (14)

Hence, the equations (2), (3), (4) and (5) are replaced by the following set of equations:

σ̇r = λε̇ + µε̇p (15)

σ̇x = (λ + 2µ)ε̇− 2µε̇p (16)

ε̇p = ṗ sign
(

σx − σr −
3
2

X
)

(17)

f =

∣∣∣∣σx − σr −
3
2

X
∣∣∣∣− (σ0 + R)

(
1− A

(T − T0)

T0

)
≤ 0 (18)

where σx ≡ σ is the axial stress component and σr (= σθ) the radial one, λ and µ are the
Lamé’s parameters. Besides, one can show that the tangent modulus is changed into

H =
2λµ + (λ + 2µ)

(
µ + Q + 3D

2

)
3µ + Q + 3D

2

(19)

for a plane wave with isotropic and kinematic linear hardenings.

II. Conservation laws
A set of conservation laws that consists of the axial momentum balance and the

geometric strain compatibility
∂ε

∂t
=

∂v
∂x

, (20)

combined with the incremental stress-strain relationship, can be written as the following
system of first-order partial differential equations:

∂u
∂t

+
∂f(u)

∂x
= 0 ∀(x, t) ∈]0, L[×]0, tend] (21)
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within a domain of length L and a duration tend, the unknown vector u and the flux f(u)
are defined as

u =

[
σ

v

]
; f =

[
−Hv
−σ/ρ

]
(22)

where ρ is the mass density and σ and v denote the axial stress and velocity components
respectively. The conservation laws (21) should be supplemented with appropriate
boundary and initial conditions. For a purely elastic material, the modulus H is equal to
E (the Young’s modulus) if a bar is considered (1D stress state), or to (λ + 2µ) (λ and µ

being the two Lamé’s parameters) if a plane wave is considered (1D strain state). For an
elastic-plastic material, the modulus H stands for the respective tangent moduli.

The temperature is solution of the heat equation, assuming adiabatic conditions,
written with the sole mechanical dissipation on the right hand side:

ρCṪ = Dmech (23)

where C is the specific thermal heat capacity, and the mechanical dissipation is given by
Dmech = (σ− X)ε̇p − Rṗ for a bar, Dmech =

(
σx − σr − 3

2 X
)

ε̇p − Rṗ for a plane wave.

III. Characteristic analysis

The jacobian matrix associated to the system (21), given by:

A =
∂f(u)

∂u
=

[
0 −H
−1/ρ 0

]
, (24)

admits real eigenvalues function of the modulus H. If elastic loading ( f < 0) or unloading
( f = 0 and ḟ < 0) is considered, classical elastic characteristic line equations and
compatibility equations on characteristic lines are solution:{

dx = ±cdt

dσ = ±ρcdv
; c =

√
H
ρ

(25)

where H is equal to E or (λ + 2µ) depending on whether bar or plane wave is considered,
c is the elastic celerity. If elastic-plastic loading is considered ( f = ḟ = 0), plastic
characteristic line equations and plastic compatibility equations are solution [25]:

dx = ±cpdt

dv = ±dϕ ; ϕ =
∫ σ

0

dσ′

ρcp(σ′)

; cp =

√
H
ρ

(26)

where H is now the tangent modulus dσ/dε. This tangent modulus depends explicitly on
the cumulated plastic strain in the case of nonlinear hardening, and may be influenced
indirectly in that case by the temperature that leads to a greater plastic flow through
thermal softening, and thus to a decrease of the tangent modulus and that of the plastic
celerity.
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III. Finite volume spatial discretization

The finite volume methods are based on subdividing the spatial domain into grid
cells [1] of length ∆x for one-dimensional problems, and defining the approximation
Ui of u within the ith grid cell by integral averaging. These are then updated using the
conservation laws (21) written in integral form on one cell, generally coupled with an
explicit time integration scheme. We present here the application of the Lax-Wendroff
method and a high-order Total Variation Diminishing (TVD) method using the Superbee
flux limiter and flux-difference splitting [2, 1] for a thermo-elastic-plastic solid.

I. Lax-Wendroff

The Lax-Wendroff method is a second order accurate method, presented here in its
Richtmyer two-steps version. The first step amounts to approximate u at the midpoint in
time tn+1/2 = tn + ∆t/2 (n referring to the time step number) and at each interface by:

Un+ 1
2

i+ 1
2
=

Un
i + Un

i+1

2
+

∆t
2∆x

(Fn
i − Fn

i+1) (27)

where Un
i , Un

i+1 and Fn
i , Fn

i+1 denote respectively the approximation of u and f(u) in grid
cells i and i + 1 at time tn. The second step requires to evaluate the flux at this point

Fn
i+ 1

2
= f

(
Un+ 1

2
i+ 1

2

)
(28)

in order to update the unknowns at time tn+1 with the following conservative scheme:

Un+1
i = Un

i −
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
(29)

For implementing a thermo-elastic-plastic material, a dedicated elastic-plastic Riemann
solver should be considered. At each step of the Richtmyer algorithm, a prediction-
correction scheme should be set in order to handle the Kuhn-Tucker complementarity
conditions (6).

I.1. Lax-Wendroff first step
An elastic constitutive behaviour is first assumed, leading to the following elastic trial

solution: (
σ

n+ 1
2

i+ 1
2

)trial

=
σn

i + σn
i+1

2
+

c2∆t
2∆x

(ρvn
i+1 − ρvn

i ) (30)

vn+ 1
2

i+ 1
2
=

vn
i + vn

i+1

2
+

∆t
2∆x

(
σn

i+1 − σn
i

ρ

)
(31)

where c stands for the elastic sound speed defined by equation (25), generally set at ∆t/∆x
if the Courant number is set at one. Notice that the elastic trial state computed with the
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first step of Lax-Wendroff is identical to the method of characteristics applied with an
elastic material. Then, the criterion (5) (or (18)) is computed with that trial state within the
grid cells i and i + 1, provided their respective kinematic and isotropic variables values
(X, R)n

i,i+1, respectively linked to the plastic strain (εp)n
i,i+1 and cumulated plastic strain

values pn
i,i+1 through the evolution laws (7) and (8) or (10), and temperature values Tn

i,i+1
at time tn. For plane waves, the von Mises norm arising in the criterion (18) is combined
with the non-differentiated form of (15) and (16), and with the evolution law (7) so that
only axial components appear:∣∣∣∣σx − σr −

3
2

X
∣∣∣∣ = ∣∣∣∣ 2µ

λ + 2µ
σ− αεp

∣∣∣∣ ; α =
µ(3λ + 2µ)

λ + 2µ
+

3D
2

(32)

Two cases thus arise for each grid cell: either the plastic criterion is satisfied, and hence

the evolution is actually elastic σn+1/2
i+1/2 =

(
σn+1/2

i+1/2

)trial
, or the plastic criterion is violated

f
((

σn+1/2
i+1/2

)trial
)
> 0, and a plastic correction needs to be carried out.

Let’s restart from the geometric strain compatibility equation (20) written in integral
form on the discrete volume[xi, xi+1]× [tn, tn+1/2]:∫ t

n+ 1
2

tn

∫ xi+1

xi

(
∂ε

∂t
− ∂v

∂x

)
dxdt = 0 (33)

Introducing the incremental stress-strain relationship yields:∫ t
n+ 1

2

tn

∫ xi+1

xi

(
1
H

∂σ

∂t
− ∂v

∂x

)
dxdt = 0 (34)

where H denotes either the elastic or elastic-plastic tangent modulus. Separating the
space integral according to cell interface coordinate xi+1/2, and considering the modulus
H homogeneous in each cell, one gets:∫ t

n+ 1
2

tn

∆x
2

(
σ̇i

Hi
+

σ̇i+1

Hi+1

)
dt =

∆t
2
(vn

i+1 − vn
i ) (35)

where

σi =
1

∆x
2

∫ x
i+ 1

2

xi

σ(x, t)dx ; vn
i =

1
∆t
2

∫ t
n+ 1

2

tn

v(x, t)dt . (36)

Defining

σ
n+ 1

2
i+ 1

2
=

1
∆x
2

∫ x
i+ 1

2

xi

σ(x, tn+ 1
2
)dx , (37)

it comes the update formula of the first step of Lax-Wendroff for an elastic-plastic solid:

∆x

∫ σ
n+ 1

2
i+ 1

2

σn
i

dσ

Hi
+
∫ σ

n+ 1
2

i+ 1
2

σn
i+1

dσ

Hi+1

 = ∆t(vn
i+1 − vn

i ) (38)
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It is worth noting that the above results is exactly what the method of characteristics gives.
Indeed, the elastic-plastic Riemann invariants eqrefPCE written in a discrete manner
defined on the two integral curves passing by the states of the grid cells i and i + 1 at
time tn (see figure 1), read:

vn+ 1
2

i+ 1
2
= vn

i +
∆x
∆t

∫ σ
n+ 1

2
i+ 1

2

σn
i

dσ

ρc2
i

(39)

vn+ 1
2

i+ 1
2
= vn

i+1 −
∆x
∆t

∫ σ
n+ 1

2
i+ 1

2

σn
i+1

dσ

ρc2
i+1

(40)

where ρc2
i,i+1 = Hi,i+1. The matching of (39) and (40) yields (38). Accounting for the

plastic threshold, it gives:

∫ σ∗i

σn
i

dσ

ρc2 +
∫ σ

n+ 1
2

i+ 1
2

σ∗i

dσ

ρc2
i
+
∫ σ∗i+1

σn
i+1

dσ

ρc2 +
∫ σ

n+ 1
2

i+ 1
2

σ∗i+1

dσ

ρc2
i+1

=
∆t
∆x

(vn
i+1 − vn

i ) (41)

where σ∗i and σ∗i+1 stand for the tensile yield stress in grid cells i and i + 1 respectively at
time tn if the trial state did not satisfy the plastic criterion, or are equal to σn

i (respectively
σn

i+1) if the plastic criterion has been satisfied. Indeed, at one cell interface i + 1/2, the

v

σ

(
vn

i+1, σn
i+1

)

(
vn+1/2

i+1/2 , σn+1/2
i+1/2

)

(
vn

i , σn
i
)σ∗i+1

σ∗i

Figure 1: Elastic-plastic integral curves passing by the states of the grid cells i and i + 1 at time tn. This
configuration corresponds to that both grid cells move from an elastic to an elastic-plastic state,
so that plasticity progresses from both sides.

plasticity can develop from its left side, from its right side, or from both. The computation
of integrals involving the celerities ci,i+1 in grid cells i and i + 1 depend on the type of
hardening considered. Two cases can thus be considered.

If the hardening is linear (see equations (7) and (8)), the tangent modulus is constant
and given by (9). Hence, equation (41) reads:

σ
n+ 1

2
i+ 1

2
=

1
1

ρc2
i
+ 1

ρc2
i+1

(
σ∗i
ρc2

i
+

σ∗i+1

ρc2
i+1

+
1

ρc2 (σ
n
i + σn

i+1 − σ∗i − σ∗i+1) +
∆t
∆x

(vn
i+1 − vn

i )

)
(42)
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where ci and ci+1 denote the sound speed of grid cells i and i + 1. These can be equal
to the elastic sound speed c if the evolution is elastic, or cp the (constant) plastic sound
speed (=

√
(dσ/dε)/ρ) if the evolution is elastic-plastic.

If the hardening is nonlinear as for (10), the tangent modulus depends on the cumulated
plastic strain and thus on the stress. Hence, the computation of integrals involving
celerities ci,i+1 should be carried out according to a stress-dependent plastic sound speed.
One can show that for a power law (10), the update formula (41) leads to a nonlinear
equation written on the cell interface stress σn+1/2

i+1/2 , which is a polynomial of order
(2m− 1)/(m− 1), m being the exponent arising in equation (10).

However, it can prove more convenient to proceed otherwise than solving this non-
linear equation. Indeed, the second integral arising in equations (39) and (40) can be
approximated by a trapezoidal rule:

∫ σ
n+ 1

2
i+ 1

2

σ∗i

dσ

ρc2 '

(
σ

n+ 1
2

i+ 1
2
− σ∗i

)
2

 1
ρc2

p
(

pn
i

) + 1

ρc2
p

(
pn+ 1

2
i+ 1

2

)
 (43)

which is second order accurate and thus consistent with the Lax-Wendroff order of ac-
curacy. In the above expression, pn+1/2

i+1/2 is updated with a radial return algorithm [9],
provided the elastic trial solution (30), the cumulated plastic strain pn

i in grid cell i at
time tn, the initial tensile yield stress σ0 and hardening parameters arising in (10). Since
the hardening is nonlinear, the radial return algorithm still involve the solution of an
algebraic nonlinear equation. However, the routines used for finite elements can be reused.

I.2. Lax-Wendroff second step
The second step of the Richtmyer algorithm is also based on a prediction-correction

scheme. The trial state is obtained via the conservative formula (29):(
σn+1

i

)trial
= σn

i +
ρc2∆t

∆x

(
vn+ 1

2
i+ 1

2
− vn+ 1

2
i− 1

2

)
(44)

vn+1
i = vn

i +
∆t
∆x

σ
n+ 1

2
i+ 1

2
− σ

n+ 1
2

i− 1
2

ρ

 (45)

This trial state is also tested with respect to the plastic criterion within each adjacent grid
cell, provided their respective plastic strain (εp)n

i,i+1 and cumulated plastic strain value

pn
i,i+1 as well as temperature Tn

i,i+1. If the plastic criterion is violated f
((

σn+1
i

)trial
)
> 0,

a plastic correction is required. This correction has to be a conservative update while
taking care of the plastic threshold crossing. The formula (29) is thus adapted accounting
for the fact that the tangent modulus appearing in (22)1 depends on the stress. Writing the
conservation law (21)1 in its integral form on the control volume [xi−1/2, xi+1/2]× [tn, tn+1],
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the tangent modulus may be moved to the denominator of the left-hand side, and the
time integral changed into a path integral between stress states defined at times tn and
tn+1, that can be split accounting for the threshold:

∆x
∆t

(∫ σ∗i

σn
i

dσ

ρc2 +
∫ σn+1

i

σ∗i

dσ

ρc2

)
= vn+ 1

2
i+ 1

2
− vn+ 1

2
i− 1

2
(46)

The computation of the two integrals arising in the left-hand side is performed as discussed
above.

Once the stress has been updated at time tn+1, the plastic strain or the cumulated
plastic strain is updated using the criterion (5) (or (18)). At last, the temperature is
updated at the end of the time step through an implicit time discretization of the heat
equation (23):

Tn+1
i = Tn

i +
1

ρC

(
(σn+1

i − Xn+1
i )∆ε

p
i − Rn+1

i ∆pi

)
(47)

II. High-order TVD methods
The high order Total Variation Diminishing (TVD) methods enable to meet both high

order of accuracy in smooth regions and a high resolution of discontinuity without any
spurious oscillations where shocks arise in the solution. Their strength relies on their
ability to introduce a controlled amount of numerical viscosity locally, so that to adapt to
the local regularity of the solution. Following [1], the conservative formula (29) can be
rewritten in term of flux-difference splitting, plus some additional flux to reach higher
order of accuracy:

Un+1
i = Un

i −
∆t
∆x

(
A+Un

i− 1
2
+A−Un

i+ 1
2

)
− ∆t

∆x

(
F̃n

i+ 1
2
− F̃n

i− 1
2

)
(48)

where A+Un
i−1/2 = ∑m

p=1(λ
(p)
i−1/2)

+W (p)
i−1/2 and A−Un

i+1/2 = ∑m
p=1(λ

(p)
i+1/2)

−W (p)
i+1/2 are

the right-going and left-going fluctuations respectively, provided Un
i−1/2 = Un

i − Un
i−1,

W (p)
i−1/2 = α

(p)
i−1/2K(p) are the waves formed of the wave strength coefficient α

(p)
i−1/2 weight-

ing the right eigenvectors K(p) of the jacobian matrix A = ∂f/∂u, and (λ
(p)
i−1/2)

± are the
characteristic speeds (the eigenvalues of A) travelling rightward or leftward respectively.
In addition, F̃n

i+1/2 and F̃n
i−1/2 stand for limited additional correction fluxes designed so

that the method achieves a high order of accuracy in smooth regions and a high resolution
of discontinuity in rough ones. These limited fluxes are expressed as a function of limited
waves W̃ (p)

i−1/2 = α̃
(p)
i−1/2K(p), 1 ≤ p ≤ m:

F̃n
i− 1

2
=

1
2

m

∑
p=1
|λ(p)

i−1/2|
(

1− ∆t
∆x
|λ(p)

i−1/2|
)

α̃
(p)
i−1/2K(p) (49)

These waves are limited based on an upwind ratio θ
(p)
i−1/2 defined for the pth wave as:

θ
(p)
i−1/2 =

‖W (p)
I−1/2‖

‖W (p)
i−1/2‖

=
α
(p)
I−1/2

α
(p)
i−1/2

(50)
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where the index I denotes the upwind interface of that located at xi−1/2, that is I equals
i− 1 if λ

(p)
i−1/2 > 0, i + 1 if λ

(p)
i−1/2 < 0. This ratio may be understood as a certain measure

of the local regularity of the solution, the p−wave strength may thus be limited as a
function of this measure:

α̃
(p)
i−1/2 = φ(θ

(p)
i−1/2)α

(p)
i−1/2 (51)

where φ(θ
(p)
i−1/2) is a limiting function. Among many others (see [1] and [10]), Lax-

Wendroff is found for φ(θ) = 1, and for instance Superbee is obtained for φ(θ) =

max(0, min(1, 2θ), min(2, θ)).
As for the Lax-Wendroff method, implementing a thermo-elastic-plastic material also

requires a special elastic-plastic Riemann solver. This is also based on a prediction-
correction scheme. An elastic trial solution (σi+1/2)

trial is first computed at each interface,
solution of an elastic Riemann problem consisting of two elastic (discontinuous) waves
travelling at speeds −c and c (see [1]). Then, this trial stress state is tested against the
yield criterion in both adjacent grid cells i and i + 1, being given their respective plastic
strain (εp)n

i,i+1, cumulated plastic strain pn
i,i+1, and temperature values Tn

i,i+1. In each
of these grid cells, either the plastic yield criterion is satified, and then only one elas-
tic wave occurs, or the criterion is violated, and a plastic correction should be carried
out. This correction depends actually on the type of hardening accounted in the elastic-
plastic constitutive model, which drives the type of waves arising in the Riemann problem.

II.1. Linear hardening
For a linear hardening, a plastic discontinuous wave travelling at speed ±cp toward

grid cell i + 1 or i respectively, should be added to the elastic one if the elastic trial state
does not satisfy the criterion in that grid cell. The plastic wave speed is computed with
the constant and known tangent modulus (9) (or (19)). In all, the characteristic spectrum
solution of the elastic-plastic Riemann problem may consist of (i) two elastic waves if
the trial stress state satisfies the yield criterion in both adjacent grid cells, (ii) two elastic
waves plus one left or right plastic discontinuous wave if the trial stress state has violated
the yield criterion in the sole left of right grid cell adjacent to the interface, or (iii) two
elastic waves plus two plastic discontinuous waves if the trial stress state violates the
yield criterion in both grid cells i and i + 1, as shown in figure 2. This corresponds to the
discrete application of the exact solution of the elastic-plastic Riemann problem [25]. In
order to apply the finite volume scheme (48), it remains to compute the strength α

(p)
i+1/2 of

each of these waves. This is based on the decomposition of Ui+1/2 on the eigenbasis of
the jacobian matrix A = ∂f/∂u:

Un
i+ 1

2
= Un

i+1 −Un
i =

m

∑
p=1

α
(p)
i+1/2K(p) (52)

The strength of elastic waves in yielding grid cells are first computed since the stresses
in areas U∗i and U∗i+1 are known and equal to the respective tensile yield stresses. Then
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Figure 2: Characteristic structure of the elastic-plastic Riemann problem with linear hardening in the case
of plastic flow in both grid cells.

following [3], the strengths of plastic waves are computed by forming a system of
equations with the two remaining waves. For example, if plasticity occurs from both sides,
the two plastic wave strengths are computed by solving the following linear system:

[
K(1P) , K(2P)

] [α
(1P)
i+1/2

α
(2P)
i+1/2

]
= Un

i+1 −Un
i − α

(1)
i+1/2K(1) − α

(2)
i+1/2K(2) (53)

If only a right or left plastic discontinuous wave is added to the characteristic structure,
a similar linear system is formed from both the plastic wave and the remaining elastic
wave. The fluctuations A+Un

i+1/2 and A−Un
i+1/2 are then computed, and the unknowns

Un+1
i are hence updated at time tn+1 through the formula (48). The thermomechanical

coupling is treated as discussed in section I.2.

II.2. Nonlinear hardening
In the case of a nonlinear decreasing hardening material, centered rarefaction waves

occur if plastic flow occurs [25] as shown in figure 3, within which the solution varies
continuously between the head and the tail of the rarefaction fan. However, the elastic

x

t
(1) (2)

Un
i+1

U∗

Un
i

Figure 3: Characteristic structure of the elastic-plastic Riemann problem for a decreasing hardening material
in the case of plastic flow in both grid cells.

discontinuity remains between areas of states Un
i , Un

i+1 and the head of each fan. The
solution within the rarefaction fan ũ(ξ) is a self-similar one, constant along any ray
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ξ = x/t equal to the pth characteristic wavespeed λp, p = (1, 2). Using the plastic
compatibility equations (26), the solution within the pth rarefaction fan is solution of

v(p) = vn
i,i+1 ±

∫ σ(p)

σn
i,i+1

dσ′

ρc(σ′)
, p = 2, 1 (54)

However, the solution within each rarefaction fan is useless for a Godunov-type
method that only requires the stationary (x/t = 0) solution U∗. Hence, an approximate
elastic-plastic Riemann solver can advantageously be built in order to approximate U∗

whatever the remaining of the Riemann solution. The rarefaction waves are replaced
by discontinuous elastic and plastic waves, as for the linear hardening case (see figure
2). The elastic waves are required to generate an elastic precursor, while the plastic
ones should travel at the right speed in order to compute a correct approximation Ũ∗

of U∗. The plastic wave speed is computed with a tangent modulus updated implicitly
by means of a radial return algorithm [9] as for the Lax-Wendroff method (see section
I.1). The states U∗i and U∗i+1 are the yielding states coresponding to the states of heads
of the rarefaction fans, solved explicitly as for the linear hardening case. Actually, this
approximate Riemann solver amounts to match the elastic-plastic Riemann invariants on
the time step (analogous to (42) written on half-time step), provided a rectangle method
with an implicit assessment of the integrand to approximate (43). So the curved part of
the elastic-plastic integral curves shown in figure 1 is approximated by a straight line. It
is assumed that the numerical error generated is small enough if the elastic-plastic load
step within the Riemann problem and therefore the time step of the global computation
is sufficiently small. The discontinuous elastic and plastic waves are next limited based
on the upwind ratio (50) to compute the additional correction fluxes (49).

IV. Numerical examples

I. Sudden unloading of strong discontinuous loading wave in linear hardening bar
We consider a semi-infinite bar made of a linear (isotropic) hardening material, in an

initial natural state, suddenly loaded on its left side at time t = 0 with a constant tensile
stress value σ∗ sufficiently large to deform the bar plastically. After time tu, the applied
load is suddenly released to zero. The analytical solution of this problem can be found in
[25], is summarized in figure 4 and is given below

σ1 = σy ; σ2 = σ∗

σ4 = σ2/β ; β =
c + cp

c− cp
> 1

σ6 =
(σ∗ − σy)

2

(
c
cp
− 1
)
− σ∗

β

ε
p
2 = (σ∗ − σy)

(
1
H
− 1

E

)
ε

p
4 = (σ4 − σy)

(
1
H
− 1

E

)
(55)
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Figure 4: Analytical solution of a semi-infinite bar suddenly plastically loaded then unloaded on its end,
plotted with two strain strong-discontinuities here.

where H is the tangent modulus given by (9) (with D set at zero), c and cp are the elastic
and plastic sound speeds. A stationary strong-discontinuous strain interface is formed at
each unloading cycle, the righward plastic wave being weakened until it disappears.

I.1. Results for an elastic-plastic material
The numerical results obtained for a steel (see table 1 for numerical values of parame-

ters) with the Lax-Wendroff and the second-order TVD Superbee finite volume methods
are compared to the analytical solution of this test case and to the results obtained with
the finite element method coupled with an explicit time integrator. P1-finite elements
and a lumped mass matrix are used [7]. The constitutive equations are integrated with a

E = 2 · 1011 Pa σ0 = 400 · 106 Pa L = 6 m
ρ = 7800 kg.m−3 A = 10 number of grid cells/elements = 100
C = 450 J.kg−1.K−1 T0 = 293 K tu = 1.2 · 10−3 s
Q = 10 · 109 Pa σ∗ = 900 · 106 Pa

Table 1: Numerical values of parameters

radial return algorithm [9], and the solution is computed within a larger domain than
that shown in figures 5 to mimic a semi-infinite bar. No additional viscosity is added
to the explicit finite element solution for comparison purpose. For the finite volume
solutions, transmittive boundary conditions have been set on the right side of the bar.
Comparison is performed using the values at integration points for the finite element
solution, consistently with centroid values of cells for finite volumes solutions. Both
the stress and plastic strain fields are compared at instants t1, t2, t3 and t4 (see figure
4), in figures 5. When the bar is loaded, an elastic precursor travels at the elastic sound
speed (see figure 5(a)), followed by a plastic wave. Since the Courant number has been
set at one, the three numerical methods fit perfectly the analytical solution. However,
the plastic wave travels slower, numerical oscillations appears for the finite element (the
largest ones) and Lax-Wendroff solutions. For the latter one, this is due to the fact that
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Figure 5: Comparison of the analytical, Finite Element (FEM), Lax-Wendroff (LW) and Superbee (SB)
stress and plastic strain fields at different times.
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Lax-Wendroff is not a monotone method nor a TVD one. Moreover, the finite element
solution overestimates the plastic strain value closed to the boundary, though it reduces
to the right values when it departs. Superbee achieves the best resolution of the plastic
wave on five cells here, and compute correctly the level of plastic strain.

Then, the prescribed load is released to zero, and an unloading wave pursues the
forerunning plastic loading disturbance (see figure 5(b)). Strong oscillations appears at
integration points within the unloaded area in the finite element solution. Many solutions
can be used to reduce these oscillations, among others (i) unload in two time steps
rather than in one, (ii) reaverage at integration points the stress moved at nodes using
the finite element shape functions or (iii) adding some additional numerical viscosity.
Superbee achieves a proper elastic unload, superposed with the analytical solution, while
Lax-Wendroff is not so bad.

When the unloading wave catches up with the plastic wave, a discontinuity of the
(plastic) strain appears at this point due to the strain history difference on both sides (see
figure 5(c)). Thus, a stationary discontinuous interface is generated, as well as internal
reflective waves, so that the plastic strain continues to propagate rightward, but with a
smaller value. The resolution of these two plastic strain fronts is quite close for these three
numerical methods.

A second unload disturbance is required here to stop the progession of plastic strain
(see figure 5(d)). The stress front is poorly solved by the finite element method, Lax-
Wendroff has also difficulties with the left front. Only Superbee gives acceptable results
after several reflexions of plastic waves.

I.2. Results for a thermo-elastic-plastic material
The thermomechanical coupling is here added, with numerical parameters listed in

table 1. Since on the one hand a linear hardening is considered in this work, and on
the other hand the thermal part influences the mechanical one through the sole yield
stress, the plastic sound speed is not affected by the temperature here, but the stress
and the plastic strain actually depend on the temperature. With the numerical values
of parameters listed in table 1, the stress does not change much with respect to figure 5
at the beginning, though more after many wave reflexions. The change in plastic strain
is much pronounced. The thermo-elastic-plastic (TEP) numerical solutions are plotted
in figure 10, and the plastic strains superposed with the (isothermal) elastic-plastic (EP)
analytical solution to observe the effect of the thermomechanical coupling. The decrease
of the tensile yield stress through thermal softening leads to an increase of the plastic
flow, and hence to an increase of temperature (figures 6(a) and 6(b)). Recall that adiabatic
conditions have been assumed so that no heat conduction effects are here accounted for.
This explains why the temperature and plastic strain profiles are similar.

II. Sudden unloading of centered plastic loading wave in a bar with a nonlinear isotropic hardening
following a power law
We consider now the problem presented in the previous section I, but with a nonlinear

isotropic hardening following a power law (10). The parameters of that law are set at
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Figure 6: Comparison of the analytical, Finite Element (FEM), Lax-Wendroff (LW) and Superbee (SB)
plastic strain and temperature fields at different times.

B = 770 · 106Pa and m = 0.557. The analytical solution of that problem is recalled in
[25], and can be particularized to a nonlinear isotropic hardening following a power
law, the solution of which is summarized in the Lagrange diagram in figure 7. The

x
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v

σ

σ0
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v∗
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Figure 7: Sudden unloading of centered plastic loading waves.

solution consists of a strong discontinuous unloading disturbance pursuing a set of weak-
discontinuous plastic disturbances. The strong discontinuous unloading disturbance
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(c) Time t3 = 4.62 · 10−3 seconds.

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

σ

1e9 Stress (Pa) at time 5.33e-03 s

0 1 2 3 4 5 6
x (m)

0

1

2

3

4

5

6

7

εp

1e−1 Plastic strain at time 5.33e-03 s

FEM
LW
SB
Analytical

(d) Time t4 = 5.33 · 10−3 seconds.

Figure 8: Comparison of the Finite Element (FEM), Lax-Wendroff (LW), Superbee (SB) and analytical
stress and plastic strain fields at different times for nonlinear isotropic hardening following a
power law.
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is then absorbed by the plastic loading zone at point A2 since the prescribed stress
has been set sufficiently high, then the elastic-plastic boundary is reduced to a weak-
discontinuous unloading boundary, across which both the stress and the velocity are
continuous. Unloading elastic disturbances thus travel back and forth, these waves weaken
iteratively the plastic loading disturbances within segments A1A2, B1B2, C1C2, etc.

Figure 8 shows the numerical results obtained with the explicit Finite Element Method
with P1-elements, the Lax-Wendroff and the TVD Superbee finite volume methods,
compared to the analytical solution of this test case. These comparisons are performed at
times t1 to t4 (see figure 7).

The same observations hold than these made for the linear hardening case I (i) during
the loading stage (figure 8(a)), up to a longer plastic raise due to the nonlinear hardening,
and (ii) during the first part of the unloading stage (figure 8(b)). During the unloading
stage, no stationary plastic strain discontinuity occur now, it decreases continuously and
reach a plateau on segments A2B1 and B2C1 (see figure 7). The three numerical solutions
of the plastic strain are very close, though the plastic strain computed with the Superbee
method seem a little early (fig. 8(d)), particularly in the second and third decreases
associated to lines B1B2 and to the initial plastic loading stage respectively. This may
be due to the approximate elastic-plastic Riemann solver used for nonlinear hardening,
which accuracy is linked to the size of the local elastic-plastic increment at each time step.
However, the stress computed with Superbee in the unloading area best fits the analytical
solution, the Lax-Wendroff elastic solution being slightly shifted; actually a phase error
arises due to its dispersive nature [1].

III. Plane waves in a one-dimensional finite medium made of an elastic-plastic material with linear
hardening and Riemann-type initial conditions

Let’s consider a one-dimensional finite medium of length L with free boundaries at its
two ends, made of an elastic-plastic material with linear isotropic hardening. Riemann-
type initial conditions are prescribed, the velocity is prescribed to −v̄ in the first half
of the medium x ∈ [0, L/2[, and to v̄ in the second half x ∈]L/2, L], while the stress is
considered to be zero everywhere initially. The prescribed velocity is set so that plastic
flow occurs:

v̄ = 1.2
YH

ρc
(56)

where YH = (λ + 2µ)σ0/2µ denotes the Hugoniot elastic limit and c is given by (25). The
analytical solution of that problem can be developed using [25], and is summarized in
figure 9. Expressions are detailed in Appendix A. The states involved within the time
duration considered are plotted with the numerical values of table 1. The solution first
consists of two elastic and plastic waves travelling from the middle in opposite directions
leading to tensile stress states. These waves are then elastically reflected at both free
ends, then interact at the middle of the medium leading to a compressive reloading, first
elastically, then plastically.
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Figure 9: Analytical solution of the one-dimensional finite medium with Riemann-type initial conditions
and a linear isotropic hardening, the states are computed with the numerical values of table 1.

III.1. Linear isotropic hardening
Figure 10 shows the numerical results obtained considering a linear isotropic hardening

with the explicit Finite Element Method with P1-elements, the Lax-Wendroff and the
second-order TVD Superbee finite volume methods, compared to the analytical solution
of this test case. These comparisons are performed at times t1 to t4 (see figure 9).

The three numerical methods fit well the analytical stress states associated to elastic
and plastic waves at time t1 (fig. 10(a)), up to some numerical oscillations of the finite
element solution. However, big discrepancies arise in the plastic strain field: the finite
element solution really overestimates the plastic strain level and oscillations appear.
Refining the mesh does not make the problem go away since these oscillations become
more refined, so that no plateau could be distinguishable without the knowledge of the
analytical solution. Lax-Wendroff also overestimates the value of this plateau, but more
weakly and without oscillations. The best result is achieved by the Superbee method that
describes very well the plastic strain plateau, and solves the plastic wavefront in five cells.

Once these waves are elastically reflected at both free ends (see fig. 10(b)), they interact
at the middle location of the medium in such a way that plastic flow occur on both sides
of the middle, and propagates leftward and rightward (states (8) and (8′), see fig. 9).
Since an elastic-plastic compressive reloading occur, the plastic strain decreases locally.
The three numerical methods fits fairly well the decrease of the plastic strain and the
stress minimum level, up to some oscillations, and though the spatial discretization is
here too coarse to capture properly the elastic precursors. The inner plastic waves cross
so that two compressive elastic and plastic wave fronts propagate in each direction from
the middle (fig. 10(d)). Though the stress states are well captured by the three methods,
the inner plastic strain plateau is only solved correctly by the Superbee method, the two
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(c) Time t3 = 1.12 · 10−3 seconds.
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Figure 10: Comparison of the Finite Element (FEM), Lax-Wendroff (LW), Superbee (SB) and analytical
stress and plastic strain fields at different times of the one-dimensional finite medium submitted
to Riemann-type initial conditions with a linear isotropic hardening.
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others underestimate the negative plastic strain value.

III.2. Comparison between isotropic and kinematic hardenings
The previous example is well designed to show the influence of the type of hardening

(isotropic or kinematic) since an elastic-plastic compressive reloading occurs after an
elastic-plastic tensile loading. For comparison purpose, the kinematic hardening modulus
D is set at 2Q/3, Q being the isotropic hardening modulus, so that the same monotone
behavior is achieved with both types of hardenings. Figures 10(a) and 10(b) are hence
identical in both cases. Figures 11(a) and 11(b) show a comparison of numerical solutions
obtained with the Superbee method at times t3 and t4 considering linear isotropic or
kinematic hardenings, and the corresponding analytical solutions.

Though the stress states change very little (only the difference in elastic precursor
states (7) and (7′′′) are visible), the plastic strain levels associated to the compressive
elastic-plastic reloading differ significantly. The kinematic hardening leads to a greater
plastic flow since the stress state has reached the opposite of the yield surface (for
compression) before that corresponding to the isotropic hardening. Figure 11 also shows
that the Superbee method allows to fit perfectly the stress and plastic strain levels in both
cases, though a not so fine discretization (a hundred cells) has been considered here.
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Figure 11: Comparison of the Superbee and analytical stress and plastic strain fields of the Riemann problem
with linear isotropic (ISO) or kinematic (KIN) hardening at different times in a one-dimensional
medium.
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III.3. Extension to two-dimensional discretization
In order to demonstrate the extensibility to multidimensional problems of the previous

numerical schemes, first results obtained with the Lax-Wendroff elastic-plastic scheme
in the two-dimensional plane strain case are presented on this one-dimensional example
involving plane waves.

Let’s consider a rectangular domain Ω : (x, y) ∈]0, L[×]0, H[, made of an elastic-plastic
material with linear isotropic hardening. Free traction conditions are set at the left and
right sides, while zero shear stress and transverse velocity components are prescribed
on the top and bottom sides, so that combined with the plane strain assumption (zero
out-of-plane velocity and strain components), planes waves can be simulated. The
aforementioned Riemann-type initial conditions are prescribed on the whole domain.
The mesh is made of 200× 3 quadrangular grid cells, and the same material properties
than these of section III.1 are considered. Figure 12 shows for different times t1 (fig.
12(a)) to t4 (fig. 13(d)) the superposed plots of the longitudinal stress and plastic strain
components computed with both the one-dimensional and two-dimensional Lax-Wendroff
discretizations, for a Courant number set at 0.9. For comparison purpose, the analytical
solution of the fields is also plotted on these graphs.

The same trends than these explained in section III.1 are observed, althought the
longitudinal plastic strain distribution shows a more pronounced non-physical peak at
the middle of the one-dimensional medium (see fig. 12(a)) during the first stage of the
simulation, that less appear in figure 10(a) since the mesh has been refined and the Courant
number has been reduced to 0.9 to ensure numerical stability of the two-dimensional
numerical solution. Observe especially the perfect matching of the one-dimensional and
two-dimensional Lax-Wendroff numerical solutions on this test case, during both loading
and unloading stages, showing the good behavior of the method in two dimensions as
well.

V. Conclusion

Two finite volume methods were presented for the numerical simulation of impacts on
one-dimensional elastic-plastic solid media, both for linear and nonlinear hardenings, and
both for bars and plane waves. First, the well-known Lax-Wendroff scheme was extended
to elastic-plastic behaviour. Second, an approximate Riemann solver for elastic-plastic
solids with nonlinear hardening was coupled with a high order TVD scheme based on
flux difference splitting and the Superbee flux limiter. These methods were tested against
the finite element method and analytical solutions on three tests cases.

It has been shown on three test cases that the TVD scheme performs best, particularly
when discontinuous solutions appear, capturing discontinuities in few cells without
oscillations. The flux limiter also allows to capture accurately the stress and plastic strain
plateau, even after many wave reflexions. Continuous solutions are also well described
with the approximated Riemann solver.

Without additional viscosities, the finite element method is struggling with disconti-
nuities, especially when elastic unloadings occur, but performs well in zones were the

24



(a) Time t1 = 3.58 · 10−4 seconds.

(b) Time t2 = 8.68 · 10−4 seconds.

Figure 12: Comparison between the Lax-Wendroff 1D and 2D results and the analytical solution on the
longitudinal stress and plastic strain components.
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(c) Time t3 = 1.1 · 10−3 seconds.

(d) Time t4 = 1.38 · 10−3 seconds.

Figure 12: Comparison between the Lax-Wendroff 1D and 2D results and the analytical solution on the
longitudinal stress and plastic strain components.
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solution is continuous. Moreover, the plastic strains are overestimated close to impact area
and initial discontinuity. This can lead to significant discrepancies of residual stresses and
distortions in impact-type structural problems. Lax-Wendroff appears as an intermediate
with respect to the two previous methods. It slightly oscillates in plastic plateau, solve
discontinuities in a little more cells than Superbee, but still performs well in a global
manner. At last, Lax-Wendroff has been shown to be extensible to multidimensional
problems, that of the high order TVD scheme being the purpose of an ongoing work.
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Appendix A. Analytical solution of the one-dimensional medium with free ends and
Riemann-type initial conditions

The analytical expressions of the stress, velocity and plastic strain fields solution of
the problem described in section III are given below for a linear isotropic hardening:

v0′ = v̄; v0 = −v̄; σ0 = σ0′ = 0

v1 =
YH

ρc
− v̄ = −v1′ ; σ1 = σ1′ = YH

v2 = 0; σ2 = YH

(
1−

cp

c

)
+ ρcv̄; ε

p
2 =

(σ2 −YH)

2µ

(
λ + 2µ

H
− 1
)

v3 =
2YH

ρc
− v̄ = −v3′ ; σ3 = −σ3′ = 0

v4 =
σ2

2ρc
+

v3

2
= −v4′ ; σ4 = σ4′ =

σ2 − ρcv3

2

v5 = 0; σ5 = σ4 − ρcv4

v6 =
σ4

ρc
+ v4 = −v6′ ; σ6 = σ6′ = 0

v7 =
σ7

ρc
+ v6 = −v7′′′ ; v7′ =

σ5 − σ7′

ρc
+ v5 = −v7′′

σ7 = σ7′ = σ7′′ = σ7′′′ = σ2 −
λ + 2µ

µ
Qε

p
2 − 2YH
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v7 + v7′

2
= −v8′ ; σ8 = σ8′ = σ7 +

ρc(v7′ − v7)

2
;

ε
p
8 = ε

p
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p
2 +

(σ8 − σ7)
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(
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H
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)
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p
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p
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(A.1)

where H is the tangent modulus given by (19) with D = 0. In the case of a linear kinematic
hardening, the following changes occur:

σ7 = σ2 − 2YH

ε
p
i =

2µ(σi + YH)

α(λ + 2µ)
; i = 8, 9, 10, 11

(A.2)

where α is defined by (32), and H is defined by (19) with Q = 0.

28



[1] R.J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University
Press, 2002.

[2] P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM Journal on Numerical Analysis, 21:995–1011, 1984.

[3] Tiernan Fogarty. Finite volume methods for acoustics and elasto-plasticity with damage in a
heterogeneous medium. PhD thesis, University of Washington, 2001.

[4] V. Psyk, D. Rich, B.L. Kinsey, A.-E. Tekkaya, and M. Kleiner. Electromagnetic metal
forming - A review. Journal of Materials Processing Technology, 211:787–829, 2011.

[5] J.D. Thomas and N. Triantafyllidis. On electromagnetic forming processes in finitely
strained solids: Theory and examples. Journal of the Mechanics and Physics of Solids,
57:1391–1416, 2009.

[6] T. Heuzé, A. Leygue, and G. Racineux. Parametric modeling of an electromagnetic
compression device with the proper generalized decomposition. International Journal
of Material Forming, pages 1–13, 2015.

[7] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear finite elements for continua and
structures. Wiley, 2000.

[8] David J. Benson. Computational methods in lagrangian and eulerian hydrocodes.
Computer Methods in Applied Mechanics and Engineering, 99:235–394, 1992.

[9] J.C. Simo and T.J.R. Hughes. Computational inelasticity. Springer, 1997.

[10] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer, 2009.

[11] C.H. Lee, A.J. Gil, and J. Bonet. Development of a cell centred upwind finite volume
algorithm for a new conservation law formulation in structural dynamics. Computers
and Structures, 118:13–38, 2013.

[12] M.L. Wilkins. Methods in computational physics, volume 3, chapter Calculation of
elastic-plastic flow, pages 211–263. Academic Press, 1964.

[13] J.A. Trangenstein and P. Collela. A higher-order godunov method for modeling finite
deformation in elastic-plastic solids. Communications in Pure Applied mathematics,
47:41–100, 1991.

[14] G.H. Miller and P. Collela. A high-order eulerian godunov method for elastic-plastic
flow in solids. Journal of Computational Physics, 167:131–176, 2001.

[15] D.J. Hill, D.I. Pullin, M. Ortiz, and D.I. Meiron. An eulerian hybrid weno centered-
difference solver for elastic-plastic solids. Journal of Computational Physics, 229:9053–
9072, 2010.

29



[16] P.T. Barton, D. Drikakis, and E.I. Romenskii. A high-order eulerian godunov method
for elastic-plastic flow in solids. International Journal for Numerical Methods in Engi-
neering, 81:453–484, 2010.

[17] A. Lopez Ortega, M. Lombardini, D.I. Pullin, and D.I. Meiron. Numerical simulation
of elastic-plastic solid mechanics using an eulerian stretch tensor approach and hlld
riemann solver. Journal of Computational Physics, 257:414–441, 2014.

[18] S. Ndanou, N. Favrie, and S. Gavrilyuk. Multi-solid and multi-fluid diffuse interface
model: Applications to dynamic fracture and fragmentation. Journal of Computational
Physics, 295:523–555, 2015.

[19] P.H. Maire, R. Abgrall, J. Breil, R. Loubère, and B. Rebourcet. A nominally second-
order cell-centered lagrangian scheme for simulating elastic-plastic flows on two
dimensional unstructured grids. Journal of Computational Physics, 235:626–665, 2013.

[20] M. Aguirre, A.J. Gil, J. Bonet, and C.H. Lee. An upwind vertex centred finite volume
solver for lagrangian solid dynamics. Journal of Computational Physics, 300:387–422,
2015.

[21] S.K. Godunov and E.I. Romenskii. Elements of continuum mechanics and conservation
laws. Kluwer Academic Plenum Publishers, New York, 2003.

[22] J. Lemaitre and J.L.Chaboche. Mechanics of Solid Materials. Cambridge University
Press, 1994.

[23] F. Wang, J.G. Glimm, J.W. Grove, and B.J. Plohr. A conservative eulerian numerical
scheme for elastoplasticity and application to plate impact problems. Impact of
computing science and engineering, 5:285–308, 1993.

[24] B.J. Plohr and D.H. Sharp. A conservative formulation for plasticity. Advances in
applied mathematics, 13:462–493, 1992.

[25] L. Wang. Foundations of stress waves. Elsevier, 2007.

[26] J. Hodowany, G. Ravichandran, A.J. Rosakis, and P. Rosakis. Partition of plastic work
into heat and stored energy in metals. Experimental Mechanics, 40:113–123, 1999.

[27] B. Halphen and Q.S. Nguyen. Sur les matériaux standards généralisés. Journal de
mécanique, 14(1):667–688, 1975. (in French).

[28] P. Germain, Q.S. Nguyen, and P. Suquet. Continuum Thermodynamics. Journal of
Applied Mechanics, 50:1010–1020, 1983.

30


	Introduction
	Initial Boundary Value Problem for a thermo-elastic-plastic solid in one dimension
	Elastic-plastic constitutive model
	Conservation laws
	Characteristic analysis

	Finite volume spatial discretization
	Lax-Wendroff
	Lax-Wendroff first step
	Lax-Wendroff second step

	High-order TVD methods
	Linear hardening
	Nonlinear hardening 


	Numerical examples
	Sudden unloading of strong discontinuous loading wave in linear hardening bar
	Results for an elastic-plastic material
	Results for a thermo-elastic-plastic material

	Sudden unloading of centered plastic loading wave in a bar with a nonlinear isotropic hardening following a power law
	Plane waves in a one-dimensional finite medium made of an elastic-plastic material with linear hardening and Riemann-type initial conditions
	Linear isotropic hardening
	Comparison between isotropic and kinematic hardenings
	Extension to two-dimensional discretization


	Conclusion
	Analytical solution of the one-dimensional medium with free ends and Riemann-type initial conditions

