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Abstract

An infinite dimensional canonical symplectic structure and structure-preserving geo-
metric algorithms are developed for the photon-matter interactions described by the
Schrödinger-Maxwell equations. The algorithms preserve the symplectic structure of the
system and the unitary nature of the wavefunctions, and bound the energy error of the
simulation for all time-steps. This new numerical capability enables us to carry out first-
principle based simulation study of important photon-matter interactions, such as the
high harmonic generation and stabilization of ionization, with long-term accuracy and
fidelity.
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1. Introduction

Started with the photoelectric effect, photon-matter interaction has been studied over
100 years. With the establishment of the special relativity and quantum theory, scientists
can make many accurate calculations to describe how photons are absorbed and emitted
and how electrons are ionized and captured. Most of the work in early years were based
on perturbative techniques, as the light source was so weak that only single photon effect
was important. The accuracy maintained until the invention of chirped pulse amplifi-
cation (CPA) for lasers in 1980s. Since then, the laser power density have increased 8
orders of magnitude, approaching 1022 W·cm−2, which is stronger than the direct ion-
ization threshold of 1016 ∼ 1018 W·cm−2 [1, 2]. Such a strong field brings many new
physics, e.g., multiphoton ionization, above threshold ionization (ATI), high harmonic
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generation (HHG) and stabilization, which play a major role in modern high energy den-
sity physics, experimental astrophysics, attosecond physics, strong field electrodynamics
and controlled fusion etc. [3–44]. There are several semi-classical non-perturbative meth-
ods to describe these phenomena, both analytical and numerical, and some experimental
observations have been explained successfully [4, 5, 7, 10, 13, 15–18, 20, 23, 26, 28, 32, 37].
Keldysh proposed the first non-perturbative theory describing the ionization process in
a strong laser field [4]. It was then developed by Faisal and Reiss in the S matrix form
known as KFR theory [5, 7]. This theory was further developed into the rescattering
methods [18, 26]. Simple man model is a classical model which gives an intuitive per-
spective to understand the ionization [10]. In semi-classical framework, the well known
three-step model developed by Corkum gives a basic tool to study the strong field physics
[15, 45]. There are also some models developed based on quantum path-integral theory
which output some detailed results about the transient paths [16, 20]. Recently, relativis-
tic corrections for strong field ionization was taken into consideration by Klaiber et al.
[37]. Different from analytical models, directly solving the time-dependent Schrödinger
equation (TDSE) is always a crucially important method for photon-matter interactions.
By numerical simulations, Krause et al. obtained the cut-off law of HHG [13]. Nepstad
et al. numerically studied the two-photon ionization of helium [28]. Birkeland et al.
numerically studied the stabilization of helium in intense XUV laser fields [29]. Based
on simulation results, much information about atom and molecular in strong field can
be obtained [33, 34]. Recently, multi-configuration methods were introduced into TDSE
simulations to treat many-electron dynamics [46–48]. Because of the multi-scale nature
of the process and the large number of degrees of freedom involved, most of the theoreti-
cal and numerical methods adopted various types of approximations for the Schrödinger
equation, such as the strong field approximation [16], the finite energy levels approxima-
tion [49], the independent external field approximation [39] and the single-active electron
approximation [13], which often have limited applicabilities [2, 31]. To understand the
intrinsic multi-scale, complex photon-matter interactions described by the Schrödinger-
Maxwell (SM) equations, a comprehensive model needs to be developed by numerically
solving the SM equations.

For the Maxwell equations, many numerical methods, such as the finite-difference
time-domain method has been developed [50–52]. For the Schrödinger equation, uni-
tary algorithm has been proposed [49, 53–55]. Recently, a class of structure-preserving
geometric algorithms have been developed for simulating classical particle-field interac-
tions described by the Vlasov-Maxwell (VM) equations. Specifically, spatially discretized
canonical and non-canonical Poisson brackets for the VM systems and associated sym-
plectic time integration algorithms have been discovered and applied [56–65].

In this paper, we develop a new structure-preserving geometric algorithm for numer-
ically solving the SM equations. For this purpose, the canonical symplectic structure of
the SM equations is first established. Note that the canonical symplectic structure pre-
sented here is more transparent than the version given in Refs. [66, 67], which involves
complications due to a different choice of gauge. The structure-preserving geometric al-
gorithm is obtained by discretizing the canonical Poisson bracket. The wavefunctions and
gauge field are discretized point-wise on an Eulerian spatial grid, and the Hamiltonian
functional is expressed as a function of the discretized fields. This procedure generates
a finite-dimensional Hamiltonian system with a canonical symplectic structure. The de-
grees of freedom of the discrete system for a single electron atom discrete system is 4M ,
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where M is the number of grid points. For an ensemble of N single-active electron atoms,
the discrete system has (N + 3)M degrees of freedom. A symplectic splitting algorithm
is developed for semi-explicit time advance. The method inherits all the good numerical
features of canonical symplectic algorithms, such as the long-term bound on energy-
momentum error. We also design the algorithm such that it preserves unitary structure
of the Schrödinger equation. These desirable features make the algorithm a powerful tool
in the study of photon-matter interactions using the semi-classical model. We note the
algorithm developed here for the SM equations is inspired by the recent advances in the
structure-preserving geometric algorithms for classical particle-field interactions [56–65],
especially the canonical particle-in-cell method [61].

2. Canonical Symplectic Structure of Schrödinger-Maxwell Systems

In most strong field experiments, the atomic ensemble is weakly coupled, which means
that electrons are localized around the nuclei and there is no direct coupling between
different atoms. Electrons belong to different atoms are well resolved. In a single-active
electron atomic ensemble, every electron can be labeled by a local atom potential. The
wavefunction is a direct product of the resolved single electron wavefunctions. As the
basic semi-classical model for photon-matter interactions between atomic ensemble and
photons, the SM equations are

i
∂

∂t
ψi = Ĥiψi, (1)

∂µF
µν =

∑
i

4π

c
Jνi , (2)

where Ĥi = (P−A)2

2 + Vi is the Hamiltonian operator, P = −i5 is the canonical mo-
mentum, Vi is local atomic potential of the i-th atom, Fµν = c(∂µAν − ∂νAµ) is the
electromagnetic tensor, and c is the light speed in atomic units. The subscript i is elec-
tron label. The atomic potential can assume, for example, the form of Vi(x) = − Z

|x−xi|
with Z being atomic number and xi the position of the atom. With metric signature
(+,−,−,−), in Eq. (2), Jµi = i [ψ∗iD

µψi − ψi(Dµψi)
∗] is the conserved Noether current,

and Dµ = ∂µ+iAµ is the gauge-covariant derivative. In the nonrelativistic limit, the den-
sity J0

i reduces to ψ∗i ψi, while the current density Jki reduces to i
2

[
ψ∗iD

kψi − ψi(Dkψi)
∗],

which closes the SM system. The temporal gauge φ = 0 has been adopted explicitly.
The complex wavefunctions and Hamiltonian operators can be decomposed into real

and imaginary parts,

ψi =
1√
2

(ψiR + iψiI) , (3)

Ĥi = ĤiR + iĤiI , (4)

ĤiR =
1

2

(
−52 +A2

)
+ Vi, ĤiI =

1

2
5 ·A + A · 5. (5)

In terms of the real and imaginary components, the Schrödinger equation is

∂

∂t

(
ψiR
ψiI

)
=

(
ĤiI ĤiR

−ĤiR ĤiI

)(
ψiR
ψiI

)
. (6)
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The SM system admits an infinite dimensional canonical symplectic structure with
following Poisson structure and Hamiltonian functional,

{F,G} =

ˆ [∑
i

(
δF

δψiR

δG

δψiI
− δG

δψiR

δF

δψiI

)
+
δF

δA

δG

δY
− δG
δA

δF

δY

]
d3x,(7)

H (ψiR, ψiI ,A,Y ) =
1

2

ˆ [∑
i

(
ψiRĤiRψiR+ψiIĤiRψiI

−ψiRĤiIψiI+ψiIĤiIψiR

)
+4πY 2+

1

4π
(c5×A)

2

]
d3x. (8)

Here, Y = Ȧ/4π and F, G, and H are functionals of (ψiR, ψiI ,A,Y ) . The expression
δF/δψiR is the variational derivative of the functional F with respect to ψiR, and other
terms, e.g., δF/δψiI and δF/δA, have similar meanings. The Hamiltonian functional
H (ψiR, ψiI ,A,Y ) in Eq. (8) is equivalent to the following expression in terms of the
complex wavefunctions,

H (ψ∗i , ψi,A,Y ) = Hqm +Hem, (9)

Hqm =

ˆ ∑
i

ψ∗i Ĥiψid
3x, (10)

Hem =
1

2

ˆ [
4πY 2 +

1

4π
(c5×A)

2

]
d3x. (11)

Apparently, Hem is the Hamiltonian for the electromagnetic field, and Hqm is the Hamil-
tonian for the wavefunctions. In this infinite dimensional Hamiltonian system, the canon-
ical pairs are (ψiR, ψiI) and (A,Y ) at each spatial location. Their canonical equations
are

˙ψiR = {ψiR, H} =
1

2
5 ·AψiR+A · 5ψiR+

1

2

(
−52+A2

)
ψiI+ViψiI, (12)

Ȧ = {A, H} = 4πY , (13)

˙ψiI = {ψiI , H} =
1

2

(
52−A2

)
ψiR−ViψiR+

1

2
5 ·AψiI+A · 5ψiI , (14)

Ẏ = {Y , H} = J − c2

4π
5×5×A, (15)

where J = 1
2

∑
i[ψiR 5 ψiI − ψiI 5 ψiR − (ψ2

iR + ψ2
iI)A] is the current density. In

deriving Eqs. (12)-(15), use is made of the following expression of the total variation of
Hamiltonian,

δH =
1

2

ˆ ∑
i

[
(
−52 ψiR + A2ψiR + 2ViψiR − 2A · 5ψiI −5 ·AψiI

)
δψiR

+
(
−52 ψiI + A2ψiI + 2ViψiI + 2A · 5ψiR +5 ·AψiR

)
δψiI

+
(
ψ2
iRA + ψ2

iIA + ψiI 5 ψiR − ψiR 5 ψiI
)
· δA]d3x

+

ˆ
[
c2

4π
5×5×A · δA + 4πY · δY ]d3x, (16)

where integration by parts have been applied with fixed fields on the boundary.
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3. Structure-preserving Geometric Algorithms for Schrödinger-Maxwell Sys-
tems

We now present the structure-preserving geometric algorithms for numerically solving
Eqs. (12)-(15). We discretize the fields (ψiR, ψiI ,A,Y ) on an Eulerian spatial grid as

A (x, t) =

M∑
J=1

AJ (t) θ (x− xJ) , Y (x, t) =

M∑
J=1

YJ (t) θ (x− xJ) , (17)

ψiR (x, t) =

M∑
J=1

ψiRJ (t) θ (x− xJ) , ψiI (x, t) =

M∑
J=1

ψiIJ (t) θ (x− xJ) , (18)

where the distribution function θ (x− xJ) is defined as

θ (x− xJ) =

{
1, |x− xJ | < 4x

2 , |y − yJ | <
4y
2 , |z − zJ | <

4z
2

0, elsewhere
. (19)

Then, the variational derivative with respect to A is

δF

δA
=

M∑
J=1

δAJ

δA

∂F

∂AJ
=

M∑
J=1

1

4V
θ (x− xJ)

∂F

∂AJ
, (20)

and the variational derivatives with respect to Y , ψiR and ψiI have similar expressions.
Here, 4V = 4x4 y 4 z is the volume of each cell. The canonical Poisson bracket is
discretized as

{F,G}d=

M∑
J=1

[∑
i

(
∂F

∂ψiRJ

∂G

∂ψiIJ
− ∂G

∂ψiRJ

∂F

∂ψiIJ

)
+
∂F

∂AJ

∂G

∂YJ
− ∂G

∂AJ

∂F

∂YJ

]
1

4V
. (21)

The Hamiltonian functional is discretized as

Hd (ψiRJ , ψiIJ ,AJ ,YJ) = Hdem +Hdqm, (22)

Hdem =
1

2

M∑
J=1

[
4πY 2

J +
1

4π
(c5d×A)

2
J

]
4 V, (23)

Hdqm =
1

2

M∑
J=1

∑
i

[
−1

2
ψiRJ

(
52
dψiR

)
J
− 1

2
ψiIJ

(
52
dψiI

)
J
−ψiRJAJ · (5dψiI)J

+ψiIJAJ · (5dψiR)J+

(
1

2
A2
J+ViJ

)(
ψ2
iRJ+ψ2

iIJ

)]
4 V, (24)

where ViJ = Vi (xJ), and the discrete spatial operators are defined as

(5dψ)J =


ψi,j,k−ψi−1,j,k

4x
ψi,j,k−ψi,j−1,k

4y
ψi,j,k−ψi,j,k−1

4z

 , (25)
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(5d ·A)J =
Axi,j,k −Axi−1,j,k

4x
+
Ayi,j,k −Ayi,j−1,k

4y
+
Azi,j,k −Azi,j,k−1

4z
, (26)

(5d ×A)J =


Azi,j,k−Azi,j−1,k

4y − Ayi,j,k−Ayi,j,k−1

4z
Axi,j,k−Axi,j,k−1

4z − Azi,j,k−Azi−1,j,k

4x
Ayi,j,k−Ayi−1,j,k

4x − Axi,j,k−Axi,j−1,k

4y

 , (27)

(
52
dψ
)
J

=
ψi,j,k−2ψi−1,j,k+ψi−2,j,k

4x2
+
ψi,j,k−2ψi,j−1,k+ψi,j−2,k

4y2

+
ψi,j,k−2ψi,j,k−1+ψi,j,k−2

4z2
. (28)

Here, the subscript J denotes grid position (i, j, k). The discrete spatial operators defined
here use first order backward difference schemes. High order spatial schemes can be
developed as well.

The discrete canonical equations are

˙ψiRJ = {ψiRJ , Hd}d

=
1

2
AJ · (5dψiR)J−

1

2

M∑
K=1

ψiRKAK ·
∂

∂ψiIJ
(5dψiI)K

−1

4

(
52
dψiI

)
J
− 1

4

M∑
K=1

ψiIK
∂

∂ψiIJ

(
52
dψiI

)
K

+

(
1

2
A2
J+ViJ

)
ψiIJ , (29)

ȦJ = {AJ , Hd}d = 4πYJ , (30)

˙ψiIJ = {ψiIJ , Hd}d

=
1

4

(
52
dψiR

)
J

+
1

4

M∑
K=1

ψiRK
∂

∂ψiRJ

(
52
dψiR

)
K
−
(

1

2
A2
J+ViJ

)
ψiRJ

+
1

2
AJ · (5dψiI)J−

1

2

M∑
K=1

ψiIKAK ·
∂

∂ψiRJ
(5dψiR)K , (31)

ẎJ = {YJ , Hd}d = J J−
c2

4π

(
5Td ×5d ×A

)
J
, (32)

where J J = 1
2

∑
i[ψiRJ (5dψiI)J − ψiIJ (5dψiR)J − AJ

(
ψ2
iRJ + ψ2

iIJ

)
] is the discrete

current density. The last term in Eq. (32) is defined to be,

(
5Td ×5d ×A

)
J

=
1

2

∂

∂AJ

[
M∑
K=1

(5d ×A)
2
K

]
, (33)

which indicates that the right-hand side of Eq. (33) can be viewed as the discretized
5×5×A for a well-chosen discrete curl operator 5d×.

We will use the following symplectic splitting algorithms to numerically solve this
set of discrete canonical Hamiltonian equations. In Eq. (22), Hd is naturally split into
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two parts, each of which corresponds to a subsystem that will be solved independently.
The solution maps of the subsystems will be combined in various way to give the desired
algorithms for the full system. For the subsystem determined by Hdqm, the dynamic
equations are

˙ψiRJ = {ψiRJ , Hdqm}d

=
1

2
AJ · (5dψiR)J−

1

2

M∑
K=1

ψiRKAK ·
∂

∂ψiIJ
(5dψiI)K

−1

4

(
52
dψiI

)
J
− 1

4

M∑
K=1

ψiIK
∂

∂ψiIJ

(
52
dψiI

)
K

+

(
1

2
A2
J+ViJ

)
ψiIJ , (34)

˙ψiIJ = {ψiIJ , Hdqm}d

=
1

4

(
52
dψiR

)
J

+
1

4

M∑
K=1

ψiRK
∂

∂ψiRJ

(
52
dψiR

)
K
−
(

1

2
A2
J+ViJ

)
ψiRJ

+
1

2
AJ · (5dψiI)J−

1

2

M∑
K=1

ψiIKAK ·
∂

∂ψiRJ
(5dψiR)K , (35)

ȦJ = {AJ , Hdqm}d = 0, (36)

ẎJ = {YJ , Hdqm}d = J J . (37)

Equations (34) and (35) can written as

d

dt

(
ψiR
ψiI

)
= Ω(A)

(
ψiR
ψiI

)
, (38)

where Ω(A) is an skew-symmetric matrix. It easy to show that Ω(A) is also an in-
finitesimal generator of the symplectic group. To preserve the unitary property of ψi,
we adopt the symplectic mid-point method for this subsystem, and the one step map
Mqm : (ψi,A,Y )n 7−→ (ψi,A,Y )n+1 is given by(

ψiR
ψiI

)n+1

=

(
ψiR
ψiI

)n
+

∆t

2
Ω(An)

[(
ψiR
ψiI

)n
+

(
ψiR
ψiI

)n+1
]
, (39)

An+1 = An, (40)

Y n+1 = Y n + ∆tJ
(
ψniR + ψn+1

iR

2
,
ψniI + ψn+1

iI

2

)
. (41)

Equation (39) is a linear equation in terms of (ψn+1
iR , ψn+1

iI ). Its solution is(
ψiR
ψiI

)n+1

= Cay(Ω(An)
∆t

2
)

(
ψiR
ψiI

)n
, (42)

Cay(Ω(An)
∆t

2
) =

(
1− Ω(An)

∆t

2

)−1(
1 + Ω(An)

∆t

2

)
, (43)

where Cay(S) denotes the Cayley transformation of matrix S. It is well-known that
Cay(S) is a symplectic rotation matrix when S in the Lie algebra of the symplectic
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rotation group. Thus, the one-step map from ψni = ψniR + iψniI to ψn+1
i = ψn+1

iR +
iψn+1
iI induced by Mqm for the subsystem Hdqm is unitary. Since Ω(An∆t/2) is a sparse

matrix, there exist efficient algorithms to solve Eq. (39) or to calculate Cay(Ω(An)∆t/2).
Once ψn+1

i is known, Y n+1 can be calculated explicitly. Thus, Mqm : (ψi,A,Y )n 7−→
(ψi,A,Y )n+1 is a second-order symplectic method, which also preserves the unitariness
of ψi.

For the subsystem Hdem, the dynamic equations are

˙ψiRJ = {ψiRJ , Hdem}d = 0, (44)

˙ψiIJ = {ψiIJ , Hdem}d = 0, (45)

ȦJ = {AJ , Hdem}d = 4πYJ , (46)

ẎJ = {YJ , Hdem}d = − c
2

4π

(
5Td ×5d ×A

)
J
. (47)

Equations (46) and (47) are linear in terms of A and Y , and can be written as

d

dt

(
A
Y

)
= Q

(
A
Y

)
, (48)

where Q is a constant matrix. We also use the second order symplectic mid-point rule
for this subsystem, and the one step map Mem : (ψi,A,Y )n 7−→ (ψi,A,Y )n+1 is given
explicitly by (

ψiR
ψiI

)n+1

=

(
ψiR
ψiI

)n
, (49)(

A
Y

)n+1

= Cay

(
Q

∆t

2

)(
A
Y

)n
. (50)

Since the map does not change ψi, it is unitary.
Given the second-order symmetric symplectic one-step maps Mem and Mqm for the

subsystems Hdem and Hdqm, respectively, various symplectic algorithms for the system
can be constructed by composition. For example, a first-order algorithm for Hd is

M(∆t) = Mem(∆t) ◦Mqm(∆t). (51)

A second-order symplectic symmetric method can be constructed by the following sym-
metric composition,

M2(∆t) = Mem(∆t/2) ◦Mqm(∆t) ◦Mem(∆t/2). (52)

From a 2l-th order symplectic symmetric method M2l(∆t), a 2(l+1)-th order symplectic
symmetric method can be constructed as

M2(l+1)(∆t) = M2l(αl∆t) ◦M2l(βl∆t) ◦M2l(αl∆t) , (53)

with αl =
(

2− 21/(2l+1)
)−1

, and βl = 1− 2αl . (54)

Obviously, the composed algorithms for the full system is symplectic and unitary.
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Figure 1: Oscillation of the wavefunction for a hydrogen atom. The real and imaginary parts of wave
function on the z = 0 plane which passes through the nuclear center. One oscillation cycle is shown.

4. Numerical Examples

As numerical examples, two semi-classical problems have been solved using an imple-
mentation of the first-order structure-preserving geometric algorithm described above.
Simulations are carried out on a Scientific Linux 6.3 OS with two 2.1 GHz Intel Core2
CPUs. The data structure is designed in coordinate sparse format and the BICGSTAB
method (iteration accuracy 10−9) is introduced to implement the Cayley transformation.

The first numerical example is the oscillation of a free hydrogen atom, which has been
well studied both theoretically and experimentally [68, 69]. The simulation domain is
a 100×100×100 uniform Cartesian grid, which represents a [-5, 5]×[-5, 5]×[-5, 5] a.u.3

physical space. All boundaries are periodic. A hydrogen nucleus is fixed on the origin
and the initial wave function is a direct discretization of the ground-state wavefunction
ψ = 1√

π
e−r. The time step is 4t = 1.5δ/

√
3c a.u., where δ = 4x = 4y = 4z = 0.1

a.u. and c ≈ 137 a.u. A total of 2 × 104 simulation steps covers a complete oscillation
cycle of the ground state. Simulation results show the ground-state oscillation with very
small numerical noise. Due to the finite-grid size effect and self-field effect, the initial
wave function is not the exact numerical ground state of discrete hydrogen atom. It is
only a good approximation, which couples weakly to other energy levels. The real and
imaginary parts of the wavefunction on the z = 0 plane at four different times are plotted
in Fig. 1. The numerical oscillation period is found to be 12.58 a.u., which agrees the
analytical result 4π a.u. very well. The mode structures at the frequency ν = 1/4π
a.u. are plotted in Fig. 2. As expected, the structure-preserving geometric algorithm
has excellent long-term properties. The time-history of numerical errors are plotted in
Fig. 3. After a long-term simulation, both total probability error and total Hamiltonian

9



Figure 2: Mode structure of the ground state. Real part (a) and imaginary part (b) on z = 0 plane are
plotted for the frequency component at ν = 1/4π a.u..

error are bounded by a small value.
In the second example, we simulate the continuous ionization of a hydrogen atom

in an ultrashort intense pulse-train of electromagnetic field. Because the light-electron
speed ratio is about 137, the coupling between a single ultrashort pulse and the atom
is weak. But with the continuous excitation by the intense pulse-train, the atom can
be ionized gradually. The computation domain and initial wavefunction are the same
as the first example, and the time step is chosen to 4t = 0.1δ/

√
3c a.u. to capture the

scattering process. To introduce the incident pulse-train, we set the initial gauge field to
be A0 = 100e−(z+2.5)2/0.25ex and Y 0 = 0, representing two linearly-polarized modulated
Gaussian waves which counter-propagate along the z-direction. The evolution of wave
function is plotted in Figs. 4 and 5, which depicts the continuous ionization process by the
ultrashort intense pulse-train. The ionization is indicated by the increasing plane-wave
components of the wavefunction. Figure 6 illustrates the evolution of scattered gauge
field, which dependents strongly on the electron polarization current. To demonstrate
the excellent long-term properties of the structure-preserving geometric algorithm, the
time-history of numerical errors in this example are plotted in Fig. 7. After a long-term
simulation, the numerical errors of conservation quantities are bounded by a small value.

5. Conclusions

The structure-preserving geometric algorithms developed provide us with a first-
principle based simulation capability for the SM system with long-term accuracy and
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Figure 3: Time-history of numerical errors. After a long-term simulation, both total probability error
(a)-(b) and total Hamiltonian error (c)-(d) are bounded by a small value.

fidelity. Two numerical examples validated the algorithm and demonstrated its appli-
cations. This approach is particularly valuable when the laser intensity reaches 1018

W·cm−2, which invalidates many reduced or simplified theoretical and numerical models
based on perturbative analysis. For example, structure-preserving geometric algorithms
can be applied to achieve high fidelity simulations of the HHG physics and the stabiliza-
tion effect of ionization. The HHG has been partially explained by the three-step semi-
classical model and the Lewenstein model in the strong field approximation [13, 15, 16].
After ionization, acceleration and recapture in a strong field, the electron emits photons
with a high order harmonic spectrum. The step and cutoff structures of the spectrum
strongly depend on the beam intensity, photon energy and atomic potential. With the
time dependent wave function, the spectrum F (ω) =

´
T

´
V
ψ∗(t)ẍψ(t)eiωtd3xdt can

be calculated numerically. It can also be obtained by calculating the scattered gauge
field spectrum via a class of numerical probes around the potential center. Numerically
calculated wave functions also contains detailed information about the dynamics of ion-
ization. In a strong field, the atomic potential is seriously dressed, and the wave function
becomes non-localized. Therefore, electrons have a chance of jumping into free states.
Above a specified threshold, the stabilization will quickly appears, i.e., the ionization
rate increases slowly with the growth of beam intensity and photon energy [12, 14]. By
introducing a proper absorbing boundary condition in the simulation, the ionization rate
can be calculated as ΓI =

¸
1
2 (ψR 5 ψI − ψI 5 ψR)·dS, which gives a non-perturbative

numerical treatment of the phenomena.
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Figure 4: Evolution of the wavefunction (real part). It shows that at early time, the wave function is
localized and the atomic state is maintained. After a few pulses, the wave function is slightly modified
by the gauge field and plane wave components along the z-direction can be found, which marks the
beginning of ionization. With the accumulation of pulse-train, the wave function drifts along the A× k
direction, and the atomic state is broken. The increasing plane-wave components due to ionization can
be clearly identified. In this process, photon momentum is transferred to the electron gradually.
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Figure 5: Evolution of the wavefunction (imaginary part). It shows the same ionization process as in
Fig. 4.

Figure 6: Evolution of the Az component of scattered gauge field. The scattered field dependents
strongly on the electron polarization current. It is weak relative to the incident field, which indicates
that the effect of a single atom is small. An ensemble with 103 − 104 atoms will show significant effects.
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Figure 7: Time-history of numerical errors. After a long-term simulation, both total probability error
(a)-(b) and total Hamiltonian error (c)-(d) are bounded by a small value.
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[20] P. Salières, B. Carré, L. L. Dèroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold, W. Becker,
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A. Hankla, X. Gao, B. Shim, A. L. Gaeta, M. Tarazkar, D. A. Romanov, R. J. Levis, J. A. Gaffney,
M. Foord, S. B. Libby, A. Jaron-Becker, A. Becker, L. Plaja, M. M. Murnane, H. C. Kapteyn,
T. Popmintchev, Ultraviolet surprise: efficient soft X-ray high-harmonic generation in multiply
ionized plasmas, Science 350 (2015) 1225.

[41] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach,
J. M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane, O. Cohen, Generation of bright phase-matched
circularly-polarized extreme ultraviolet high harmonics, Nature Photon. 9 (2015) 99.

[42] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, E. Goulielmakis, Extreme ultraviolet
high-harmonic spectroscopy of solids, Nature 521 (2015) 498.

[43] M. Bukov, L. D’Alessio, A. Polkovnikov, Universal high-frequency behavior of periodically driven
systems: from dynamical stabilization to Floquet engineering, Adv. Phys. 64 (2015) 139.

[44] M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz,
A. M. Zheltikov, V. Pervak, F. Krausz, E. Goulielmakis, Optical attosecond pulses and tracking
the nonlinear response of bound electrons, Nature 530 (2016) 66.

[45] P. Corkum, Recollision physics, Physics Today 64 (2011) 36.
[46] D. Hochstuhl, C. Hinz, M. Bonitz, Time-dependent multiconfiguration methods for the numerical

simulation of photoionization processes of many-electron atoms, Eur. Phys. J. Spec. Top. 223 (2014)
177.

[47] H. Miyagi, L. B. Madsen, Time-dependent restricted-active-space self-consistent-field theory for
laser-driven many-electron dynamics. II. extended formulation and numerical analysis, Phys. Rev.
A 89 (2014) 063416.

[48] S. Bauch, L. K. Sørensen, L. B. Madsen, Time-dependent generalized-active-space configuration-
interaction approach to photoionization dynamics of atoms and molecules, Phys. Rev. A 90 (2014)
062508.

[49] L. Wu, X. Jin, Z. Wu, Symplectic structure of Schrödinger equation and symplectic algorithms for
quantum mechanics, Chin. J. comput. phys. 12 (1995) 127.

[50] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media, IEEE Trans. Antenn. Propag. 14 (1966) 302.

[51] G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain
electromagnetic-field equations, IEEE Trans. Electromagn. Compat. 23 (1981) 377.

[52] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. comput.
phys. 114 (1994) 185.

[53] S. Blanes, F. Casas, A. Murua, Symplectic splitting operator methods for the time-dependent
Schrödinger equation, J. Chem. Phys. 124 (2006) 234105.

[54] K. Kormann, S. Holmgren, H. O. Karlsson, Accurate time propagation for the Schrödinger equation
with an explicitly time-dependent Hamiltonian, J. Chem. Phys. 128 (2008) 184101.

[55] J. Shen, Wei E. I. Sha, Z. Huang, M. Chen, X. Wu, High-order symplectic FDTD scheme for solving
a time-dependent Schrödinger equation, Comput. Phys. Comm. 184 (2013) 445.

[56] J. Squire, H. Qin, W. M. Tang, Geometric integration of the Vlasov-Maxwell system with a varia-
tional particle-in-cell scheme, Phys. Plasmas 19 (2012) 084501.

[57] J. Xiao, J. Liu, H. Qin, Z. Yu, A variational multi-symplectic particle-in-cell algorithm with smooth-
ing functions for the Vlasov-Maxwell system, Phys. Plasmas 20 (2013) 102517.

[58] J. Xiao, J. Liu, H. Qin, Z. Yu, N. Xiang, Variational symplectic particle-in-cell simulation of non-
linear mode conversion from extraordinary waves to Bernstein waves, Phys. Plasmas 22 (2015)
092305.

[59] J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, Y. Sun, Explicit high-order non-canonical symplectic
particle-in-cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22 (2015) 112504.

[60] Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang, J. Liu, Hamiltonian integration methods for Vlasov-
Maxwell equations, Phys. Plasmas 22 (2015) 124503.

16



[61] H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. W. Burby, L. Ellison, Y. Zhou,
Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-
Maxwell equations, Nucl. Fusion 56 (2016) 014001.

[62] Y. He, Y. Sun, H. Qin, J. Liu, Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations,
Phys. Plasmas 23 (2016) 092108.

[63] P. Morrison, Structure and structure-preserving algorithms for plasma physics, Phys. Plasmas 24
(2017) 055502.

[64] J. Xiao, H. Qin, P. Morrison, J. Liu, Z. Yu, R. Zhang, Y. He, Explicit high-order noncanonical
symplectic algorithms for ideal two-fluid systems, Phys. Plasmas 23 (2016) 112107.

[65] M. Kraus, K. Kormann, P. Morrison, E. Sonnendrücker, GEMPIC: Geometric ElectroMagnetic
Particle-In-Cell Methods, https://arxiv.org/abs/1609.03053

[66] D. Masiello, On the canonical formulation of electromagnetics and wave mechanics, Ph.D. thesis,
University of Florida (2004).
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